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Abstract

We introduce a novel strategy to train randomised predictors in federated learning, where
each node of the network aims at preserving its privacy by releasing a local predictor but
keeping secret its training dataset with respect to the other nodes. We then build a global
randomised predictor which inherits the properties of the local private predictors in the
sense of a PAC-Bayesian generalisation bound. We consider the synchronous case where all
nodes share the same training objective (derived from a generalisation bound), and the het-
erogenous and homogenous cases where each node may have its own personalised training
objective. We show through a series of numerical experiments that our approach achieves
a comparable predictive performance to that of the batch approach where all datasets are
shared across nodes. Moreover the predictors are supported by numerically nonvacuous
generalisation bounds while preserving privacy for each node. We explicitly compute the in-
crement on predictive performance and generalisation bounds for our two federated settings,
highlighting the price to pay to preserve privacy.

1 Introduction

In the federated learning (FL) paradigm, a group of users (or nodes) is learning in parallel, and typically
aims at preserving their personal datasets while sharing a common predictor. While maintaining the privacy
of their own data, users mutually share information through a central server. There has been a significant
surge of interest in federated learning in the past decade (Kone�n˝ et al., 2016b), with clear applications in
healthcare, transportation and retail, where it is typically of the utmost interest to avoid the leak of private
information to other organisations or devices, for ethical or business motivations. The existing literature
essentially categorises horizontal and vertical FL, depending on whether users’ datasets share many features
or individuals. These two streams have generated various contributions such as the design of e�cient
communication strategies (Kone�n˝ et al., 2016a;b; Suresh et al., 2017), the preservation of privacy through
di�erentially-private distributed optimisation methods (Agarwal et al., 2018), the enforcement of fairness
(as in many cases, post-training learning models may be biased or unfair and may discriminate against some
protected groups – Hardt et al., 2016; Mohri et al., 2019). We refer to Zhang et al. (2021); Mammen (2021);
Kairouz et al. (2021) for recent surveys on FL.

Consider a simple federated learning framework (Bonawitz et al., 2017; McMahan et al., 2017b). In each
round, the server first provides the initial model to each user, then each user updates the initial model
with its personal data. Finally, the server aggregates the collected local models into a single global model,
which is used as next round’s initialisation if needed. Hereafter we will refer to this learning problem as
FL-SOB (Federated Learning with Synchronous OBjectives). This is especially relevant when all users share
a common learning goal (e.g., hospitals learning from di�erent datasets to identify or predict a specific single
pathology). Deep neural networks have been used to develop powerful federated algorithms (McMahan et al.,
2017a). A more complex scenario consists in personalised FL (PFL, Tan et al., 2022) where users may have
their own distinct learning goal but still want to share joint information as these goals share some level of
similarity. This corresponds, for instance, to transfer learning (see e.g., Zhuang et al., 2021) situations where
one wants to extract some information of a learning problem (e.g., detecting tigers in images) to perform
better on another one, sharing some similarities (e.g., detecting cats).

1



Under review as submission to TMLR

Towards a unified framework. The recent PAC-FL framework of Zhang et al. (2023b) proposes a unified
framework to formalise FL, intricating the notion of generalisation ability (designed as utility) alongside
privacy, and quantifying how much data are protected (i.e. impossible to retrieve) while transmitting partial
information to the server. This framework builds from the work of Zhang et al. (2019) investigating the
tradeo�s between privacy, utility and e�ciency. The question of an optimal trade-o� is crucial to deploy the
FL framework in practice (Tsipras et al., 2019).

On the place of generalisation in FL. Using their PAC-FL framework, Zhang et al. (2023b) proposed
generalisation bounds involving the dimension of the predictor space. The question of generalisation in FL
is central: Mohri et al. (2019); Zhang et al. (2023a) established Rademacher-based generalisation bounds,
Yagli et al. (2020) provided bounds based on mutual information to explain both generalisation ability and
privacy leakage per user. Bayesian methods have also been considered in FL-SOB (Yurochkin et al., 2019;
Chen & Chao, 2021; Zhang et al., 2022) as well as in PFL (Kotelevskii et al., 2022).

PAC-Bayes learning in FL. Beyond Bayesian methods, PAC-Bayes learning (see the seminal works of
Shawe-Taylor & Williamson, 1997; McAllester, 1998; 2003; Maurer, 2004 – we refer to the surveys of Guedj,
2019; Alquier, 2021, and to the recent monograph of Hellström et al., 2023) has recently re-emerged as
a powerful framework in batch learning to explain the generalisation ability of neural nets by providing
non-vacuous generalisation bounds (Dziugaite & Roy, 2017; Letarte et al., 2019; Pérez-Ortiz et al., 2021;
Biggs & Guedj, 2021; 2022). PAC-Bayes combines information-theoretic tools with the Bayesian paradigm
of generating a data-dependent posterior distribution over a predictor space from a prior distribution (or
reference measure), usually data-independent. The flexibility of the PAC-Bayes framework makes it useful to
explain generalisation in many learning settings. In particular, theoretical results and practical algorithms
have been derived for various learning problems such as reinforcement learning (Fard & Pineau, 2010), online
learning (Li et al., 2018; Haddouche & Guedj, 2022), constrative learning (Nozawa et al., 2020), generative
models (Chérief-Abdellatif et al., 2022), multi-armed bandits (Seldin et al., 2011; 2012; Sakhi et al., 2022),
meta-learning (Amit & Meir, 2018; Farid & Majumdar, 2021; Rothfuss et al., 2021; 2022; Ding et al., 2021),
majority votes (Zantedeschi et al., 2021; Biggs et al., 2022) to name but a few.

