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Abstract

Adversarial attacks in reinforcement learning (RL) often assume highly-privileged1

access to the learning agent’s parameters, environment or data. Instead, this2

paper proposes a novel adversarial setting called a Cheap Talk MDP in which an3

Adversary has a minimal range of influence over the Victim. Parameterised as a4

deterministic policy that only conditions on the current state, an Adversary can5

merely append information to a Victim’s observation. To motivate the minimum-6

viability, we prove that in this setting the Adversary cannot occlude the ground truth,7

influence the underlying dynamics of the environment, introduce non-stationarity,8

add stochasticity, see the Victim’s actions, or access their parameters. Additionally,9

we present a novel meta-learning algorithm to train the Adversary, called adversarial10

cheap talk (ACT). Using ACT, we demonstrate that the resulting Adversary still11

manages to influence the Victim’s training and test performance despite these12

restrictive assumptions. Affecting train-time performance reveals a new attack13

vector and provides insight into the success and failure modes of existing RL14

algorithms. More specifically, we show that an ACT Adversary is capable of15

harming performance by interfering with the learner’s function approximation16

and helping the Victim’s performance by appending useful features. Finally, we17

demonstrate that an ACT Adversary can append information during train-time to18

directly and arbitrarily control the Victim at test-time in a zero-shot manner.19

1 Introduction20

Learning agents are often trained in settings where adversaries may have some control over part of the21

agent’s observations. However, the adversary cannot usually influence the dynamics of the underlying22

environment or the reward signal (at least not without cost). For example, it is often possible to23

append arbitrary tags to content later used to train recommender systems. Similarly, an adversary24

could rent space on interactive bulletin boards near busy traffic intersections to influence data sets25

used for training self-driving cars. Another instance occurs in financial markets, where an adversary26

can change the state of the order-book by submitting orders far out of the money. While all of these27

are examples of useless features from an information point of view, under the current paradigm of28

end-to-end deep learning it is common practice to include a superset of useful features as part of the29

input and to let the model learn which features matter. This paper demonstrates that an actor can30

heavily influence the behaviour and performance of learning agents by controlling information only31

in these “useless” features.32

Most past work in adversarial attacks assumes that the adversary can influence the environment33

dynamics [13, 11]. For example, perturbing images and observations could obscure or alter relevant34

information, such as the ball’s location in a Pong game [15]. Furthermore, many attacks require35
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access to the trained agent’s weights and parameters to generate the adversarial inputs [27]. Finally,36

most of these attacks only cause the victim’s policy to fail arbitrarily instead of giving the adversary37

full control over the victim’s policy at test time [12, 14, 22, 1].38

In contrast, our work, inspired by recent advancements in the field of opponent shaping [20], in39

Section 2 proposes a novel, minimum-viable setting to shape a learning agent, called “Cheap Talk40

MDP”. In this setting, the Adversary can only append information to the observation of a Victim41

as a deterministic function of the current state. The Adversary does not have access to the Victim’s42

parameters, actions, or even samples from the Victim’s policy. In Section 3, we prove that the43

Adversary cannot change the dynamics of the underlying environment nor alter the reward functions.44

Nor can it inject stochasticity into the environment (deterministic) or introduce non-stationarity45

(function of the current state only). Furthermore, we prove that Adversaries cannot influence tabular46

Victims in this setting in Proposition 1; Adversaries can therefore only interfere with a Victim through47

their function approximator. In this sense, our setting represents a bare minimum range of influence,48

as further justified in Appendix B.3.49

In Section 3, we also introduce a new meta-learning algorithm to train the Adversary, called adversarial50

cheap talk (ACT). With an extensive set of experiments in Section 4, we demonstrate that an ACT51

Adversary can influence a Victim to achieve a number of outcomes:52

1. We show that the ACT Adversary can prevent the Victim from solving a task, resulting53

in low rewards during training. We provide empirical evidence that the Adversary sends54

messages which induce catastrophic interference in the Victim’s neural network.55

