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ABSTRACT

Contextual dueling bandit is used to model the bandit problems, where a learner’s
goal is to find the best arm for a given context using observed noisy human
preference feedback over the selected arms for the past contexts. However, existing
algorithms assume the reward function is linear, which can be complex and
non-linear in many real-life applications like online recommendations or ranking
web search results. To overcome this challenge, we use a neural network to estimate
the reward function using preference feedback for the previously selected arms.
We propose upper confidence bound- and Thompson sampling-based algorithms
with sub-linear regret guarantees that efficiently select arms in each round. We also
extend our theoretical results to contextual bandit problems with binary feedback,
which is in itself a non-trivial contribution. Experimental results on the problem
instances derived from synthetic datasets corroborate our theoretical results.

1 INTRODUCTION

Contextual dueling bandits (or preference-based bandits) (Saha, 2021; Bengs et al., 2022; Li et al.,
2024) is a sequential decision-making framework that is widely used to model the contextual bandit
problems (Li et al., 2010; Chu et al., 2011; Krause & Ong, 2011; Zhou et al., 2020; Zhang et al.,
2021) in which a learner’s goal is to find an optimal arm by sequentially selecting a pair of arms
(also refers as a duel) and then observing noisy human preference feedback (i.e., one arm is preferred
over another) for the selected arms. Contextual dueling bandits has many real-life applications, such
as online recommendation, ranking web search, fine-tuning large language models, and rating two
restaurants or movies, especially in the applications where it is easier to observe human preference
between two options (arms) than knowing the absolute reward for the selected option (arm). The
preference feedback between two arms1 is often assumed to follow the Bradley-Terry-Luce (BTL)
model (Hunter, 2004; Luce, 2005; Saha, 2021; Bengs et al., 2022; Li et al., 2024) in which the
probability of preferring an arm is proportional to the exponential of its reward.

Since the number of contexts (e.g., users of online platforms) and arms (e.g., movies/search results
to recommend) can be very large (or infinite), the reward of an arm is assumed to be parameterized
by an unknown function, e.g., a linear function (Saha, 2021; Bengs et al., 2022; Li et al., 2024).
However, the reward function may not always be linear in practice. To overcome this challenge,
this paper parameterizes the reward function via a non-linear function, which needs to be estimated
using the available preference feedback for selected arms. To achieve this, we can estimate the
non-linear function by using either a Gaussian processes (Williams & Rasmussen, 2006; Srinivas
et al., 2010; Chowdhury & Gopalan, 2017) or a neural network (Zhou et al., 2020; Zhang et al., 2021).
However, due to the limited expressive power of the Gaussian processes, it fails when optimizing

∗Equal contribution and corresponding authors.
1For more than two arms, the preferences are assumed to follow the Plackett-Luce model (Saha, 2021;

Soufiani et al., 2014).
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highly complex functions. In contrast, neural networks (NNs) possess strong expressive power and
can model highly complex functions (Dai et al., 2023; Lin et al., 2023).

In this paper, we first introduce the problem setting of neural dueling bandits, in which we use a
neural network to model the unknown reward function in contextual dueling bandits. As compared to
the existing work on neural contextual bandits (Zhou et al., 2020; Zhang et al., 2021), we have to use
cross-entropy loss as an objective function for training the neural network to estimate the unknown
non-linear reward function due to the preference feedback (i.e., 0/1). We next propose two neural
dueling bandit algorithms based on, respectively, upper confidence bound (UCB) (Auer et al., 2002;
Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Li et al., 2017; Zhou et al., 2020) and
Thompson sampling (TS) (Krause & Ong, 2011; Agrawal & Goyal, 2013a;b; Chowdhury & Gopalan,
2017; Zhang et al., 2021) (more details are in Section 3.2). Note that the existing contextual dueling
bandit works (Saha, 2021; Bengs et al., 2022; Li et al., 2024) use different ways to select the pair of
arms (more details are given in Appendix C.2), hence leading to different arm-selection strategies as
compared to our work. Due to the differences in arm-selection strategy and reward function (which is
non-linear and estimated using NNs), our regret analysis is also completely different.

Furthermore, existing neural contextual bandit works use root mean square error (RMSE) as an
objective function for training the neural networks due to the assumption of real-valued reward or
feedback. Therefore, their key results, especially the confidence ellipsoid, only hold for RMSE and
can not be straightforwardly extended to our setting, which uses cross-entropy loss. Nevertheless,
we derive an upper bound on the estimation error (i.e., represented as a confidence ellipsoid) of the
difference between the reward values of any pair of arms (Theorem 1) predicted by the trained neural
network, which is valid as long as the neural network is sufficiently wide. This result provides a
theoretical assurance of the quality of our trained neural network using the preference feedback to
minimize the cross-entropy loss. Based on the theoretical guarantee on the estimation error, we derive
upper bounds on the cumulative regret of both of our algorithms (Theorem 2 and Theorem 3), which
are sub-linear under some mild conditions. Our regret upper bounds lead to several interesting and
novel insights (more details are given in Section 3.3).

As a special case, we extend our results to neural contextual bandit problems with binary feedback
in Appendix D, which is itself of independent interest. Interestingly, our theoretical results also
provide novel theoretical insights regarding the reinforcement learning with human feedback (RLHF)
algorithm (Appendix E). Specifically, our Theorem 1 naturally provides a theoretical guarantee on
the quality of the learned reward model in terms of its accuracy in estimating the reward differences
between pairs of responses. Finally, we empirically validate the different performance aspects of our
proposed algorithms in Section 5 using problem instances derived from synthetic datasets.

2 PROBLEM SETTING

Contextual dueling bandits. We consider a contextual dueling bandit problem in which a learner
selects two arms (also refers as a duel) for a given context and observes preference feedback over
selected arms. The learner’s goal is to find the best arm for each context. Our problem differs from
standard contextual bandits in which a learner selects a single arm and observes an absolute numerical
reward for that arm. Let C ⊂ Rdc be the context set and A ⊂ Rda be finite arm set, where dc ≥ 1
and da ≥ 1. At the beginning of round t, the environment generates a context ct ∈ C and the learner
selects two arms (i.e., at,1, and at,2) from the finite arm set A. After selecting two arms, the learner
observes stochastic preference feedback yt for the selected arms, where yt = 1 implies the arm at,1
is preferred over arm at,2 and yt = 0 otherwise. We assume that the preference feedback depends
on an unknown non-linear reward function f : C × A → R. For brevity, we denote the set of all
context-arm feature vectors in the round t by Xt. We also use X to denote the set of all feature
vectors: Xt ⊂ X ,∀t and xt,a to represent the context-arm feature vector for context ct and an arm a.