Recently, some works have used the PAC-Bayes framework in FL: Reisizadeh et al. (2020) and Achituve et al.
(2021) have evaluated the post-training predictor shared by all users through a PAC-Bayes bound. Rather
than exploiting existing bounds, new PAC-Bayes results, tailored for personalised FL, recently emerged
with the aim to explain the e�ciency of learning procedures (Scott et al., 2023; Sefidgaran et al., 2023),
although the PAC-Bayes bound is not minimised by the algorithm. Finally, recent works showed that the
Bayesian procedure ELBO, adapted to FL, is exactly the minimisation of a PAC-Bayes upper bound (Kim
& Hospedales, 2023; Vedadi et al., 2023). Thus, they show that those methods are well incorporated in a
theoretical framework explaining their good generalisation ability.

Our contributions. Beyond being a safety check for generalisation, PAC-Bayes theory provides state-of-the
art learning algorithms with tight generalisation guarantees in the batch setting. We adapt those algorithms
to the FL-SOB and PFL settings. We propose GenFL (standing for Generalisation-driven Federated Learn-
ing), an algorithm in which users optimise local PAC-Bayes objectives (bounds from Dziugaite & Roy, 2017;
Pérez-Ortiz et al., 2021). We show a global generalisation bound for all users in FL-SOB, and local ones in
PFL. Finally, we show in numerical experiments that our procedure is competitive with the state-of-the-art
and we bring nonvacuous generalisation guarantees to practitioners of federated learning.

Outline. We describe our notation in Section 2 and introduce in Section 3 a novel algorithm called GenFL,
alongside two instantiations to FL-SOB and PFL. We present numerical experiments to support our meth-
ods. in Section 4. Our algorithms and the code used to generate figures in this paper is available at
https://anonymous.4open.science/r/GenFL-0147/README.md. The paper closes with a discussion in Sec-
tion 5. In Appendix A, we comment on strategies to compute PAC-Bayesian bounds, Appendix B contains
a comprehensive description of our procedure in the PFL setting, and Appendix C provides additional
experiments.
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2 Background

Federated learning. We consider a predictor set H, a data space Z and denote the space of distributions
over H, M(H). We let ¸ : H ◊ Z æ [0, 1] denote a loss function. In FL, we consider an ensemble of K œ Nú

users, and for each user 1 Æ i Æ K, we denote by Si = (zi,j)j=1···mi its associated dataset of size mi. We
define S, of size m =

qK
i=1 mi, to be the union of all Si. We assume that each Si is i.i.d. with associated

distribution Di. Each user 1 Æ i Æ K aims to jointly learn a predictor h œ H while keeping private their
training dataset Si.

Learning theory. In PAC-Bayes learning, instead of directly crafting a predictor h œ H, we design a data-
driven posterior distribution Q œ M(H) with respect to a prior distribution P. To assess the generalisation
ability of a predictor h œ H, we define for each user k the risk to be RDi := Ez≥µ[¸(h, z)] and its empirical
counterpart R̂Si := 1

m

qmi

j=1 ¸(h, zi,j). As PAC-Bayes focuses on elements of M(H), we also define the
expected risk and empirical risks for Q œ M(H) as RDi(Q) := Eh≥Q[RDi(h)] and R̂Si(Q) := Eh≥Q[R̂Si(h)].

Background on PAC-Bayes learning. In a batch setting, we only consider the dataset S (this can be
seen as the case where there is only one user) and we assume that all data are i.i.d. with distribution D. For
two probability measures P, Q we define the Kullback-Leibler divergence to be KL(Q, P) = Eh≥P

Ë
dQ
dP (h)

È

where dQ
dP is the Radon-Nikodym derivative. We also denote by kl the KL divergence between two Bernoulli

distributions.

Generalisation bounds. We recall the following bound, due to McAllester (2003); Maurer (2004), which
holds for bounded losses.
Theorem 1 (McAllester’s bound). For any data-free prior distribution P œ M(H), any ” œ [0, 1], with

probability at least 1 ≠ ”, for any posterior distribution Q œ M(H),

kl (RD(Q), RS(Q)) Æ
KL(QÎP) + ln 2Ô

m
”

m
, (1)

which leads to the following upper bound on the risk

RD(Q) Æ kl≠1
A

R̂S(Q)

.....
KL(QÎP) + ln 2Ô

m
”

m

B
, (2)

where kl≠1(x, b) = sup {y œ [x, 1] | kl(x, y) Æ b}.