2. Conversely, an ACT Adversary can learn to send useful messages that improve the Victim’s56

training process, resulting in higher rewards during training.57

3. Finally, we introduce a training scheme that allows the ACT Adversary to arbitrarily control58

the Victim at test-time, in a zero-shot manner.59

Related Work and Background For an in-depth discussion on related work and backgroun, we60

point the reader to Appendix A.61

2 Problem Setting62

In this work, we consider two agents that interact in a setting we call a Cheap Talk MDP63

⟨S,A,P,R, γ,M, f,J ⟩. Here M denotes the space of messages. We refer to the agent observing64

the message as the Victim with transition and reward functions P,R independent from M. The65

agent appending the message is called the Adversary, endowed with a deterministic policy (function)66

f : S → M to append messages and an objective function J to optimise (details below).67

The Victim is a “standard” reinforcement learning agent, selecting actions according to its policy68

at ∼ πθ(· | s, f(s)), where a ∈ A, s ∈ S. The Victim optimises its policy πθ with respect to69

parameters θ, to maximise its expected return J defined in Equation ??.70

By contrast, the Adversary may only act by appending a message fϕ(s) to s at every step, where71

fϕ : S → M is a deterministic policy (function) of the current state and ϕ are the Adversary’s72

parameters. These parameters may only be updated between full training/testing episodes of the73

Victim; the function remains static during episodes to avoid introducing non-stationarity. The74

Adversary’s objective function J may be picked arbitrarily, and need not be differentiable if it is75

optimised using ES.76

In the train-time setting, we focus on the allied setting, where Adversary and Victim objectives are77

equal, J = J , and the adversarial setting where objectives are zero-sum, J = −J . In the test-time78

setting, we use an entirely different objective, such as reaching for an arbitrary circle in Reacher (see79

Figure 3c). This incentivises the Adversary to manipulate the Victim into maximising J , even if at80

the cost of the Victim’s original objective J .81
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(a) (b) (c)

Figure 1: Visualizations of the training curves of the Victim across different number of dimensions of
the messages for (a) Cartpole, (b) Pendulum, and (c) Reacher. Error bars denote the standard error
across 10 seeds of Victims trained against a single trained Adversary.

(a) (b) (c)

Figure 2: Training curves of the different agents in (a) Goal-Conditioned Cartpole (b) Goal-
Conditioned Pendulum (c) Goal-Conditioned Reacher. The ablations show that the train- and
test-time Adversarieslearn near-optimal performance in comparison to the oracles. Error bars denote
the standard error across 10 seeds of Victim trained against a single trained Adversary.

3 Method82

Meta-Training Procedure Our method treats the problem setting as a meta-learning problem. The83

Adversary’s parameters ϕ are only updated after a full training (and testing) run of the Victim’s84

parameters θ. Note that ϕ is static during the whole training run (inner loop) of θ and only gets85

updated once the inner loop completes. In the outer loop, we optimise the Adversary’s objective J86

with respect to ϕ using ES as a black-box optimisation technique.87

Train-Time Manipulation When influencing the agent’s performance during train-time, we consider88

the allied and the adversarial settings. Pseudocode is provided in Algorithm 1 (see Appendix E,89

where E is the number of Victim training episodes and N is the ES population size. Letting c = 190

for allied and c = −1 for adversarial, the Adversary’s objective is c times the Victim’s mean reward91

accumulated over training.92

Zero-Shot Test-Time Manipulation In zero-shot test-time manipulation, the Adversary attempts to93

maximise its objective J during some notion of test-time starting at time I . In practice, we introduce94

a separate Adversary for test-time, parameterized by its own set of parameters ψ. However, both the95

train-time Adversary ϕ and test-time Adversary ψ have identical objective function J . The train-time96

Adversary wants to create a backdoor to make the Victim susceptible to manipulation at test-time.97

The test-time Adversary wants to use this backdoor to control the Victim. The test-time Adversary ψ98

operates zero-shot because it has not seen the specific, trained test-time parameters of the Victim θ′99

of the current meta-episode before interacting with it.100

Theoretical Results For the theoretical results, we point the reader to Appendix B.1 and B.2.101

