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Abstract
In the maximum state entropy exploration frame-
work, an agent interacts with a reward-free en-
vironment to learn a policy that maximizes the
entropy of the expected state visitations it is in-
ducing. (Hazan et al., 2019) noted that the class of
Markovian stochastic policies is sufficient for the
maximum state entropy objective, and exploiting
non-Markovianity is generally considered point-
less in this setting.

In this paper, we argue that non-Markovianity is
instead paramount for maximum state entropy ex-
ploration in a finite-sample regime. Especially,
we recast the objective to target the expected en-
tropy of the induced state visitations in a sin-
gle trial. Then, we show that the class of non-
Markovian deterministic policies is sufficient for
the introduced objective, while Markovian poli-
cies suffer non-zero regret in general. However,
we prove that the problem of finding an optimal
non-Markovian policy is NP-hard. Despite this
negative result, we discuss avenues to address
the problem in a tractable way and how non-
Markovian exploration could benefit the sample
efficiency of online reinforcement learning in fu-
ture works.

1. Introduction
Several recent works have addressed Maximum State En-
tropy (MSE) exploration (Hazan et al., 2019; Tarbouriech
& Lazaric, 2019; Lee et al., 2019; Mutti & Restelli, 2020;
Mutti et al., 2021b;a; Zhang et al., 2020a; Guo et al., 2021;
Liu & Abbeel, 2021b;a; Seo et al., 2021; Yarats et al., 2021)
as a pre-training objective for online Reinforcement Learn-
ing (RL) (Sutton & Barto, 2018). In this line of work, an
agent interacts with a reward-free environment (Jin et al.,
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2020) in order to learn a general exploration strategy. The
aim of this strategy is to improve the sample efficiency of
any RL task that could be specified over the same environ-
ment afterwards, serving as an exploratory initialization to
standard learning techniques, such as Q-learning (Watkins
& Dayan, 1992) or policy gradient (Peters & Schaal, 2008).
To learn this strategy, the agent maximizes an entropic mea-
sure of the state distribution induced by its behavior over
the environment, effectively targeting a uniform exploration
of the state space. In tabular domains, optimizing this kind
of MSE objective is known to be provably efficient (Hazan
et al., 2019; Zhang et al., 2020b), whereas the obtained ex-
ploratory strategy lead to outstanding empirical results in
continuous and high-dimensional domains as well, (e.g.,
Mutti et al., 2021b; Liu & Abbeel, 2021b), especially w.r.t.
RL from scratch.

All of the existing works pursuing a MSE objective solely
focus on Markovian exploration strategies, in which each
decision is conditioned on the current state of the envi-
ronment rather than the full history of interactions. This
choice is common in RL, as it is well-known that an opti-
mal deterministic Markovian strategy maximizes the usual
cumulative sum of rewards objective (Puterman, 2014). Sim-
ilarly, (Hazan et al., 2019, Lemma 3.3) note that the class of
Markovian strategies is sufficient for the standard MSE ob-
jective. Indeed, a carefully constructed Markovian strategy
is able to induce the same state distribution of any history-
based (non-Markovian) one by exploiting randomization.
Crucially, this result does not hold only for asymptotic state
distributions (Puterman, 2014), but also for state distribu-
tions that are marginalized over a finite horizon. As a matter
of fact, there is little incentive to consider more complicated
strategies as they are not providing any benefit on the value
of the entropy objective.

However, the intuition suggests that exploiting the history
of the interactions is useful when the agent’s goal is to uni-
formly explore the environment: If you know what you have
visited already, you can take decisions accordingly. To this
point, let us consider an illustrative example in which the
agent finds itself in the middle of a two-rooms domain (as
depicted in Figure 1), having a budget of interactions that is
just enough to visit every state within a single episode. It is

mailto:mirco.mutti@polimi.it


The Importance of Non-Markovianity in MSE Exploration

Figure 1: Illustrative two-rooms domain. The agent starts in the middle, colored traces represent optimal strategies to explore
the left room and the right room respectively.

easy to see that an optimal Markovian strategy for the MSE
objective would randomize between going left and right
in the initial position, and then would follow the optimal
route within a room, finally ending in the initial position
again. An episode either results in visiting the left room
twice, or the right room twice, or each room once, and all
of this outcomes have the same probability. Thus, the agent
might explore poorly when considering a single episode,
but the exploration is uniform in the average of infinite tri-
als. Arguably, this is quite different from how a human
being would tackle this problem, i.e., taking intentional de-
cisions in the middle position to visit a room before going to
the other. This strategy leads to uniform exploration of the
environment in any trial, but it is inherently non-Markovian.

Backed by this intuition, we argue that prior work does not
recognize the importance of non-Markovianity in MSE ex-
ploration due to an hidden infinite-samples assumption in
the objective formulation. In this paper, we introduce a new
finite-sample MSE objective, which targets the expected
entropy of the state visitation frequency induced within an
episode instead of the entropy of the expected state visita-
tion frequency over infinite samples. In this finite-sample
formulation non-Markovian strategies are crucial, and we
believe they can benefit a significant range of relevant ap-
plications. For example, collecting task-specific samples
might be costly in some real-world domains, and a pre-
trained non-Markovian strategy is essential to guarantee
quality exploration even in a single-trial setting. In another
instance, one might aim to pre-train an exploration strat-
egy for a class of multiple environments instead of a single
one. A non-Markovian strategy could exploit the history
of interactions to swiftly identify the structure of the envi-
ronment, then employing the environment-specific optimal
strategy thereafter. The aim of this paper is to highlight the
importance of non-Markovinaity to fulfill the promises of
maximum state entropy exploration.

The contributions are organized as follows. First, in Sec-
tion 3, we extend known results (Puterman, 2014) to show
that the class of Markovian strategies is sufficient for any
infinite-samples MSE objective, including the entropy of
the induced marginal state distributions in episodic settings.
Then, in Section 4, we propose a novel finite-sample MSE

objective and a corresponding regret formulation. Espe-
cially, we prove that the class of non-Markovian strategies is
sufficient for the introduced objective, whereas the optimal
Markovian strategy suffers a non-zero regret, for which we
provide lower and upper bounds. However, in Section 5, we
show that the problem of finding an optimal non-Markovian
strategy for the finite-sample MSE objective is NP-hard in
general. Despite the hardness result, we provide a numer-
ical validation of the theory (Section 6), and we comment
some potential options to address the problem in a tractable
way (Section 7). In Appendix A, we discuss related work,
while the missing proofs can be found in Appendix B. Fi-
nally, we provide some additional remarks on the role of
non-stationarity and state-action entropy objectives (Ap-
pendix C).

2. Preliminaries
In this section, we report the notation and the basic back-
ground notions we will make use of. We will denote with
∆(X ) a distribution over the space X , and with [T ] the set
of integers {0, . . . , T − 1}.

Controlled Markov Processes A Controlled Markov
Process (CMP) is a tuple M := (S,A, P, µ), where S
is a finite state space (|S| = S), A is a finite action space
(|A| = A), P : S × A → ∆(S) is the transition model,
such that P (s′|a, s) denotes the conditional probability of
reaching state s′ ∈ S when selecting action a ∈ A in state
s ∈ S, and µ : ∆(S) is the initial state distribution.

Policies A policy π defines the behavior of an agent
interacting with an environment modelled by a CMP.
It consists of a sequence of decision rules π :=
(π1, π2, . . . , πt, . . .). Each of them is a map between his-
tories h := (s0, a0, . . . , at−1, st) ∈ Ht and actions πt :
Ht → ∆(A), such that πt(a|h) defines the conditional
probability of taking action a ∈ A having experienced the
history h ∈ Ht. We denote asH the space of the histories
of arbitrary length. We denote as Π the set of all policies,
and as ΠD the set of deterministic policies π = (πt)

∞
t=1

such that πt : Ht → A. We further define relevant subsets
of Π:
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• Non-Markovian (NM) policies ΠNM, where each π ∈
ΠNM collapses to a single time-invariant decision rule
π = (π, π, . . .) such that π : H → ∆(A);

• Non-Stationary (NS) policies ΠNS, where each π ∈ ΠNS

is defined through a sequence of Markovian decision rules
π = (π1, π2, . . . , πt, . . .) such that πt : S → ∆(A);

• Markovian (M) policies ΠM, where each π ∈ ΠM col-
lapses to a single, time-invariant, Markovian decision rule
π = (π, π, . . .) such that π : S → ∆(A).