Note that by the definition of kl≠1, (2) is the tightest upper bound on RD(Q) that we can obtain starting
from (1). While kl≠1 has no closed form, it is possible to approximate it e�ciently via root-finding techniques
(see, e.g., Dziugaite & Roy, 2017, Appendix A). However, this function is hard to evaluate, and even harder
to optimise. We need to rely on looser relaxations of (1) to design tractable optimisation procedures.

Relaxations of McAllester’s bound. The most classical relaxation of (1) relies on Pinsker’s inequality
kl(qÎp) Ø

(p≠q)2

2 and leads to the following high-probability bound, valid under the same assumptions as
Theorem 1:

RD(Q) Æ R̂S(Q) +

Û
KL(QÎP) + ln 2Ô

m
”

2m
. (3)

While (3) is well known and already appears in McAllester (2003), novel relaxations, exploiting refined
Pinsker’s inequality (see, e.g., Boucheron et al., 2013, Lemma 8.4) have been exploited to obtain PAC-Bayes
Bernstein bounds (Tolstikhin & Seldin, 2013; Mhammedi et al., 2019). Building on this inequality, Rivasplata
et al. (2019); Pérez-Ortiz et al. (2021) proposed a PAC-Bayes quadratic bound recalled below, valid under

3



Under review as submission to TMLR

the assumptions of Theorem 1

RD(Q) Æ

Q

cca

ı̂ıÙ
R̂S(Q) +

KL (QÎP) + log
1

2Ô
m

”

2

2m
+

ı̂ıÙKL (QÎP) + log
1

2Ô
m

”

2

2m

R

ddb

2

. (4)

Note that (3) and (4) are easier to optimise than (2), making them more relevant for practical learning
algorithms.

Generalisation-driven learning algorithms. Most of the PAC-Bayesian bounds in the literature are
fully empirical. This paves the way to use the bound as a training objectives and leads to generalisation-
driven learning algorithms. A classical PAC-Bayesian algorithm is derived from Catoni’s bound (see, e.g.,
Catoni, 2007, Alquier et al., 2016, Theorem 4.1):

argmin
QœM(H)

RS(Q) + KL(Q, P)
⁄

. (5)

In (5) an inverse temperature ⁄ > 0 appears and acts as a learning rate in gradient descent. Similarly, it is
possible to derive batch learning algorithms from (3) (4) (Dziugaite & Roy, 2017; Pérez-Ortiz et al., 2021).
Then, we have access to a theoretical upper bound which requires to approximate expectations over Q. We
next discuss how to mitigate this.

Computing generalisation guarantees. In practice, the tightest McAllester’s bound is computed,i.e.,
(1). First, note that the KL divergence is easy to compute in the Gaussian case as it has a closed form
(see, e.g., Duchi, 2007, Section 9). Then, it remains to estimate the expected empirical risk over Q, which
is costly in practice as it involves Monte Carlo approximations. To alleviate this issue, we leverage the trick
from Dziugaite & Roy (2017, Section 3.3), which exploit a high probability upper bound of R̂S(Q) with
confidence level ”Õ

R̂S(Q) Æ kl≠1
3

R̂S(Q̂n)
....

1
n

ln
3

2
”Õ

44
,

where R̂S(Q̂n) = 1
n

qn
i=1 ¸(Wi, zi), ’i, Wi ≥ Q. Then incorporating this upper bound in (1) gives the final

bound we use, with probability at least 1 ≠ ” ≠ ”Õ:

RD(Q) Æ kl≠1
A

R̂
n

S
(Q)

.....
KL(QÎP) + ln 2Ô

m
”

m

B
, (6)

where R̂
n

S
(Q) = kl≠1

1
R̂S(Q̂n)

... 1
n ln

1
2
”Õ

22
.

To compute kl≠1(p, c) for any p, c, we leverage Dziugaite & Roy (2017, Appendix A) described in appendix A.

3 Generalisation-driven Federated Learning

In this section we introduce our algorithm GenFL.

From batch to federated PAC-Bayes algorithms. When training stochastic neural nets (SNNs) with
PAC-Bayes objectives, it is common to assume that each weight follows a Gaussian distribution. For con-
ciseness, we identify a SNN to the Gaussian distribution of all its weights N (µ, Diag(‡i)). The works of
Dziugaite & Roy (2017); Rivasplata et al. (2019); Biggs & Guedj (2021); Pérez-Ortiz et al. (2021); Perez-
Ortiz et al. (2021); Biggs & Guedj (2022) proposed successful PAC-Bayesian training algorithms for SNNs
which ensure generalisation guarantees. All these methods operate in a batch setting, i.e., the optimiser has
access to all data simultaneously. Thus, building on the work of Rivasplata et al. (2019); Pérez-Ortiz et al.
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(2021), we propose Alg. 1, a new learning algorithm called GenFL (Generalisation-driven Federated Learn-
ing), casting PAC-Bayes into FL. We stress that GenFL benefits from nonvacuous generalisation guarantees
(Section 4).