Moreover, in Appendix B.3, we informally show that removing any component from a Cheap102

Talk MDP would either nullify all possibility of influence or make the setting so limited as to be103

uninteresting.104
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4 Experiments and Results105

We evaluate ACT on three different environments: Cartpole, Pendulum, and Reacher [4]. The Victim106

is trained with Proximal Policy Optimisation [24, PPO]. The Adversary is trained using ES [23].107

4.1 Train-Time Influence108

Figure 1 show the results of training Victims alongside different Adversaries. It is evaluated on four109

different Adversaries:110

1. Ally: meta-trained to maximize the Victim’s mean reward throughout training.111

2. Adversary: meta-trained to minimize the Victim’s mean reward throughout training.112

3. Random Adversary: randomly initialise and fix the Adversary’s parameters ϕ.113

4. Zeroes Adversary: appends only zeroes as messages.114

The ally clearly improves performance while the Adversary significantly harms it. We hypothesise115

that the Adversary may be inducing catastrophic interference within the environment, which was116

observed by Fedus et al. [8] in Atari 2600 games. In Figure 6 Appendix D, we demonstrate that117

the Adversary induces catastrophic interference in both the Adversarial setting by influencing the118

correlation between gradient updates between different parts of a single inner loop episode. We119

also study how the cheap-talk channel size affects the performance of the Adversary in Figure 5a120

Appendix D.121

4.2 Zero-Shot Test-Time Manipulation122

In the setting of zero-shot test-time manipulation, the Adversary’s objective is to maximize the score123

of a goal-conditioned objective. Consequently, the Adversary needs to learn to introduce a backdoor124

during train-time and use the backdoor during test-time to fully control the Victim. We describe the125

environment-specific rewards and how these goals are parameterized in Figure 3, Appendix D.126

All results are shown in Figure 2. For an explanation of each ablation, see the Appendix C We127

can use the Direct Oracle as a baseline to measure how effective the train-time Adversary ϕ and128

test-time Adversary ψ are at achieving the maximal possible return jointly. As Figure 2 shows, the129

ES optimized train- and test-time Adversariesperform near-optimally. We investigate this further in130

Figure 4, Appendix D, where we compare the range and variance of Victims trained with ES optimized131

Adversariesϕ and Victims trained with random Adversaries ϕrandom across different message values.132

5 Conclusion & Future Work133

In this paper, we propose a novel, minimum-viable, adversarial setting for RL agents, where the134

Adversary can only influence the Victim over messages, and can only do so with deterministic135

function that only depends on the current state. By training a Adversary with adversarial cheap talk136

(ACT), we show that appending to the observations of a learning agent, even with strong constraints,137

is sufficient to drastically improve or decrease a learning agent’s train-time performance or introduce138

a backdoor to control the learning agent at test time completely. Our test-time ablation studies139

demonstrate that the train- and test-time Adversaries achieve near-optimal performance individually140

as well as jointly, when compared against strong oracle baselines. We also provide in-depth analysis141

on how the Adversaries work. As RL models become more widespread, we believe practitioners142

should consider this new class of minimum viable attacks. Therefore, we propose identifying and143

filtering out seemingly-superfluous information as the first defence measure. In future work we will144

investigate different defence strategies, such as the identification of messages, and larger-scale input145

settings.146
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A Related Work211

A.1 Test-Time Adversarial Attacks212

Most work investigating adversarial attacks on deep RL systems focuses on attacks at test-time, i.e.213

those that assume a fully trained, static policy. Gleave et al. [11] learn adversarial policies to attack a214

pretrained agent at test-time. In contrast to our method, the adversarial agent can directly interact215

with the environment and the victim agent, thus introducing non-stationarity and assuming sampling216

access to the (static) victim. Also, they do not investigate adversarial agents that affect training217

performance. Huang et al. [13] also investigate adversarial attacks to influence test-time performance.218

