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Abstract

The integration of Large Language Models (LLMs), such as ChatGPT, in radiology could
offer insight and interpretation to the increasing number of radiological findings generated
by Artificial Intelligence (AI). However, the complexity of medical text presents many chal-
lenges for LLMs, particularly in uncommon languages such as Dutch. This study therefore
aims to evaluate ChatGPT’s ability to generate accurate ‘Impression’ sections of radiol-
ogy reports, and its effectiveness in evaluating these sections compared against human
radiologist judgments. We utilized a dataset of CT-thorax radiology reports to fine-tune
ChatGPT and then conducted a reader study with two radiologists and GPT-4 out-of-the-
box to evaluate the AI-generated ‘Impression’ sections in comparison to the originals. The
results revealed that human experts rated original impressions higher than AI-generated
ones across correctness, completeness, and conciseness, highlighting a gap in the AI’s abil-
ity to generate clinically reliable medical text. Additionally, GPT-4’s evaluations were
more favorable towards AI-generated content, indicating limitations in its out-of-the-box
use as an evaluator in specialized domains. The study emphasizes the need for cautious
integration of LLMs into medical domains and the importance of expert validation, yet
also acknowledges the inherent subjectivity in interpreting and evaluating medical reports.

Keywords: Large Language Models, ChatGPT, Radiology Reports, Impression Genera-
tion, Fine-tuning

1. Introduction

The introduction of transformer models (Vaswani et al., 2017) revolutionized the field of
Natural Language Processing (NLP). Among these models, Large Language Models (LLMs)
like ChatGPT have demonstrated remarkable proficiency in a wide range of natural language
understanding and generation tasks. They have shown to excel, in particular, in tasks
involving common and well-defined language patterns, such as text completion, translation,
and summarization (Chang et al., 2023).

In the field of medicine, the integration of various forms of Artificial Intelligence (AI)
can enhance patient outcomes by providing support to healthcare professionals in complex
decision-making processes (Topol, 2019). However, applying LLMs in the medical domain
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presents unique challenges. Unlike many well-defined language tasks, medical text is filled
with specialized terminology and nuanced contextual information. Nevertheless, significant
effort has been put into designing LLMs specifically for such tasks (He et al., 2023), and
many have already demonstrated their capabilities in the clinical field (Singhal et al., 2023;
Dave et al., 2023; Rao et al., 2023; ten Berg et al., 2024).

The field of radiology in particular has shown to be a domain where AI thrives. The
availability of commercial AI-based software solutions in this sector is widespread (Project
AIR Working Group et al., 2024), with certain products achieving performance levels com-
parable to those of human radiologists (L̊ang et al., 2023). This advancement, coupled
with the growing workload faced by radiologists, underscores the expanding influence of
AI-driven automation within the realm of medical imaging (Alexander et al., 2020; Kwee
and Kwee, 2021).

Central to the radiology workflow are radiology reports, serving as a communication
tool between radiologists and physicians. These reports provide both a factual description
and the radiologist’s interpretation of imaging. A report is typically comprised of three
main sections: the clinical questions, the ‘Findings’ section, and the ‘Impression’ section.
The clinical questions are supplied by clinicians, outlining the reasons for conducting an
imaging study. The ‘Findings’ section details the radiologist’s observations on all organs
and structures visible in the image. Finally, the ‘Impression’ section summarizes the most
clinically relevant information from the ‘Findings’ section and answers the clinical questions.
An example of a radiology report can be found in Appendix A.

As AI systems increasingly contribute to the generation of findings, LLMs can offer
insights and interpretations to complement these automated processes. Automatic gener-
ation of ‘Impression’ sections exemplifies this capability. However, radiology reports pose
distinctive challenges for NLP systems due to their often unstructured nature, which is
compounded by the extensive use of specialized medical terminology and jargon. Partic-
ularly, automatically generating the ‘Impression’ section requires not only summarization,
but also the ability to provide insights, merging of individual findings and offering inter-
pretations—an inherently complex task. Moreover, the complexity deepens when reports
are written in languages less commonly encountered within the NLP community, such as
Dutch.

