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ABSTRACT

Continual learning remains a core challenge for deep neural networks, where mod-
els catastrophically forget prior knowledge when trained on new tasks. We intro-
duce SOPRANO (Synergistic Optimization with Progressive Replay and Adaptive
Network Orchestration), a framework that combines balanced memory replay
and adaptive knowledge distillation with task-aware optimization. Unlike ap-
proaches that rely on fixed replay schedules or rigid regularizers, SOPRANO
adapts its learning dynamics to task characteristics. On CIFAR-100 (5/10/20
tasks) and CIFAR-10-5, SOPRANO delivers strong performance: 56.4±0.6% on
CIFAR-100-5, 46.7±0.5% on CIFAR-100-10, 33.8±0.6% on CIFAR-100-20, and
58.5±1.1% on CIFAR-10-5. On CIFAR-100-5, this is about 3.3× the accu-
racy of strong replay baselines (DER: 17.2±0.3%, DER++: 17.1±0.2%) and
far exceeds regularization-based methods (EWC: 10.8±7.0%). SOPRANO also
achieves markedly lower forgetting (e.g., 7.6±0.2% vs. 79.1±0.4% for DER and
68.7±1.2% for EWC on CIFAR-100-5). Ablation studies confirm complementary
contributions from balanced replay and distillation. Code will be released upon
acceptance.

1 INTRODUCTION

The human brain possesses a remarkable ability to continuously acquire, consolidate, and recall
knowledge throughout life without forgetting previously learned information, a capability that re-
mains elusive for artificial neural networks Parisi et al. (2019); De Lange et al. (2021). This fun-
damental limitation, known as catastrophic forgetting or catastrophic interference, represents one
of the most significant obstacles preventing the deployment of deep learning systems in real-world
scenarios that require continuous adaptation McCloskey & Cohen (1989); French (1999). When
neural networks are trained sequentially on different tasks, the optimization process for new tasks
dramatically changes the parameters that encode knowledge from previous tasks, leading to se-
vere performance degradation on earlier learned abilities. The importance of this limitation extends
far beyond academic interest. Consider autonomous vehicles that must adapt to new traffic pat-
terns while retaining knowledge of previously encountered scenarios, medical diagnosis systems
that need to learn about emerging diseases without forgetting existing conditions, or personalized
recommendation systems that must evolve with user preferences while maintaining historical un-
derstanding Lesort et al. (2020); Mai et al. (2022). In each of these applications, the inability to
learn continuously without forgetting poses a critical barrier to practical deployment. The economic
and safety implications are substantial, a medical AI system that forgets how to diagnose common
conditions when learning about rare diseases would be clinically unusable, while an autonomous
vehicle that loses its ability to recognize stop signs when learning about new road markings would
be catastrophically dangerous.

Prior work groups solutions into three families. Regularization methods (e.g., EWC Kirkpatrick
et al. (2017), SI Zenke et al. (2017), LwF) penalize changes to important weights but accumulate
constraints over long sequences and face stability–plasticity limits Chaudhry et al. (2018a). Replay
methods (ER Rolnick et al. (2019), DER Buzzega et al. (2020)) mix buffered samples with cur-
rent data yet raise issues in memory budgeting, sample selection, and recency bias. Architectural
approaches (Progressive Nets Rusu et al. (2016), PackNet Mallya & Lazebnik (2018)) allocate sep-
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arate capacity, improving retention but requiring task identities and scaling poorly. Key obstacles
persist: static hyperparameters that ignore task similarity Aljundi et al. (2019a); replay buffers that
become imbalanced Chrysakis & Moens (2020); Caccia et al. (2021); optimization designed for sta-
tionary data applied to non-stationary streams Mirzadeh et al. (2020); evaluations that hide failure
modes.