In contrast to our work, they directly perturb the observation space and do not simply append to it,219

thus assuming access to the observation space of the victim. Kos and Song [15] also attack test-time220

performance by directly perturbing observations.221

A.2 Backdoor Attacks222

Backdoor attacks in reinforcement learning aim to introduce a vulnerability during train-time, which223

can be used at test-time. Backdoors can be static, meaning they get activated with fixed patterns,224

or dynamic, which is when the backdoor gets activated by context-dependent patterns [22]. For225

static backdoors, the adversary often directly perturbs the observation space [12, 14, 1]. To introduce226

dynamic backdoors, the threat model assumes that the adversary has full control over the training227

process of the agent, giving the adversary the ability to introduce backdoors at train-time [27]. In228

contrast, in our threat model, we assume a minimal range of influence by only appending to the229

observations. Furthermore, instead of perturbing the observations directly, Wang et al. [27] deploy230

the adversarial agent directly in the environment. Directly interacting with the environment allows231

the adversary to introduce non-stationarity and stochasticity. In contrast, our setting does not allow232

the Adversary to introduce either.233

A.3 Failure Modes in Deep Reinforcement Learning234

Previous works have shown that using neural networks as function approximators in reinforcement235

learning often results in multiple failure modes due to the non-stationarity of value function boot-236

strapping [26]. In particular, works have shown that catastrophic interference [2] and capacity loss237

[21] often occur, even within a single episode of an environment [8]. Song et al. [25] shows that deep238

reinforcement learning algorithms can often overfit to spurious correlations in the observation space.239

By appending to the observation space, we learn to induce the observational failure modes described240

in these works.241

A.4 Opponent Shaping / Cheap Talk242

Our method is closely related to the field of opponent shaping. Originally, most opponent shaping243

algorithms assumed white-box access to their opponents to shape the flow of the opponent’s gradient244

[9, 18, 19, 28]. Instead, Lu et al. [20] introduce a method to shape opponents without white-box245

access. However, they still deploy an agent to interact directly in the environment. In contrast, we246

propose a method to shape other agents without having to interact in the environment at all, solely247

by appending messages through a cheap talk channel. Cheap talk is communication that incurs no248

cost, is non-binding (it can be ignored and does not limit the agent’s action space), and is unverifiable249

(meaning any information, true or false, can be communicated) [7]. In RL terms, a cheap talk250

channel is a part of the state space which can be observed by other agents but does not alter transition251

dynamics or reward functions. Cheap talk channels [6] in deep reinforcement learning have been252

used to learn emergent communication [10] and to solve coordination problems [5]. To the best of253

our knowledge, this paper is the first to use a cheap talk channel (and only a cheap talk channel) to254

shape learning agents.255
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B Proofs256

B.1 Proof of Proposition 1257

In this section, we further justify the claim that our setting represents the bare minimum range of258

influence. To begin, we prove that Adversaries cannot influence tabular Victims in Cheap Talk259

MDPs; Adversaries can therefore only interfere with a Victim through their function approximator.260

Proposition 1. For any deterministic Adversary f : S → M, the return of a tabular Victim initialised261

uniformly along the M axis is independent from f . Moreover, any Victim which is guaranteed to262

converge to optimal policies in MDPs will, for any Cheap Talk MDP, converge to a policy whose263

expected return is the optimal return for the original no-channel MDP – even in non-tabular settings264

and regardless of initialisation.265

Proof. We begin with the tabular case.266

Tabular Victims. In a Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩, a tabular Victim arbitrarily orders267

states as {s1, . . . , sd} and messages as {m1, . . . ,mk}, where d = |S| and k = |M|, and stores268

policies πt(· | si,mj) at time t of the learning process for all i ∈ [d], j ∈ [k]. The argument follows269

identically for value functions. Assuming uniform initialisation along the M axis means that270

π0(· | si,mj) = π0(· | si,mj′)

for all j, j′ ∈ [k]. Now consider any two Adversaries f, g and their influence on two copies of the271

same Victim V,W with respective policies π, χ. The only states encountered in the environment are272

of the form (s, f(s)) and (s, g(s)) respectively, so Victims only update the corresponding policies273

πt(· | si, f(si)) and χt(· | si, g(si)) .