State Distributions and Visitation Frequency A policy
π ∈ Π interacting with a CMP induces a t-step state
distribution dπt (s) := Pr(st = s|π) over S (Puterman,
2014). This distribution is described by the temporal rela-
tion dπt (s) =

∫
S
∫
A d

π
t−1(s′, a′)P (s|s′, a′) ds′ da′, where

dπt (·, ·) : ∆(S × A) is the t-step state-action distribution.
We call the asymptotic fixed point of this temporal relation
the stationary state distribution dπ∞(s) := limt→∞ dπt (s),
and we denote as dπγ (s) := (1 − γ)

∑∞
t=0 γ

tdπt (s) its γ-
discounted counterpart (γ ∈ (0, 1) is the discount factor).
A marginalization of the t-step state distribution over a fi-
nite horizon T , i.e., dπT (s) := 1

T

∑
t∈[T ] d

π
t (s), is called

the marginal state distribution. The state visitation fre-
quency dh(s) = 1

T

∑
t∈[T ] 1(st = s|h) is a realization of

the marginal state distribution, such that Eh∼pπ
[
dh(s)

]
=

dπT (s), where the distribution over histories pπ : ∆(H) is de-
fined as pπT (h) = µ(s0)

∏
t∈[T−1] π(at|ht)P (st+1|at, st).

Markov Decision Processes A CMP M paired with a
reward function R : S × A → R is called a Markov De-
cision Process (MDP) (Puterman, 2014)MR := M∪ R.
We denote with R(s, a) the expected immediate reward
when taking action a ∈ A in s ∈ S, and with R(h) =∑

t∈[T ]R(st, at) the return over the horizon T . The per-
formance of a policy π over the MDP MR is defined as
the average return JMR(π) = Eh∼pπT [R(h)], and π∗J ∈
arg maxπ∈Π JMR(π) is called an optimal policy. For any
MDPMR, there always exists a deterministic Markovian
policy π ∈ ΠD

M that is optimal.

Extended MDP The problem of finding an optimal non-
Markovian policy with history-length T in an MDPMR,
i.e., π∗NM ∈ arg maxπ∈ΠNM

JMR(π), can be reformulated
as the one of finding an optimal Markovian policy π∗M ∈
arg maxπ∈ΠM

JM̃R
T

(π) in an extended MDP M̃R
T . The

extended MDP is defined as M̃R
T := (S̃, Ã, P̃ , R̃, µ̃), in

which S̃ ⊆ H[T ] = H1 ∪ . . .∪HT , and s̃ := (s̃0, . . . , s̃−1)

corresponds to a history in MR of length |s̃|, Ã = A,
P̃ (s̃′|s̃, ã) = P (s′ = s̃′−1|s = s̃−1, a = ã), R̃(s̃, ã) =

R(s = s̃−1, a = ã), and µ̃(s̃) = µ(s = s̃) for any s̃ ∈ S̃ of
unit length.

Partially Observable MDP A Partially Observable
Markov Decision Process (POMDP) (Astrom, 1965;
Kaelbling et al., 1998) is described by MR

Ω :=
(S,A, P,R, µ,Ω, O), where S,A, P,R, µ are defined as in
an MDP, Ω is a finite observation space, and O : S ×A →
∆(Ω) is the observation function, such that O(o|s′, a) de-
notes the conditional probability of the observation o ∈ Ω
when selecting action a ∈ A in state s ∈ S . Crucially, while
interacting with a POMDP the agent cannot observe the state
s ∈ S, but just the observation o ∈ Ω. The performance of
a policy π is defined as in an MDP.

3. Infinite Samples: Non-Markovianity Does
Not Matter

Previous works pursuing maximum state entropy explo-
ration of a CMP consider an objective function of the kind:

E∞(π) := Entropy
(
dπ(·)

)
= − E

s∼dπ
[

log dπ(s)
]
, (1)

where dπ(·) is either a stationary state distribution (Mutti
& Restelli, 2020), a discounted state distribution (Hazan
et al., 2019; Tarbouriech & Lazaric, 2019), or a marginal
state distribution (Lee et al., 2019; Mutti et al., 2021b).
While it is well-known (Puterman, 2014) that there exists
an optimal deterministic policy π∗ ∈ ΠD

M for the common
average return objective JMR , it is not pointless to wonder
whether the reward-free objective in (1) would require a
more powerful policy class than ΠM. Unsurprisingly, Hazan
et al. (Hazan et al., 2019, Lemma 3.3) confirm that the set of
(randomized) Markovian policies ΠM is indeed sufficient for
E∞ defined over asymptotic (either stationary or discounted)
state distributions. In the following theorem and corollary,
we build upon common MDP results (Puterman, 2014) to
show that ΠM suffices for E∞ defined over (non-asymptotic)
marginal state distributions as well.

Theorem 3.1. Let x ∈ {∞, γ, T}, and let DxNM = {dπx(·) :
π ∈ ΠNM}, DxNS = {dπx(·) : π ∈ ΠNS}, DxM = {dπx(·) :
π ∈ ΠM} the corresponding sets of distributions. We can
prove that:

(i) The sets of stationary state distributions are equivalent
D∞NM ≡ D∞NS ≡ D∞M ;

(ii) The sets of discounted state distributions are equivalent
DγNM ≡ D

γ
NS ≡ D

γ
M for any γ;

(iii) The sets of marginal state distributions are equivalent
DTNM ≡ DTNS ≡ DTM for any T .

Proof Sketch. The results (i), (ii) are a consequence
of (Hazan et al., 2019, Lemma 3.3), and we refer to Ap-
pendix B.1 for a complete proof. Here we focus on the
result (iii). From (Puterman, 2014, Theorem 5.5.1) we know
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that, for any π ∈ ΠNM, we can build a π′ ∈ ΠNS having
dπ
′

t (s) = dπt (s) for every t ≥ 0 and s ∈ S, which implies
DTNM ≡ DTNS. Thus, it is sufficient to show DTNS ≡ DTM.
The key point of the proof is that, for any π ∈ ΠNS, we
can build a policy π′ ∈ ΠM inducing dπ

′

T (·) = dπT (·)
by marginalizing π over the time-steps t ∈ [T − 1], i.e.,
π′(a|s) =

∑
t∈[T−1] d

π
t (s)πt(a|s)

/∑
t∈[T−1] d

π
t (s),∀s ∈

S,∀a ∈ A. This gives DTNS ⊆ DTM and concludes the
proof.

From the equivalence of the sets of induced distributions, it
is straightforward to derive the following corollary on the
optimality of Markovian policies for objective (1).

Corollary 3.2. For every CMPM, there exists a Markovian
policy π∗ ∈ ΠM such that π∗ ∈ arg maxπ∈Π E∞(π).

As a consequence of Corollary 3.2, there is little incen-
tive to consider non-Markovian (or non-stationary) policies
when optimizing objective (1), since there is no clear ad-
vantage to make up for the additional complexity of the
policy. This result might be unsurprising when considering
asymptotic distributions, as one can expect a carefully con-
structed Markovian policy to be able to tie the distribution
induced by a non-Markovian (or non-stationary) policy in
the limit of the interaction steps. However, it is less evident
that a similar property holds for the expectation of final-
length interactions alike. Yet, we were able to prove that
a Markovian policy that properly exploits randomization
can always achieve equivalent state distributions w.r.t. non-
Markovian (or non-stationary) counterparts. Note that state
distributions are actually expected state visitation frequency,
and the expectation practically implies an infinite number
of realizations. In this paper, we show that this underly-
ing infinite-sample regime is the reason why the benefit of
non-Markovianity, albeit backed up by intuition, does not
matter. Instead, we propose a relevant finite-sample entropy
objective in which non-Markovianity is crucial.

