2412.04715v4 [cs.CV] 25 Aug 2025

arxXiv

Addressing Text Embedding Leakage in Diffusion-based Image Editing
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Figure 1. Qualitative comparison of tuning-free image-editing methods. Left to right: (1) source image, (2) visualization-only binary masks
of the source objects and corresponding edit prompts (source — target), and (3—7) results from our ALE and four baselines. The masks are
not provided to any method; they are shown solely to indicate which region is supposed to change. Rows 1-2 illustrate single-object edits
where baselines spill changes outside the intended area or distort geometry, while ALE keeps the background intact. Rows 3—4 demonstrate
multi-object edits: baselines often entangle attributes, whereas ALE preserves each attribute in its designated region, yielding leakage-free

results.

Abstract

Text-based image editing, powered by generative dif-
fusion models, lets users modify images through natural-
language prompts and has dramatically simplified tradi-
tional workflows. Despite these advances, current meth-
ods still suffer from a critical problem: attribute leakage,
where edits meant for specific objects unintentionally af-
fect unrelated regions or other target objects. Our analy-
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sis reveals the root cause as the semantic entanglement in-
herent in End-of-Sequence (EOS) embeddings generated by
autoregressive text encoders, which indiscriminately aggre-
gate attributes across prompts. To address this issue, we in-
troduce Attribute-Leakage-free Editing (ALE), a framework
that tackles attribute leakage at its source. ALE combines
Object-Restricted Embeddings (ORE) to disentangle text
embeddings, Region-Guided Blending for Cross-Attention
Masking (RGB-CAM) for spatially precise attention, and
Background Blending (BB) to preserve non-edited content.
To quantitatively evaluate attribute leakage across various
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editing methods, we propose the Attribute-Leakage Eval-
uation Benchmark (ALE-Bench), featuring comprehensive
editing scenarios and new metrics. Extensive experiments
show that ALE reduces attribute leakage by large margins,
thereby enabling accurate, multi-object, text-driven image
editing while faithfully preserving non-target content.

1. Introduction

Text-based image editing, where users modify existing im-
ages via natural language prompts, has emerged as a pow-
erful alternative to traditional manual editing. Conventional
editing workflows typically demand significant manual ef-
fort and domain expertise [1, 16, 25, 33]. In contrast, recent
advancements leveraging generative diffusion models have
substantially simplified the editing process [6, 12, 15, 20].
These models enable users to perform high-quality edits
through intuitive textual prompts, making image editing
more accessible and flexible.

Despite these advances, existing text-based editing meth-
ods frequently suffer from a critical limitation: attribute
leakage, where edits intended for specific objects inad-
vertently affect unrelated regions within the image. At-
tribute leakage can be categorized into two distinct types:
Target-External Leakage (TEL), where attributes of a tar-
get object unintentionally affect non-target regions, and
Target-Internal Leakage (TIL), where attributes intended
for one target object inadvertently influence another tar-
get object within the same editing prompt. To mitigate
this, recent studies attempt to spatially constrain editing ef-
fects by manipulating cross-attention maps [3, 29]. How-
ever, as illustrated in Figure 1, even state-of-the-art meth-
ods [3, 13, 29, 34] continue to exhibit significant TEL in
single-object editing scenarios, and both TEL and substan-
tial TIL in more complex, multi-object editing scenarios.

Our analysis highlights that attribute leakage fundamen-
tally stems from overlooked issues of the entanglement of
text embeddings, specifically those associated with the End-
of-Sequence (EOS) tokens, building upon recent study [14].
Most text-based editing pipelines employ autoregressive
text encoders such as CLIP [22], which append EOS to-
kens to text prompts until reaching a fixed length (e.g., 77
tokens) to generate embeddings. Consequently, EOS em-
beddings inherently aggregate information from all rokens
within the prompt and attend indiscriminately across im-
age regions via cross-attention layers, exacerbating both
TEL and TIL. While recent studies [14] attempt to alleviate
leakage stemming from EOS embedding entanglement, our
analysis demonstrates that these approaches are insufficient
to fully eliminate attribute leakage (see Section 2).

To address these limitations, we propose a novel frame-
work, Attribute-Leakage-Free Editing (ALE), primarily
consisting of three complementary components: Object-

Restricted Embeddings (ORE), Region-Guided Blending
for Cross-Attention Masking (RGB-CAM), and Back-
ground Blending (BB). ORE assigns distinct, semantically
isolated embeddings to each object in the prompt, explicitly
avoiding embedding entanglement. RGB-CAM enhances
spatial precision in cross-attention maps by leveraging seg-
mentation masks, restricting attention solely to intended re-
gions. BB preserves the structural integrity of non-edited
regions by integrating latents from the source image.
Furthermore, to systematically quantify attribute leak-
age, we introduce the Attribute-Leakage Evaluation Bench-
mark (ALE-Bench), a specialized benchmark designed ex-
plicitly for leakage evaluation in multi-object editing. Ex-
isting benchmarks predominantly focus on single-object
scenarios, lacking metrics for evaluating attribute leakage
comprehensively [17, 27, 31]. ALE-Bench covers a diverse
range of editing scenarios, including multi-object editing in
various edit types. We also propose two novel evaluation
metrics: Target-External Leakage Score (TELS) and Target-

Internal Leakage Score (TILS), explicitly quantifying TEL

and TIL, respectively.

In summary, our contributions are:

1. Identifying the previously overlooked role of EOS em-
beddings as a fundamental cause of attribute leakage in
text-based image editing (Section 2).

2. Proposing the novel Attribute-Leakage-Free Editing
(ALE) framework, which specifically addresses leakage
induced by EOS embeddings (Section 3).

3. Introducing a comprehensive benchmark, ALE-Bench,
along with novel metrics (TELS, TILS) designed explic-
itly to quantify attribute leakage in multi-object editing
scenarios (Section 4).

2. Attribute Leakage Problem and Analysis

In this section, we discuss the attribute leakage problem in
multi-object text-based image editing and highlight limita-
tions of existing methods. Specifically, Section 2.1 formally
introduces multi-object text-based image editing and briefly
describes dual-branch frameworks commonly used for such
tasks. Section 2.2 defines attribute leakage and categorizes
it into two types: TEL and TIL. Finally, Section 2.3 analyzes
embedding entanglement, particularly from EOS tokens, as
the primary cause of attribute leakage and explains why ex-
isting methods fail to adequately address this issue.

2.1. Multi-Object Text-based Image Editing

Text-based image editing modifies specific regions of a
source image according to textual prompts describing de-
sired changes. Formally, given a source image x* and a tex-
tual prompt pair (y*, y'8')—where y* specifies the source
objects to be edited (i.e., objects to be replaced or modi-
fied), and '€ specifies the target objects (i.e., new or mod-
ified objects to appear)—the goal is to generate an edited
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Figure 2. Illustration of attribute leakage in image editing. (a) The
source image and editing prompts. (b) An editing result exhibit-
ing attribute leakage. Regions highlighted in green indicate target-
external leakage, where the editing spills into non-target (e.g., the
green bell pepper turns into a golden pumpkin). Regions in blue
show target-internal leakage, where the attributes of “a red pump-
kin” undesirably influence the appearance of the “golden apple”
region. (c) A reference image showing the desired editing result
without attribute leakage.

image x'¢'. Ideally, x'¢' reflects modifications described by
'€ exclusively within regions indicated by y*°, leaving all
other areas unchanged. When edits involve multiple objects
simultaneously, the task is classified as multi-object editing.

Practically, multi-object editing prompts can be de-
composed into individual object-level prompt pairs
(g5, 4], typically via language models or noun-
chunk parsers [2, 11]. Our research specifically focuses on
scenarios involving up to K = 3 objects. For example,
consider the editing scenario in Figure 2a. Given the
prompt pair (y*, y'¢') = (“a yellow bell pepper and a red
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bell pepper”, “a red pumpkin and a golden apple”), it can
be decomposed into object-level prompts [(y:", ;)]Z, =
[(“a yellow bell pepper”, “a red pumpkin”), “a red bell
pepper”, “a golden apple”)]. The resulting image z'¢
should contain a red pumpkin and a golden apple, precisely
aligned to corresponding regions.