Additionally, there is a notable shift in the NLP domain towards adopting LLM-as-a-
judge evaluation metrics for assessing more open-ended responses (Yuan et al., 2024; Dubois
et al., 2024). Traditional objective metrics like BLEU and ROUGE scores tend to fall short
in encompassing the full range of semantic information (Kaster et al., 2021), whereas Large
Language Models can offer more subjective reasoning capacity (Zheng et al., 2023). The
effectiveness of these novel metrics hinges on the LLMs’ capacity to interpret and evaluate
text in a manner similar to expert human readers. This is particularly challenging when it
comes to medical reports.

In this context, this study aims to validate the concept that LLMs can serve as a
integral element in the collaborative workflow between radiologist and AI. Our objective is
to assess the proficiency of ChatGPT, specifically fine-tuned on a corpus of unstructured
Dutch radiology reports, to generate high quality ‘Impression’ sections. Prior work has
explored fine-tuned LLMs for non-English medical text (Liu et al., 2023), but we are the
first to specifically investigate this task within the context of Dutch language.
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Additionally, we examine GPT-4’s capability to evaluate these sections out-of-the-box.
We organized a reader study involving two physicians in radiology, instructed them with
evaluating both the original and AI-generated impressions for correctness, completeness,
and conciseness. These evaluations serve a dual purpose: they measure the quality of the
generated content and establish a benchmark for assessing the precision of GPT-4’s scoring
capabilities.

Figure 1: A schematic overview of the methodology. The flowchart shows the datasets
extracted from the Radboudumc internal CT archive in green rectangles. Red
ovals represent language models, and the black diamond are the two radiologists
participating in the reader study.

2. Methods

This section will outline the methods used in our study. A schematic overview can be found
in Figure 1.

2.1. Datasets

We sourced the data for this study retrospectively from the archive of computed tomography
(CT) studies performed at the Radboudumc in Nijmegen, the Netherlands, between 2013
and 2023. We filtered the database to include only those cases that relate to thoracic scans
by querying the archive metadata for CT scans of the chest with or without intravenous
contrast. The clinical indications for these scans varied, reflecting a representative sample
of chest CTs in an academic hospital.

To ensure data safety, every report sampled from the archive underwent iterative anonymiza-
tion using our in-house anonymization software (explained in more detail in Appendix B)
followed by a manual inspection. This approach was motivated by the demonstrated ca-
pability of fine-tuned models to unintentionally leak sensitive personal information from
their training sets (Sun et al., 2023). Preventing such data leaks was a primary concern.
Additionally, cases were excluded if they were found to contain extraneous information that
could not be inferred from the ’Findings’ section. For example, cases with statements such
as “These findings were communicated with Physician A at timepoint B” were excluded.
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Ultimately, we curated a final dataset comprising 200 reports, which was subsequently
divided into both a training set and a test set, each consisting of 100 reports. This selec-
tion aligns with the recommended dataset size as outlined in OpenAI’s fine-tuning guide
(OpenAI, 2023) while also enabling us to guarantee complete data safety.

2.2. Fine-tuning of ChatGPT

Fine-tuning of LLMs involves a transfer learning process. During fine-tuning, a pre-trained
model undergoes multiple training iterations on a dataset containing prompts and corre-
sponding responses. The model’s weights are updated to minimize perplexity (Jelinek et al.,
1977).

In our fine-tuning process, we utilized the OpenAI fine-tuning API. It is worth empha-
sizing that OpenAI has not publicly disclosed the specific techniques employed within this
API, presenting a challenge to scientific transparency. Numerous open-source models (Lee
et al., 2020; Alsentzer et al., 2019; Touvron et al., 2023; Le Scao et al., 2022) are available
for fine-tuning in a more transparent manner. However, prior testing as well as literature
(Sandmann et al., 2024; Wu et al., 2023) show that these models fail to achieve the per-
formance levels attained by ChatGPT. We determined that focusing solely on fine-tuning a
state-of-the-art model represented the most optimal use of resources, both computationally
and in terms of time for the participants in our reader study.