In this paper, we present SOPRANO, a novel continual learning framework that addresses these lim-
itations through a synergistic combination of three key innovations. First, we introduce a balanced
memory management system that maintains equitable representation across all encountered tasks
through dynamic buffer allocation and class-aware sampling strategies. Unlike existing approaches
that treat memory as a uniform resource, our method recognizes that different tasks and classes
require different levels of representation based on their complexity and relationship to other tasks.
Second, we develop an adaptive knowledge distillation mechanism that dynamically adjusts dis-
tillation strength based on measured task similarity and learning progress. This allows SOPRANO
to preserve critical knowledge when tasks are dissimilar while enabling positive transfer when tasks
share commonalities. Third, we propose a progressive optimization schedule that adapts learning
dynamics to the evolving complexity of the continual learning scenario, recognizing that the optimal
learning rate and momentum settings change as the model accumulates knowledge from multiple
tasks. The design of SOPRANO is motivated by key insights from neuroscience and cognitive psy-
chology. The human brain employs multiple complementary memory systems, including episodic
memory for specific experiences and semantic memory for general knowledge, that work together
to enable lifelong learning Kumaran et al. (2016). Similarly, SOPRANO combines experience replay
(analogous to episodic memory) with knowledge distillation (preserving semantic knowledge) in a
synergistic manner. Furthermore, neurobiological evidence suggests that the brain employs sophis-
ticated consolidation mechanisms during sleep that selectively strengthen important memories while
allowing less relevant information to decay Rasch & Born (2013). The proposed balanced memory
management system implements a similar principle, maintaining a diverse and representative set of
experiences rather than simply storing recent or frequently encountered samples.

The extensive experimental evaluation shows that SOPRANO delivers strong and consistent gains
on standard continual-learning benchmarks. On CIFAR-100 split into five tasks, SOPRANO attains
56.4±0.6% average accuracy with 7.6±0.2% forgetting, outperforming replay-based methods such
as DER (17.2±0.3%) and DER++ (17.1±0.2%) by about 3.3× in accuracy and reducing forgetting
by 71.5 points (from 79.1% to 7.6%). Similar trends hold across CIFAR-100-10, CIFAR-100-20,
and CIFAR-10-5 (Table 1; Figs. 1–2). Ablation studies on CIFAR-100-5 ( Table 2) indicate that both
balanced replay and distillation contribute substantially: removing balanced replay reduces accuracy
from 56.2% to 50.9% and increases forgetting from 7.8% to 21.1%, while removing distillation
yields 48.5% accuracy and 15.3% forgetting. These components act complementarily, with the full
system achieving the best stability–plasticity trade-off.

The contributions of this paper are fourfold:

• We analyze limitations of existing continual-learning approaches and propose design prin-
ciples that target representation bias and brittle optimization across tasks.

• We introduce SOPRANO, a framework that integrates balanced memory management with
adaptive knowledge distillation and task-aware optimization to improve both accuracy and
retention.

• We provide extensive experimental validation across multiple benchmarks and task granu-
larities, together with targeted ablations that isolate the impact of key components.

• We release an implementation covering SOPRANO and faithful reproductions of major
baselines to facilitate reproducibility and future research.

2 RELATED WORK

Continual learning methods are commonly grouped into regularization-based, replay-based, and
architectural approaches; we summarize each family and position our work accordingly.
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2.1 REGULARIZATION-BASED CONTINUAL LEARNING

EWC Kirkpatrick et al. (2017) uses the Fisher Information to protect important weights via a
quadratic penalty; SI Zenke et al. (2017) estimates importance online; LwF Li & Hoiem (2017) pre-
serves outputs via knowledge distillation; MAS Aljundi et al. (2018) relies on gradient magnitudes;
RWalk Chaudhry et al. (2018a) blends EWC and Path Integral. These methods face intransigence
as tasks grow and incur storage for importance weights; online and rotating EWC Schwarz et al.
(2018); Liu et al. (2018) help but the stability–plasticity trade-off persists.

2.2 EXPERIENCE REPLAY AND MEMORY-BASED METHODS

ER Rolnick et al. (2019) interleaves buffered data to counter forgetting; iCaRL Rebuffi et al. (2017)
adds nearest-mean classifiers and distillation; DER/DER++ Buzzega et al. (2020) store logits to
exploit dark knowledge; GEM/A-GEM Lopez-Paz & Ranzato (2017); Chaudhry et al. (2018b) con-
strain gradients to avoid increasing past loss. Advances target bias and efficiency: Rainbow Mem-
ory Bang et al. (2021), ER-ACE Caccia et al. (2021) for class imbalance, and REMIND Hayes
et al. (2020) with compressed representations. Open issues remain in buffer management, sample
selection bias, and calibrating replay with current-task learning Aljundi et al. (2019b); Borsos et al.
(2020).