To perform such precise edits, diffusion-based editing
methods encode textual prompts into embeddings that guide
the editing process through cross-attention layers. These
layers spatially align text-described attributes with corre-
sponding regions in the image. Achieving accurate align-
ment, however, requires effectively preserving the original
spatial structure while synthesizing novel visual attributes.
To this end, recent methods utilize dual-branch editing
frameworks, which have become popular due to their abil-
ity to simultaneously retain the original image layout and
introduce new content [3, 19, 29].

Dual-branch frameworks operate through two parallel
pathways—a source branch and a target branch—using
the same pretrained text-to-image diffusion model. Specifi-
cally, the source branch reconstructs the original image x*™
guided by the source textual prompt y*°, thereby captur-
ing structural and spatial information inherent in z%°. The
target branch, in parallel, synthesizes new visual attributes
guided by the target textual prompt y'€'. Structural consis-

tency is maintained by injecting intermediate self-attention
layer components—such as queries and keys—computed
from the source branch into the corresponding self-attention
layers of the target branch. Despite their strengths, dual-
branch frameworks face fundamental challenges, particu-
larly attribute leakage, caused by embedding entanglement
involving EOS tokens, as analyzed in subsequent sections.

2.2. Attribute Leakage

Attribute leakage is a critical challenge in multi-object text-
based image editing, characterized by unintended propaga-
tion of attributes from target objects to unrelated regions or
other target objects. Formally, given a source image z° and
object-level prompt pairs [(y5, yi#)]/,, attribute leakage
occurs when modifying an object from its original descrip-
tion y;™ to a new target description y;gt unintentionally im-
pacts regions or objects not specified by the editing prompt.
Attribute leakage can be categorized into two distinct types:
e Target-External Leakage (TEL): This occurs when edit-

ing an object specified by (5, ¢'*") unintentionally af-

fects regions not described by the prompt pair (i.e., non-

target regions). For example, as highlighted by the green

Src

region in Figure 2b, editing y5 = “a red bell pepper” to
y;gt = “a golden apple” inadvertently transforms an unre-
lated “green bell pepper” into a golden object.

o Target-Internal Leakage (TIL): This occurs when edit-
ing an object specified by (5, 4'*") unintentionally af-
fects another target object specified by a different prompt
pair (yj-rc,y;gt), where i # j. For instance, as illus-
trated by the blue region in Figure 2b, editing yi =
“a yellow bell pepper” to yllgl = “ared pumpkin” in-
advertently impacts another target object described by
y;gt = “a golden apple”, causing it to appear as a mixture
of red and golden pumpkin-like attributes.

Effectively mitigating both TEL and TIL is essential to

achieving precise, user-intended edits, as exemplified by the

desired reference result in Figure 2c.

2.3. Causes of Attribute Leakage

Attribute leakage primarily arises from embedding entan-
glement, which occurs during prompt encoding. Widely
used text encoders, such as CLIP, encode tokens autoregres-
sively, causing embeddings of later tokens to unintention-
ally accumulate mixed semantics from preceding attributes
or objects. To mitigate this entanglement, some approaches
introduce object-wise embeddings by parsing prompts into
distinct noun-phrase spans and encoding each segment in-
dependently [10]. However, these methods only address en-
tanglement among original tokens in the prompt, failing to
adequately resolve entanglement involving EOS tokens.
Since CLIP pads prompts to a fixed length using EOS
tokens, the EOS embeddings inevitably aggregate seman-
tic information from multiple attributes and objects. For
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Figure 3. Illustration of attribute leakage from EOS embeddings
and misaligned cross-attention. (b) ETS with object-wise embed-
dings shows spatial misalignment: embeddings of one object (e.g.,
“a red diamond”) can influence unrelated regions. (c) Adding
cross-attention masking correctly localizes object-wise embed-
dings but fails to suppress leakage from EOS embeddings (e.g.,
diamond-like decoration on the apple). Cross-attention maps are
averaged across timesteps and summed over tokens (or padded
EOS tokens).

instance, when encoding the prompt “a red diamond and
a golden apple”, the EOS embeddings inherently encap-
sulate combined semantics from all attributes and objects
(e.g., “red”, “diamond”, “golden”, and “apple”). To ad-
dress this issue, End-Token-Substitution (ETS) [14] re-
places attribute-rich EOS embeddings with attribute-free
embeddings obtained from prompts without descriptors
(e.g., “a diamond and an apple”). Nevertheless, ETS re-
mains insufficient even when combined with object-wise
embeddings, as the simplified EOS embeddings still aggre-
gate semantic information across multiple objects, thereby
continuing to propagate attribute leakage (see Figure 3).
Embedding entanglement further exacerbates spatial in-
accuracies in dual-branch text-based image editing frame-
works. Since dual-branch methods inject structural in-
formation from the source image into the target edit-
ing branch, entangled embeddings can produce misaligned
cross-attention maps, causing embeddings to incorrectly at-
tend to visually similar but semantically incorrect regions
during editing (Figure 3b). This visual-semantic confusion
significantly exacerbates spatial inaccuracies, intensifying

(a) Source image (b) Original EOS

(c)EOS <0 (d) EOS +

Figure 4. Comparison of different EOS embedding modification
strategies in a single editing scenario, where “yellow bell pepper”
is edited to “diamond” and “red bell pepper” to “moon”. (b) Uses
the original EOS embeddings. (c) Replaces EOS embeddings with
zero vectors. (d) Replaces EOS embeddings with those obtained
from an empty prompt ‘.

attribute leakage. Although existing methods attempt to mit-
igate this issue through refined cross-attention alignment
or explicit masking [3, 29], these strategies fail to address
the fundamental problem: EOS embeddings inherently lack
spatial specificity, as they integrate semantic content from
the entire prompt. Therefore, restricting the spatial atten-
tion of EOS embeddings to specific regions is inherently in-
effective, further compounding attribute leakage even when
employing combined strategies (Figure 3c).

One naive alternative could involve removing seman-
tic content entirely from EOS embeddings by substitut-
ing them with zero vectors or embeddings derived from
empty prompts. However, as demonstrated empirically in
Figure 4 and detailed in Appendix E, this simplistic solution
severely degrades visual quality and editing accuracy. These
observations imply that diffusion models intrinsically de-
pend on EOS embeddings containing semantics to achieve
high-quality image editing outcomes. Therefore, resolving
attribute leakage effectively requires a dedicated strategy
that carefully mitigates the unintended influence of entan-
gled EOS embeddings without completely eliminating or
overly simplifying their semantic content. We propose such
a targeted approach in the next section.

3. Attribute-Leakage-Free Editing (ALE)

Given a source image x*"

prompt pairs [(yfrc, yzgt)L 1» our goal is to generate an
edited image = that (1) replaces every 3™ with % inside
its designated region, (2) preserves all non-target content,
and (3) avoids both TIL and TEL.

Our proposed method, ALE, is built on the dual-branch
editing framework with the Denoising Diffusion Consis-
tent Model (DDCM) virtual inversion scheme: a source
branch reconstructs 2 from latent {z5}9_,. under the
prompt i, = “and ” join([y5]), while a target branch
denoises latent {2#70_ toward the edited image guided
by y&, = “and’ Jorn([ £]). On top of this backbone
we introduce three key components: ORE, RGB-CAM, and
BB. Figure 5 visualizes an overall pipeline, and Algorithm |

lists the complete procedure.

and a list of K object-level
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Figure 5. Overview of ALE. The framework consists of two branches: the upper branch (source branch) processes the source latent 25,
and the lower branch (target branch) processes the target latent ' at each timestep 7. ORE produces multiple semantically-isolated
embeddings for each target object to reduce interference between unrelated objects. RGB-CAM refines cross-attention activations using
segmentation masks, aligning the attention of each embedding to spatial regions corresponding to its target object. BB merges the source
latent for background regions and the target latent for edited regions. Dashed lines indicate omitted components (e.g., the encoder, the

decoder, and the segmentation model) for simplicity.
3.1. DDCM and Dual-Branch Editing Framework

Virtual inversion via DDCM We adopt the Denoising Dif-
fusion Consistent Model (DDCM) [29], which chooses the
special variance schedule so that any noisy latent 2, retains
a closed-form link to its clean latent z; at every timestep
T € [T,...,0]. This property enables a virtual inversion
that avoids the costly DDIM / null-text inversion. Because
this form matches the multi-step consistency sampler of La-
tent Consistency Models [8], we can edit images in as few
as 4-20 steps without explicit inversion steps.