We presented each case to the API in the form of a conversation, following a predefined
scenario in which a system prompt sets the context. A simulated ‘user’ then contributed the
‘Findings’ section of the report, and the ‘assistant’ generated and returned the ‘Impression’
section. The exact prompts we used are documented in Appendix C.1.

The training dataset contained a total of 55,581 tokens. We trained GPT-3.5-turbo-0613
for 3 epochs with default settings, which took approximately 13 minutes to complete at a
cost of $1.33.

Various other transfer learning techniques such as zero-shot and few-shot learning are
commonly employed in the field. However, experiments revealed that zero-shot prompting
yielded suboptimal results for our specific use case, producing impressions that were highly
verbose and written in mostly common Dutch, as shown in Appendix A. While inclusion
of examples in the prompt did lead to a marginal improvement with respect to zero-shot
learning, achieving results comparable to those of the fine-tuned model required the use of
at least ten examples per case. This increased input length greatly increased inference cost
while failing to produce a discernibly better output. We therefore opted not to continue
further exploring this approach.

2.3. Reader Study

We generated the ‘Impression’ section for the 100 reports in the test set using our fine-tuned
model by providing it the prompts presented in Appendix C.2. To evaluate the quality of
these AI-generated impressions, we conducted a reader study.

For each report, the reader was presented with the ’Findings’ section, followed by both
the original and the generated ’Impression’ section in a random order. This ensured that
the reader did not know beforehand which impression section corresponded to the original
or the generated version. They were instructed to evaluate each ‘Impression’ based on three
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criteria: correctness, completeness, and conciseness. Evaluations were made using a scale
from 1 to 6, with 6 indicating the highest level of quality. We provided detailed guidance
for each rating category, which can be found in Appendix D.

Two human readers, M.B., a board-certified radiologist with over 14 years of clinical
experience in radiology, and S.B., a resident currently specializing in radiology, participated
in the reader study. Additionally, we employed GPT-4 to perform the evaluation task,
providing it with the same rating guide as the radiologists. The exact prompts for this
experiment are outlined in Appendix C.3.

To objectively explore the correlation between the ratings of the readers, we performed
statistical analyses using the quadratically weighted Cohen’s kappa coefficient κw = 1 −∑

wij ·foij∑
wij ·feij

, where foij are the observed frequencies of ratings, feij are the expected frequencies

of ratings and wij are weighting factors. This statistic allows for measurement of inter-rater
reliability, taking into account the possibility of chance agreement. The coefficient can
take values in the range [-1,1], where 1 means perfect agreement, 0 means agreement no
better than chance, and negative values mean agreement worse than chance. Incorporating
weights allows for the adjustment of penalties based on the magnitude of score differences.
We specifically opted for the quadratically weighted variant of Cohen’s kappa as it assigns
greater weight to larger discrepancies in scores, resulting in a more nuanced evaluation of
quality. We computed this metric both between human readers and GPT-4 to assess the
AI’s rating quality and among the human readers to evaluate inter-reader variability.

Table 1: Mean and standard deviation of the scores per reader, with 6 indicating the highest
level of quality.

Correctness Completeness Conciseness

Original Generated Original Generated Original Generated

M.B. 5.72 ± 0.81 2.61 ± 1.52 5.75 ± 0.54 3.30 ± 1.42 5.31 ± 1.00 2.89 ± 1.66
S.B. 5.72 ± 0.75 3.31 ± 1.75 5.03 ± 1.04 3.20 ± 1.39 5.86 ± 0.53 4.56 ± 1.63
GPT-4 5.64 ± 0.70 4.83 ± 1.41 4.33 ± 1.04 3.84 ± 1.35 5.81 ± 0.42 5.00 ± 1.22

3. Results

3.1. Impression Generation

Evaluation of the impression generation was conducted over the test set of 100 cases. Table
1 presents the mean scores for correctness, completeness, and conciseness as rated by each
reader. The human readers, M.B. and S.B., rated the original impressions notably higher
across all three metrics compared to the generated impressions.

Figure 2 graphically contrasts the performance of original versus generated impressions.
These plots again show that the original impressions consistently outperformed generated
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impressions. The heatmaps in figure 3 highlight the frequencies of given score combinations
for each report. The preference for the original impressions is again clear.