4. Finite Samples: Non-Markovianity Matters
In this section, we reformulate the typical maximum state
entropy exploration objective of a CMP (1) to account for a
finite-sample regime. Crucially, we consider the expected
entropy of the state visitation frequency rather than the
entropy of the expected state visitation frequency, which
results in

E(π) := E
h∼pπT

[
Entropy

(
dh(·)

)]
(2)

= − E
h∼pπT

E
s∼dh

[
log dh(s)

]
. (3)

We note that E(π) ≤ E∞(π) for any π ∈ Π, which is trivial
by the concavity of the entropy function and the Jensen’s
inequality. Whereas (3) is ultimately an expectation as it

is (1), the entropy is not computed over the infinite-sample
state distribution dπT (·) but its finite-sample realization dh(·).
Thus, to maximize E(π) we have to find a policy inducing
high-entropy state visits within a single trajectory rather
than high-entropy state visits over infinitely many trajecto-
ries. Crucially, while Markovian policies are as powerful
as any other policy class in terms of induced state distribu-
tions (Theorem 3.1), this is no longer true when looking
at induced trajectory distributions pπT . Indeed, we show
in this section that non-Markovianity provides a superior
policy class for objective (3). First, we define a perfor-
mance measure to formally assess this benefit, which we
call regret-to-go.1

Definition 4.1 (Expected Regret-to-go). Consider a policy
π ∈ Π interacting with a CMP over T steps. We define
the expected regret-to-go RT−t at step t (i.e., from step t
onwards) of π as

RT−t(π) = max
π∗∈Π

E
h∗T−t∼pπ

∗
T

[
Entropy

(
dh∗T (·)

)]
− E
hT−t∼pπT

[
Entropy

(
dhT (·)

)]
,

where h∗T = (h∗t , h
∗
T−t), hT = (h∗t , hT−t) are concate-

nations of the (T − t)-step trajectories h∗T−t, hT−t (start-
ing from the state st,h∗t ) and the t-step optimal trajectory
h∗t ∼ pπ

∗
respectively. The term RT (π) denotes the ex-

pected regret-to-go of a T -step trajectory hT starting from
s ∼ µ.

The intuition behind the regret-to-go is quite simple. Sup-
pose to have drawn a zero-regret trajectory h∗t upon step
t. If we take the subsequent action with the (possibly sub-
optimal) policy π, by how much would we decrease (in
expectation) the entropy of the state visitsEntropy(dhT (·))
w.r.t. an optimal policy π∗? In particular, we would like to
know how limiting the policy π to a specific policy class
would affect the expected regret-to-go and the value of E(π)
we could achieve. The following lemma shows that an
optimal non-Markovian policy suffers zero expected regret-
to-go.

Lemma 4.2. For every CMP M, there exists a deter-
ministic non-Markovian policy πNM ∈ ΠD

NM such that
πNM ∈ arg maxπ∈ΠNM

E(π), which suffers expected regret-
to-goRT−t(πNM) = 0,∀t ∈ [T ].

Proof. The result RT−t(πNM) = 0 is straightforward by
noting that the set of non-Markovian policies ΠNM with
arbitrary history-length is as powerful as the general set
of policies Π. To show that there exists a deterministic
πNM, we consider the extended MDP M̃R

T obtained from

1Note that the entropy function does not enjoy additivity, thus
we cannot adopt the usual expected cumulative regret formulation
in this setting.
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the CMPM as in Section 2, in which the extended reward
function is R̃(s̃, ã) = Entropy(ds̃(·)) for every ã ∈ Ã
and every s̃ ∈ S̃ such that |s̃| = T , and R̃(s̃, ã) = 0

otherwise. Since a Markovian policy π̃M ∈ ΠD
M on M̃R

T

can be mapped to a non-Markovian policy πNM ∈ ΠD
NM

onM, and it is well-known (Puterman, 2014) that for any
MDP there exists an optimal deterministic Markovian policy,
we have that π̃M ∈ arg maxπ∈ΠM

JM̃R
T

(π) implies πNM ∈
arg maxπ∈ΠNM

E(π).

Whereas Lemma 4.2 ensures that the set of non-Markovian
policies ΠNM is sufficient for the objective (3), we would
like to know if it is also necessary. Especially, we aim
to assess whether there exist CMPs in which a Markovian
policy π ∈ ΠM would suffer non-zero regret-to-go. First,
it is worth showing that Markovian policies can rely on
randomization to optimize objective (3).

Lemma 4.3. Let πNM ∈ ΠD
NM be a non-Markovian

policy such that πNM ∈ arg maxπ∈Π E(π) on a CMP
M. The variance of an optimal Markovian policy πM ∈
arg maxπ∈ΠM

E(π) is given by

Var
a∼πM(s)

[
a
]

= Var
hs∼pπNM

T

[
πNM(hs)

]
, ∀s ∈ S,

where hs is any history hs ∈ H[T ] such that the final state
is s.

Proof Sketch. We can prove the result through the Law of
Total Variance (LoTV) (Bertsekas & Tsitsiklis, 2002), which
gives Vara∼πM(s)

[
a
]

= Ehs∼pπNM
T

[
Vara∼πNM(hs)[a]

]
+

Varhs∼pπNM
T

[
Ea∼πNM(hs)[a]

]
,∀s ∈ S. Then, exploiting

the determinism of πNM (through Lemma 4.2), it is straight-
forward to see that Ehs∼pπNM

T

[
Vara∼πNM(hs)[a]

]
=

0 and that Varhs∼pπNM
T

[
Ea∼πNM(hs)[a]

]
=

Varhs∼pπNM
T

[
πNM(hs)

]
, which concludes the proof.

Especially, Lemma 4.3 shows that, whenever the optimal
strategy for objective (3) (i.e., the non-Markovian πNM)
requires to adapt its decision in a state s according to the
history that led to it (hs), an optimal Markovian policy for
the same objective (i.e., πM) must necessarily be random-
ized. This is crucial to prove the main result of this section,
which establishes a lower boundRT−t and an upper bound
RT−t to the expected regret-to-go of any Markovian policy
that optimizes objective (3).

Theorem 4.4. Let πM ∈ ΠM be a Markovian policy such
that πM ∈ arg maxπ∈ΠM

E(π) on a CMPM. Then, for any
t ∈ [T ], it holds RT−t(πM) ≤ RT−t(πM) ≤ RT−t(πM)

such that

RT−t(πM) =
Emax − Emax,2
πM(aNM|st)

Var
hst∼pπNM

T

[
πNM(hst)

]
,

RT−t(πM) =
Emax − Emin,t
πM(aNM|st)

Var
hst∼pπNM

T

[
πNM(hst)

]
,

where πNM ∈ arg maxπ∈ΠD
NM
E(π), aNM = πNM(h∗t ) is

the unique optimal action in st, and Emax, Emax,2, Emin,t
are given by

Emax = max
π∗∈Π

E
h∗T−t∼pπ

∗
T

[
Entropy

(
dh∗T (·)

)]
Emin,t = min

h∈HT−t
Entropy

(
d(h∗t ,h)(·)

)
,

Emax,2 = max
h∈HT−t\H∗T−t

Entropy
(
d(h∗t ,h)(·)

)
s.t. H∗T−t = arg max

h∈HT−t
Entropy

(
d(h∗t ,h)(·)

)
.

Proof Sketch. The crucial idea to derive lower and upper
bounds to the regret-to-go is to consider the impact of a sub-
optimal action in the best-case and the worst-case CMP re-
spectively (see Lemma B.1, B.2). This givesRT−t(πM) ≥
Emax − πM(aNM|st)Emax −

(
1 − πM(aNM|st)

)
Emax,2

and RT−t(πM) ≤ Emax − πM(aNM|st)Emax −
(
1 −

πM(aNM|st)
)
Emin,t. Then, by combining the variance of

the Bernoulli distribution that controls the event of tak-
ing a sub-optimal action together with Lemma 4.3, we
get Vara∼πNM(st)[a] = πM(aNM|st)

(
1− πM(aNM|st)

)
=

Varhst∼pπNM
T

[
πNM(hst)

]
, which concludes the proof.

Theorem 4.4 basically states that, whenever the Markovian
policy (πM) has to randomize its strategy at the step t, it
will suffer non-zero regret-to-go under the assumption that
M admits a unique optimal action aNM in st.2 Clearly, the
value of this regret is related to the probability of taking a
sub-optimal action (through the factor 1/πM(aNM|st)) and
the variance of the optimal strategy in st over the possi-
ble histories (through the factor Varhst∼pπNM

T
[πNM(hst)]).

To compute the regret-to-go exactly, one should have ac-
cess to the full structure of the CMPM and its transition
dynamics P . Instead, we provide an upper bound and a
lower bound to the regret that only depends on the length
of the remaining interaction T − t. While at the final step
t = T a policy cannot suffer any regret, the earlier it pulls
a sub-optimal action in the interaction process, the more it
might incur in a bad entropy over this trajectory. The factor
Emax − Emin,t in the upper bound quantifies how badly it
can go in the worst possible CMP, in which the agent never

2Note that this assumption could be easily removed by partition-
ing the action space in st as A(st) = Aopt(st) ∪ Asub−opt(st),
such that Aopt(st) are optimal actions and Asub−opt(st) are
sub-optimal, and substituting the term 1/πM(aNM|st) with
1/

∑
a∈Aopt(st) πM(a|st) in the regret bounds.
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recovers from a sub-optimal action. Instead,Emax−Emax,2
in the lower bound quantifies the regret caused by a sub-
optimal action in the best-case CMP, in which the negative
impact of the sub-optimal action is minimized. Note that,
whenever the optimal decision in st does not depend on
the history that lead to it (hst), the policy πM can act de-
terministically (πM(aNM|st) = 1) and the regret-to-go, its
lower bound, and its upper bound are simultaneously zero
(through Varhst∼pπNM

T
[πNM(hst)] = 0).