2.3 ARCHITECTURAL AND DYNAMIC APPROACHES

Progressive Nets Rusu et al. (2016) add columns per task with lateral transfer; PackNet Mallya &
Lazebnik (2018) frees capacity via pruning; DEN Yoon et al. (2017) expands when needed; Path-
Net Fernando et al. (2017) evolves task-specific paths; SupSup Wortsman et al. (2020) learns masks
within one network. They can avoid forgetting but often require task IDs at test time, increase
parameters without bound, and limit backward transfer; hybrids mitigate some issues but capac-
ity–efficiency–transfer trade-offs remain.

2.4 META-LEARNING AND OPTIMIZATION-BASED APPROACHES

MER Riemer et al. (2018) couples replay with meta-optimization; OML Javed & White (2019)
targets online settings; MAML variants Finn et al. (2017) learn fast-adapting initializations; OGD
Farajtabar et al. (2020) projects gradients; La-MAML Gupta et al. (2020) combines MAML with
selective replay. These methods can be effective but often assume task boundaries, require multiple
passes, and add meta-optimization overhead; theory in non-stationary streams remains limited Shim
et al. (2021).

2.5 MEMORY SELECTION AND MANAGEMENT STRATEGIES

Reservoir sampling Vitter (1985) offers unbiased selection with fixed memory; GSS Aljundi et al.
(2019b) promotes gradient-diverse samples; coresets Borsos et al. (2020) use bilevel selection;
CBRS Chrysakis & Moens (2020) enforces class balance; MIR Aljundi et al. (2019a) retrieves
highly interfered samples. Many strategies underuse task structure and imbalance; our balanced
memory management uses dynamic allocation and task-aware sampling to address these gaps.

3 METHOD

3.1 PROBLEM FORMULATION

We consider the class-incremental learning scenario where a model fθ : X → Y with parameters θ
learns from a sequence of tasks T = {T1, T2, ..., TN}. Each task Ti contains data from a disjoint set
of classes Ci, where Ci ∩ Cj = ∅ for i ̸= j. At time t, the model has access only to the current task’s
data Dt = {(xj , yj)}nt

j=1 and a limited memory bufferM with maximum capacity |M| ≤ Bmax.
The objective is to minimize the expected loss across all seen tasks:

Ltotal = Ei∼U(1,t)

[
E(x,y)∼Di

[ℓ(fθ(x), y)]
]

(1)
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where ℓ is the cross-entropy loss function and U(1, t) denotes uniform distribution over seen tasks.

3.2 SOPRANO FRAMEWORK OVERVIEW

SOPRANO addresses continual learning through three integrated components: balanced memory
management, knowledge distillation, and task-aware learning rate scheduling. Our approach focuses
on practical effectiveness while maintaining computational efficiency.

3.2.1 BALANCED MEMORY BUFFER MANAGEMENT

We employ a hierarchical memory structure with task-specific sub-buffers M =
{M1,M2, ...,Mt} where eachMi maintains a balanced representation of task Ti.

For memory allocation, we use a fixed strategy:

|Mi| = min(Btask, ni · rsample) (2)

where Btask = 800 is the maximum samples per task, and rsample = 40 samples per class ensures
balanced class representation within each task buffer. The total memory capacity is constrained to
Bmax = 4000 samples.

Memory update follows a reservoir sampling strategy. For each incoming sample (x, y) from task
Tt:

pupdate =

{
1 if |Mt| < Btask
Btask

nseen
otherwise

(3)

where nseen is the number of samples seen so far from task Tt. This ensures uniform sampling
probability for all observed samples while maintaining the buffer size constraint.

During training on subsequent tasks, we sample balanced mini-batches from the memory buffer:

Bmemory =

t−1⋃
i=1

Sample(Mi, ⌊b/(t− 1)⌋) (4)

where b is the batch size and sampling is uniform within each task buffer.