We prove by induction that these quantities are equal for all t. The base case holds by uniform274

initialisation along M; assume the claim holds for all fixed 0 ≤ t ≤ T . The Victims update their275

policies at time T + 1 according to the same learning rule, as a function of the transitions and returns276

under current and past policies πt and χt respectively. Transitions take the form (s, f(s), a, s′, f(s′))277

for V and (s, g(s), a, s′, g(s)) for W , which have identical probabilities and returns because278

πt(a | si, f(si)) = χt(a | si, g(si)) ;
P(s′, f(s′) | s, f(s), a) = P(s′, g(s′) | s, g(s), a) ;

R(s, f(s), a) = R(s, g(s), a)

by inductive assumption and independence of P,R from M. This probability- and return-preserving279

bijection between transitions, as well as being copies with identical initialisation in the environment,280

implies that policies πT (· | si, f(si)) = χT (· | si, g(si)) are updated identically to281

πT+1(· | si, f(si)) = χT+1(· | si, g(si))

as required to complete induction. Note that this could not necessarily be accomplished in non-tabular282

settings, where updating parameters θ of the function approximator for some state si may alter283

the policy on some other state sj . It now follows that trajectories τ = (sk, f(sk), ak)k for V and284

ω = (sk, g(sk), ak)k for W have identical probabilities and hence produce identical returns285

Eτ∼πt
[R(τ)] = Eω∼χt

[R(ω)]

at any timestep t of the learning process, concluding independence from Adversaries.286

Optimally Convergent Victims. By assumption, the Victim is guaranteed to converge to an optimal287

policy π̄ in the Cheap Talk MDP ⟨S,A,P,R,M, f,J , γ⟩, since a Cheap Talk MDP is itself an288

MDP with an augmented state space S × M and augmented transition/reward functions that are289

defined to be independent from M. Now π̄ naturally induces a policy π on the no-channel MDP,290
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given by π(· | s) := π̄(· | s, f(s)), and in particular Q(s, a) = Q̄(s, f(s), a) by independence of291

transitions and rewards from M. Optimality of π follows directly from the Bellman equation292

Q(s, a) = Q̄(s, f(s), a) = Es′∼P(·|s,a),r∼R(·|s,a)

[
r + γmax

a′∈A
Q̄(s′, f(s′), a′)

]
= Es′∼P(·|s,a),r∼R(·|s,a)

[
r + γmax

a′∈A
Q(s′, a′)

]
.

Now trajectories τ̄ = (sk, f(sk), ak)k and τ = (sk, ak)k have identical probability and return under293

π and π̄ respectively, so the Victim has expected return294

Eτ̄∼π̄ [R(τ̄)] = Eτ∼π [R(τ)]

which is the optimal expected return of the original no-channel MDP.295

B.2 Proof of Proposition 2296

For completeness, we also formally prove our claims from the introduction regarding what the297

Adversary cannot do in Cheap Talk MDPs.298

Proposition 2. In a Cheap Talk MDP, the Adversary cannot (1) occlude the ground truth, (2) influence299

the environment dynamics / reward functions, (3) see the Victim’s actions or parameters, (4) inject300

stochasticity, or (5) introduce non-stationarity.301

Proof. Mostly by definition. Formally, consider a Cheap Talk MDP ⟨S,A,P,R, γ,M, f,J ⟩ as302

defined in Section 2. For a fixed training / testing run of the Victim on the MDP, the Adversary303

outputs a message f(s) at each step according to a fixed deterministic function f : S → M.304