Finally, although the objective (3) is non-additive across
time steps, we can still define a notion of pseudo-
instantaneous regret by comparing the regret-to-go of two
subsequent time steps. In the following, we provide the def-
inition of this expected pseudo-instantaneous regret along
with lower and upper bounds to the regret suffered by an
optimal Markovian policy.

Definition 4.5 (Expected Pseudo-Instantaneous Regret).
Consider a policy π ∈ Π interacting with a CMP over
T steps. We define the expected pseudo-instantaneous regret
of π at step t as rt(π) := max

(
0,RT−t(π)−RT−t−1(π)

)
.

Corollary 4.6. Let πM ∈ ΠM be a Markovian policy such
that πM ∈ arg maxπ∈ΠM

E(π) on a CMP M. Then, for
any t ∈ [T ], it holds rt(πM) ≤ rt(πM) ≤ rt(πM) such that

rt(πM) = max
(

0, Emax
(
Vt(πM)− Vt+1(πM)

)
− Emax,2Vt(πM) + Emin,t+1Vt+1(πM)

)
,

rt(πM) = max
(

0, Emax
(
Vt(πM)− Vt+1(πM)

)
− Emin,tVt(πM) + Emax,2Vt+1(πM)

)
,

where

Vt(πM) :=
1

πM(aNM|st)
Var

hst∼pπNM
T

[
πNM(hst)

]
.

5. Complexity Analysis
Having established the importance of non-Markovianity in
dealing with MSE exploration in a finite-sample regime, it is
worth considering how hard it is to optimize the objective 3
within the class of non-Markovian policies. Especially, we
aim at characterizing the complexity of the problem:

Ψ0 := maximize
π∈ΠNM

E(π),

defined over a CMP M. First, we recall that Ψ0 can be
rewritten as the problem of finding a reward-maximizing
Markovian policy, i.e., π̃M ∈ arg maxπ∈ΠM

JM̃R
T

(π), over

a convenient extended MDP M̃R
T obtained from CMPM

(see the proof of Lemma 4.2 for further details). We call

this problem Ψ̃0 and we note that Ψ̃0 ∈ P, as the problem
of finding a reward-maximizing Markovian policy is well-
known to be in P for any MDP (Papadimitriou & Tsitsiklis,
1987). However, the following lemma shows that it does not
exist a many-to-one reduction from Ψ0 to Ψ̃0.

Lemma 5.1. A reduction Ψ0 ≤m Ψ̃0 does not exist.

Proof. In the general case, coding any instance of Ψ0 in the
representation required by Ψ̃0 holds exponential complexity
w.r.t. the input of the initial instance of Ψ0.

The latter result informally suggests that Ψ /∈ P. Indeed,
we can show that Ψ /∈ NP.

Lemma 5.2. Ψ0 /∈ NP.

Proof. This proof is based on the verifier-based definition of
NP. According to this definition, given any instance I ∈ IΨ0

of problem Ψ0 and a candidate solution π ∈ ΠNM, if there
exists an algorithm Λ that can verify the optimality of π in
polynomial time, then Ψ0 ∈ NP . We prove that Ψ0 /∈ NP
by showing that a polynomial time verifier does not exist for
any instance of the problem. It suffices to note that given a
non-Markovian policy π ∈ ΠNM, i.e., a candidate solution
of an instance of the problem Ψ0, a polynomial verifier Λ
does not exist, since any possible verifier has to compute
the objective function for every possible well-defined non-
Markovian policy in order to determine whether π is optimal
according to Ψ0, but this operation is exponential w.r.t. the
input of Ψ0.

As a direct consequence, Ψ0 /∈ NP-complete. We can now
prove the main theorem of this section, which shows that
Ψ0 is NP-hard under the common assumption that P 6= NP.

Theorem 5.3. Ψ0 ∈ NP-hard.

Proof Sketch. To prove that Ψ0 ∈ NP-hard, it is sufficient
to show that there exists a problem Ψc ∈ NP-complete so
that Ψc ≤p Ψ0. We show this by reducing 3SAT, which is
a well-known NP-complete problem, to Ψ0. To derive the
reduction we consider two intermediate problems, namely
Ψ1 and Ψ2. Especially, we aim to show that the following
chain of reductions holds

Ψ0 ≥m Ψ1 ≥p Ψ2 ≥p 3SAT.

First, we define Ψ1 and we prove that Ψ0 ≥m Ψ1. Infor-
mally, Ψ1 is the problem of finding a reward-maximizing
Markovian policy πM ∈ ΠM w.r.t. the entropy objective (3)
encoded through a reward function in a convenient POMDP
M̃R

Ω . We can build M̃R
Ω from the CMP M similarly as

the extended MDP M̃R
T (see Section 2 and the proof of

Lemma 4.2 for details), except that the agent only access
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the observation space Ω̃ instead of the extended state space
S̃. In particular, we define Ω̃ = S (note that S is the state
space of the original CMPM), and Õ(õ|s̃) = s̃−1. Then,
the reduction Ψ0 ≥m Ψ1 works as follows. We denote
as IΨi the set of possible instances of problem Ψi. We
show that Ψ0 is harder than Ψ1 by defining the polynomial-
time functions ψ and φ such that any instance of Ψ1 can
be rewritten through ψ as an instance of Ψ0, and a solution
π∗NM ∈ ΠNM for Ψ0 can be converted through φ into a solu-
tion π∗M ∈ ΠM for the original instance of Ψ1. The function
ψ sets S = Ω̃ and derives the transition model ofM from
the one of M̃R

Ω , while φ converts the optimal solution of Ψ0

by computing π∗M =
∑
ho∈Ho p

π∗NM(ho)π∗NM(a|ho), where
Ho stands for the set of histories h ∈ H[T ] ending in the
observation o ∈ Ω. Thus, we have that Ψ0 ≥m Ψ1 holds.
We now define Ψ2 as the policy existence problem w.r.t.
the problem statement of Ψ1. Hence, Ψ2 is the problem
of determining whether the value of a reward-maximizing
Markovian policy π∗M ∈ arg maxπ∈ΠM

JM̃R
Ω

(π) is greater
than 0. Since computing an optimal policy in POMDPs is
in general harder than the relative policy existence problem
(Lusena et al., 2001, Section 3), we have that Ψ1 ≥p Ψ2.
For the last reduction, i.e., Ψ2 ≥p 3SAT, we extend the
proof of Theorem 4.13 in (Mundhenk et al., 2000), which
states that the policy existence problem for POMDPs is
NP-complete. In particular, we show that this holds within
the restricted class of POMDPs defined in Ψ1. Since the
chain Ψ0 ≥m Ψ1 ≥p Ψ2 ≥p 3SAT holds, we have that
Ψ0 ≥p 3SAT. Moreover, since 3SAT ∈ NP-complete
and Ψ0 /∈ NP (thanks to Lemma 5.2), we conclude that
Ψ0 ∈ NP-hard.

6. Numerical Validation
Despite the hardness result of Theorem 5.3, we provide
a brief numerical validation around the potential of non-
Markovianity in MSE exploration. Crucially, the reported
analysis is limited to simple domains and short time hori-
zons, and it has to be intended as an illustration of the
theoretical claims reported in previous sections. Whereas a
comprehensive evaluation of the practical benefits of non-
Markovianity in MSE exploration is left as future work, we
discuss in Section 7 why we believe that the development
of scalable methods is not hopeless even in this challenging
setting.

In this section, we consider a 3State (S = 3, A = 2, T = 9),
which is a simple abstraction of the two-rooms in Fig-
ure 1, and a River Swim (Strehl & Littman, 2008) (S =
3, A = 2, T = 10) that are depicted in Figure 2a, 2d respec-
tively. Especially, we compare the expected entropy (3)
achieved by an optimal non-Markovian policy πNM ∈
arg maxπ∈ΠNM

E(π), which is obtained by solving the ex-
tended MDP as described in the proof of Lemma 4.2, against

an optimal Markovian policy πM ∈ arg maxπ∈ΠM
E(π),

which is obtained from πNM through a marginalization over
histories (as mentioned in the proof sketch of Theorem 3.1).
In confirmation of the result in Theorem 4.4, πM cannot
match the performance of πNM (see Figure 2b, 2e). In
3State, an optimal strategy requires going left when arriving
in state 0 from state 2 and vice versa. The policy πNM is
able to do that, and it always realizes the optimal trajectory
(Figure 2c). Instead, πM is uniform in 0 and it often runs
into sub-optimal trajectories. In the River Swim, the main
hurdle is to reach state 2 from the initial one. Whereas πM

and πNM are equivalently good in doing so, as reported in
Figure 2f, only the non-Markovian strategy is able to bal-
ance the visitations in the previous states when it eventually
reaches 2. The difference is already noticeable with a short
horizon and it would further increase with a longer T .