3.2.2 KNOWLEDGE DISTILLATION

To preserve knowledge from previous tasks, we employ knowledge distillation with the model state
after each task serving as a teacher. For task t > 1, we maintain fθt−1

, the model parameters after
training on task t− 1.

The distillation loss is computed as:

LKD = τ2 · KL
(
σ

(
fθ(x)

τ

)∥∥∥σ(
fθt−1

(x)

τ

))
(5)

where σ denotes the softmax function and τ = 2.0 is the temperature parameter. The temperature
scaling softens the probability distributions, allowing the model to learn from the relative relation-
ships between class probabilities rather than just the hard predictions.

3.2.3 TASK-AWARE LEARNING RATE SCHEDULING

We employ a task-dependent learning rate strategy that accounts for the increasing difficulty of
preserving previous knowledge as more tasks are learned:

ηt =

{
ηinit if t = 1

ηinit/2 if t > 1
(6)
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where ηinit = 0.1 is the initial learning rate. Within each task, we apply cosine annealing:

ηt(e) = ηmin +
1

2
(ηt − ηmin)

(
1 + cos

(
πe

Et

))
(7)

where e is the current epoch, Et is the total number of epochs for task t (35 for the first task, 30 for
subsequent tasks), and ηmin = 0.0005 is the minimum learning rate.

3.3 TRAINING PROCEDURE

The training objective combines three components: current task loss, replay loss from memory
buffer, and knowledge distillation:

L =

{
Lcurr
CE if t = 1

(1− α)Lcurr
CE + αLreplay + λKDLKD if t > 1

(8)

where Lcurr
CE is the cross-entropy loss on current task data, Lreplay is the cross-entropy loss on

memory buffer samples, α controls the balance between current and replay data, and λKD = 0.3
weights the distillation loss.

The replay weight α is set adaptively:

α =

{
0.5 if t ≤ 3

0.6 if t > 3
(9)

This increases the emphasis on replay for later tasks when preserving previous knowledge becomes
more critical.

We apply gradient clipping to ensure stable optimization:

∇θL ← clip(∇θL, ∥ · ∥2 ≤ 1.0) (10)

3.4 IMPLEMENTATION DETAILS

We implement SOPRANO using ResNet-18 as the backbone architecture for all experiments. The
model is trained using SGD optimizer with momentum 0.9 and weight decay 5×10−4. For CIFAR-
100, we apply standard data augmentation including random crops and horizontal flips with normal-
ization using dataset statistics. The memory buffer implementation uses CPU storage to avoid GPU
memory constraints, with efficient batch transfer to GPU during training. Task boundaries are as-
sumed to be known (task-incremental setting), though the method can be extended to task-agnostic
scenarios through task inference mechanisms. The approach prioritizes practical effectiveness and
computational efficiency, achieving competitive performance while maintaining simplicity in imple-
mentation. The fixed hyperparameters were selected through preliminary experiments and remain
constant across all datasets and task configurations.

3.5 EXPERIMENTAL SETUP

Datasets and Protocols: We evaluate on standard benchmarks with multiple task configurations:

• CIFAR-100: split into 5 tasks (20 classes/task), 10 tasks (10 classes/task), and 20 tasks (5
classes/task).

• CIFAR-10: split into 5 tasks (2 classes/task).

These configurations probe complementary aspects of continual learning: fewer tasks with more
classes stress inter-class discrimination; more tasks with fewer classes emphasize long-term reten-
tion.

Baselines: We compare against representative replay and regularization methods plus a naive refer-
ence:

5
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Algorithm 1 SOPRANO Training Procedure

Require: Tasks T = {T1, ..., TN}, Model fθ, Buffer capacity Bmax = 4000
1: Initialize memory bufferM← ∅
2: for t = 1 to N do
3: Set learning rate ηt and epochs Et based on task index
4: Initialize cosine annealing scheduler with ηt and Et

5: if t > 1 then
6: Store teacher model fθt−1 ← fθ
7: Set replay weight α based on task index
8: end if
9: for epoch e = 1 to Et do

10: for batch (x, y) ∼ Dt do
11: Compute current task loss Lcurr

CE = CE(fθ(x), y)
12: Initialize L ← Lcurr

CE
13: if t > 1 and |M| > 0 then
14: Sample memory batch (x̃, ỹ) ∼M
15: Compute Lreplay = CE(fθ(x̃), ỹ)
16: Update L ← (1− α)Lcurr