(1) The message is appended to the state s and the Victim acts with full visibility of the ground305

truth (state) s according to its policy: a ∼ π(· | s, f(s)).306

(2) The transition and reward functions P,R are defined to be independent from M. Formally we307

have P(· | s,m, a) = P(· | s,m′, a) for all m,m′ ∈ M (similarly for R), so the Adversary’s308

choice of message m = f(s) cannot influence P or R.309

(3) f : S → M is defined as a function of S only, so the Adversary cannot condition its policy310

based on the Victim’s actions or parameters (i.e. it cannot see them for all practical purposes).311

(4) f is a deterministic function, so π(· | s, f(s)) is a distribution only on actions A. The transition312

and reward functions are independent from f , so they are distributions only on state-action pairs313

S ×A. It follows that the Adversary injects no further stochasticity into the MDP.314

(5) f is static for a fixed training / testing run, so st = st′ implies f(st) = f(st′) for all timesteps315

t, t′ in the run. It follows that any given Victim policy π is stationary, namely π(· | st, f(st)) =316

π(· | st′ , f(st′)) for all st = st′ . Since P and R are stationary (as defined by a standard MDP)317

and independent from M, their stationarity is also preserved.318

B.3 Informal Justification of Minimality319

Finally, let us informally show that removing any component from a Cheap Talk MDP would either320

nullify all possibility of influence or make the setting so limited as to be uninteresting.321

(1) Removing the set M or the policy f : S → M entirely would result in the Victim being322

completely independent from the Adversary, since nothing would be appended to its observation.323

(2) Restricting the capacity of M to a certain number of bits would further restrict an Adversary’s324

range of influence, so one could say that the truly minimum-viable setting is to impose a set of325

size |M| = 1. However, cheap talk is still cheap talk when varying capacity, and there is no326

reason to arbitrarily restrict the size to 1 if we are to apply our setting to complex environments327

likely requiring more than a single bit of communication to witness interesting results.328
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(3) Not allowing Adversaries to see states, namely removing S as inputs to f , yields a function329

f : {0} → M which always outputs the same messagef(0) = m ∈ M. This is equivalent to the330

previous restriction of imposing a set M of size 1, since in this case any function f : S → M331

would have to output the unique element f(s) = m for all input states s.332

(4) The Adversary must have some objective function J in order for an adversarial setting to make333

sense – removing it would remove the Adversary’s rationale for existence, since it would have334

no incentive to learn parameters that influence the Victim according to some goal.335

(5) Restricting the function class of objectives J is a valid minimisation of the setting, but simply336

restricts our interesting the setting itself. The setting should at the very least allow for adversarial337

objectives of the form J = −J as we consider in the train-time setting. In test-time, our aim is338

to show how Adversaries can exert arbitrary control over Victims despite cheap talk restrictions,339

and we therefore consider more general objective functions.340
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C Zero-Shot Ablations341

1. Direct Oracle: In this baseline, there is no cheap talk. We simply train a PPO agent to342

maximize the goal-conditioned return. It can observe the full state and directly output343

actions in the environment.344

2. Zero-Shot Adversary: First, we train a Victim θ alongside a train-time Adversary ϕ. We345

then evaluate the return of the test-time Adversary ψ according to the goal-conditioned346

return (as described in Algorithm 2). The test-time Adversary ψ operates zero-shot because347

it was not trained with the specific, trained instance of the Victim θ before interacting with348

it. It is thus represented by a horizontal line in Figure 2.349

3. Oracle with Learned Adversary: First, we optimize the Victim θ by training it alongside350

our train-time Adversary ϕ. Then, instead of ES, we use PPO to train the test-time Adversary351

ψ∗ against the Victim θ. Unlike the zero-shot Adversary, the oracle ψ∗ is allowed to train352

against the pretrained and fixed Victim θ to maximize its returns, as described in Algorithm353

4 in Appendix E.354

4. Oracle with Random Adversary: First, we obtain a Victim θ by training it alongside a355

random train-time Adversary, ϕrandom, with randomly initialized and fixed parameters. Next,356

we use PPO to train the test-time Adversary ψ∗ to maximize the goal-conditioned return.357
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D Experiments and Results Additional Material358

(a) (b) (c)

Figure 3: Visualizations of our goal-conditioned environments (a) In Cartpole, the Adversary’s
target is a randomly selected point on the x-axis, indicated by the yellow box. (b) In Pendulum, the
Adversary’s goal is a randomly selected angle indicated by the yellow pole. (c) In Goal-Conditioned
Reacher, the Adversary’s goal is a specific point, denoted by the yellow circle, while the Victim’s
goal is the blue circle.