Table 2: Weighted Cohen’s kappa scores between readers using quadratic weights. Gradient
colors from light to darker yellow indicate the level of agreement from weak to
strong.

Correctness Completeness Conciseness

Original Generated Original Generated Original Generated

M.B. vs S.B. 0.25 0.53 0.15 0.56 0.18 0.39
M.B. vs GPT-4 0.28 0.24 0.04 0.24 0.08 0.27
S.B. vs GPT-4 0.28 0.34 0.21 0.23 -0.03 0.55
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Box Plots of Scores by Radiologists for Original vs. Generated Impressions

Figure 2: Box plots displaying the aggregated distribution of scores by the human readers
for the three quality metrics across the original and generated impressions. For
each metric, the central line represents the median score, the edges of the box
indicate the interquartile range, and the whiskers show the range of the data,
excluding outliers, which are plotted as individual diamonds.

3.2. GPT-4 Evaluation

The evaluation by GPT-4 shows less distinction between original and generated impressions.
Table 1 and Figure 3 reveal that while original impressions scored comparably to human
ratings, the generated impressions were rated more favorably by GPT-4. Despite this trend,
the scores for the generated impressions remain lower than those for the originals.

Statistical comparisons using the weighted Cohen’s kappa, summarized in Table 2, indi-
cate a fairly weak correlation overall between readers and GPT-4. The correlation between
the assessments of the human readers is shown to be relatively low as well, however.

6



Evaluating GPTs for Radiology Reports

1 2 3 4 5 6
Generated Grades

1
2

3
4

5
6

Or
ig

in
al

 G
ra

de
s

0 0 0 0 0

0 1 0 0

2 0 3

0 0

1

0

0 0

0 1 0

1 3 1 1

27 26 13 13 3

0

0

0

0

0

4

M.B. Correctness

1 2 3 4 5 6
Generated Grades

1
2

3
4

5
6

Or
ig

in
al

 G
ra

de
s

0 0 0 0 0

0 0 0 0

1 0 4

0 1

2

0

0 0

0 0 1

1 2 0 0

21 11 21 13 9

0

0

0

1

2

10

S.B. Correctness

1 2 3 4 5 6
Generated Grades

1
2

3
4

5
6

Or
ig

in
al

 G
ra

de
s

0 0 0 0 0

0 0 0 0

0 0 2

0 1

10

0

0 1

0 1 2

0 2 0 3

1 4 12 6 16

0

0

0

0

4

35

GPT Correctness

1 2 3 4 5 6
Generated Grades

1
2

3
4

5
6

Or
ig

in
al

 G
ra

de
s

0 0 0 0 0

0 0 0 0

0 0 0

0 1

3

0

0 0

0 2 2

1 2 4 3

5 22 28 9 8

0

0

0

0

2

8

M.B. Completeness
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1 2 3 4 5 6
Generated Grades

1
2

3
4

5
6

Or
ig

in
al

 G
ra

de
s

0 0 0 0 0

0 0 0 0

0 0 0

0 0

9

0

0 0

1 0 0

0 1 0 5

1 1 7 16 17

0

0

0

0

2

40

GPT Conciseness

Figure 3: Heatmaps contrasting reader evaluations of original versus generated content on
the three quality metrics. Shades of green indicate preference for original content,
blues for generated content, and grey for equal scoring. Each cell reflects the
frequency of a specific score combination.

4. Discussion

The findings of this study highlight the current limitations of LLMs like ChatGPT in a
highly specialized domain like Dutch medical text. Despite the impressive advancements in
NLP and AI, our results indicate that it remains very challenging to have LLMs generate
text with the high levels of accuracy and domain-specific knowledge needed for clinical
practice.

The differences seen in the ratings of correctness, completeness, and conciseness between
the original and generated impressions underscore the challenge in fully automating the
interpretation and summarization tasks in radiology reports. This is particularly evident in
the correctness metric, where the AI-generated impressions were often marked for factual
inaccuracies. Despite the model’s ability to mimic the semantic style of Dutch radiologists
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and generate somewhat contextually relevant content, its outputs frequently lacked the
precision and reliability needed in clinical settings.