7. Discussion and Conclusion
In the previous sections, we detailed the importance of non-
Markovianity when optimizing a finite-sample MSE objec-
tive, but we also proved that the corresponding optimization
problem is NP-hard in its general formulation. Despite the
hardness result, we believe that it is not hopeless to learn
exploration policies with some form of non-Markovianity,
while still preserving an edge over Markovian strategies.
In the following paragraphs, we discuss potential avenues
to derive practical methods for relevant relaxations to the
general class of non-Markovian policies.

Finite-Length Histories Throughout the paper, we con-
sidered non-Markovian policies that condition their deci-
sions on histories of arbitrary length, i.e., π : H → ∆(A).
However, the complexity of optimizing such policies grows
exponentially with the length of the history. To avoid this ex-
ponential blowup, one can define a class of non-Markovian
policies π : HH → ∆(A) in which the decisions are condi-
tioned on histories of a finite lengthH > 1 that are obtained
from a sliding window on the full history. The optimal
policy within this class would still retain better regret guar-
antees than an optimal Markovian policy, but it would not
achieve zero regret in general. With the length parameter H
one can trade-off the learning complexity with the regret ac-
cording to the structure of the domain. For instance, H = 2
would be sufficient to achieve zero regret in the 3State do-
main, whereas in the River Swim domain any H < T would
cause some positive regret.

Compact Representations of the History Instead of set-
ting a finite length H , one can choose to perform function
approximation on the full history to obtain a class of poli-
cies π : f(H)→ ∆(A), where f is a function that maps an
history h to some compact representation. An interesting
option is to use the notion of eligibility traces (Sutton &
Barto, 2018) to encode the information of h in a vector of
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Figure 2: In (a, d), we illustrates the 3State and River Swim CMPs. Then, we report the average entropy induced by an
optimal Markovian policy πM and an optimal non-Markovian policy πNM in the 3State (T = 9) (b) and the River Swim
(T = 10) (e). In (c) we report the entropy frequency in the 3State, in (f) the state visitation frequency in the River Swim. We
provide 95% c.i. over 100 runs.

length S, which is updated as zt+1 ← λzt + 1st , where
λ ∈ (0, 1) is a discount factor, 1st is a vector with a unit
entry at the index st, and z0 = 0. The discount factor λ
acts as a smoothed version of the length parameter H , and
it can be dynamically adapted while learning. Indeed, this
eligibility traces representation is particularly convenient
for policy optimization (Deisenroth et al., 2013), in which
we could optimize in turn a parametric policy over actions
πθ(·|z, λ) and a parametric policy over the discount πν(λ).
To avoid a direct dependence on S, one can define the vector
z over a discretization of the state space.

Deep Recurrent Policies Another noteworthy way to do
function approximation on the history is to employ recurrent
neural networks (Williams & Zipser, 1989; Hochreiter &
Schmidhuber, 1997) to represent the non-Markovian policy.
This kind of recurrent architecture is already popular in
RL. In this paper we are providing the theoretical ground
to motivate the use of deep recurrent policies to address
maximum state entropy exploration.

Non-Markovian Control with Tree Search In princi-
ple, one can get a realization of actions from the optimal
non-Markovian policy without ever computing it, e.g., by
employing a Monte-Carlo Tree Search (MCTS) (Kocsis &
Szepesvári, 2006) approach to select the next action to take.
Given the current state st as a root, we can build the tree
of trajectories from the root through repeated simulations
of potential action sequences. With a sufficient number of
simulations and a sufficiently deep tree, we are guaranteed
to select the optimal action at the root. If the horizon is too
long, we can still cut the tree at any depth and approximately
evaluate a leaf node with the entropy induced by the path

from the root to the leaf. The drawback of this MCTS proce-
dure is that we would require to have access to a simulator
with reset (or a reliable estimate of the transition model) to
actually build the tree.

Having reported interesting directions to learn non-
Markovian exploration policies in practice, we would like
to mention some relevant online RL settings that might
benefit from such exploration policies. We leave as future
work a more formal definition of the settings and a thorough
empirical study.

Single-Trial RL In many relevant real-world scenarios,
where data collection might be costly or non-episodic in na-
ture, we cannot afford multiple trials to achieve the desired
exploration of the environment. Non-Markovian exploration
policies guarantee a good coverage of the environment in
a single trial and they are particularly suitable for online
learning processes.

Learning in Latent MDPs In a latent MDP scenario (Hal-
lak et al., 2015; Kwon et al., 2021) an agent interacts with
an (unknown) environment drawn from a class of MDPs to
solve an online RL task. A non-Markovian exploration pol-
icy pre-trained on the whole class could exploit the memory
to perform a fast identification of the specific context that has
been drawn, quickly adapting to the optimal environment-
specific policy.

To conclude, we believe that this work sheds some light on
the, previously neglected, importance of non-Markovianity
to address maximum state entropy exploration, and we be-
lieve it can provide inspiration for future empirical and
theoretical contributions on the matter.
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A. Related Work
Hazan et al. (Hazan et al., 2019) were the first to consider an entropic measure over the state distribution as a sensible
learning objective for an agent interacting with a reward-free environment (Jin et al., 2020). Especially, they propose an
algorithm, called MaxEnt, that learns a mixture of policies that collectively maximize the Shannon entropy, i.e., (1), of the
discounted state distribution. The final mixture is learned through a conditional gradient method, in which the algorithm
iteratively estimates the state distribution of the current mixture to define an intrinsic reward function, and then identifies the
next policy to be added by solving a specific RL sub-problem with this reward. A similar methodology has been obtained by
Lee et al. (Lee et al., 2019) from a game-theoretic perspective on the MSE exploration problem. Their algorithms, called
SMM, targets the Shannon entropy of the marginal state distribution instead of the discounted distribution of MaxEnt.
Another approach based on the conditional gradient method is FW-AME (Tarbouriech & Lazaric, 2019), which learns a
mixture of policies to maximize the entropy of the stationary state-action distribution. As noted in (Tarbouriech & Lazaric,
2019), the mixture of policies might suffer a slow mixing to the asymptotic distribution for which the entropy is maximized.
In (Mutti & Restelli, 2020), the authors present a method (IDE3AL) to learn a single exploration policy that simultaneously
accounts for the entropy of the stationary state-action distribution and the mixing time.

Even if they are sometimes evaluated on continuous domains (especially (Hazan et al., 2019; Lee et al., 2019)), the methods
we mentioned require an accurate estimate of either the state distribution (Hazan et al., 2019; Lee et al., 2019) or the
transition model (Tarbouriech & Lazaric, 2019; Mutti & Restelli, 2020), which hardly scales to high-dimensional domains.
A subsequent work (Mutti et al., 2021b) proposes an approach to estimate the entropy of the state distribution through
a non-parametric method, and then to directly optimize the estimated entropy via policy optimization. Their algorithm,
called MEPOL, is able to learn a single exploration policy that maximizes the entropy of the marginal state distribution in
challenging continuous control domains. Liu and Abbeel (Liu & Abbeel, 2021b) combine non-parametric entropy estimation
with learned state representations into an algorithm, called APT, that successfully addresses MSE exploration problems in
visual-inputs domains. Seo et al. (Seo et al., 2021) shows that even random state representations are sufficient to learn MSE
exploration policies from visual inputs.

Whereas all of the previous approaches accounts for the Shannon entropy in their objectives, recent works (Zhang et al.,
2020a; Guo et al., 2021) consider alternative formulations. Especially, Zhang et al. (Zhang et al., 2020a) argues that the
Rényi entropy provides a superior incentive to cover all of the corresponding space than the Shannon entropy, and they
propose a method to optimize the Rényi of the state-action distribution via gradient ascent (MaxRényi). On an orthogonal
direction, the authors of (Guo et al., 2021) consider a reformulation of the entropy function that accounts for the underlying
geometry of the space. They present a method, called GEM, to learn an optimal policy for the geometry-aware entropy
objective.