Algorithm 1 GenFL. users are indexed by k; B is the local minibatch size, E is the number of local epochs,
÷ is the learning rate, f the PAC-Bayes objective. The prior is N (µprior‡prior) with parameter ”.

1: Server executes:

2: m Ω
qK

k=1 mk Û Total dataset size
3: w1 Ω (µprior, ‡prior)
4: for each round t do

5: St Ω random set of max(C · K, 1) users
6: for each user k œ St in parallel do

7: wk
t+1 Ω userUpdate(k, wt, m)

8: end for

9: wt+1 Ω
qK

k=1
mk
m wk

t+1
10: end for

11:
12: userUpdate(k, w, m):

13: B Ω (split Sk into batches of size B)
14: for each local epoch e = 1, 2, · · · , E do

15: for each local minibatch b œ B do

16: wk
s Ω µk + ‡k

§ N (0, 1) Û Reparam. trick
17: wk

Ω wk
≠ ÷Òwfm,”,µprior,‡prior(wk

s ; b)
18: end for

19: end for

20: return wk

Ensure: Global model distribution wT mapped to N (µT , ‡T )

A generalisation-driven FL algorithm. GenFL combines a federated learning protocol (i.e., FedSGD,
FedAvg, McMahan et al. (2017a)) with a PAC-Bayes objective f . Its starts from the vector w1 =
(µprior, ‡prior) corresponding to the initial distribution P = N (µprior, ‡prior) and outputs after T rounds
wT = (µT , ‡T ) corresponding to the posterior Q = N (µT , ‡T ). Hence the learning procedure is divided in
rounds, where subsets of users are sampled. Sampled users are requested to perform local updates following
a PAC-Bayes training procedure designed to ensure a good generalisation of the posterior distribution. Be-
cause users train SNNs, they sample weights from the posterior. In order to learn the variance parameter of
the posterior (Gaussian), we use the well-known reparameterisation trick (Kingma & Welling, 2014): instead
of directly sampling from the distribution, we sample from a standard Gaussian distribution and then apply
a transformation to obtain the sampled weights: W = µ + ‡V where V ≥ N (0, Id), this allows to compute
with respect to ‡. When the round ends, the global model is computed from the local updates, thanks to
the aggregation function from the FL protocol (weighted mean, median).

Next we show that with a PAC-Bayes objective f , we adapt GenFL to FL-SOB, where S is fully i.i.d., i.e.,
all user datasets have the same distribution, and to PFL where each dataset Si is i.i.d. but any two dataset
can have distinct distributions.

3.1 GenFL for FL-SOB

PAC-Bayesian objectives. We assume that for any i, Di = D. Thus, S is a i.i.d. dataset of m points.
We then consider the true and empirical risks on all S RD, RS . In a batch setting, it would be natural to
optimise the bounds (3), (4). However, the user i only has access to its personal dataset Si (of size mi)
to optimise its model while knowing other datasets are involved. We then derive accordingly from (3), (4)
two PAC-Bayesian learning algorithms, valid for any user, namely f1, f2. Note that f1 is adapted from the
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fclassic objective and f2 is adapted from fquad of Pérez-Ortiz et al. (2021):

f1(Si) = R̂Si(Q) +

Û
KL(QÎP ) + ln 2Ô

m
”

2m
. (7)

f2(Si) =

Q

cca

ı̂ıÙ
R̂Si(Q) +

KL (QÎP ) + log
1

2Ô
m

”

2

2m
+

ı̂ıÙKL (QÎP ) + log
1

2Ô
m

”

2

2m

R

ddb

2

. (8)

Note that (7), (8) can be seen as proxys of (3), (4). Indeed, every user has access to the total number of
data points m (as long as it is transmitted to the server), so the regularisation term (containing the KL
divergence) is fully available, contrary to the empirical risk R̂S which is then replaced by R̂Si . Note that in
this case, the KL divergence is divided by m instead of mi (which would be natural if we were optimising (3)
(4) for Si instead of S). This suggests that each user has to give more weight, during the optimisation phase,
to its data than to the regularisation. The reason behind this is that the server, by aggregating predictors,
performs a regularisation step on a global level, hence the need to prioritise data on a local one.

A global generalisation guarantee. A major interest of the i.i.d. assumption on S is that, as long as
users all exploit the same posterior distribution Q, and they transmit their empirical scores R̂Si(Q), every
user is able to compute the global generalisation guarantee of (2). This allows to maintain the bound of the
batch setting (involving the total number of data points m), despite being in FL. This is empirically shown
in Section 4. We present in Algorithm 2 Fedbound, the algorithm we use to compute the global bound (6),
valid for all users simultaneously.