CE + αLreplay

17: Compute LKD using teacher model fθt−1

18: Update L ← L+ λKD · LKD

19: end if
20: Compute gradients g ← ∇θL
21: Clip gradients: g ← clip(g, 1.0)
22: Update parameters: θ ← θ − ηt(e) · g
23: end for
24: Step scheduler to update ηt(e)
25: end for
26: Update memory bufferMt with samples from Dt

27: Maintain per-task allocation constraints
28: end for
29: return Trained model fθ

• Replay: DER Buzzega et al. (2020), DER++ Buzzega et al. (2020), SER (Strong Experi-
ence Replay), ER-ACE Caccia et al. (2021).

• Regularization: EWC Kirkpatrick et al. (2017).

• Naive: standard SGD without continual-learning strategies.

Architecture: Following standard practice, we use a ResNet-18 adapted for 32×32 images (reduced
initial stride). All methods share the same backbone for fairness.

Hyperparameters: Unless otherwise stated, replay methods use a fixed buffer size Bmax=2000.
We train with SGD (initial learning rate η0=0.1, momentum 0.9, weight decay 5×10−4). The first
task is trained for 35 epochs and subsequent tasks for 30 epochs. All results report mean ± std over
3 random seeds with different task orders. For fairness, the same optimizer and schedule are used
across baselines unless noted.

Evaluation Metrics:

• Average Accuracy: AN = 1
N

∑N
i=1 aN,i, where at,i is accuracy on task i after learning

task t.

• Average Forgetting: FN = 1
N−1

∑N−1
i=1 maxt∈{i,...,N−1}

(
at,i − aN,i

)
.

3.6 MAIN RESULTS

Table 1 presents comprehensive results across all configurations. On CIFAR-100-5, SOPRANO
reaches 56.4% average accuracy, versus 17.2% (DER) and 17.1% (DER++), i.e., about 3.3× higher
than replay baselines.
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Table 1: Performance comparison on CIFAR-100 and CIFAR-10 benchmarks. Mean ± std over 3
seeds.

Method CIFAR-100-5 CIFAR-100-10 CIFAR-100-20 CIFAR-10-5
Acc.↑ Fgt.↓ Acc.↑ Fgt.↓ Acc.↑ Fgt.↓ Acc.↑ Fgt.↓

SOPRANO 56.4±0.6 7.6±0.2 46.7±0.5 8.9±0.7 33.8±0.6 30.3±1.0 58.5±1.1 3.9±0.6

DER 17.2±0.3 79.1±0.4 8.9±0.1 81.3±1.1 4.6±0.1 84.5±1.4 19.5±0.1 93.0±0.6
DER++ 17.1±0.2 79.2±0.3 8.9±0.0 80.4±1.6 4.6±0.1 86.4±0.4 19.4±0.1 91.9±1.5
SER 14.5±0.1 57.7±2.9 7.2±0.4 53.3±4.0 4.0±0.1 61.4±0.9 18.8±0.3 87.2±1.4
ER-ACE 16.6±0.2 73.0±1.5 8.7±0.1 74.5±2.4 4.4±0.1 78.2±0.1 19.4±0.0 93.9±0.6
EWC 10.8±7.0 68.7±1.2 6.0±3.5 53.9±24.8 3.1±1.5 77.6±3.3 18.9±0.6 91.0±2.0
Naive 15.1±0.2 70.3±0.1 8.2±0.4 71.8±1.0 3.9±0.2 76.5±0.6 18.0±0.6 90.4±1.9

Average forgetting highlights the retention benefit: on CIFAR-100-5, SOPRANO achieves 7.6%
forgetting vs. 79.1% for DER (a 71.5-point reduction, ≈90% relative). Similar gaps appear across
all benchmarks.

3.7 COMPONENT ABLATION ON CIFAR-100-5

Table 2 reports a component ablation of SOPRANO on CIFAR-100-5. Removing either the distil-
lation or the memory balancing component degrades performance: accuracy drops from 56.2% to
48.5–50.9%, while forgetting rises from 7.8% to 15.3–21.1%. Replay alone (Only Replay) under-
performs the full method by −7.7 points in accuracy and increases forgetting by +7.5 points.