Stochastic preference model. We assume the preference has a Bernoulli distribution that follows
the Bradley-Terry-Luce (BTL) model (Hunter, 2004; Luce, 2005), which is commonly used in the
dueling bandits (Saha, 2021; Bengs et al., 2022; Li et al., 2024). Under the BTL preference model,
the probability that the first selected arm (xt,1) is preferred over the second selected arm (xt,2) for
the the given context ct and latent reward function f is given by

P {xt,1 ≻ xt,2} = P {yt = 1|xt,1, xt,2} =
exp (f(xt,1))

exp (f(xt,1)) + exp (f(xt,2))
= µ (f(xt,1)− f(xt,2)) .
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where xt,1 ≻ xt,2 denotes that xt,1 is preferred over xt,2, µ(x) = 1/(1+e−x) is the sigmoid function
and f(xt,i) is the latent reward of the i-th selected arm. Our results hold for other preference models
like the Thurstone-Mosteller model and Exponential Noise as long as the stochastic transitivity holds
(Bengs et al., 2022). To generalize our results across preference models, we make the following
assumptions on function µ (also known as a link function (Li et al., 2017; Bengs et al., 2022)):

Assumption 1. • κµ
.
= infx,x′∈X µ̇(f(x)− f(x′)) > 0 for all pairs of context-arm.

• The link function µ : R → [0, 1] is continuously differentiable and Lipschitz with constant
Lµ. For sigmoid function, Lµ ≤ 1/4.

Performance measure. After selecting two arms, denoted by xt,1 and xt,2, in round t, the
learner incurs an instantaneous regret. There are two common notions of instantaneous regret
in the dueling bandits setting (Saha, 2021; Bengs et al., 2022; Li et al., 2024), i.e., average
instantaneous regret: rat

.
= f(x⋆

t ) − (f(xt,1) + f(xt,2)) /2, and weak instantaneous regret:
rwt

.
= f(x⋆

t ) − max {f(xt,1), f(xt,2)}, where x⋆
t = argmaxx∈Xt

f(x) denotes the best arm for a
given context that maximizes the value of the underlying reward function. After observing preference
feedback for T pairs of arms, the cumulative regret (or regret, in short) of a sequential policy is
given by Rτ

T =
∑T

t=1 r
τ
t , where τ

.
= {a,w}. Note that Rw

T ≤ Ra
T . Any good policy should have

sub-linear regret, i.e., limT→∞ Rτ
T /T = 0. A policy with a sub-linear regret implies that the policy

will eventually find the best arm and recommend only the best arm in the duel for the given contexts.

3 NEURAL DUELING BANDITS

Having a good reward function estimator is the key for any contextual bandit algorithm to achieve
good performance, i.e., smaller regret. As the underlying reward function is complex and non-linear,
we use fully connected neural networks (Zhou et al., 2020; Zhang et al., 2021) to estimate the reward
function only using the preference feedback. Using this estimated reward function, we propose two
algorithms based on the UCB and TS with sub-linear regret guarantees.

3.1 REWARD FUNCTION ESTIMATION USING NEURAL NETWORK

To estimate the unknown reward function f , we use a fully connected neural network (NN) with depth
L ≥ 2, the width of hidden layer m, and ReLU activations as done in Zhou et al. (2020) and Zhang
et al. (2021). Let h(x; θ) represent the output of a full-connected neural network with parameters θ
for context-arm feature vector x, which is defined as follows:

h(x; θ) = WLReLU (WL−1ReLU (· · ·ReLU (W 1x))) ,

where ReLU(x)
.
= max{x, 0}, W 1 ∈ Rm×d, W l ∈ Rm×m for 2 ≤ l < L, WL ∈ Rm×1. We

denote the parameters of NN by θ = (vec (W 1) ; · · · vec (WL)), where vec (A) converts a M ×N
matrix A into a MN -dimensional vector. We use m to denote the width of every layer of the NN, use
p to represent the total number of NN parameters, i.e., p = dm+m2(L− 1) +m, and use g(x; θ) to
denote the gradient of h(x; θ) with respect to θ.

The arms selected by the learner for context received in round s is denoted by xs,1, xs,2 ∈ Xs and the
observed stochastic preference feedback is denoted by ys = 1(xs,1 ≻ xs,2), which is equal to 1 if
the arm xs,1 is preferred over the arm xs,2 and 0 otherwise. At the beginning of round t, we use the
current history of observations {(xs,1, xs,2, ys)}t−1

s=1 to train the neural network (NN) using gradient
descent to minimize the following loss function:

Lt(θ) = − 1

m

t−1∑
s=1

[
logµ

(
(−1)1−ys [h(xs,1; θ)− h(xs,2; θ)]

) ]
+

1

2
λ ∥θ − θ0∥22 , (1)

Here θ0 represents the initial parameters of the NN, and we initialize θ0 following the standard
practice of neural bandits (Zhou et al., 2020; Zhang et al., 2021) (refer to Algorithm 1 in Zhang et al.
(2021) for details). Here, minimizing the first term in the loss function (i.e., the term involving the
summation from t − 1 terms) corresponds to the maximum log likelihood estimate (MLE) of the
parameters θ. Next, we develop algorithms that use the trained NN with parameter θt to select the
best arms (duel) for each context.
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3.2 NEURAL DUELING BANDIT ALGORITHMS

With the trained NN as an estimate for the unknown reward function, the learner has to decide
which two arms (or duel) must be selected for the subsequent contexts. We use UCB- and TS-based
algorithms that handle the exploration-exploitation trade-off efficiently.