Algorithm 2 FedBound. The K users are indexed by k; f PAC-Bayes objective, prior N (µprior, ‡prior);
posterior N (µT , ‡T ), ”, ”

Õ parameters, n number of Monte Carlo sampling
1: Server executes:

2: m Ω
qK

k=1 mk Û Total dataset size
3: P = N (µprior, ‡prior) Û Prior (learned or random)
4: Q = N (µT , ‡T ) Û Posterior (learned)
5: for each user k œ K in parallel do

6: errork
Ω userMCSampling(k, wt, m)

7: end for

8: error Ω
qK

k=1
mk
m errork

9: KL_inv Ω kl≠1
1

error |
1
n ln( 2

”Õ )
2

10: Up-bound Ω kl≠1
3

KL_inv |
KL(QÎP )+ln 2Ô

m
”

m

4

11:
12: userMCSampling(k, w, m):

13: for each MC sampling i = 1, 2, · · · , n do

14: W k
i ≥ Q Û Sample weights from the posterior

15: errork
i Ω R̂Sk (W k

i ) Û local empirical risk
16: end for

17: errork
Ω= 1

n

qn
i=1 errork

i

18: return errork

Ensure: Up-bound holding with probability 1 ≠ ” ≠ ”
Õ

3.2 GenFL for personalised federated learning

A general training for the prior distribution. In PFL, the learning objective of each user may di�er,
while sharing some similarities that can be learned and transferred from one user to another. This framework
requires adjustments of our learning objectives. Indeed, contrary to Section 3.1, there is no clear global
generalisation guarantee, so each user has then to optimise its own personal learning objective from a
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commonly shared prior. Using either a random prior or a learnt one on a fraction of users data, we run
GenFL similarly to Section 3.1 with our PAC-Bayesian objective of interest f . The output distribution of
GenFL is then considered as a common prior for all users which then needs to be personalised.

A personalisation step. Once a common prior distribution has been obtained from the federated training,
it is necessary for each user to personalise it to its own problem. To do so, we apply PAC-Bayesian objectives
similar to those in Section 3.1, namely f1 (7) and f2 (8), where the batch size is modified from m to mi for
the i-th user. This reflect that each user now optimises its local goal instead of the global one. Each user
ends up with its own personalised posterior distribution. The way personalised bounds are implemented is
similar to Algorithm 2, but without the aggregation step. We refer to Appendix B for additional details.

4 Experiments

In this section we provide practical instantiations of GenFL. We first consider in Section 4.1 the case
of classification on MNIST in a federated setting using basic neural architectures. We then extend our
experimental framework in Section 4.2 to the more challenging case of classification on CIFAR-10 with more
sophisticated neural networks.

4.1 Classification on MNIST

4.1.1 Experimental framework

Our experimental framework is inspired from Pérez-Ortiz et al. (2021) combined with the FedAvg protocol
McMahan et al. (2017a). We use the following libraries: Pytorch (Paszke et al., 2019) for deep learning,
Flower (Beutel et al., 2020) for federated learning, Slurm (Yoo et al., 2003) for cluster experiments, and
Hydra (Yadan, 2019) for overall experiment management. The cluster nodes we use have 48 SKYLAKE
3GHz CPUS. We do not use GPUs.

Prior distribution over weights. We propose two types of priors: data-free (random) prior chosen
randomly around N (0, Id) (as in Dziugaite & Roy, 2017) and a data-dependent (learnt) prior. The latter is
powerful to attenuate the KL divergence term, leading to sharper generalisation bounds and better accuracy.
Such a data-driven prior implies to use a fraction of the dataset from the training data to optimise the prior.
The bound computation is then realised with a reduced dataset size (divided by 2 in practice). However,
the prior has gained e�ciency (lower empirical risk) and the PAC-Bayes optimisation starts from a relevant
point.

We use Gaussian distribution for both prior and posterior over the weights of a neural network. When data-
free, the prior is P =

o
lœlayers N (truncated(µl

rand), Diag(‡prior)) with µl
rand ≥ N (0, 1Ô

nl
in

), and ‡prior œ R+ú.

The truncature is done at ±
2Ô
nl

in

where nl
in is the dimension of the inputs of the layer l. In the case of

data-dependent prior, we have P =
o

lœlayers N (µl
learnt, Diag(‡prior)), where µlearnt. It is obtained via ERM

on the prior set on half of the training set, the other half being used for bound computation and posterior
optimisation.

Dataset partition. To build a i.i.d. FL setup, we consider the case where each user has exactly the same
number of samples per class. We partition MNIST as follows: we fix the number of users to 100. Then,
each user receives a dataset size of 540, each class having 54 images. In the case of the learnt prior, we split
the training set of each user in half, the first one being used to train the prior, the second exploited by our
learning algorithms.