Dual-branch framework Starting from an initial noise,
the source branch follows DDCM updates with ;™" , while
the target branch starts with 2'8' = 257 and calculates
the next latent z'®', at each step using the U-Net noise
ep(2t8 7,42 ) and the consistency correction term. To
preserve structure of z°°°, we copy the query—key tensors
(Q, K)7'y from every self-attention layer ¢ of the source
branch into the corresponding layer of the target branch
according to self-attention injection schedule S = {7 |
Ts < 7 < T}, where Tg € [0,T] controls the length of
the self-attention injection schedule. Thus, a shorter sched-
ule (Ts =T) touches only early denoising steps and enables
stronger edits, whereas a longer schedule (75 ~ 0) enforces

stricter structural preservation.

3.2. Object-Restricted Embeddings (ORE)

To address leakages in prompt embedding level, ORE en-
codes each object prompt y;gt in isolation, yielding a set of
token-embedding matrices
E; = [eBos, Cioken;s -+ - 5 ekos, ... | €RFX?
——— ——

from tokens in y;gl from padded EOS tokens

where L is the padded prompt length and d the embedding
dimension. For example, in Figure 3 case, F{ is obtained

as [6]305, €a, €reds €Ediamonds C€EOS, . ] And we con-
struct a base embedding E} ., by encoding yltgs . and splic-
ing E![y;¥'] back into their original spans, to calculate base
value tensor in RGB-CAM. Because no token embedding
in {E!} can influence another object’s span and EOS em-
beddings in E; only contain semantics of yigl, subsequent
cross-attention receives semantically disentangled embed-
dings, thereby preventing leakage at its source.

3.3. Region-Guided Blending for Cross-Attention
Masking (RGB-CAM)

Standard cross-attention layers in diffusion U-Net accept
a single value tensor V' and thus cannot exploit multiple
OREs. RGB-CAM replaces the vanilla cross-attention out-
put with a spatially blended tensor

K
A = Z(Msz) Vi + (Mmeack) Vbases

=1

where M = attention_map(Q, K) is the base cross atten-
tion map, V; = W,(E!), K = Wi(Encoderey(yL..)),
Voase = Wy (El ), and {m;}, mpaek are object and back-
ground segmentation masks from Grounded-SAM [24].
Since masks are not pixel-perfect, we apply a slight dila-
tion. The masked tensors (M ® m;)V; localize each ORE
to its designated region, eliminating target-internal leak-
age, while the background term preserves areas outside all
masks. Note that only when ORE and RGB-CAM operate

in tandem does ALE produce leakage-free results.

3.4. Background Blending (BB)

Even with perfect cross-attention, backgrounds remain
weakly constrained because {y;*'} mention only target ob-
jects. At every timestep 7 we blend the source latent by the
background mask as a final step:

~tgt SIrc tgt
ZE = Mpack © 25° + (1 — Mipack) © 2.



Algorithm 1: Attribute-Leakage-Free Editing

src

Input: Source image z
[(y5, v2)] 1‘K:1 , self-attention injection
schedule S = {7 |0 <7 < Tg}

Output: Edited image x'¢

, object-level prompt pairs

Pre-processing
Form concatenated base prompts ¥, iox.;
Encode object-restricted embeddings { £/} |
and the base embedding E; .. (ORE);
Obtain object masks {m; }/; and background
mask mpacx With Grounded-SAM;
Initialization
Sample initial noise 25 ~N (0, I);
Set z;‘gt — 255
forr =T to1do
// Source branch
Predict noise €3¢ <—¢g (zi‘c, T, ygffse) ;
Update 23 ; with DDCM sampling;
// Target branch
if 7 € S then copy self-attention @), K tensors
from the source branch;

. . ~tgt
Predict noise £
tat tat

Update z:_gil with DDCM sampling;
// Background blending (BB)

tgt s g,
Zr_1 <_mback®z;ri1 + (1 _mback)@zq—_p

end

tgt
xete— Decoder(zog ) ;
return '8

BB guarantees preservation of non-edited regions, sup-
pressing TEL without expensive threshold tuning required
by prior local-blending heuristics [13].

4. Experiments
4.1. Experiment Setup

ALE-Bench construction Prior benchmarks for text-
guided image editing [7, 17] focus on the visual quality
of the edited result itself and neglect attribute leakage. Al-
though they measure background preservation metrics that
are similar to TELS, they overlook TIL. This makes it diffi-
cult to analyze how well a method achieves precise editing.
To fill this gap, we introduce Attribute-Leakage-Evaluation
Benchmark (ALE-Bench), a dedicated testbed for attribute
leakage evaluation. ALE-Bench systematically varies the
number of objects to be edited and the editing type, grouped
into five categories: (1) color, (2) object, (3) material, (4)
color + object, and (5) object + material. Each source im-

€p (zT 2Ty Ypase RGB—CAM[{E{,mi},E,gase,mback]);

age is paired with multiple prompts for each edit type, en-
abling fine-grained analysis across diverse scenarios. Fig-
ure 6 shows examples of ALE-Bench. Full construction de-
tails and dataset statistics are provided in Appendix B.

Evaluation Metrics We evaluate image-editing perfor-

mance using the following metrics:

* Structure Distance [26] quantifies how well the edited im-
age x'¢ preserves the spatial layout of 2. A lower score
indicates better structural consistency.

» Editing Performance is measured by the cosine similar-
ity between the CLIP embeddings of 2'¢* and prompt 3¢,
Higher similarity reflects more faithful edits.

* Background Preservation is assessed on the non-edited
regions using PSNR, SSIM [28], LPIPS [32], and MSE
between x'¢ and z¢. Higher PSNR/SSIM and lower
LPIPS/MSE signify better preservation.

Furthermore, we introduce new metrics:

» Target-Internal Leakage Score (TILS) measures unin-
tended modifications inside other target-object regions as
follows:

K

> CLIP (s @ my. )
i#£]

TILS = ——
K(K —1)

where CLIP represents the CLIP similarity score, K is the
number of objects to be edited, z'¢' is the edited image,
m; is the j-th object mask, and y;g[ is the target prompt
for ¢-th object. A lower TILS implies that, as the user in-
tended, the target objects did not affect each other.

» Target-External Leakage Score (TELS) measures unin-
tended changes in the background (non-edited regions) as
follows:

K K
1
TELS = = > CLIP (2% 0 (1—Jm; | .4
=1

j=1

The mean CLIP scores between the background and each
target prompt are computed for multiple object edits. A
lower TELS indicates minimal TEL, which ensures that
the outside of the targets remains unchanged.

Baselines For comparison, we selected tuning-free image
editing methods including Prompt-to-Prompt (P2P) [13],
MasaCtrl [3], Free-Prompt-Editing (FPE) [34], and In-
fEdit [29] (see Appendix A, C for further details).

4.2. Main Results

ALE outperforms existing methods in both mitigating at-
tribute leakage and producing high-quality edits, as seen in
Table | and Figure 7. In particular, ALE achieves the low-
est TELS and TILS, reflecting its ability to precisely ap-
ply attributes solely to the designated target regions. Across
different numbers of editing objects (Table 2) and different
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Figure 6. Examples of ALE-Bench. Source images are shown with object binary masks. Edit types are color, object, material modifications,
and their combinations. Rows depict 1-, 2-, and 3-object edits, respectively.