Table 1: Overview of the methods addressing MSE exploration in a controlled Markov process. For each method, we
report the nature of the corresponding MSE objective, i.e., the entropy function (Entropy), whether it considers stationary,
discounted, or marginal distributions (Distribution), and if it accounts for the state space S or the state-action space SA
(Space). We also specify if the method learns a single policy rather than a mixture of policies (Mixture), and if it supports
non-parametric entropy estimation (Non-Parametric).

Algorithm Entropy Distribution Space Mixture Non-Parametric

MaxEnt (Hazan et al., 2019) Shannon discounted state 3 7
FW-AME (Tarbouriech & Lazaric, 2019) Shannon stationary state-action 3 7
SMM (Lee et al., 2019) Shannon marginal state 3 7
IDE3AL (Mutti & Restelli, 2020) Shannon stationary state-action 7 7
MEPOL (Mutti et al., 2021b) Shannon marginal state 7 3
MaxRényi (Zhang et al., 2020a) Rényi discounted state-action 7 7
GEM (Guo et al., 2021) geometric-aware marginal state 7 7
APT (Liu & Abbeel, 2021b) Shannon marginal state 7 3
RE3 (Seo et al., 2021) Shannon marginal state 7 3
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B. Missing Proofs
B.1. Proofs of Section 3

Theorem 3.1. Let x ∈ {∞, γ, T}, and let DxNM = {dπx(·) : π ∈ ΠNM}, DxNS = {dπx(·) : π ∈ ΠNS}, DxM = {dπx(·) : π ∈
ΠM} the corresponding sets of distributions. We can prove that:

(i) The sets of stationary state distributions are equivalent D∞NM ≡ D∞NS ≡ D∞M ;

(ii) The sets of discounted state distributions are equivalent DγNM ≡ D
γ
NS ≡ D

γ
M for any γ;

(iii) The sets of marginal state distributions are equivalent DTNM ≡ DTNS ≡ DTM for any T .

Proof. First, note that a non-Markovian policy π ∈ ΠNM can always reduce to a non-stationary policy π ∈ ΠNS by
conditioning the decision rules on the history length, or to a Markovian policy π ∈ ΠM by conditioning the decision rules
on the last history entry. Thus, DxNM ⊇ DxNS ⊇ DxM is straightforward for any x ∈ {∞, γ, T}. From the derivations
in (Puterman, 2014, Theorem 5.5.1), we have that DxNS ⊇ DxNM as well. Indeed, for any non-Markovian policy π ∈ ΠNM,
we can build a non-stationary policy π′ ∈ ΠNS as

π′ =
(
π′1, π

′
2, . . . , π

′
t, . . .

)
, such that π′t(a|s) =

dπt (s, a)

dπt (s)
, ∀s ∈ S,∀a ∈ A.

For t = 0, we have that dπ0 (·) = dπ
′

0 (·) = µ(·), which is the initial state distribution. We proceed by induction to show that
if dπt−1(·) = dπ

′

t−1(·), then we have

dπ
′

t (s) =
∑
s′∈S

∑
a∈A

dπ
′

t−1(s′)π′t−1(a|s′)P (s|s′, a)

=
∑
s′∈S

∑
a∈A

dπ
′

t−1(s′)

dπt−1(s′)
dπt−1(s′, a)P (s|s′, a)

=
∑
s′∈S

∑
a∈A

dπt−1(s′, a)P (s|s′, a) = dπt (s).

Since dπt (s) = dπ
′

t (s) holds for any t ≥ 0 and ∀s ∈ S, we have dπ∞(·) = dπ
′

∞(·), dπγ (·) = dπ
′

γ (·), dπT (·) = dπ
′

T (·), and thus
DxNS ⊇ DxNM. Then, DxNM ≡ DxNS follows.

(i) D∞NM ≡ D∞NS ≡ D∞M
This result can be obtained with the same construction as before. Let us consider a non-Markovian policy π ∈ ΠNM having
mixing time tmix := {t ∈ N : sups∈S |dπ∞(s)− dπt (s)| ≤ ε} for some mixing threshold ε. Then, we can define a Markovian
policy πM ∈ ΠM as πM(a|s) = dπtmix

(s, a)
/
dπtmix

(s),∀s ∈ S,∀a ∈ A. If we construct the same non-stationary policy
π′t = (π′1, π

′
2, . . . , π

′
t, . . .) ∈ ΠNS as before, i.e., π′(a|s) = dπt (s, a)

/
dπt (s),∀s ∈ S,∀a ∈ A,we have that dπ

′

t (·) = dπt (·)
for any t ≥ 0, and thus also for t ≥ tmix. This implies that π, π′, πM all converges to the same stationary state distribution
dπ∞(·) = limt→∞ dπt (·) if we take the limit ε → 0 on the mixing threshold. Then, we have D∞NM ⊇ D∞NS ⊇ D∞M and
D∞NM ≡ D∞NS ≡ D∞M .

(ii) DγNM ≡ D
γ
NS ≡ D

γ
M

We can prove the statement by showing that DγM ⊇ D
γ
NS. To this purpose, let us define the T -bounded discounted state

distribution as dπγ,T (·) := (1−γ)
(1−γT )

∑
t∈[T ] γ

tdπt (·), such that limT→∞ dπγ,T (·) = dπγ (·). Then, We consider a general
non-stationary policy π = (π0, π1, . . . , πt, . . .) ∈ ΠNS. We can build a Markovian policy π′ ∈ ΠM as follows

π′(a|s) =

∑T−2
t=0 γtdπt (s)πt(a|s)∑T−2

t=0 γtdπt (s)
, ∀s ∈ S,∀a ∈ A.

We prove by induction that such a policy π′ induces the same T -bounded discounted state distribution of π for every T > 0.
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For T = 1 we have dπ
′

γ,T (·) = dπγ,T (·) = µ(·). Then, if dπ
′

γ,T−1(·) = dπγ,T−1(·), for every s ∈ S it follows

dπ
′

γ,T (s) =
(1− γ)

(1− γT )

T−1∑
t=0

γtdπ
′

t (s)

=
(1− γ)

(1− γT )

T−2∑
t=0

∑
s′∈S

∑
a′∈A

γtdπ
′

t (s′)π′(a′|s′)P (s|s′, a′)

=
(1− γ)

(1− γT )

∑
s′∈S

∑
a′∈A

∑T−2
t=0 γtdπ

′

t (s′)∑T−2
t=0 γtdπt (s′)

T−2∑
t=0

γtdπt (s′)πt(a
′|s′)P (s|s′, a′)

=
(1− γ)

(1− γT )

∑
s′∈S

∑
a′∈A

dπ
′

γ,T−1(s′)

dπγ,T−1(s′)

T−2∑
t=0

γtdπt (s′)πt(a
′|s′)P (s|s′, a′)

=
(1− γ)

(1− γT )

T−2∑
t=0

∑
s′∈S

∑
a′∈A

γtdπt (s′)πt(a
′|s′)P (s|s′, a′)

=
(1− γ)

(1− γT )

T−1∑
t=0

γtdπt (s) = dπγ,T (s).

Since the relation holds for any T > 0, we can take the limit for T →∞ to have dπ
′

γ (·) = dπγ (·), which gives DγM ⊇ D
γ
NS

and then DγNM ≡ D
γ
NS ≡ D

γ
M.

(iii) DTNM ≡ DTNS ≡ DTM
We can prove the statement by showing that DTM ⊇ DTNS. We consider a general non-stationary policy π =
(π0, π1, . . . , πt, . . .) ∈ ΠNS. We can build a Markovian policy π′ ∈ ΠM which marginalizes π over the time steps,
such that

π′(a|s) =

∑T−2
t=0 dπt (s)πt(a|s)∑T−2

t=0 dπt (s)
, ∀s ∈ S,∀a ∈ A.

We prove the statement by induction. For T = 1 we have dπ
′

T (·) = dπT (·) = µ(·). Then, we can show that if dπ
′

T−1(·) =

dπT−1(·), it follows dπ
′

T (·) = dπT (·). Especially,

dπ
′

T (s) =
1

T

T−1∑
t=0

dπ
′

t (s) =
1

T

T−2∑
t=0

∑
s′∈S

dπ
′

t (s′)
∑
a′∈A

π′(a′|s′)P (s|s′, a′)

=
1

T

∑
s′∈S

∑
a′∈A

∑T−2
t=0 dπ

′

t (s′)∑T−2
t=0 dπt (s′)

T−2∑
t=0

dπt (s′)πt(a
′|s′)P (s|s′, a′)

=
1

T

∑
s′∈S

∑
a′∈A

dπ
′

T−1(s′)

dπT−1(s′)

T−2∑
t=0

dπt (s′)πt(a
′|s′)P (s|s′, a′)

=
1

T

T−2∑
t=0

∑
s′∈S

dπt (s′)
∑
a′∈A

πt(a
′|s′)P (s|s′, a′) =

1

T

T−1∑
t=0

dπt (s) = dπT (s),

holds for any s ∈ S, thus DTM ⊇ DTNS and DTNM ≡ DTNS ≡ DTM follows.