UCB-based algorithm. Using upper confidence bound for dealing with the exploration-exploitation
trade-off is common in many sequential decision-making problems (Bengs et al., 2022; Zhou et al.,
2020; Auer et al., 2002). We propose a UCB-based algorithm named NDB-UCB, which works as
follows: At the beginning of the round t, the algorithm trains the NN using available observations.
After receiving the context, it selects the first arm greedily (i.e., by maximizing the output of the
trained NN with parameter θt) as follows:

xt,1 = argmax
x∈Xt

h(x; θt). (2)

Next, the second arm xt,2 is selected optimistically, i.e., by maximizing the UCB value:

NDB-UCB Algorithm for Neural Dueling Bandit based on Upper Confidence Bound

1:Tuning parameters: δ ∈ (0, 1), λ > 0, and m > 0
2: for t = 1, . . . , T do
3: Train the NN using {(xs,1, xs,2, ys)}t−1

s=1 by minimizing the loss function defined in Eq. (1)
4: Receive a context and Xt denotes the corresponding context-arm feature vectors
5: Select xt,1 = argmaxx∈Xt

h(x; θt) as given in Eq. (2))
6: Select xt,2 = argmaxx∈Xt

[h(x; θt) + νTσt−1(x, xt,1)] (as given in Eq. (3))
7: Observe preference feedback yt = 1{xt,1≻xt,2}
8: end for

xt,2 = argmax
x∈Xt

[h(x; θt) + νTσt−1(x, xt,1)] , (3)

where νT
.
= (βT +B

√
λ/κµ +1)

√
κµ/λ in which βT

.
= 1

κµ

√
d̃+ 2 log(1/δ) and d̃ is the effective

dimension. We define the effective dimension in Section 3.3 (see Eq. (4)). We define

σ2
t−1(x1, x2)

.
=

λ

κµ

∥∥∥∥ 1√
m
(φ(x1)− φ(x2))

∥∥∥∥2
V −1
t−1

,

where Vt
.
=
∑t

s=1 φ
′(xs)φ

′(xs)
⊤ 1

m + λ
κµ

I. Here, φ′(xs)
.
= φ(xs,1) − φ(xs,2) = g(xs,1; θ0) −

g(xs,2; θ0) and g(x; θ0)/
√
m is used as the random features approximation for context-arm feature

vector x. Intuitively, after the first arm xt,1 is selected, a larger σ2
t−1(x, xt,1) indicates that x is very

different from xt,1 given the information of the previously selected pairs of arms. Hence, the second
term in Eq. (3) encourages the second selected arm to be different from the first arm.

TS-based algorithm. Thompson sampling (Li et al., 2024; Agrawal & Goyal, 2013b) selects an
arm according to its probability of being the best. Many works (Li et al., 2024; Chowdhury &
Gopalan, 2017; Agrawal & Goyal, 2013b; Chapelle & Li, 2011) have shown that TS is empirically
superior than to its counterpart UCB-based bandit algorithms. Therefore, in addition, we also propose
another algorithm based on TS named NDB-TS, which works similarly to NDB-UCB except that the
second arm xt,2 is selected differently. To select the second arm xt,2, for every arm x ∈ Xt, it firstly
samples a reward rt(x) ∼ N

(
h(x; θt)− h(xt,1; θt), ν

2
Tσ

2
t−1(x, xt,1)

)
and then selects the second

arm as xt,2 = argmaxx∈Xt
rt(x).

3.3 REGRET ANALYSIS

Let K denote the finite number of available arms in each round, H denote the NTK matrix for all
T ×K context-arm feature vectors in the T rounds, and h =

(
f(x1

1), . . . , f(x
K
T )
)
. The NTK matrix

H definition is adapted to our setting from Definition 4.1 of Zhou et al. (2020). We denote the j-th
element of the vector x by xj . We now introduce the assumptions needed for our regret analysis, all
of which are standard assumptions in neural bandits Zhou et al. (2020); Zhang et al. (2021).
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Assumption 2. Without loss of generality, we assume that

• the reward function is bounded: |f(x)| ≤ 1,∀x ∈ Xt, t ∈ [T ],
• there exists λ0 > 0 s.t. H ⪰ λ0I , and
• all context-arm feature vectors satisfy ∥x∥2 = 1 and xj = xj+d/2, ∀x ∈ Xt,∀t ∈ [T ].

The last assumption in Assumption 2 above, together with the way we initialize θ0 (i.e., following
standard practice in neural bandits Zhou et al. (2020); Zhang et al. (2021)), ensures that h(x; θ0) =
0,∀x ∈ Xt,∀t ∈ [T ]. The assumption of xj = xj+d/2 is a mild assumption and commonly used
in the neural bandits literature Zhou et al. (2020); Zhang et al. (2021). This assumption is just for
convenience in regret analysis: for any context x, ||x|| = 1, we can always construct a new context
x′ = (x⊤, x⊤)⊤/

√
2 that satisfies this assumption Zhou et al. (2020).

Let H′ .
=
∑T

s=1

∑
(i,j)∈CK

2
zij(s)z

i
j(s)

⊤ 1
m , in which zij(s) = φ(xs,i) − φ(xs,j) and CK

2 denotes
all pairwise combinations of K arms. We now define the effective dimension as follows:

d̃ = log det
(κµ

λ
H′ + I

)
. (4)

Compared to the previous works on neural bandits, our definition of d̃ features extra dependencies
on κµ. Moreover, our H′ contains T × K × (K − 1) contexts, which is more than the T × K

contexts of Zhou et al. (2020) and Zhang et al. (2021).2 Hence, our d̃ is expected to be larger than
their standard effective dimension. It follows from the Determinant-Trace Inequality (Lemma 10 of
Abbasi-Yadkori et al. (2011)), the determinant of a covariance matrix in directly proportional to the
number of feature vectors. In our setting, the effective dimension d̃ is log det

(κµ

λ H′ + I
)

and H′

contains T ×K × (K − 1) contexts (i.e., feature vectors), which is more than the T ×K contexts
in the standard neural bandits. Therefore, the effective dimension d̃ in the neural dueling bandits is
larger than that of the standard neural bandits.

Note that placing an assumption on d̃ above is analogous to the assumption on the eigenvalue of the
matrix Mt in the work on linear dueling bandits Bengs et al. (2022). For example, in order for our
final regret bound to be sub-linear, we only need to assume that d̃ = õ(

√
T ), which is analogous to

the assumption from Bengs et al. (2022):
∑T

t=τ+1 λ
−1/2
min (Mt) ≤ c

√
T .