In the case of non-i.i.d. FL setup, we follow McMahan et al. (2017a). First we sort MNIST by label, then we
partition the dataset into chunks of 300 contiguous samples each (thus containing at most 2 labels, because
it is sorted). Again we split each user dataset in several parts. When the prior is random, we save 10%
of the dataset to create a validation set. Remaining data is exploited for optimisation. When considering
learnt priors, we save again 10% of the dataset as a validation set, we exploit 40% of the dataset to train the
prior (respecting the proportion of each class), the remaining 50% being used by our learning algorithms.
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Bound parameters. We used ” = 0.05, ”
Õ = 0.01, n = 150000 Monte Carlo samples.

Optimisation hyperparameters. The prior distribution scale ‡prior is set to 2, 5 ◊ 10≠2, the learning rate
is 5 ◊ 10≠3 for 100 users. In order to compare with the batch learning setting, we compute our algorithms
with 1 user. In this case, we use a learning rate of 5 ◊ 10≠4 to reach better performances. The momentum
is 0.95 for posterior optimisation and 0.99 in prior optimisation. During prior optimisation, we used a
dropout rate of 0.2 to avoid overfitting. As theoretical results of Section 2 require a loss function in [0, 1],
we use the bounded cross-entropy as in Pérez-Ortiz et al. (2021), i.e., ¸(x, y) = 1

ln(pmin) · ln(‡̃(x)y) with
‡̃(x)y = max(sigmoid(x)y, pmin). We took pmin = 10≠4.

KL penalty. For stability reasons, we penalise the KL term during posterior optimisation (similarly to
Pérez-Ortiz et al., 2021), thus we give more impact to the empirical risk during optimisation. Such a penalty
helps performance and stability during training when random priors are involved. In this case, we use a
penalty of 0.1.

Federated Learning hyperparameters. Starting from a random prior, we perform our algorithm during
200 rounds to make the SNNs converge. When learnt priors are considered, they are trained with a run of
100 rounds with 5 local epochs (convergence around 50 epochs). We then perform 10 additional rounds with
5 local epochs to train the posterior. In both cases, we select 10% of the users each round to participate in
the training. As the dataset size of each user is small, we use a batch size of 25 (compared to 250 in the
work of Pérez-Ortiz et al. (2021)).

Neural Architecture. We consider a stochastic 2 hidden layer MLP with 600 units each, resulting in
1,198,210 number of parameters for the prior (with fixed covariance matrix) and doubled for the SNN (as
we consider diagonal covariance matrices).

Positive variance prior. To have a constrained positive standard deviation ‡ when sampling weights, we
use the following transformation: ‡ = ln(1 + exp(fl)). It makes ‡ always positive, and fl can be any real
number that is optimised during training procedure.

4.1.2 Results

Note that in a classification problem, the generalisation error translates a positive influence of the learning
phase as long as it is smaller than 1 (which is what we refer to with the term nonvacuous). Indeed, a bound
below this threshold shows that the posterior will not fail at each try. However, we focus on posteriors
with generalisation bounds or test error smaller than 50% The reason is that, for a classification task, this
threshold is the generalisation error of a randomised predictor with associated distribution Bernoulli(0.5).
Thus, having results below this threshold provably show we generalise better than a naive strategy.

FL-SOB setting.

Table 1 gathers our results for GenFL applied with f1, f2 alongside FedBound. We compared our results
with 100 clients with the output of our algorithms for 1 client, corresponding to the batch learning case. Our
FL algorithms benefit from nonvacuous theoretical guarantees and test errors. In the case of data-dependent
priors, test errors of GenFL nearly reach for both f1 and f2, the precision of their batch counterpart (3%
in FL and 2% in batch). In the case of random prior, the KL penalty has a strong positive influence on
the test errors. The generalisation bounds of our algorithms are uniformly deteriorated compared to the
batch setting, while being of the same magnitude. This is important to notice as this is the price to pay
to adapt batch bounds to a federated setting. Indeed, as each user only optimised a proxy of the common
generalisation bound, it is legitimate to retrieve in our results a short discrepancy comparing to the batch
case.

While f2 is consistently achieving better generalisation upper bounds in Pérez-Ortiz et al. (2021), it is
outperformed by f1 in the FL setting. However, notice that f2 provides uniformly better test errors than
f1, similarly to Pérez-Ortiz et al. (2021). Note that better results are achieved if one considers the KL
penalty trick with data-free prior and no KL penalty trick with data-dependent prior. We interpret this fact
as follows: given that the data-dependent prior is already performing well on training data, allowing the
posterior optimisation to be unconstrained is not an issue as we found an area close from a local minimiser.
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Table 1: Results for the FL-SOB scenario. ¸0≠1 corresponds to the 0-1 loss. The test error column is made
on the test set of MNIST. The Bound column corresponds to the generalisation bounds, computed with
Alg. 2. The KL/m column corresponds to the KL divergence term in the bound divided by m = 60000 in
data-free prior or m = 30000 data-dependent prior.