Other research has shown subpar performance of general-domain LLMs on clinical text
related tasks (Hernandez et al., 2023), yet we hypothesize that the limited size of the training
set was a primary reason for the suboptimal performance of our model. Fine-tuning on a
larger dataset was unfeasible for our study due to the Standard Operating Procedure for
data sharing we had to adhere to with regards to OpenAI, but it would likely improve
performance of the fine-tuned model. However, it is important to recognize that OpenAI in
their fine-tuning guide (OpenAI, 2023) suggests using a fine-tuning dataset ranging from 50
to 100 cases, a guideline which was followed in our study. This approach yielded text that
appeared convincing to laypersons but revealed serious deficiencies under expert inspection.
This outcome serves as a cautionary note about overreliance on such technologies without
thorough validation by domain specialists.

The discrepancies in scoring patterns observed between human readers and GPT-4 high-
light the limitations of deploying LLMs as evaluators within specialized fields, and shows
the importance of review and validation by experts within the domain. It is important to
acknowledge that our study’s sample size, consisting of only two human readers, may not
be sufficient to draw statistically robust conclusions. However, the consistent inclination of
GPT-4 to provide higher ratings for AI-generated impressions compared to human readers
remains a noteworthy observation.

One potential explanation for this discrepancy might be the experimental setup, which
presented both ‘Impression’ sections to the human readers at the same time. This ar-
rangement may have inadvertently prompted the readers to attempt to identify the original
impression and subsequently rate it more favorably.

Moreover, the inter-reader variability observed between the human radiologists, despite
all readers being provided with a detailed rating scheme, highlights the subjective nature
of report interpretation and evaluation, emphasizing the need for multiple expert opinions
in the clinical validation of AI-generated content.

5. Conclusion

This study represents a cautionary example in exploring the integration of LLMs into the
medical domain. While ChatGPT demonstrated some proficiency in generating ‘Impression’
sections, its outputs did not consistently reach the high standards required in medical
practice.

The study also revealed the limitations of using an LLM as an evaluator in specialized
domains. While GPT-4’s evaluations of the original impressions were somewhat aligned
with human ratings, its more favorable ratings of the AI-generated impressions highlight
the need for caution when employing LLMs for evaluative purposes in specialized fields.
However, the observed inter-reader variability among human experts also brings to light
the inherent subjectivity and complexity involved in interpreting and evaluating radiology
reports. These findings emphasize the importance of critically reviewing and validating
LLM-generated medical content, as well as the necessity of incorporating multiple expert
opinions in this process.
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Appendix A. Example of Report with Impressions Translated to English

An example of one of the reports from the test set along with the original and generated
impressions in a random order. Following that is an impression generated using zero-shot
prompting for comparison.

Relevant medical history: Pulmonary NTM infection. Specific question: Follow-up

after 6 months of therapy. Any reduction in abnormalities?

Report: Comparison is made with the examination from <DATE>. There is no available

scan from six months ago.

No focal pathology within the lungs. However, there is some basodorsal

hypoventilation effects bilaterally. Additionally, there are subpleural strands

with minimal traction on the surrounding lung parenchyma. Very modest bronchopathic

changes perihilarly. No evident air trapping. Normal course of the major blood

vessels. No noticeable calcifications in the cardiac area or vascular calcifications.

No lymphadenopathy. A small tracheal diverticulum high on the right dorsal side.

As far as is shown in the upper abdomen, the parenchymal organs appear normal.

Regarding bony structures, apart from mild degenerative changes, there is no

evident pathology.

Impression 1:

Modest subpleural strands and hypoventilation effects are noted. However, there

are no indications of active or specific abnormalities related to a previous

NTM infection.

Impression 2:

There are slight indications of subpleural traction bilaterally. Perihilarly,

there is bilateral post-inflammatory bronchodilation. There is no evidence of

current infectious pneumonia.

Zero-shot:

The imaging study reveals no significant changes compared to the previous examination

dated <DATE>. There are no focal lung pathologies observed, although there are

basodorsal hypoventilation effects bilaterally, along with subpleural strands

exerting minimal traction on the surrounding lung tissue. Perihilarly, there

are minor bronchopathic changes, without evident air trapping.