We use the above fact to prove our following result, which is equivalent to the confidence ellipsoid
results used in the existing bandit algorithms (Li et al., 2017).

Theorem 1. Let δ ∈ (0, 1), ε′m,t
.
= C2m

−1/6
√
logmL3

(
t
λ

)4/3
for some absolute constant C2 > 0.

As long as m ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ,
| [f(x)− f(x′)]− [h(x; θt)− h(x′; θt)] | ≤ νTσt−1(x, x

′) + 2ε′m,t,

for all x, x′ ∈ Xt, t ∈ [T ].

The detailed proof of Theorem 1 and all other missing proofs are given in the Appendix. Note that
as long as the width m of the NN is large enough (i.e., if the conditions on m in (8) are satisfied),
we have that ε′m,t = O(1/T ). Theorem 1 ensures that when using our trained NN h to estimate the
latent reward function f , the estimation error of the reward difference between any pair of arms is
upper-bounded. Of note, it is reasonable that our confidence ellipsoid in Theorem 1 is in terms of the
difference between reward values, because the only observations we receive are pairwise comparisons.
Now, we state the regret upper bounds of our proposed algorithms.

Theorem 2 (NDB-UCB). Let λ > κµ, B be a constant such that
√
2h⊤H−1h ≤ B, and c0 > 0

be an absolute constant such that 1
m ∥φ(x)− φ(x′)∥22 ≤ c0,∀x, x′ ∈ Xt, t ∈ [T ]. For m ≥

poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ, we have

RT ≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
T2c0d̃+ 1 = Õ

((√
d̃

κµ
+B

√
λ

κµ

)√
T d̃

)
.

2 The effective dimension in Zhou et al. (2020) and Zhang et al. (2021) is defined using H: d̃′ =

log det (H/λ+ I) / log(1+TK/λ). However, it is of the same order (up to log factors) as log det
(
H̃/λ+ I

)
,

with H̃
.
=

∑T
s=1

∑K
i=1 g(xs,i; θ0)g(xs,i; θ0)

⊤/m (see Lemma B.7 of Zhang et al. (2021)).
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The detailed requirements on the width m of the NN are given by Eq. (8) in Appendix A.
Theorem 3 (NDB-TS). Let c1 and c2 be two constants. Under the same conditions as those in
Theorem 2, then with probability of at least 1− δ, we have

RT = Õ

((√
d̃

κµ
+B

√
λ

κµ

)√
T d̃

)
.

Note that in terms of asymptotic dependencies (ignoring the log factors), our UCB- and TS- algorithms
have the same growth rates. The upper regret bounds also hold for weak cumulative regret as it is
upper-bounded by average cumulative regret.

When we assume that the effective dimension d̃ = õ(
√
T ) (which is analogous to the assumption on

the minimum eigenvalue from Bengs et al. (2022)), then the regret upper bounds for both NDB-UCB
and NDB-TS are sub-linear. The dependence of our regret bounds on 1

κµ
and Lµ (i.e., the parameters

of the link function defined in Assumption 1) are consistent with the previous works on generalized
linear bandits (Li et al., 2017) and linear dueling bandits Bengs et al. (2022).

Compared with the regret upper bounds of NeuralUCB Zhou et al. (2020) and NeuralTS Zhang
et al. (2021), the effective dimension d̃ in Theorem 2 and Theorem 3 are expected to be larger than
the effective dimension d̃′ from Zhou et al. (2020); Zhang et al. (2021) because our d̃ results from
the summation of a significantly larger number of contexts. Therefore, our regret upper bounds
(Theorem 2 and Theorem 3) are expected to be worse than that of Zhou et al. (2020); Zhang et al.
(2021): Õ(d̃′

√
T ). This downside can be attributed to the difficulty of our neural dueling bandits

setting, in which we can only access preference feedback.

3.4 PROOF SKETCH

In this section, we give a brief proof sketch of our regret analysis in Section 3.3.

3.4.1 SKETCH OF PROOF FOR THEOREM 1

We start by presenting an outline for the proof of our Theorem 1. To begin with, by applying the
theory of the NTK (Jacot et al., 2018) to our NN for reward estimation (Section 3.1), we show that as
long as the NN is wide enough, its output can be approximated by a linear function (see Appendix A.1
for details). More specifically, for a pair of arms x and x′, the difference between their predicted
latent reward values h(x; θt)− h(x′; θt) can be approximated by the difference between the linear
approximations of the NN:

Lemma 1. Let ε′m,t ≜ C2m
−1/6

√
logmL3

(
t
λ

)4/3
where C2 > 0 is an absolute constant. Then

|⟨φ(x)− φ(x′), θt − θ0⟩ − (h(x; θt)− h(x′; θt))| ≤ 2ε′m,t, ∀t ∈ [T ], x, x′ ∈ Xt.

Of note, the approximation error ε′m,t becomes smaller as the width m of the NN is increased.

Proof of the Confidence Ellipsoid. Next, we derive the confidence ellipsoid for our algorithms,
which is formalized by Lemma 6 (see its detailed proof in Appendix A.2). Lemma 6 allows us to
derive the following inequality, which shows that for a pair of arms x and x′, the difference between
their latent reward values f(x)−f(x′) can be approximated by the difference between their predicted
values by the linearized NN:

|f(x)−f(x′)−⟨φ(x)−φ(x′), θt−θ0⟩| ≤
∥∥∥∥ 1√

m
(φ(x)− φ(x′))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
, (5)

Importantly, Eq. (5) guarantees that our trained NN with parameters θt (after linearization) is an
accurate approximation of the latent reward function f in terms of pairwise differences. This crucial
theoretical guarantee is achieved thanks to our carefully designed loss function Eq. (1). Specifically,
a key step in the proof of our confidence ellipsoid (i.e., Lemma 6) is the following equality:

1

m

t−1∑
s=1

(µ (h(xs,1; θt)− h(xs,2; θt))− ys) (g(xs,1; θt)− g(xs,2; θt)) + λ(θt − θ0) = 0, (6)
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which is achieved by obtaining the NN parameters θt by minimizing our loss function Eq. (1). This is,
in fact, analogous to using maximum likelihood to estimate the unknown vector θ in the linear reward
function in linear dueling bandits (Bengs et al., 2022) and linear bandits with binary feedback (Li
et al., 2017). In addition, another important step in the proof of Lemma 6 is the recognition that the
observation noise εt = yt − µ(f(xt,1)− f(xt,2)) is conditionally 1-sub-Gaussian (more details can
be found in the proof of Lemma 8 in Appendix A.2). After the proof of the confidence ellipsoid as
described above, we then combine Eq. (5) and Lemma 1 to derive an upper bound on the difference
between f(x)− f(x′) and h(x; θt)− h(x′; θt), which completes the proof of Theorem 1.