Corollary 3.2. For every CMPM, there exists a Markovian policy π∗ ∈ ΠM such that π∗ ∈ arg maxπ∈Π E∞(π).

Proof. The result is straightforward from Theorem 3.1 and noting that the set of non-Markovian policies ΠNM with
arbitrary history-length is as powerful as the general set of policies Π. Thus, for every policy π ∈ Π there exists a
(possibly randomized) policy π′ ∈ ΠM inducing the same (stationary, discounted or marginal) state distribution of π,
i.e., dπ(·) = dπ

′
(·), which implies Entropy

(
dπ(·)

)
= Entropy

(
dπ
′
(·)
)
. If it holds for any π ∈ Π, then it holds for

π∗ ∈ arg maxπ∈ΠEntropy
(
dπ(·)

)
.
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B.2. Proofs of Section 4

Lemma 4.3. Let πNM ∈ ΠD
NM be a non-Markovian policy such that πNM ∈ arg maxπ∈Π E(π) on a CMPM. The variance

of an optimal Markovian policy πM ∈ arg maxπ∈ΠM
E(π) is given by

Var
a∼πM(s)

[
a
]

= Var
hs∼pπNM

T

[
πNM(hs)

]
, ∀s ∈ S,

where hs is any history hs ∈ H[T ] such that the final state is s.

Proof. Let us derive the variance of a policy π ∈ Π in state s ∈ S through the law of total variance (Bertsekas & Tsitsiklis,
2002). We have

Var
π

[
a|s
]

= E
π

[
a2|s

]
− E

π

[
a|s
]2

= E
h

[
E
π

[
a2|s, h

]]
− E

h

[
E
π

[
a|s, h

]]2
= E

h

[
Var
π

[
a|s, h

]
+ E

π

[
a|s, h

]2]− E
h

[
E
π

[
a|s, h

]]2
= E

h

[
Var
π

[
a|s, h

]]
+ E

h

[
E
π

[
a|s, h

]2]− E
h

[
E
π

[
a|s, h

]]2
= E

h

[
Var
π

[
a|s, h

]]
+ Var

h

[
E
π

[
a|s, h

]]
.

Let h ∼ pπT , so that the variable a|s, h becomes a|hs where hs = (s0,hs, a0,hs, s1,hs, . . . , st,hs = s) ∈ H[T ], to obtain

Var
π

[
a|s
]

= E
hs∼pπT

[
Var
π

[
a|hs

]]
+ Var
hs∼pπT

[
E
π

[
a|hs

]]
. (4)

If we take the policy π that optimizes the objective (3), we have that the action a on the left-hand side of equa-
tion (4) is distributed according to πM arg maxπ∈ΠM

E(π), while on the right-hand side is distributed according to
πNM arg maxπ∈ΠNM

E(π), i.e.,

Var
a∼πM(s)

[
a
]

= E
hs∼pπNM

T

[
Var

a∼πNM(hs)

[
a
]]

+ Var
hs∼pπNM

T

[
E

a∼πNM(hs)

[
a
]]
. (5)

From Lemma 4.2, we know that there exists a deterministic optimal non-Markovian policy πNM ∈ ΠD
NM, which gives

Ehs∼pπNM
T

[
Vara∼πNM(hs)[a]

]
= 0 in (5) and concludes the proof.

Lemma B.1 (Best-Case CMP). Let h∗t be a zero-regret trajectory of t-steps. Taking a sub-optimal action at ∈ A\πNM(h∗t )
at step t in the best-case CMPM gives a final entropy

Emax,2 = max
h∈HT−t\H∗T−t

Entropy
(
d(h∗t ,h)(·)

)
s.t. H∗T−t = arg max

h∈HT−t
Entropy

(
d(h∗t ,h)(·)

)
where the maximum is attained by

hT−t =
(
smax,2, h

∗
T−t−1 ∈ H∗T−t

)
∈ arg max
h∈HT−t\H∗T−t

Entropy
(
d(h∗t ,h)(·)

)
,

in which smax,2 is any state that is the second-closest to a uniform entry in d(h∗t ,hT−t)
.

Proof. The best-case CMPM is designed such that taking a sub-optimal action at ∈ A \ πNM(h∗t ) minimally decrease the
final entropy. Especially, instead of reaching at step t+ 1 an optimal state smax, i.e., a state that maximally balances the
state visits of the final trajectory, the agent is drawn to the second-to-optimal state smax,2, from which it gets back on track
on the optimal trajectory for the remaining steps. Note that visiting smax,2 cannot lead to the optimal final entropy, achieved
when smax is visited at step t+ 1, due to the sub-optimality of action at.
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Lemma B.2 (Worst-Case CMP). Let h∗t be a zero-regret trajectory of t-steps. Taking a sub-optimal action at ∈ A\πNM(h∗t )
at step t in the worst-case CMPM gives a final entropy

Emin,t = min
h∈HT−t

Entropy
(
dh∗t ,h(·)

)
,

where the minimum is attained by

hT−t =
(
si ∈ arg max

s∈S
dh∗t (s)

)T
i=t+1

∈ arg min
h∈HT−t

Entropy
(
dh∗t ,h(·)

)
.

Proof. The worst-case CMPM is designed such that the agent cannot recover from a sub-optimal action at ∈ A\ πNM(h∗t )
as it is absorbed by a worst-case state given the trajectory h∗t . A worst-case state is one that maximizes the visitation
frequency in h∗t , i.e., s ∈ arg maxs∈S dh∗t (s), so that the visitation frequency becomes increasingly unbalanced. A
sub-optimal action at the first step inM leads to T − 1 visits to the initial state s0 ∼ µ, and the final entropy is zero.

Theorem 4.4. Let πM ∈ ΠM be a Markovian policy such that πM ∈ arg maxπ∈ΠM
E(π) on a CMPM. Then, for any

t ∈ [T ], it holdsRT−t(πM) ≤ RT−t(πM) ≤ RT−t(πM) such that

RT−t(πM) =
Emax − Emax,2
πM(aNM|st)

Var
hst∼pπNM

T

[
πNM(hst)

]
,

RT−t(πM) =
Emax − Emin,t
πM(aNM|st)

Var
hst∼pπNM

T

[
πNM(hst)

]
,

where πNM ∈ arg maxπ∈ΠD
NM
E(π), aNM = πNM(h∗t ) is the unique optimal action in st, and Emax, Emax,2, Emin,t are

given by

Emax = max
π∗∈Π

E
h∗T−t∼pπ

∗
T

[
Entropy

(
dh∗T (·)

)]
Emin,t = min

h∈HT−t
Entropy

(
d(h∗t ,h)(·)

)
,

Emax,2 = max
h∈HT−t\H∗T−t

Entropy
(
d(h∗t ,h)(·)

)
s.t. H∗T−t = arg max

h∈HT−t
Entropy

(
d(h∗t ,h)(·)

)
.