Setup Bound Test Err. KL div
Prior Obj. ¸0≠1 ¸0≠1 KL/m

Pérez-Ortiz et al. (2021): Random f1 0.330 0,141 0,081
(1 client) f2 0.316 0,092 0,138

Pérez-Ortiz et al. (2021): Learnt f1 0.028 0,023 <0,001
(1 client) f2 0.028 0,020 0,001

100 users - GenFL - KL Penalty=0.1
Random f1 0.333 0,123 0,107

(us) f2 0.342 0,090 0,163
Learnt f1 0,061 0,030 <0,001

(us) f2 0,088 0,029 0,002
100 users - GenFL - No KL Penalty

Random f1 0,415 0,256 0,039
(us) f2 0,408 0,251 0,041

Learnt f1 0.039 0,030 <0,001
(us) f2 0.040 0,030 <0,001

Table 2: Results for the PFL scenario. ¸0≠1 corresponds to the 0-1 loss. The test error column is made
on the test set of each user (10% of local dataset).The Gen. Bound column gathers generalisation bounds.
Each user bound is computed locally with mi = 300 for learnt prior, while mi = 540 for random prior.

Setup Gen. Bound ¸0≠1

Prior Obj. min mean max
Random f1 0,063 0,680 0,847

(us) f2 0,075 0,713 0,893
Learnt f1 0,054 0,112 0,222

(us) f2 0,052 0,111 0,220
Test Error ¸0≠1

Random f1 0 0,552 0,767
(us) f2 0 0,588 0,833

Learnt f1 0 0,050 0,183
(us) f2 0 0,044 0,150

However, as the random prior is not necessarily e�cient, we need to move far from it to reach good empirical
performances. However, moving freely from the prior distribution leads to a large KL divergence, hence the
need to constrain the posterior optimisation to obtain both better bounds and test errors. A take-home
message is that adapting PAC-Bayes algorithms to FL is e�ective: it gives nonvacuous results close to the
batch setting.

PFL setting.

Table 2 provides an overview of our results in the non-i.i.d. case. It gathers, for both generalisation bounds
and test error, the minimum, mean and maximum performance of all 100 users. The averaged performances
are deteriorated compared to Table 1 for all settings as we consider a harder problem. It is worth noticing
that our bounds are nonvacuous and that our algorithms with learnt priors benefit from bounds and test
errors lower than 50%. Indeed, if we do not learn the prior, we see from the distribution of errors in Figure 1
that most users have a deteriorated bound and test errors. For learnt priors, the error distribution shows
that all users enjoy a meaningful bound as well as sound performance. An interesting point is that the
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Figure 1: Histograms gathering test errors (red) and bound (blue) of all 100 users of the PFL setting. In
order from top to botton: Random prior≠f1, Random prior≠f2, Learnt prior≠f1, Learnt prior≠f2.

common prior distribution does not support all users uniformly as we can see in Figure 1. Indeed, our
algorithms with random priors su�er from deteriorated bounds and test errors on average and the worst
case, but approximately 15% enjoy good test errors and 9% benefit from theoretical guarantees lower than
40%. Also, our algorithms with learnt priors enjoy test errors and generalisation guarantees lower than 20%
for all users. Furthermore, approximately half of the users benefit from test errors lower than 5%. This
highlights the importance of the prior in this non-i.i.d. setting. As the test set of each user is small (60
images), some users achieve a 0% test error.

4.2 Classification on CIFAR-10

To evaluate the e�ectiveness of our algorithm in more challenging scenarios, we conduct experiments on the
CIFAR-10 dataset. We followed a setup akin to Section 4.1.1, with minor adjustments. Specifically, we exploit
a learned prior trained with 70% of the dataset, the remaining being used for posterior estimation. Given the
heightened complexity of the CIFAR-10 dataset, we involve Convolutional Neural Networks (CNNs) with 4
and 9 layers, denoted as CNNet4l and CNNet9l, respectively (these architectures also appear in Pérez-Ortiz
et al., 2021, exploited as a baseline). To ensure enhanced performances, we also perform fine-tuning of

10



Under review as submission to TMLR

hyperparameters related to FL such as local batch size and the number of local epochs, while keeping those
associated with PAC-Bayes fixed to ensure relevant comparisons with the baseline.

We conducted a comprehensive grid search across a spectrum of hyperparameters to approximate the optimal
model configurations. Specifically, we explored various combinations of local batch sizes (1, 5, 10, 50) and
local epoch counts (1, 5, 10). Recognising that 100 rounds of training were inadequate for convergence, we
extended the training duration to 300 rounds. Additionally, we adjusted the learning rate by a factor of 10
at round 200 to ease optimisation. From the resulting best configurations, we selected the most promising
priors for further investigation. Subsequently, we fine-tuned the learning rate by exploring values between
5◊10≠4 and 1◊10≠3. Remarkably, we discovered that the optimal learning rate, as reported in Pérez-Ortiz
et al. (2021), remains consistent between the centralised and federated settings. Furthermore, we conducted
experiments to tune the dropout rate, revealing that a dropout rate of 0.2 yielded the best performance on
the CIFAR-10 dataset, consistent with findings in Pérez-Ortiz et al. (2021). This rea�rms the applicability
of centralised PAC-Bayes hyperparameters to the decentralised PAC-Bayes paradigm. Detailed results of
these experiments, showing accuracies for each experiments on the batch size, epoch counts, learning rate
and dropout rate are provided in Appendix D.