(a) (b)

(c) (d)

Figure 4: We train 10 different Victims alongside the Learned ϕ (a & c), as well as 10 different
Victims alongside a randomly generated ϕ (b & d) in the Pendulum environment. (a) and (b) show
the mean of the policy output across the 10 Victims as we vary the value of the message in a fixed
randomly selected state. Notably, the policies trained with the learned ϕ achieve a much wider range
of outputs. (c) and (d) show the variance of the policy output across the 10 Victims. Notably, the
policies trained with the learned ϕ display very little variance, implying that the learned ϕ shapes the
Victim in a consistent way.
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(a) (b)

Figure 5: (a) Ablations on the different number of cheap talk dimensions for the Adversary in Cartpole
(b) Comparing the ally with an Adversary that outputs the optimal logits in Cartpole. Error bars
denote the standard error across 10 seeds of a Victim trained against a single meta-trained Adversary.

(a) (b) (c)

Figure 6: To perform this analysis, we collect each Victim’s experience buffer, before the agents
have converged in training, and split each one into 10 bins, ordered by the time-step within the
environment. We then calculate the gradient update the agents would perform on each of these
bins. In the Adversarial setting (a), the gradient updates performed for transitions sampled early
in an episode can interfere with the gradient updates performed for transitions later in an episode.
Meanwhile, in the Allied setting (c), those gradient updates are positively correlated, suggesting that
the gradient updates aid each other.

E Pseudocode359
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Algorithm 1 Train-time ACT

1: Set c = ±1 for allied / adversarial
2: Initialize Adversary parameters ϕ
3: for m = 0 to M do
4: Sample ϕn ∼ ϕ+ σϵn where ϵ1, ..., ϵN ∼ N (0, I)
5: for n = 0 to N do
6: Initialize Victim parameters θ
7: rewards = []
8: for e = 0 to E do
9: s = env.reset()

10: while not done do
11: s̄ = [s, fϕn

(s)]
12: a ∼ πθ(· | s̄)
13: r, s, done = env.step(a)
14: rewards.append(r)
15: end while
16: Update θ with PPO to maximise J
17: end for
18: Jn = c · sum(rewards)/len(rewards)
19: end for
20: Update ϕ using ES to maximise J
21: end for

Algorithm 2 Test-time ACT

1: Initialize train-time ACT parameters ϕ
2: Initialize test-time ACT parameters ψ
3: for m = 0 to M do
4: Sample ϕn ∼ ϕ+ σϵn where ϵ1, ..., ϵN ∼ N (0, I)
5: Sample ψn ∼ ψ + σϵn where ϵ1, ..., ϵN ∼ N (0, I)
6: for n = 0 to N do
7: Initialize policy params θ
8: rewards = []
9: for e = 0 to E do

10: s = env.reset()
11: while not done do
12: m = fϕn(s)
13: s̄ = [s, m]
14: a ∼ πθ(· | s̄)
15: r, s = env.step(a)
16: end while
17: Update θ using PPO to maximise J
18: end for
19: for i = 0 to I do
20: s = env.reset()
21: while not done do
22: m = fψn

(s)
23: s̄ = [s, m]
24: a ∼ πθ(· | s̄)
25: r, s, done = env.step(a)
26: rSt = RS(s, a)
27: rewards.append(rSt )
28: end while
29: end for
30: end for
31: Update ϕ using ES to maximise J
32: Update ψ using ES to maximise J
33: end for
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Algorithm 3 Test-time Oracle PPO ACT

1: Initialize train-time ACT parameters ϕ
2: Obtain trained ϕ, θ from Algorithm 2
3: Initialize test-time ACT parameters ψ∗