Source Image Color Object

Color + Object Object + Material

Material

P

yellow-colored pine tree made of

tree > blue-colored tree pine tree tree made of diamond Christmas tree bamboo
couch - purple-colored couch bench couch made of leather khaki-colored desk desk made of chrome
. floor made of . . .
floor - khaki-colored floor lawn yellow-colored tile tile made of jade

turquoise

Figure 7. Qualitative examples of ALE applied to three source objects (tree, couch, and floor) under different editing types. The bottom
rows show the corresponding prompts describing each transformation.

4.3. Ablation Studies

We present ablation results on BB, ORE, and RGB-CAM
in Figure 8. Each module plays a complementary role in
preventing attribute leakage. Using only BB (Figure 8b)
helps preserve background regions and suppresses TEL,
but fails to prevent TIL. On the other hand, ORE + RGB-
CAM (Figure 8c) reduces TIL by disentangling text embed-
dings and aligned cross-attention. However, without BB,
it cannot preserve the original background, and TEL re-
mains. Only when all three modules—ORE, RGB-CAM,
and BB—are used together (Figure 8d), ALE achieves pre-
cise and leakage-free editing. Qualitative results and more
examples are provided in Appendix E.

editing types (Table 3), ALE demonstrates its robust perfor-
mance. Figure 7 illustrates qualitative examples of ALE for
various editing types. These results indicate that our method
can effectively address both TEL and TIL. Detailed results
are in Appendix D. Furthermore, the quantitative and qual-
itative results on PIE-Bench are in Appendix E.

(b) BB (c) ORE + RGB (d) ALE

(a) Source image

Figure 8. Qualitative ablation results for the editing: yellow bell
pepper — diamond, red bell pepper — moon. (b) BB resolves TEL
but not TIL. (c) ORE + RGB-CAM reduces TIL but not TEL. (d)
ALE (BB + ORE + RGB-CAM) shows no TIL and TEL.

5. Limitations

While ALE-Bench provides a focused framework for eval-
uating attribute leakage, and ALE achieves strong per-
formance on rigid attribute edits, both are currently lim-



Structure Editing Background Preservation
Method TELS | TILS | Distance | Performance 1 PSNRT LPIPS] MSE| SSIMT
P2P 21.52 17.26 0.1514 20.67 11.15 0.4495  0.0879  0.5589
MasaCtrl 20.18 16.74 0.0929 20.01 14.99 0.2930  0.0418 0.7346
FPE 21.07 17.38 0.1164 21.89 12.82 0.3903  0.0656  0.6052
InfEdit 19.59 16.69 0.0484 21.78 16.74 0.2034  0.0340 0.7709
ALE 16.03 15.28 0.0167 22.20 30.04 0.0361 0.0014 0.9228

Table 1. Comparison of editing performances on ALE-Bench. ALE demonstrates the lowest attribute leakage, highest structure preserva-
tion, and superior editing performance, indicating a more precise and controlled editing.

# of Editing TELS | TILS | Structure Editing Background Preservation
Objects Distance | Performance 1 PSNR1+ LPIPS| MSE| SSIM1
1 16.41 - 0.00876 22.62 30.01 0.0405  0.00167  0.9049
2 16.00 15.42 0.01648 22.06 30.06 0.0360 0.00146  0.9235
3 15.89 15.36 0.02460 22.19 30.01 0.0323  0.00154 0.9426

Table 2. Performance of ALE on ALE-Bench based on the number of objects edited. Our method maintains low attribute leakage and
strong background preservation even as the number of editing objects increases.

Editing Structure Editing Background Preservation
Type TELS | TILS | Distance | Performance 1 PSNR1 LPIPS| MSE| SSIM?
Color 17.63 16.21 0.00890 23.12 32.97 0.0288  0.00079  0.9309
Material 17.15 15.96 0.01179 22.94 30.63 0.0339  0.00120 0.9248
Object 15.86 16.25 0.01974 21.82 29.03 0.0386  0.00182 0.9218
Color+Object 15.30 14.01 0.02306 22.15 28.60 0.0407  0.00205 0.9206
Object+Material 14.55 14.51 0.01956 21.42 28.88 0.0393  0.00191  0.9201

Table 3. Performance of ALE on ALE-Bench across various editing types (color, object, material, and combinations). The results show

consistent low attribute leakage and high editing performance.

ited to local and relatively simple transformations—such
as changes in color, object identity, or material. They do
not support or evaluate non-rigid transformations like style
transfer, pose changes, or adding/deleting objects, where
defining and detecting attribute leakage becomes ambigu-
ous. This focus reflects our aim to establish a clear and mea-
surable foundation before addressing more complex edit-
ing scenarios. Although the benchmark offers 3,000 de-
tailed editing scenarios across 20 carefully curated images,
the small image set may limit how well results generalize
to models trained on larger or more diverse datasets. Fu-
ture work could expand both the editing model and bench-
mark to support richer transformations and broader datasets.
More limitations are discussed in Appendix F.

6. Conclusion

In this paper, we addressed the issue of attribute leakage
in diffusion-based image editing, focusing on two types
of leakage: Target-External Leakage (TEL)—unintended
edits in non-target regions—and Target-Internal Leak-
age (TIL)—interference among attributes of different tar-
gets. To mitigate these problems, we introduced Attribute-

Leakage-Free Editing (ALE), a tuning-free framework that
combines three key components: Object-Restricted Embed-
dings (ORE), which localize attribute semantics to each tar-
get object embedding; Region-Guided Blending for Cross-
Attention Masking (RGB-CAM), which constrains cross-
attention with segmentation masks to avoid unintended
inter-object attribute mixing; and Background Blending
(BB), which preserves the source image in backgrounds.

We also presented ALE-Bench, a dedicated benchmark
for rigorously evaluating attribute leakage across diverse
multi-object editing scenarios. ALE-Bench introduces new
quantitative metrics—TELS and TILS—that effectively
quantify unintended modifications, providing comprehen-
sive measures to assess editing fidelity and consistency.

Our extensive experimental validation demonstrated that
ALE significantly outperforms existing tuning-free editing
methods, achieving state-of-the-art performance by effec-
tively minimizing attribute leakage while maintaining high
editing quality and structural consistency. By effectively
addressing attribute leakage with minimal computational
overhead, ALE enhances the reliability and precision of
multi-object image editing tasks.



Acknowledgements

This work was partly supported by Institute of Informa-
tion & Communications Technology Planning & Evaluation
(IITP) and IITP-ITRC (Information Technology Research
Center) grant funded by the Korea government (MSIT)
(No.RS-2019-11191906, Artificial Intelligence Graduate
School Program (POSTECH); No.RS-2021-11212068, Ar-
tificial Intelligence Innovation Hub; IITP-2025-00437866;
RS-2024-00509258, Global Al Frontier Lab) and partly
supported by Seoul R&BD Program through the Seoul
Business Agency (SBA) funded by The Seoul Metropolitan
Government (SP240008).