3.4.2 SKETCH OF PROOF FOR THEOREM 2 AND THEOREM 3

To obtain a regret upper bound for the NDB-UCB algorithm (i.e., to prove Theorem 2), we
firstly use Theorem 1 to derive an upper bound on the average instantaneous regret rat =
f(x⋆

t )− (f(xt,1) + f(xt,2)) /2 (see the detailed proof in Appendix A.3):

rat ≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
κµ

λ
σt−1(xt,1, xt,2) + 3ε′m,t. (7)

Our strategies to select the two arms xt,1 and xt,2 (i.e., Eq. (2) and Eq. (3)) are essential for
deriving the upper bound in Eq. (7). Subsequently, we follow similar steps to the analysis of the
kernelized bandit algorithms (e.g., GP-UCB (Srinivas et al., 2010)) to obtain an upper bound on∑T

t=1 σt−1(xt,1, xt,2) in terms of d̃. This then provides us with an upper bound on the average regret
Ra

T =
∑T

t=1 r
a
t (as well as the weak regret Rw

T since Rw
T ≤ Ra

T ) and hence completes the proof
of Theorem 2. The proof of Theorem 3 for the NDB-TS algorithm is also based on Theorem 1 and
largely follows from the analysis of the GP-TS algorithm (Chowdhury & Gopalan, 2017). However,
non-trivial modifications need to be made in order to incorporate our strategies to select the two
arms xt,1 and xt,2. The detailed regret analysis for Theorem 2 and Theorem 3 can be found in
Appendix A.3 and Appendix B, respectively.

4 FURTHER IMPLICATIONS OF OUR ALGORITHMS AND THEORY

Our results to learn the latent non-linear reward function using preference feedback is not only limited
to dueling bandits, but it can be adapted to other settings as discussed in the following sections.

4.1 NEURAL CONTEXTUAL BANDITS WITH BINARY FEEDBACK

In many real-world applications, the learner can only observe binary feedback, e.g., whether a user
clicks in an online recommendation system or whether a treatment is effective in clinical trials, and
these problems are commonly modeled as contextual GLM bandits (Filippi et al., 2010; Li et al., 2017;
Faury et al., 2020), which assume the probability of success (i.e., 1) is proportional to exponential of
its reward that is a linear function of action-context features. However, in many real-life applications,
the reward can be a non-linear function of action-context features, which can modeled using a
suitable neural network. We refer to this problem as neural contextual bandits with binary feedback.
Therefore, our results can be extended to the neural contextual bandit problem, where the learner
only receives binary feedback for the selected arms, which depends on the non-linear reward function.
This adaption is not straightforward as the learner selects only one arm and observes binary feedback
(success or failure) for the selected action. This difference leads to different arm selection strategies
as only one needs to be selected in neural contextual bandits, and different loss functions must be
optimized to train the neural network to estimate the unknown reward functions. The main challenge
is to derive the confidence ellipsoid result, which is a crucial component for proving the regret bounds.
While some ideas are common, the derivations differ due to the underlying differences in the problem
settings. We have given more details of the neural contextual bandit with binary feedback problem
and our regret bounds of algorithms proposed for this setting in Appendix D.

4.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Our algorithms and theoretical results can also provide insights on the celebrated reinforcement
learning with human feedback (RLHF) algorithm (Chaudhari et al., 2024), which has been the most
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widely used method for aligning large language models (LLMs). Firstly, our Theorem 1 provides
a theoretical guarantee on the quality of the learned reward model during RLHF. This is because
Theorem 1 serves as an upper bound on the estimation error of the estimated reward differences
between any pair of prompts. Secondly, our proposed algorithms can be used to improve the quality
of the human preference dataset for RLHF. That is when collecting the dataset for RLHF, we can let
the LLM generate a large number of responses, from which we can use our algorithms for neural
dueling bandits to select two responses (corresponding to two arms) to be shown to the user for
preference feedback. More details can be found in Appendix E.

5 EXPERIMENTS

To corroborate our theoretical results, we empirically demonstrate the performance of our proposed
algorithms on different synthetic reward functions. We adopt the following two synthetic functions
from earlier work on neural bandits (Zhou et al., 2020; Zhang et al., 2021; Dai et al., 2023): f(x) =
10(x⊤θ)2 (Square) and f(x) = cos(3x⊤θ) (Cosine). We repeat all our experiments 20 times and
show the average and weak cumulative regret with a 95% confidence interval (represented by the
vertical line on each curve) Due to space constraints, additional results are given in the Appendix C.

The details of our experiments are as follows: We use a d-dimensional space to generate the sample
features of each context-arm pair. We denote the context-arm feature vector for context ct and
arm a by xa

t , where xa
t =

(
x1
t,a, . . . , x

d
t,a

)
, ∀ t ≥ 1. The value of i-the element of xa

t vector
is sampled uniformly at random from (−1, 1). Note that the number of arms remains the same
across the rounds, i.e., K. We then select a d-dimensional vector θ by sampling uniformly at
random from (−1, 1)d. In all our experiments, the binary preference feedback about x1 being
preferred over x2 (or binary feedback in Appendix D) is sampled from a Bernoulli distribution
with parameter p = µ (f(x1)− f(x2))). In all our experiments, we use a NN with 2 hidden layers
with width 50, λ = 1.0, δ = 0.05, d = 5, K = 5, and fixed value of νT = ν = 1.0. For
having a fair comparison, we choose the value of ν after doing a hyperparameter search over set
{10.0, 5.0, 1.0, 0.1, 0.01, 0.001, 0.0} for linear baselines, i.e., LinDB-UCB and LinDB-TS. As shown
in Fig. 1, the average cumulative regret is minimum for ν = 1.0. Note that we did not perform any
hyperparameter search for NDB-UCB and NDB-TS, whose performance can be further improved by
doing the hyperparameter search.