Proof. From the definition of the regret-to-go (Definition 4.1), we have that

RT−t(πM) = max
π∗∈Π

E
h∗T−t∼pπ

∗

[
Entropy

(
dh∗T (·)

)]
− E
hT−t∼pπM

[
Entropy

(
dhT (·)

)]
,

in which we substitute Emax = maxπ∗∈Π Eh∗T−t∼pπ∗
[
Entropy

(
dh∗T (·)

)]
. To derive a lower bound and an upper bound to

RT−t(π) we consider the impact that taking a sub-optimal action a ∈ A \ {aNM} in state st would have in a best-case and
a worst-case CMP respectively, which is detailed in Lemma B.1 and Lemma B.2. Especially, we can write

RT−t(πM) = Emax − E
hT−t∼pπM

T

[
Entropy

(
dhT (·)

)]
≥ Emax − πM(aNM|st)Emax −

(
1− πM(aNM |st)

)
Emax,2

= (Emax − Emax,2)
(
1− πNM(aNM|st)

)
and

RT−t(πM) = Emax − E
hT−t∼pπM

T

[
Entropy

(
dhT (·)

)]
≤ Emax − πM(aNM|st)Emax −

(
1− πM(aNM |st)

)
Emin,t

= (Emax − Emin,t)
(
1− πNM(aNM|st)

)
.
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Then, we note that the event of taking a sub-optimal action a ∈ A \ {aNM} with policy πM can be modelled by a Bernoulli
distribution with parameter

(
1− πNM(aNM|st)

)
. By combining the equation of the variance of a Bernoulli distribution and

Lemma 4.3 we obtain

Var
a∼πNM(st)

[a] = πM(aNM|st)
(
1− πM(aNM|st)

)
= Var
hst∼pπNM

T

[
πNM(hst)

]
,

which gives

RT−t(πM) ≥ (Emax − Emax,2)

πM(aNM|st)
Var

hst∼pπNM

[
πNM(hst)

]
:= RT−t(πM)

RT−t(πM) ≤ (Emax − Emin,t)
πM(aNM|st)

Var
hst∼pπNM

[
πNM(hst)

]
:= RT−t(πM)

Corollary 4.6. Let πM ∈ ΠM be a Markovian policy such that πM ∈ arg maxπ∈ΠM
E(π) on a CMPM. Then, for any

t ∈ [T ], it holds rt(πM) ≤ rt(πM) ≤ rt(πM) such that

rt(πM) = max
(

0, Emax
(
Vt(πM)− Vt+1(πM)

)
− Emax,2Vt(πM) + Emin,t+1Vt+1(πM)

)
,

rt(πM) = max
(

0, Emax
(
Vt(πM)− Vt+1(πM)

)
− Emin,tVt(πM) + Emax,2Vt+1(πM)

)
,

where

Vt(πM) :=
1

πM(aNM|st)
Var

hst∼pπNM
T

[
πNM(hst)

]
.

Proof. From Definition 4.5, we have that rt(πM) = RT−t −RT−t−1. Recall that

RT−t(π) = Vt(π)
(
Emax − Emax,2

)
, RT−t(π) = Vt(π)

(
Emax − Emin,t

)
,

from Theorem 4.4. We can write

rt(πM) ≥ RT−t −RT−t−1

= Emax
(
Vt(πM)− Vt+1(πM)

)
− Emax,2Vt(πM) + Emin,t+1Vt+1(πM),

and

rt(πM) ≤ RT−t −RT−t−1

= Emax
(
Vt(πM)− Vt+1(πM)

)
− Emin,tVt(πM) + Emax,2Vt+1(πM).

B.3. Proofs of Section 5

Theorem 5.3. Ψ0 ∈ NP-hard.

Proof. To prove that Ψ0 ∈ NP-hard, it is sufficient to show that there exists a problem Ψc ∈ NP-complete so that Ψc ≤p Ψ0.
We show this by reducing 3SAT, a well-known NP-complete problem, to Ψ0. To derive the reduction we consider two
intermediate problems, namely Ψ1 and Ψ2. Especially, we aim to show that the following chain of reductions hold:

Ψ0 ≥m Ψ1 ≥p Ψ2 ≥p 3SAT
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First, we define Ψ1 and we prove that Ψ0 ≥m Ψ1. Informally, Ψ1 is the problem of finding a reward-maximizing Markovian
policy πM ∈ ΠM w.r.t. the entropy objective (3) encoded through a reward function in a convenient POMDP M̃R

Ω . We can
build M̃R

Ω from the CMPM similarly as the extended MDP M̃R
T (see Section 2 and the proof of Lemma 4.2 for details),

except that the agent only access the observation space Ω̃ instead of the extended state space S̃. In particular, we define
Ω̃ = S (note that S is the state space of the original CMPM), Õ(õ|s̃) = s̃−1, and the reward function R̃ assigns value 0 to
all states s̃ ∈ S̃ such that |s̃| 6= T , otherwise (if |s̃| = T ) the reward corresponds to the entropy value of the state visitation
frequences induced by the trajectory codified through s̃.

Then, the reduction Ψ0 ≥m Ψ1 works as follows. We denote as IΨi the set of possible instances of problem Ψi.
We show that Ψ0 is harder than Ψ1 by defining the polynomial-time functions ψ and φ such that any instance of Ψ1 can be
rewritten through ψ as an instance of Ψ0, and a solution π∗NM ∈ ΠNM for Ψ0 can be converted through φ into a solution
π∗M ∈ ΠM for the original instance of Ψ1.

IΨ1
IΨ0

π∗M π∗NM

ψ

φ

The function ψ sets S = Ω̃ and derives the transition model ofM from the one of M̃R
Ω , while φ converts the optimal

solution of Ψ0 by computing

π∗M =
∑
ho∈Ho

p
π∗NM

T (ho)π∗NM(a|ho) (6)

whereHo stands for the set of histories h ∈ H[T ] ending in the observation o ∈ Ω. Thus, we have that Ψ0 ≥m Ψ1 holds.
We now define Ψ2 as the policy existence problem w.r.t. the problem statement of Ψ1. Hence, Ψ2 is the problem of
determining whether the value of a reward-maximizing Markovian policy π∗M ∈ arg maxπ∈ΠM

JM̃R
Ω

(π) is greater than 0.
Since computing an optimal policy in POMDPs is in general harder than the relative policy existence problem (Lusena
et al., 2001, Section 3), we have that Ψ1 ≥p Ψ2.

For the last reduction, i.e., Ψ2 ≥p 3SAT, we extend the proof of Theorem 4.13 in (Mundhenk et al., 2000),
which states that the policy existence problem for POMDPs is NP-complete. In particular, we show that this holds within
the restricted class of POMDPs defined in Ψ1.
The restrictions on the POMDPs class are the following:

1. The reward function R(s) ≥ 0 only in the subset of states reachable in T steps, otherwise R(s) = 0

2. |S̃| = S̃ = |Ω̃|T

Both limitations can be overcome in the following ways:

1. It suffices to add states with deterministic transitions so that T = m · n can be defined a priori, where T is the number
of steps needed to reach the state with positive reward through every possible path. Here m is the number of clauses,
and n is the number of variables in the 3SAT instance, as defined in (Mundhenk et al., 2000).

2. The POMDPs class defined by Ψ1 is such that S̃ = |Ω̃|T . Noticing that the set of observations corresponds with the set
of variables and that from the previous point T = m · n, we have that |Ω̃|T = nm·n, while the POMDPs class used by
the proof hereinabove has S̃ = m · n2. Notice that n ≥ 2 and m ≥ 1 implies that nm·n ≥ m · n2. Moreover, notice
that every instance of 3SAT has m ≥ 1 and n ≥ 3. Hence, to extend the proof to the POMDPs class defined by Ψ1 it
suffices to add a set of states S̃p s.t. R(s) = 0 ∀s ∈ S̃p.

Since the chain Ψ0 ≥m Ψ1 ≥p Ψ2 ≥p 3SAT holds, we have that Ψ0 ≥p 3SAT. Moreover, since 3SAT ∈ NP-complete and
Ψ0 /∈ NP (thanks to Lemma 5.2), we conclude that Ψ0 ∈ NP-hard.
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C. Non-Stationary Policies and State-Action Distributions
Throughout the paper, we mostly considered the class of non-Markovian policies against the class of Markovian policies.
However, one could wonder how non-stationary policies fare in dealing with the finite-sample MSE objective (3). Here we
would like to report some informal results on this point. On the one hand, we can prove that there exists a deterministic
non-stationary policy πNS ∈ ΠD

NS such that πNS ∈ arg maxπ∈ΠNS
E(π) through a standard backward-induction argument.

Nonetheless, differently from the result in Lemma 4.2 for non-Markovian policies, πNS is not guaranteed to suffer zero
regret. Especially, it might happen that πNS(st) 6= aNM as the non-stationary policy is uncertain about the past. One should
account for the probability of this event to extend the regret bounds of Theorem 4.4 to non-stationary policies. Whereas πNS

is not zero-regret in general, it can suffer a lower regret than an optimal Markovian policy. Formally establishing this regret
gap might be an interesting direction for future works.

To assess the importance of non-Markovianity in MSE exploration, we adopted the most common state distribution
formulation. As we mentioned in Appendix A, other works in the MSE literature considered the entropy of the state-action
distribution in the objective function. Analogously, we can recast the finite-sample objective as Eh∼pπT [Entropy(dh(·, ·))]
and replicate most of the results that we reported in the paper. In this alternative formulation, the class of non-Markovian
policies would still preserve an edge over the classes of non-stationary and Markovian policies. Accounting for the entropy of
the state-action distribution might be crucial in the settings where the exploration over the action space cannot be overlooked
(e.g., a single-trial setting).
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