References

(1]

(2]

(3]

(4]

[5

—

(6]

(7]
(8]
(9]

[10]

(11]

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 2

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877-1901, 2020. 3
Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xi-
aohu Qie, and Yingiang Zheng. Masactrl: Tuning-free mu-
tual self-attention control for consistent image synthesis and
editing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 22560-22570, 2023. 2,
3,4,6, 11

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and
Daniel Cohen-Or. Attend-and-excite: Attention-based se-
mantic guidance for text-to-image diffusion models. ACM
transactions on Graphics (TOG), 42(4):1-10, 2023. 11
Wenkai Dong, Song Xue, Xiaoyue Duan, and Shumin Han.
Prompt tuning inversion for text-driven image editing using
diffusion models. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 7430-7440,
2023. 11

Adham Elarabawy, Harish Kamath, and Samuel Denton. Di-
rect inversion: Optimization-free text-driven real image edit-
ing with diffusion models. arXiv preprint arXiv:2211.07825,
2022. 2

Chakrabarty et al. Lomoe: Localized multi-object editing via
multi-diffusion. In Proc. ACM Multimedia, 2024. 6, 12

Luo et al. Latent consistency models: Synthesizing high-
resolution images with few-step inference. arXiv, 2023. 5
Yu et al. Zero-shot referring image segmentation with global-
local context features. In Proc. CVPR, 2023. 11

Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Arjun
Akula, Pradyumna Narayana, Sugato Basu, Xin Eric Wang,
and William Yang Wang. Training-free structured diffusion
guidance for compositional text-to-image synthesis. arXiv
preprint arXiv:2212.05032, 2022. 3, 11

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Ab-
hinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Alex Vaughan,

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

et al. The llama 3 herd of models.
arXiv:2407.21783,2024. 3

Qin Guo and Tianwei Lin. Focus on your instruction:
Fine-grained and multi-instruction image editing by atten-
tion modulation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
6986-6996, 2024. 2

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626,2022. 2,6, 11

Taihang Hu, Linxuan Li, Joost van de Weijer, Hongcheng
Gao, Fahad Shahbaz Khan, Jian Yang, Ming-Ming Cheng,
Kai Wang, and Yaxing Wang. Token merging for training-
free semantic binding in text-to-image synthesis. Advances
in Neural Information Processing Systems, 37:137646—
137672,2024. 2,4, 11, 13, 14

Mingzhen Huang, Jialing Cai, Shan Jia, Vishnu Suresh
Lokhande, and Siwei Lyu. Paralleledits: Efficient multi-
aspect text-driven image editing with attention grouping. In
The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. 2

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125-1134,
2017. 2

Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and
Qiang Xu. Direct inversion: Boosting diffusion-based edit-
ing with 3 lines of code. arXiv preprint arXiv:2310.01506,
2023. 2,6, 13

Senmao Li, Joost Van De Weijer, Taihang Hu, Fahad Shah-
baz Khan, Qibin Hou, Yaxing Wang, and Jian Yang. Styled-
iffusion: Prompt-embedding inversion for text-based editing.
arXiv preprint arXiv:2303.15649, 2023. 11

Bingyan Liu, Chengyu Wang, Tingfeng Cao, Kui Jia, and
Jun Huang. Towards understanding cross and self-attention
in stable diffusion for text-guided image editing. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7817-7826, 2024. 3, 11

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun
Wau, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Guided image
synthesis and editing with stochastic differential equations.
arXiv preprint arXiv:2108.01073, 2021. 2

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and
Daniel Cohen-Or. Null-text inversion for editing real im-
ages using guided diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6038—6047, 2023. 11

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748-8763. PMLR, 2021. 2

Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Rav-
fogel, Yoav Goldberg, and Gal Chechik. Linguistic bind-
ing in diffusion models: Enhancing attribute correspondence

arXiv preprint



[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

through attention map alignment. Advances in Neural Infor-
mation Processing Systems, 36:3536-3559, 2023. 11
Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kun-
chang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen,
Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang,
Hongyang Li, Qing Jiang, and Lei Zhang. Grounded sam:
Assembling open-world models for diverse visual tasks,
2024. 5

Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and
James Hays. Scribbler: Controlling deep image synthesis
with sketch and color. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
5400-5409, 2017. 2

Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali
Dekel. Splicing vit features for semantic appearance transfer.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10748-10757, 2022.
6

Su Wang, Chitwan Saharia, Ceslee Montgomery, Jordi Pont-
Tuset, Shai Noy, Stefano Pellegrini, Yasumasa Onoe, Sarah
Laszlo, David J Fleet, Radu Soricut, et al. Imagen editor
and editbench: Advancing and evaluating text-guided im-
age inpainting. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 18359—
18369, 2023. 2

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. I[EEE transactions on image processing,
13(4):600-612, 2004. 6

Sihan Xu, Yidong Huang, Jiayi Pan, Zigiao Ma, and Joyce
Chai. Inversion-free image editing with natural language.
arXiv preprint arXiv:2312.04965, 2023. 2,3, 4,5, 6, 11

Fei Yang, Shiqi Yang, Muhammad Atif Butt, Joost van de
Weijer, et al. Dynamic prompt learning: Addressing cross-
attention leakage for text-based image editing. Advances
in Neural Information Processing Systems, 36:26291-26303,
2023. 11

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su.
Magicbrush: A manually annotated dataset for instruction-
guided image editing. In Advances in Neural Information
Processing Systems, 2023. 2

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586-595, 2018. 6

Jun-Yan Zhu, Philipp Krihenbiihl, Eli Shechtman, and
Alexei A Efros. Generative visual manipulation on the
natural image manifold. In Computer vision-ECCV 2016:
14th European conference, amsterdam, the netherlands, Oc-
tober 11-14, 2016, proceedings, part v 14, pages 597-613.
Springer, 2016. 2

Siyu Zou, Jiji Tang, Yiyi Zhou, Jing He, Chaoyi Zhao, Rong-
sheng Zhang, Zhipeng Hu, and Xiaoshuai Sun. Towards ef-
ficient diffusion-based image editing with instant attention
masks. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 7864-7872,2024. 2, 6

10



A. Related Work
A.1. Diffusion-based Image Editing

Diffusion-based image editing strives to (1) preserve the vi-
sual content of a given source image while (2) modifying
specific regions as instructed by text prompts. Prompt-to-
Prompt (P2P) [13] pioneered this line of research by intro-
ducing cross-attention scheduling, which injects the cross-
attention maps obtained during the reconstruction of the
source image back into the editing process. Subsequent
works further refined attention manipulation: MasaCtrl [3]
imposes mutual self-attention control to maintain spatial
consistency, whereas Free-Prompt-Editing (FPE) [19] de-
composes cross-attention scheduling layer by layer for finer
control.

A complementary thread focuses on inversion, operating
under the intuition that an accurate inversion of the source
image yields higher-quality edits. Several methods optimize
text embeddings during inversion [5, 18, 21, 29, 30]; among
them, InfEdit [29] proposes a training-free Virtual Inversion
technique that achieves state-of-the-art results on multiple
benchmarks.

Despite these advances, multi-object image editing re-
mains under-explored. ZRIS [9] handles multi-object cases,
but segments objects for referring image segmentation,
not editing. Editing multiple target objects sequentially is
straightforward but computationally expensive, as each ob-
ject requires a separate diffusion pass. Our work addresses
this gap by proposing a training-free framework that si-
multaneously handles multiple editing prompts and aligns
user intent with the attention mechanism, enabling efficient
multi-object edits without sacrificing quality.

A.2. Mitigating Attribute Leakage

Attribute leakage occurs when a diffusion model assigns
an attribute to an unintended object. Early work addressed
the problem by injecting explicit linguistic structure: Struc-
tureDiffusion Guidance [10] constrains generation with
a constituency tree or scene graph, while Attend-and-
Excite [4] and SynGen [23] refine cross-attention so that
each word attends to a single spatial region. These meth-
ods focus on the attention maps themselves, yet leakage
can also stem from fext embeddings: even a perfect atten-
tion map fails if the prompt embedding is semantically en-
tangled.

ToMe [14] tackles embedding-level entanglement via
End Token Substitution (ETS). It replaces the EOS embed-
ding of the full prompt (e.g., “a yellow cat and a white dog”)
with the EOS embedding of a stripped prompt that omits
attributes (e.g., “a cat and a dog”), thereby suppressing
color—attribute leakage (“yellow dog”, “white cat”). How-
ever, ETS does not address noun-to-noun confusion (“cat”
versus “dog”) and, being designed for pure image genera-
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tion, offers no guarantee of consistency with a given source
image—an essential requirement for editing. DPL [30] re-
duces leakage by iteratively optimizing token embeddings
at inference time to align cross-attention maps with the
prompt, yet this costly optimization still leaves leakage
when EOS embeddings remain entangled (see Figure 3).

In summary, existing approaches either leave EOS
embeddings untouched or require high-cost optimization.
Our method instead offers a lightweight, optimization-free
pipeline that simultaneously disentangles embeddings and
aligns attention, achieving lower attribute leakage while
preserving faithfulness to the source image.