(a) Square (UCB) (b) Square (TS) (c) Cosine (UCB) (d) Cosine (TS)

Figure 1: Average cumulative regret of LinDB-UCB and LinDB-TS vs. different values of ν for
Square reward function (i.e., 10(x⊤θ)2).

As supported by the neural tangent kernel (NTK) theory, we can substitute the initial gradient g(x; θ0)
for the original feature vector x as g(x; θ0) represents the random Fourier features for the NTK Jacot
et al. (2018). In this paper, we use the feature vectors g(x; θt) instead of g(x; θ0) and recompute all
g(x; θt) in each round for all past context-arm pairs. Additionally, compared to NTK theory, we have
designed our algorithm to be more practical by adhering to the common practices in neural bandits
Zhou et al. (2020); Zhang et al. (2021). Specifically, in the loss function for training our NN (as
defined in Eq. (1)), we replaced the theoretical regularization parameter 1

2mλ ∥θ − θ0∥22 (where m is
the width of the NN) with the simpler λ ∥θ∥22. Similarly, for the random features of the NTK, we
replaced the theoretical 1√

m
g(x; θt) with g(x; θt). We retrain the NN after every 20 rounds and set

the number of gradient steps to 50 in all our experiments.

Regret comparison with baselines. We compare regret (average/weak of our proposed algorithms
with three baselines: LinDB-UCB (adapted from (Saha, 2021)), LinDB-TS, and CoLSTIM (Bengs
et al., 2022). LinDB-UCB and LinDB-TS can be treated as variants of NDB-UCB and NDB-TS,
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respectively, in which a linear function approximates the reward function. As expected, NDB-UCB
and NDB-TS outperform all linear baselines as these algorithms cannot estimate the non-linear reward
function and hence incur linear regret. For a fair comparison, we used the best hyperparameters of
LinDB-UCB and LinDB-TS (see Fig. 1) for NDB-UCB and NDB-TS. We observe the same trend
for different non-linear reward functions (see Fig. 5 and Fig. 6 in Appendix C) and also for neural
contextual bandit with binary feedback (see Fig. 7 in Appendix D).

(a) Square (Average) (b) Square (Weak) (c) Cosine (Average) (d) Cosine (Weak)

Figure 2: Comparisons of cumulative regret (average and weak) of different dueling bandits algorithms
for non-linear reward functions: Square (10(x⊤θ)2) and Cosine (cos(3x⊤θ)).

Varying dimension and arms vs. regret Increasing the number of arms (K) and the dimension
of the context-arm feature vectors (d) makes the problem more difficult. To see how increasing
K and d affects the regret of our proposed algorithms, we vary the K = {5, 10, 15, 20, 25} and
d = {5, 10, 15, 20, 25} while keeping the other problem parameters constant. As expected, the regret
of NDB-UCB increases with increase in K and d as shown in Fig. 3. We also observe the same
behavior for NDB-TS as shown Fig. 4. All missing figures from this section are in the Appendix C.

(a) Varying K (Average) (b) Varying K (Weak) (c) Varying d (Average) (d) Varying d (Weak)

Figure 3: Cumulative regret (average and weak) of NDB-UCB vs. different number of arms (K) and
dimension of the context-arm feature vector (d) for Square reward function (i.e., 10(x⊤θ)2).

(a) Varying d (Average) (b) Varying d (Weak) (c) Varying K (Average) (d) Varying K (Weak)

Figure 4: Cumulative regret (average and weak) of NDB-TS vs. different number of arms (K) and
dimension of the context-arm feature vector (d) for Square reward function (i.e., 10(x⊤θ)2).

Practical challenges. Applying algorithms in scenarios requiring fast online interactions can be
challenging for two reasons: updating the neural network (NN) and the arm-selection strategy. To
address the first challenge, we can use a batched version of our algorithm, where the NN is updated
only after a fixed interval. To address the second challenge, we can use an εt-greedy method for
selecting arms when computing optimistic values using UCB or TS is not computationally feasible.

Computational resources used for all experiments. All the experiments are run on a server with
AMD EPYC 7543 32-Core Processor, 256GB RAM, and 8 GeForce RTX 3080.

9
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6 RELATED WORK

We now review the relevant work, especially in dueling bandits and contextual bandits, to our problem.

Finite-Armed Dueling Bandits. Learning from pairwise or K-wise comparisons has been
thoroughly explored in the literature. In the context of finite-armed dueling bandits, the learner
only observes a pairwise preference between two selected arms, and the goal is to find the best arm
(Yue & Joachims, 2009; 2011; Yue et al., 2012). In dueling bandit literature, different criteria (e.g.,
Borda winner, Condorcet winner, Copeland winner, or von Neumann winner) are used to find the best
arm while focusing on minimizing the regret only using preference feedback (Zoghi et al., 2014b;
Ailon et al., 2014; Zoghi et al., 2014a; Komiyama et al., 2015; Gajane et al., 2015; Saha & Gopalan,
2018; 2019a;b; Zhu et al., 2023). We refer the readers to (Bengs et al., 2021) for a detailed survey on
various works covering different settings of dueling bandits.

Contextual Bandits. Many real-life applications in online recommendation, advertising, web search,
and e-commerce can be modeled as contextual bandits (Slivkins, 2019; Lattimore & Szepesvári,
2020). In the contextual bandit setting, a learner receives a context (information before selecting an
arm), selects an action for that context, and then receives a reward for the selected action. To deal with
the large (or infinite) number of context-action pairs, the mean reward of each action is assumed to be
parameterized by an unknown function of action-context features, e.g., linear (Li et al., 2010; Chu
et al., 2011; Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013b), GLM (Filippi et al., 2010; Li
et al., 2017; Jun et al., 2017), and non-linear (Valko et al., 2013; Chowdhury & Gopalan, 2017; Zhou
et al., 2020; Zhang et al., 2021). We adopt the simplest neural contextual bandit algorithms for dealing
with non-linear rewards, i.e., NeuralUCB (Zhou et al., 2020) and NeuralTS (Zhang et al., 2021) to
our setting, as also done in earlier works (Dai et al., 2023; Lin et al., 2023). Since NeuralUCB or
NeuralTS primarily influences the arm selection strategy, we can incorporate any variants of these
algorithms by making appropriate modifications to Assumption 2 and Theorem 1. These adoptions
can be challenging because of our setting solely relies on pairwise comparisons.