Our analysis revealed that the most e�ective hyperparameter settings were a local batch size of 5 for CNNet9l
and 10 for CNNet4l, with a corresponding local epoch count of 1 for both architectures. Notably, increasing
the number of epochs led to quicker convergence but marginally reduced accuracy. A learning rate of 5◊10≠3

was optimal for both architectures, while a dropout rate of 0.2 was found to be the most e�ective.

We selected the priors with the highest accuracy from our grid search results (refer to the appendix for
accuracy details). Subsequently, the posteriors were trained using identical hyperparameters as their corre-
sponding priors. Additionally, we experimented with the KL penalty technique. Our findings are summarized
in Table 3 for comparison with the baseline results presented in the first row. Notably, both the prior and
posterior performances are slightly inferior to the baseline. This discrepancy can be attributed to the in-
herent di�culty of federated learning compared to the batch setting. However, it is crucial to note that the
generalisation bounds remain non-vacuous.

Among the configurations tested, the most promising outcome was observed with CNNet9l using a KL penalty
of 1.0 in conjunction with f2. This configuration achieved a generalisation bound and a test error of 34.5%
and 30.5%, respectively, which is 10% higher than the baseline for both metrics. This a similar conclusion
than in Section 4.1, highlighting the price to pay to switch from batch to FL. Surprisingly, the KL penalty
trick did not yield an improvement in the generalisation bound, contrary to Section 4.1. This is possibly
linked to the intrinsic complexity of CIFAR-10. In particular, the inadequacy of the prior may necessitate
further optimisation during posterior training, potentially causing the posterior to diverge significantly from
the prior distribution. Consequently, the KL term increases post-training, warranting a more substantial
penalty.

5 Discussion

In this work, we propose a novel algorithm for FL in two di�erent settings: FL-SOB, which allows to exploit
a global generalisation guarantee while keeping data separated; as well as PFL, which only involves an i.i.d.

assumption for each user’s dataset. Our work raises two questions: (a) is it possible to remove the i.i.d.

assumption?(b) is it possible to maintain a global generalisation guarantee, even in the personalised setting?
To answer (a), a line of work first initiated by Kuzborskij & Szepesvári (2019) (for i.i.d. data) and continued
by Haddouche & Guedj (2023); Chugg et al. (2023); Jang et al. (2023) (for non-i.i.d. ones) focuses on PAC-
Bayes bounds valid for data distribution with bounded variances. In the PFL setting, this could provide
novel generalisation bounds without assuming each user possesses an i.i.d. dataset. About (b), the recent
work of Sefidgaran et al. (2023) provides elements of answer: they derive a general PAC-Bayesian bound
holding for the classical FL setting for all users simultaneously involving explicitly the number of users and
rounds. This allows fruitful theoretical interpretations (especially on the number of rounds involved during
the FL training), but leads to vacuous generalisation guarantees for classification task with a federated SVM.
Following another route, based on PAC-Bayes methods for meta-learning, Boroujeni et al. (2024) provides a
novel FL algorithm for PFL derived from an original theoretical result with strong performances. However,
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Model Obj. — ‘ rounds Bound Test Error KL Div Prior Test Error
Pérez-Ortiz et al. (2021)

CNNet9l f1 250 100 "1" 0.237 0.216 <0.0001 0.217
(baseline) f2 250 100 "1" 0.250 0.214 0.003 0.217

100 users - GenFL - KL Penalty=0.1
CNNet4l f1 10 1 300 0.471 0.388 0.012 0.329

(us) f2 10 1 300 0.469 0.391 0.011 0.329
CNNet9l f1 5 1 300 0.393 0.303 0.019 0.274

(us) f2 5 1 300 0.396 0.304 0.018 0.274
100 users - GenFL - KL Penalty=1.0

CNNet4l f1 10 1 300 0.466 0.390 0.011 0.329
(us) f2 10 1 300 0.458 0.391 0.009 0.329

CNNet9l f1 5 1 300 0.386 0.302 0.014 0.274
(us) f2 5 1 300 0.345 0.305 0.003 0.274

Table 3: Table displaying the results for the CIFAR-10 dataset alongside the baseline (batch setting) pre-
sented in the first row. ’Prior Test Error’ represents the 0-1 error of the prior on the test set. The symbol —
denotes the batch size of clients, while ‘ indicates the number of local epochs on each round.

their approach involves distributions on distributions spaces, giving their method a potentially high time
complexity, they are also unable to compute nonvacuous generalisation guarantees. This constrasts with
our results, even for the personalised setting, at the cost of considering generic PAC-Bayesian bounds, not
explicitly tailored for federated learning. Establishing a PAC-Bayes bound designed for FL and leading to a
non-vacuous generalisation guarantees remains an open challenge that we aim to address in a future work.
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