B. Benchmark Construction Details

Benchmark overview Our benchmark is designed to eval-
uate attribute leakage in image editing tasks using diffu-
sion models. Unlike existing benchmarks that focus on im-
age quality and background preservation, our benchmark
emphasizes preventing unintended changes in both target-
external and target-internal regions. It consists of 20 diverse
images, semi-automated object masks, and succinct prompt
pairs for various editing types. To comprehensively evalu-
ate models, we generate 10 random edit prompts for each
combination of 5 edit types and 1-3 edited objects per im-
age, resulting in a total of 3,000 diverse editing scenarios.
By covering diverse editing scenarios and offering precise
evaluation metrics, our benchmark provides a robust frame-
work for improving the precision of image editing methods.
Figure 6 illustrates examples, showing the source images,
object masks, and associated editing prompts.

Image selection We curated a dataset of 20 images, evenly
split between natural and artificial scenes, to provide diverse
and challenging editing scenarios. All images were drawn
from both free image repositories and the PIE-bench dataset
[29]. To ensure complexity, we included only images con-
taining at least three distinct objects.

Prompt construction ALE-Bench provides five editing

types. The prompt templates for different editing types are

as follows:

1. Color change: “{color}-colored {object}” (e.g., “car” —
“red-colored car”).

2. Object change: “{new object}” (e.g., “car” — “bus”).

3. Material change: “{object} made of {material}” (e.g.,
“car” — “car made of gold”).

4. Color and object change: “{color}-colored {new ob-
ject}” (e.g., “car” — “blue-colored bus”).

5. Object and material change: “{new object} made of
{material}” (e.g., “car” — “bus made of gold”).

We intentionally excluded combinations like “color and ma-

terial” and “color, object and material” because such cases

often lead to unrealistic or ambiguous prompts, such as

“silver-colored car made of gold”. These kinds of descrip-



tions are inherently challenging to interpret or generate,
even for a human, making them impractical editing scenar-
ios.

For each image, we generated 10 unique and random edit
prompt instances for every combination of edit type and
number of objects to edit. These prompts were created using
attribute dictionaries containing target instances for colors,
objects, and materials, with the assistance of ChatGPT to
ensure diversity and consistency. This approach results in a
systematic exploration of the attribute space across 20 im-
ages, 5 edit types, and varying numbers of objects, covering
a total of 3,000 unique editing scenarios. Additionally, we
emphasize the importance of user convenience by designing
minimal prompt pairs that specify only the intended modi-
fication, avoiding the verbosity commonly seen in previous
benchmarks.

Evaluation metrics In addition to standard metrics from
PIE-bench—such as structural distance, background preser-
vation (PSNR, SSIM, LPIPS, MSE), and editing perfor-
mance (CLIP similarity)—we propose two novel metrics
specifically designed to evaluate attribute leakage. The
Target-External-Leakage Score (TELS) metric quantifies
unintended changes to background regions during editing.
This is calculated by measuring the CLIP scores between
the background regions of the edited image and the target
prompt. Lower TELS indicate minimal impact on the back-
ground, ensuring that non-target regions remain unaffected.
The Target-Internal-Leakage Score (TILS) metric captures
unintended cross-influence between multiple edited objects.
For each edited object, we compute the CLIP scores be-
tween its edited region and the prompts intended for other
objects, then take the mean scores across all object pairs.
Lower TILS indicate that edits are confined to their respec-
tive objects without unintended interactions or overlaps.

Comparison with LoMOE-Bench LoMOE-Bench [7]
evaluates overall fidelity in multi-object editing using ap-
proximately 1k edits across 64 images. In contrast, ALE-
Bench focuses on probing attribute leakage, generating 3k
edits from just 20 carefully selected images. Rather than
scaling the dataset broadly, ALE-Bench emphasizes depth
by designing diverse, leakage-prone scenarios for each im-
age. Since each additional image requires new object masks
and source—target prompt pairs, annotation costs grow lin-
early. As a result, the two benchmarks serve complementary
purposes: LOMOE-Bench measures broad editing fidelity,
while ALE-Bench targets leakage robustness.

C. Experiments Details

Prompt construction For methods such as MasaCtrl and
FPE that require only a single target prompt, the target
prompt was constructed by concatenating all target object
prompts with “and” to form a prompt. For methods like P2P
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Method P2P  MasaCtrl
Runtime (sec) | 61.2 63.6

FPE
50.9

InfEdit
5.41

ALE (Ours)
4.31

Table 4. Average runtime per edit on an RTX 6000 Ada Gen.

and InfEdit that require both a source and a target prompt,
the source prompt was similarly created by concatenating
the source object prompts, while the target prompt was con-
structed by concatenating the target object prompts.

Hyperparameters For our method, we set the inference
steps to 15 and the mask dilation ratio to 0.01, correspond-
ing to a dilation of seven pixels. The self-attention control
schedule was adjusted according to the type of edit: 1.0 for
colors, 0.5 for objects, color+object, and material+object,
and 0.6 for material. The same self-attention control sched-
ule was applied to InfEdit and P2P, as this hyperparame-
ter is shared. For all other hyperparameters of the baseline
methods (MasaCtrl, FPE, P2P, InfEdit), we used the default
settings provided in their official implementations.

D. Additional Results

Runtime comparison As shown in Table 4, ALE and
InfEdit achieve significantly faster runtimes compared to
other baselines, requiring only a few seconds per edit.
This efficiency comes from leveraging virtual inversion via
DDCM. In contrast, methods like P2P, MasaCtrl, and FPE
rely on more expensive DDIM or null-text inversion pro-
cesses, resulting in runtimes of nearly one minute per edit.

By object count Tables 5, 6, and 7 present the quantita-
tive evaluation of our method and baselines on ALE-Bench
across different numbers of editing objects. For the base-
line methods, TELS and TILS decrease as the number of
edited objects increases, as editing more objects provides a
more detailed description of the image, reducing ambigu-
ity. This trend highlights the baselines’ dependence on long
and detailed prompts. However, their editing performance
decreases with an increasing number of edited objects, re-
vealing their limitations in handling complex edits. In con-
trast, our method demonstrates robust performance across
all object counts, consistently achieving the lowest leakage
values, preserving structure and background, and maintain-
ing competitive or superior editing performance.

By edit type We compare our methods with baselines
across different edit types in Tables 8, 9, 10, 11, and 12.
Across all edit types, our method consistently outperforms
baselines by achieving lower leakage, better structural and
background preservation, and strong editing performance.
We provide more qualitative examples on ALE-Bench for
each edit type in two objects editing in Figure 14.



E. Ablation Study Results

Ablation on EOS embedding methods To evaluate the
effect of EOS embeddings, we studied several methods of
modifying EOS embeddings: (1) Naive: No modification,
using the original EOS embeddings; (2) Zeros: Replac-
ing EOS embeddings with zero-valued vectors; (3) BOS:
Substituting EOS embeddings with BOS (beginning-of-
sequence) embeddings; (4) Empty String: Using EOS em-
beddings derived from an empty string. In Figure 4, our
method demonstrates robust results across various scenar-
ios, while the other methods often produce images that fail
to follow the edit prompt or exhibit attribute leakage. A de-
tailed quantitative comparison is provided in Table 13.

Another EOS modification method is proposed in [14],
named End Token Substitution (ETS). ETS substitutes an
embedding of EOS in a full prompt into an embedding of
EOS in a rephrased prompt, which deletes all attribute ex-
pressions, e.g. “a yellow cat and a white dog” into “a cat
and a dog”. In Figure 10, TI leakage in ETS is observed,
e.g. cats are generated instead of a cat and a dog, and jar is
generated in a region where ghost should be. RGB-CAM is
applied for both methods, therefore the cross-attention map-
pings are aligned with the prompt.

Our method consistently achieves the best editing perfor-
mance while maintaining competitive structure and back-
ground preservation metrics. In contrast, the other methods
reveal a trade-off between reducing leakage and maintain-
ing high editing performance, highlighting the effectiveness
of our approach in balancing these objectives.