Contextual Dueling Bandits. The closest work to ours is contextual dueling bandits (Saha, 2021;
Saha & Krishnamurthy, 2022; Bengs et al., 2022; Di et al., 2023; Li et al., 2024). Specifically, Saha
(2021); Saha & Krishnamurthy (2022) proposed algorithms for contextual linear dueling bandits
with pairwise and subset-wise preference feedback and established lower bounds for contextual
preference bandits using a logistic link function. Whereas Bengs et al. (2022) generalized the setting
to the contextual linear stochastic transitivity model, Di et al. (2023) considered the variance-aware
algorithm, and Li et al. (2024) proposed an algorithm based on Feel-Good Thompson Sampling
(Zhang, 2022). However, there are two key differences: non-linear reward function and arm-selection
strategy. Existing work only considers the linear reward function, which may not be practical in
many real-life applications. Our work fills this gap in the literature and generalizes the existing
setting by considering the non-linear reward function in contextual dueling bandits. Furthermore,
the existing works use different ways to select the pair of arms, leading to different arm-selection
strategies than ours. Due to the differences in arm-selection strategy and non-linear reward function
(which is estimated using an NN), our regret analysis is completely different than existing works.

7 CONCLUSION

Due to their prevalence in many real-life applications, from online recommendations to ranking
web search results, we consider contextual dueling bandit problems that can have a complex and
non-linear reward function. We used a neural network to estimate this reward function using human
preference feedback observed for the previously selected arms. We proposed upper confidence bound-
and Thompson sampling-based algorithms with sub-linear regret guarantees for contextual dueling
bandits. Experimental results using synthetic functions corroborate our theoretical results. Our
algorithms and theoretical results can also provide insights into the celebrated reinforcement learning
with human feedback (RLHF) algorithm, such as a theoretical guarantee on the quality of the learned
reward model. We also extend our results to contextual bandit problems with binary feedback, which
is in itself a non-trivial contribution. A limitation of our work is that we currently do not account
for problems where multiple arms are selected simultaneously (multi-way preference), which is an
interesting future direction. Another future topic is to apply our algorithms to important real-world
problems involving preference or binary feedback, e.g., LLM alignment using human feedback.
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misuse of RLHF would also help safeguard the potential misuse of our algorithms.
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A THEORETICAL ANALYSIS FOR NDB-UCB

Let {x(n)}TK
n=1 be a set of all possible context-arm feature vectors: {xt,a}1≤t≤T,1≤a≤K , where

n = K(t− 1) + a. Define

H̃(1)
p,q = Σ(1)

p,q = ⟨x(p), x(q)⟩,A(l)
p,q =

(
Σ

(l)
p,q Σ

(l)
p,q

Σ
(l)
p,q Σ

(l)
q,q

)
,

Σ(l+1)
p,q = 2E

(u,v)∼N (0,A
(l)
p,q)

[max{u, 0}max{v, 0}],

H̃(l+1)
p,q = 2H̃(l)

p,qE(u,v)∼N (0,A
(l)
p,q)

[⊮(u ≥ 0)⊮(v ≥ 0)] +Σ(l+1)
p,q .

Then, H = (H̃(L) + Σ(L))/2 is called the neural tangent kernel (NTK) matrix on the set of
context-arm feature vectors {x(n)}TK

n=1.

Next, we first list the specific conditions we need for the width m of the NN:

m ≥ CT 4K4L6 log(T 2K2L/δ)/λ4
0,

m(logm)−3 ≥ Cκ−3
µ T 8L21λ−5,

m(logm)−3 ≥ Cκ−3
µ T 14L21λ−11L6

µ,

m(logm)−3 ≥ CT 14L18λ−8,

(8)

for some absolute constant C > 0. To ease exposition, we express these conditions above as
m ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)).

To simplify exposition, we use an error probability of δ for all probabilistic statements. Our final
results hold naturally by taking a union bound over all required δ’s. The lemma below shows that the
ground-truth utility function f can be expressed as a linear function.

Lemma 2 (Lemma B.3 of Zhang et al. (2021)). As long as the width m of the NN is wide enough:

m ≥ C0T
4K4L6 log(T 2K2L/δ)/λ4

0,

then with probability of at least 1− δ, there exits a θf such that

f(x) = ⟨g(x; θ0), θf − θ0⟩,
√
m ∥θf − θ0∥2 ≤

√
2h⊤H−1h ≤ B.

for all x ∈ Xt,∀t ∈ [T ].

Let ys = 1(xs,1 ≻ xs,2), then we can write P (ys = 1) = µ (h(xs,1; θ)− h(xs,2; θ)) and
P (ys = 0) = 1− µ (h(xs,1; θ)− h(xs,2; θ)) = µ (h(xs,2; θ)− h(xs,1; θ)).

A.1 THEORETICAL GUARANTEE ABOUT THE NEURAL NETWORK

The following lemma gives an upper bound on the distance between θt and θ0:

Lemma 3. We have that ∥θt − θ0∥2 ≤ 2
√

t
mλ ,∀t ∈ [T ].

Proof. As µ(·) ∈ [0, 1], then using Eq. (1) gives us

1

2
λ ∥θt − θ0∥22 ≤ Lt(θt) ≤ Lt(θ0)

= − 1

m

t−1∑
s=1

[
1xt,1≻xt,2 logµ (h(xs,1; θ0)− h(xs,2; θ0))+

(1− 1xt,1≻xt,2
) logµ (h(xs,2; θ0)− h(xs,1; θ0))

]
+

1

2
λ ∥θ0 − θ0∥22

14
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(a)
= − 1

m

t−1∑
s=1

[
1xt,1≻xt,2 logµ (0) + (1− 1xt,1≻xt,2) logµ (0)

]
= − 1

m

t−1∑
s=1

log 0.5

≤ 1

m
t(− log 0.5)

(b)

≤ t

m
.