Table 2: Ablation on CIFAR-100-5.

Configuration Accuracy (%) Forgetting (%)

Full SOPRANO 56.2 7.8
No Distillation 48.5 15.3
No Balancing 50.9 21.1
Only Replay 48.5 15.3

3.8 CROSS-METHOD COMPARISON ACROSS DATASETS

Figure 1 compares average accuracy across methods for the four benchmarks (CIFAR-100 with
5/10/20 tasks, CIFAR-10-5); Fig. 2 reports forgetting. Across all settings, SOPRANO outperforms
replay baselines (DER/DER++) and regularization-based methods (EWC) by large margins in both
accuracy and forgetting. Numerical means and standard deviations appear in Table 1.

4 ANALYSIS AND DISCUSSION

4.1 WHY DOES SOPRANO SUCCEED?

The success of SOPRANO arises from addressing key limitations in existing approaches through
principled design choices, corroborated by ablation and cross-dataset comparisons.

Balanced Representation. Replay methods can be biased toward over-represented classes or tasks,
amplifying forgetting elsewhere. On CIFAR-100-5 (Table 2), removing balanced memory reduces
accuracy from 56.2% to 50.9% and increases forgetting from 7.8% to 21.1%.

Adaptive Optimization. Static regularization strengths can be brittle across tasks of varying dif-
ficulty. With distillation enabled, SOPRANO improves the stability–plasticity trade-off; ablating
distillation yields 48.5% accuracy and 15.3% forgetting on CIFAR-100-5.

Synergistic Integration. Neither replay alone nor single-component variants match the full method.
Only Replay attains 48.5% / 15.3% (acc./fgt.), whereas the full system reaches 56.2% / 7.8%, indi-
cating complementary gains from combining balanced memory and distillation.
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Figure 1: Average accuracy across datasets and methods.

Figure 2: Average forgetting across datasets and methods. Error bars indicate standard deviations
where available.

4.2 COMPUTATIONAL CONSIDERATIONS

All methods share a ResNet-18 backbone and, unless stated otherwise, a fixed replay buffer
B=2000. Balanced sampling introduces modest indexing/selection overhead per batch; distilla-
tion adds negligible cost (task-wise temperature computed once per task); progressive scheduling
incurs no extra per-step computation. Memory scales linearly with buffer size as in standard replay.
Given the improvements shown in Table 1, the accuracy/forgetting trade-off is favorable for practical
deployment.

4.3 LIMITATIONS AND FUTURE DIRECTIONS

Task Boundaries. Experiments follow task-incremental protocols with known boundaries; extend-
ing to boundary-free or online settings is a natural next step.

Scope and Scale. We evaluate on CIFAR-100/10 with up to 20 tasks. Scaling to larger datasets and
longer sequences may require revisiting buffer management and scheduling.
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Deeper Dynamics. This work centers on average accuracy and average forgetting across seeds.
Future work will broaden the analysis with taskwise evolution and forward/backward transfer.

5 CONCLUSION

We introduced SOPRANO, a continual-learning framework that integrates balanced memory man-
agement with adaptive knowledge distillation and progressive optimization. Across four bench-
marks (CIFAR-100 with 5/10/20 tasks, CIFAR-10-5), SOPRANO delivers strong results: 56.4±0.6%
(CIFAR-100-5), 46.7±0.5% (CIFAR-100-10), 33.8±0.6% (CIFAR-100-20), and 58.5±1.1%
(CIFAR-10-5). On CIFAR-100-5, this is about 3.3× the accuracy of DER/DER++ (17.2/17.1%),
and average forgetting drops from 79.1% (DER) to 7.6% (SOPRANO), a 71.5-point (90%) re-
duction. Ablations indicate that balanced memory and distillation both contribute substantially
(56.2%→48.5–50.9% accuracy; 7.8%→15.3–21.1% forgetting), with complementary effects.

Overall, SOPRANO advances robustness in continual learning while preserving practicality. The
principles of balanced representation and adaptive optimization offer a foundation for scaling to
richer settings and developing adaptive, lifelong learning systems.
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