Ablation on RGB-CAM and BB The results in Table 14
demonstrate the complementary strengths of RGB-CAM
and BB in our method. While RGB-CAM effectively re-
duces TI leakage by confining edits to the targeted objects,
its impact on TE leakage and background preservation is
limited. Conversely, BB significantly lowers TE leakage by
preserving non-target regions, improving background qual-
ity but slightly reducing editing performance. Combining
all components (Ours) achieves the best overall balance,
minimizing leakage while preserving structure and back-
ground, and maintaining strong editing performance, high-
lighting the synergy of these components.

Evaluation on PIE-Bench We also evaluated our method
on the existing PIE-Bench [17] in addition to ALE-Bench.
Since our method does not support all edit types in PIE-
Bench, we conducted experiments on the four edit types
that are compatible: object change, content change, color
change, and material change.

PIE-Bench only considers scenarios with a single object
editing, so we excluded the TI Leakage metric. When run-
ning our method, we used the blend word provided by PIE-
Bench as the SAM prompt for mask generation. In cases
where mask segmentation failed, we edited the image with-
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out cross-attention masking and background blending.

In Table 15, the results show that our method demon-
strated the lowest attribute leakage and high editing perfor-
mance among all methods, even on PIE-Bench. These find-
ings further validate the robustness and versatility of our ap-
proach across different benchmarks. We also provide qual-
itative examples for each edit type from the PIE-Bench ex-
periments in Figure 15.

Ablation on self-attention injection schedule The de-
gree to which the structure of a source image needs to be
preserved varies depending on the edit type. For edits like
color changes, maintaining the original structure is crucial,
while object changes may require more deviation from the
source. Figure 8 shows the effect of the self-attention sched-
ule across various scenarios. Adjusting the schedule from
0.0 to 1.0 shows that higher values preserve more structure,
while lower values allow greater flexibility. Thus, selecting
the appropriate self-attention schedule depends on the spe-
cific goals of the task. The hyperparameters we used were
chosen based on these experimental findings.

F. Limitations

ALE-Bench While our benchmark provides a robust frame-
work for evaluating attribute leakage in image editing, it
has certain limitations. First, the range of editing tasks is
currently limited to basic and mixed edits such as color,
object, and material changes. More complex editing types,
such as style transfer or pose modifications, are not covered
in ALE-Bench. However, defining attribute leakage in ed-
its like style transfer is inherently ambiguous, as such edits
often involve holistic changes to the image, making it un-
clear which regions should remain unaffected. Addressing
these challenges would require redefining attribute leakage
for these contexts and designing new evaluation metrics tai-
lored to these specific tasks. Second, the dataset size (20 im-
ages) may limit the evaluation of models trained on larger or
more diverse datasets. Future updates of ALE-Bench could
expand its scope by incorporating additional images, and
more diverse editing types to overcome these limitations.
Failure cases Our framework leverages two backbone
models, a pre-trained diffusion model and a segmentation
model, Grounded-SAM. Consequently, it may fail when
the task exceeds the capabilities of these backbone mod-
els. For instance, overly rare or complex prompts that the
pre-trained diffusion model cannot handle (Figure 12), ob-
jects that are difficult for the segmentation model to recog-
nize, or incomplete segmentation masks generated by the
model (Figure 13) can lead to unsatisfactory results. How-
ever, since our method operates in parallel with advance-
ments in these backbone models, we anticipate that such
failure cases will decrease as these models continue to im-
prove.



Source Edit prompt/Type ALE Naive Zeros BOS Empty

floor > beige-colored floor
couch = red-colored couch
tree > khaki-colored tree

Color

chair 2 bench
floor > lawn
table > coffee table

Object

yellow car = car made of asphalt
red car = car made of ivory
green car - car made of glass

Material
= yellow macaron - red-colored muffin
g— plate = rust-colored tureen
\—) pink macaron - black-colored cookie
Color + Object
-

yellow paprika = rock made of granite
green paprika = dragon head made of linen
red paprika - dragon head made of aluminu

Object + Material

Figure 9. Qualitative examples from the EOS ablation study. While our method produces convincing results, other methods fail to generate
the target object or exhibit attribute leakage. For instance, using the naive EOS to edit an object generates plants in place of the chair. This
occurs due to attribute leakage from the word lawn to bench, resulting in chair-shaped flowers.

Original Image Ours

Figure 10. ETS, which is proposed in [14], fails to generate in-
tended results. Edit prompt: (up) yellow paprika — yellow cat, red
paprika — white dog. (down) cup — jar, steam — ghost.
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Self-attention Schedule

Task

Color

Material

Object

Color +
Object

Object +
Material

Figure 11. Ablation study on self-attention injection schedule. A schedule value specifies the fraction of early denoising steps during which
self-attention maps from the source image are injected (e.g., 0.3 — first 30 % of steps). Larger values preserve more of the source structure
and content, whereas smaller values grant greater freedom to satisfy the edit. The optimal schedule therefore varies by edit type. Prompts for
each editing type are: (1) color: wolf — cream-colored wolf, mountain — crimson-colored mountain, (2) material: mountain — mountain
made of crystal, moon — moon made of gold, (3) object: wolf — cat, moon — UFO, (4) color + object: moon — navy-colored soccer
ball, mountain — crimson-colored hill, (5) object + material: cat — wolf made of rubber, mountain — wave made of ivory.

I

(a) Source image (b) Editing result (c) Generation result
Figure 12. Failure case due to the base model’s inability. Editing
prompt: cloud — cloud made of chrome. Figure 12c¢ illustrates the
generation result when given the prompt “cloud made of chrome”.

WO | N

(a) Source image (b) Editing result (c) Segmentation mask
Figure 13. Failure case due to SAM segmentation fail. Editing
prompt: ... cat ... — ... panda .... Figure 13c shows the un-

successful segmentation of SAM.
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Structure Editing Background Preservation
Method TELS ! pDistance |  Performancet  PSNRT LPIPS| MSE| SSIM 1
P2P 2491 0.1513 21.53 10.29 0.5306  0.10342 0.4737
MasaCitrl 23.36 0.1012 20.58 13.74 0.3671 0.05250  0.6645
FPE 24.42 0.1172 22.94 11.66 0.4677 0.08009 0.5194
InfEdit 21.98 0.0504 22.71 15.34 0.2495 0.04359 0.7057
ALE 16.41 0.0088 22.62 30.01 0.0405 0.00167 0.9049
Table 5. Quantitative evaluation of editing one object for ALE and baselines on ALE-Bench.
Structure Editing Background Preservation
Method TELS | TILS | Distance | Performance 7 PSNR1 LPIPS| MSE| SSIM?
P2P 20.87 17.52 0.1499 20.41 11.11 0.4506  0.08699  0.5560
MasaCtrl 19.58 16.90 0.0911 19.92 14.99 0.2886  0.04058 0.7357
FPE 20.44 17.68 0.1141 21.72 12.81 0.3880  0.06439  0.6050
InfEdit 19.16 16.86 0.0485 21.52 16.69 0.2026  0.03288 0.7719
ALE 16.00 15.42 0.0165 22.06 30.06 0.0360 0.00146 0.9235
Table 6. Quantitative evaluation of editing two objects for ALE and baselines on ALE-Bench.
Structure Editing Background Preservation
Method TELS | TILS!  yctance|  Performance?  PSNRT LPIPS| MSE| SSIM{
P2P 18.80 17.00 0.1531 20.05 12.05 0.3674  0.07318  0.6469
MasaCtrl 17.60 16.58 0.0866 19.53 16.26 0.2231 0.03245 0.8037
FPE 18.36 17.09 0.1180 20.99 14.00 0.3153 0.05247 0.6911
InfEdit 17.62 16.51 0.0463 21.10 18.18 0.1580 0.02540 0.8350
ALE 15.89 15.36 0.0246 22.19 30.01 0.0323  0.00154 0.9426
Table 7. Quantitative evaluation of editing three objects for ALE and baselines on ALE-Bench.
Structure Editing Background Preservation
Method TELS | TILS | Distance | Performance 1 PSNR1T LPIPS| MSE| SSIM?
P2P 23.20 18.02 0.1467 21.94 11.03 0.4529  0.0898  0.5753
MasaCtrl 21.70 17.35 0.0964 21.64 14.59 0.3113  0.04557 0.7283
FPE 22.33 17.94 0.1065 23.23 12.66 0.3926  0.06901 0.6266
InfEdit 19.68 17.31 0.0343 23.16 18.54 0.1401  0.02695 0.8347
ALE 17.63 16.21 0.0089 23.12 32.97 0.0288  0.00079  0.9309
Table 8. Quantitative evaluation of the color change edit type for ALE and baselines on ALE-Bench.
Structure Editin; Background Preservation
Method TELS!  TILSL ) ctance | Performafce +  PSNRT LPIPS| MSE| SSIM7
P2P 20.65 17.78 0.1535 20.38 11.23 0.4457  0.08750  0.5485
MasaCtrl 19.52 17.33 0.0901 19.72 15.48 0.2744  0.03801 0.7417
FPE 19.76 17.58 0.1221 21.30 13.12 0.3732  0.06236 0.6103
InfEdit 18.67 17.12 0.0504 21.10 16.59 0.2114  0.03381 0.7607
ALE 15.86 16.25 0.0197 21.82 29.03 0.0386  0.00182 0.9218