4: for i = 0 to I do
5: s = env.reset()
6: while not done do
7: m ∼ πψ∗(· | s)
8: s̄ = [s, m]
9: a ∼ πθ(· | s̄)

10: r, s, done = env.step(a)
11: rSt = RS(s, a)
12: rewards.append(rSt )
13: end while
14: Update ψ∗ using PPO to maximise J
15: end for
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Algorithm 4 Test-time Random Shaper

1: Initialize train-time ACT parameters ϕrandom
2: Initialize policy params θ
3: rewards = []
4: for e = 0 to E do
5: s = env.reset()
6: while not done do
7: m = fϕrandom(s)
8: s̄ = [s, m]
9: a ∼ πθ(· | s̄)

10: r, s = env.step(a)
11: end while
12: Update θ using PPO to maximise J
13: end for
14: Initialize test-time ACT parameters ψ∗

15: for i = 0 to I do
16: s = env.reset()
17: while not done do
18: m ∼ πψ∗(· | s)
19: s̄ = [s, m]
20: a ∼ πθ(· | s̄)
21: r, s = env.step(a)
22: rSt = RS(s, a)
23: rewards.append(rSt )
24: end while
25: Update ψ∗ using PPO to maximise J
26: end for
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F Hyperparameter Details360

We train thousands of agents per minute on a single V100 GPU by vectorising both the PPO361

algorithm itself and the environments using Jax [3]. This allows us to JIT-compile the full training362

pipeline and perform end-to-end deep RL training completely on GPUs. We adapt the environment363

implementations from Brockman et al. [4] and Lenton et al. [17] and use the ES implementation364

from Lange [16]. This compute setup allows us to efficiently perform outer-loop ES on the full365

training trajectories of inner-loop PPO agents. For example, in Cartpole, we run 8192 PPO Victims366

alongside 8192 train-time Adversariesand 8192 test-time Adversaries, each over four instances of the367

environment on a single V100 GPU. Over 1024 generations of ES, this results in training 8,388,608368

PPO agents from scratch in 2 hours on 4 V100 GPUs.369

We report the hyperparameter values used for each environment in our experiments.370

Table 1: Important parameters for the Cartpole environment
Parameter Value
State Size 4
message Size 2
Number of Environments 4
Maximum Grad Norm 0.5
Number of Updates 32
Update Period 256
Outer Discount Factor γ 0.99
Number of Epochs per Update 16
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.01
Learning Rate 0.005
Population Size 1024
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 4
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Table 2: Important parameters for the Pendulum environment
Parameter Value
State Size 3
message Size 2
Number of Environments 16
Maximum Grad Norm 0.5
Number of Updates 128
Update Period 256
Outer Discount Factor γ 0.95
Number of Epochs per Update 16
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.005
Learning Rate 0.02
Population Size 768
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 1
IA Size of Actor Hidden Layers 32
IA Number of Critic Hidden Layers 1
IA Size of Critic Hidden Layers 32
IA Activation Function Tanh
Number of Rollouts 4

Table 3: Important parameters for the Reacher environment
Parameter Value
State Size 10
message Size 4
Number of Environments 32
Maximum Grad Norm 0.5
Number of Updates 256
Update Period 128
Outer Discount Factor γ 0.99
Number of Epochs per Update 10
PPO Clipping ϵ 0.2
General Advantage Estimation λ 0.95
Critic Coefficient 0.5
Entropy Coefficient 0.0005
Learning Rate 0.004
Population Size 128
Number of Generations 2049
Outer Agent (OA) Hidden Layers 2
OA Size of Hidden Layers 64
OA Hidden Activation Function ReLU
OA Output Activation Function Tanh
Inner Agent (IA) Actor Hidden Layers 2
IA Size of Actor Hidden Layers 128
IA Number of Critic Hidden Layers 2
IA Size of Critic Hidden Layers 128
IA Activation Function ReLU
Number of Rollouts 4
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