The major blood vessels exhibit a normal course, with no notable calcifications

in the cardiac or vascular regions, and no signs of lymphadenopathy are present.

A small tracheal diverticulum is observed high on the right dorsal side. Parenchymal
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organs in the upper abdomen appear normal.

In terms of bony structures, mild degenerative changes are noted, but no significant

pathology is evident.

Appendix B. In-house Anonymizer

The in-house anonymization software used to anonymize the data for this project works in
two steps. The first step is a rule-based system that has been specifically crafted to work
as well as possible for the report data from the Radboudumc. It uses regular expressions
to analyze n-grams (1-gram up to 5-gram) and compares these to look-up lists of names,
locations and cues to replace personal health information with tags. This step is shown
schematically in Figure 4. In the second step, the tags are replaced with realistic surrogates
as per the “hiding in plain sight” principle (Carrell et al., 2013). This provides an additional
layer of safety. Additionally, a header is prepended disclaiming that the report has been
anonymized using random surrogates and that any resemblance with real persons is purely
coincidental. The application of ”hiding in plain sight” is outlined visually in Figure 5.

Figure 4: A schematic overview of the rule-based system used to replace personal health
information with tags in the anonymization software.

Appendix C. Prompts

This appendix outlines the prompts that we used in fine-tuning, impression generation and
evaluation. It should be noted that all ‘Findings’ and ‘Impression’ sections consisted of
untranslated Dutch text, while the rest of the prompts were given in English.
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Figure 5: A schematic overview of the system applying the ”hiding in plain sight” principle
in the anonymization software.

C.1. Fine-tuning prompt

System: You are a Dutch radiology report generation system. Given a set of

findings from a medical imaging report, generate the corresponding impression

section in Dutch. Ensure that the generated text is coherent and provides a

concise summary of the findings.

User: <Findings Section>

Assistant: <Impression Section>

C.2. Impression generation prompt

System: You are a Dutch radiology report generation system. Given a set of

findings from a medical imaging report, generate the corresponding impression

section in Dutch. Ensure that the generated text is coherent and provides a

14
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concise summary of the findings.

User: <Findings Section>

C.3. Evaluation prompt

System: You are a Dutch radiologist. You are helping research AI generated

radiology reports. You are provided with the findings section of a radiology

report and two impression sections. You must rate the impressions on correctness,

completeness and conciseness on a scale of 1-6. Use the following rating system:

<Rating Guide>

User: <Findings Section>

User: Impression 1:

User: <Impression Section 1>

User: Impression 2:

User: <Impression Section 2>

N.B. The rating guide referenced in the prompt is the one that is provided below in
Appendix D.

Appendix D. Rating Guide for the Reader Study Translated to English

D.1. Correctness: Is the information given factually correct?

1. The impression contains serious inaccuracies that render the impression unusable and
actively harmful.

2. The impression contains major incorrectnesses that render the impression unusable.

3. The impression contains some incorrectnesses in important facts making parts unus-
able.

4. The impression contains some incorrectnesses that lower the quality of the impression,
but the important facts are correct.

5. The impression contains some incorrectnesses, but their impact is negligible.

6. The impression is completely factually correct.

D.2. Completeness: Does the impression contain all the information you
would expect given the report?

1. The impression contains only irrelevant information.

2. The impression contains some relevant points, but the most important points are
absent.

3. The impression contains some of the most important points, but some are also absent.

4. The impression contains all of the main points, but some relevant side points are
absent.
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5. The impression is missing some possibly negligible points.

6. The impression contains all the information you would expect.

D.3. Conciseness: Is the impression concise and contains only necessary
information you would expect given the report?

1. The impression consists almost exclusively of redundant information or is even longer
than the rest of the report.

2. The impression contains very much redundant information and it complicates the
reading experience quite a bit.

3. The impression contains quite a lot of redundant information and it complicates the
reading experience somewhat.

4. The impression contains some redundant information, but this is not enough to be
very bothersome for a reader.

5. The impression contains a negligible amount of redundant information.

6. The impression contains only the necessary information.
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