Table 9. Quantitative evaluation of the object change edit type for ALE and baselines on ALE-Bench.
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Structure Editing Background Preservation
Method TELS | TILS | Distance | Performance 1 PSNR1T LPIPS| MSE| SSIM?
pP2P 21.40 17.07 0.1549 20.75 11.07 0.4417  0.08674  0.5429
MasaCtrl 20.82 17.00 0.0866 20.93 15.39 0.2755 0.03763  0.7418
FPE 21.91 17.68 0.1151 22.64 13.14 0.3781  0.05908 0.5943
InfEdit 20.33 16.87 0.0387 22.59 17.71 0.1753  0.02559 0.7862
ALE 17.15 15.96 0.0118 22.94 30.63 0.0339  0.00120 0.9248
Table 10. Quantitative evaluation of the material change edit type for ALE and baselines on ALE-Bench.
Structure Editing Background Preservation
Method TELS | TILS!  yctance|  Performance?  PSNRT LPIPS| MSE| SSIM{
P2P 21.62 17.10 0.1483 20.71 11.12 0.4586  0.0896  0.5786
MasaCtrl 19.59 16.15 0.0986 19.18 14.43 0.3142  0.04634 0.7281
FPE 20.82 17.11 0.1159 21.40 12.42 0.4079  0.07175 0.6081
InfEdit 19.92 16.11 0.0619 21.23 15.04 0.2543  0.04503 0.7333
ALE 15.30 14.01 0.0231 22.15 28.60 0.0407  0.00205 0.9206

Table 11. Quantitative evaluation of the color and object change edit type for ALE and baselines on ALE-Bench.

Structure Editin; Background Preservation
Method TELS ! TILS|  pctance | Performafce +  PSNRT LPIPS| MSE| SSIM7
P2P 20.76 16.31 0.1538 19.54 11.29 0.4488 0.0857 0.5490
MasaCtrl 19.28 15.86 0.0929 18.57 15.07 0.2893  0.04166 0.7332
FPE 20.55 16.62 0.1224 20.86 12.77 0.3998  0.06604 0.5865
InfEdit 19.34 16.03 0.0567 20.80 15.81 0.2356  0.03842 0.7394
ALE 14.55 14.51 0.0196 21.42 28.88 0.0393 0.0019 0.9201

Table 12. Quantitative evaluation of the object and material change edit type for ALE and baselines on ALE-Bench.

Structure Editing Background Preservation
Method TELS | TILSL  ytance |  Performance?  PSNRT LPIPS | MSE| SSIM 1
Naive 16.02 15.81 0.0156 21.86 30.14  0.0359 0.0014 0.9232
Zeros 15.74 15.23 0.0107 20.78 3122 00327  0.0011 09254
BOS 15.76 15.27 0.0115 20.87 31.09 00334 00011 09241
Empty String 15.86 15.33 0.0139 21.25 30.61  0.0342  0.0013 0.9248
ALE 16.03 15.28 0.0167 22.20 3004 00361 0.0014 09228

Table 13. Ablation study on different strategies for handling EOS embeddings in the prompt. While ALE shows slightly higher leakages
compared to others, it achieves the best editing performance. All experiments were conducted with both RGB-CAM and BB applied.

Structure Editing Background Preservation
Method TELS | TILS | Distance | Performance 1 PSNR1T LPIPS| MSE| SSIM7T
ORE 20.05 16.87 0.0521 21.81 16.16 0.2182  0.0380 0.7591
ORE+RGB 18.99 15.46 0.0436 22.42 17.48 0.1805 0.0291 0.7887
ORE+BB 16.12 16.58 0.0164 21.56 29.88 0.0368  0.0015 0.9219
ALE 16.03 15.28 0.0167 22.20 30.04 0.0361 0.0014 0.9228

Table 14. Ablation study comparing the components of our method: object-restricted embeddings (ORE), region-guided blending cross-
attention masking (RGB), and background blending (BB). RGB markedly reduces TILS, whereas BB substantially lowers TELS. When
ORE is used without RGB, it relies solely on the base embedding Ey,. (i.e., the ORE and ORE + BB cases). Integrating all three components
(ALE) yields the best overall performance across nearly every metric, underscoring their complementary strengths.
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Structure Editing Background Preservation

Method TELS!  pictance |  Performance?  PSNR1T LPIPS| MSE| SSIM 1

pP2P 26.20 0.1571 23.74 11.11 0.4270  0.0919  0.4600
MasaCtrl 24.48 0.0856 22.16 15.81 0.2540  0.0334  0.6803
FPE 25.64 0.1265 23.89 13.35 0.3499  0.0581 0.5346
InfEdit 2451 0.0446 22.92 19.41 0.1519  0.0168 0.7581
ALE 22.94 0.0238 22.87 28.77 0.0580  0.0046 0.8865

Table 15. Evaluation results on PIE-Bench for compatible edit types (object change, content change, color change, and material change).
Our method achieves the lowest TELS and demonstrates the best structure and background preservation while maintaining competitive
editing performance.
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Source Edit Prompt/Type ALE InfEdit MasaCtrl FPE P2P

table - black-
colored table,

chair > crimson-
colored chair

sunglass = purple-
colored table,

watch - maroon-
colored chair

cocktail > whiskey
highball,
sea > meadow

sun = balloon,
parasol >
mushroom

box > box made of
copper,
blue globe > globe
made of gold

Material

book > book
made of wool,
cup = cup made
of steel

Material

flowerpot = blue-
colored bucket,
floor > cream-
colored carpet

Color+Object

yellow paprika >

black-colored ice,
red paprika = rust-
colored dragon head

Color+Object

yellow car - convertible
made of linen,
red car > truck made of
silver

house > shack made of
graphite,
lighthouse > water
tower made of turquoise

Figure 14. Qualitative examples of editing results for each edit type on ALE-Bench. Two examples are provided for each edit type. The left

side of — represents the source prompt, and the right side represents the target prompt.
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Source

Edit Prompt/Type ALE InfEdit MasaCtrl FPE pP2p

bread on a wooden
table with tomatoes
and a napkin > meat

a digital art woman with
curly hair standing in
front of buildings = -
straight hair -

Content

a black bird with a
yellow beak and
yellow feet >

a green bird -

tomatoes in

a bowl on a table
9

-+ a plastic bowl -

Material

Figure 15. Qualitative examples of editing results for the four compatible edit types on PIE-Bench: object change, content change, color
change, and material change. In edit prompt column, the left side of the arrow — represents the source prompt, and the right side represents
the target prompt, with unchanged parts omitted as “...” for brevity. Baseline methods exhibit attribute leakage or fail to preserve the source
image structure, while our method achieves more precise edits with minimal leakage.
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