Step (a) follow because h(x; θ0) = 0,∀x ∈ X , t ∈ [T ] which is ensured by Assumption 2, step (b)

follows because − log 0.5 < 1. Therefore, we have that ∥θt − θ0∥2 ≤
√

2 t
mλ ≤ 2

√
t

mλ .

Now, Lemma 3 allows us to obtain the following lemmas regarding the gradients of the NN.

Lemma 4. Let τ = 2
√

t
mλ . Then for absolute constants C3, C1 > 0, with probability of at least

1− δ,
∥g(x; θt)∥2 ≤ C3

√
mL,

∥g(x; θ0)− g(x; θt)∥2 ≤ C1

√
m logmτ1/3L7/2 = C1m

1/3
√

logm

(
t

λ

)1/3

L7/2,

for all x ∈ Xt, t ∈ [T ].

Proof. It can be easily verified that our τ = 2
√

t
mλ satisfies the requirement on τ specified in

Lemmas B.5 and B.6 from Zhang et al. (2021). Therefore, the results from Lemmas B.5 and B.6 from
Zhang et al. (2021) are applicable for θt because our Lemma 3 guarantees that ∥θt − θ0∥2 ≤ τ .

In addition, Lemmas B.4 from Zhou et al. (2020) allows us to obtain the following lemma, which
shows that the output of the NN can be approximated by its linearization.

Lemma 5. Let τ ≜ 2
√

t
mλ . Let ε′m,t ≜ C2m

−1/6
√
logmL3

(
t
λ

)4/3
. Then for some absolute

constant C2 > 0, with probability of at least 1− δ,

|h(x; θt)− ⟨θt − θ0, g(x; θ0)⟩| ≤ C2τ
4/3L3

√
m logm = C2m

−1/6
√

logmL3

(
t

λ

)4/3

= ε′m,t,

for all x ∈ Xt, t ∈ [T ].

An immediate consequence of Lemma 5 is the following lemma.

Lemma 1. Let ε′m,t ≜ C2m
−1/6

√
logmL3

(
t
λ

)4/3
where C2 > 0 is an absolute constant. Then

|⟨φ(x)− φ(x′), θt − θ0⟩ − (h(x; θt)− h(x′; θt))| ≤ 2ε′m,t, ∀t ∈ [T ], x, x′ ∈ Xt.

Proof. By re-arranging the left-hand side and then using Lemma 5, we get

|⟨φ(x)− φ(x′), θt − θ0⟩ − (h(x; θt)− h(x′; θt))|
= |⟨φ(x), θt − θ0⟩ − h(x; θt) + h(x′; θt)− ⟨φ(x′), θt − θ0⟩|
≤ |⟨φ(x), θt − θ0⟩ − h(x; θt)|+ |h(x′; θt)− ⟨φ(x′), θt − θ0⟩|

≤ 2C2m
−1/6

√
logmL3

(
t

λ

)4/3

= 2ε′m,t.
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A.2 PROOF OF CONFIDENCE ELLIPSOID

In our next proofs, we denote φ′
s ≜ g(xs,1; θ0) − g(xs,2; θ0), φ̃′

s ≜ g(xs,1; θt) − g(xs,2; θt), and
h̃s,t ≜ h(xs,1; θt)− h(xs,2; θt). Recall that p is the total number of parameters of the NN. We next
prove the confidence ellipsoid for our algorithm, including Lemma 6 and Theorem 1 below.

Lemma 6. Let βT ≜ 1
κµ

√
d̃+ 2 log(1/δ). Assuming that the conditions on m from Eq. (8) are

satisfied. With probability of at least 1− δ, we have that

√
m ∥θf − θt∥Vt−1

≤ βT +B

√
λ

κµ
+ 1, ∀t ∈ [T ].

A.2.1 PROOF OF LEMMA 6

For any θf ′ ∈ Rp, define

Gt(θf ′) ≜
1

m

t−1∑
s=1

[
µ (⟨θf ′ − θ0, φ

′
s⟩)− µ (⟨θf − θ0, φ

′
s⟩)
]
φ′
s + λ(θf ′ − θ0). (9)

We start by decomposing ∥θf − θt∥Vt−1
in terms of Gt in the following lemma.

Lemma 7. Choose λ > 0 such that λ/κµ > 1. Define Vt−1 ≜
∑t−1

s=1 φ
′
sφ

′⊤
s

1
m + λ

κµ
I.

∥θf − θt∥Vt−1
≤ 1

κµ
∥Gt(θt)∥V −1

t−1
+

√
λ

κµ

B√
m
.

Proof. Let λ′ ∈ (0, 1). For any θf ′
1
, θf ′

2
∈ Rp, setting θf̄ = λ′θf ′

1
+(1−λ′)θf ′

2
and using mean-value

theorem, we get:

Gt(θf ′
1
)−Gt(θf ′

2
) =

[
t−1∑
s=1

1

m
µ̇(⟨θf̄ − θ0, φ

′
s⟩)φ′

sφ
′⊤
s + λIp

]
(θf ′

1
− θf ′

2
)

≥ κµ

[
t−1∑
s=1

φ′
sφ

′⊤
s

1

m
+

λ

κµ
Ip

]
(θf ′

1
− θf ′

2
)

= κµVt−1(θf ′
1
− θf ′

2
).

Note that Gt(θf ) = λ(θf − θ0). Let ft be the estimate of f at the beginning of the iteration t and
ft,s = ⟨θt − θ0, φ

′
s⟩. Now using the equation above,

∥Gt(θt)− λ(θf − θ0)∥2V −1
t−1

= ∥Gt(θf )−Gt(θt)∥2V −1
t−1

≥ (κµVt−1(θf − θt))
⊤V −1

t−1κµVt−1(θf − θt)

= κ2
µ(θf − θt)

⊤Vt−1V
−1
t−1Vt−1(θf − θt)

= κ2
µ ∥θf − θt∥2Vt−1

.

This allows us to show that

∥θf − θt∥Vt−1
≤ 1

κµ
∥Gt(θt)− λ(θf − θ0)∥V −1

t−1
≤ 1

κµ
∥Gt(θt)∥V −1

t−1
+

1

κµ
∥λ(θf − θ0)∥V −1

t−1
,

(10)

in which we have made use of the triangle inequality.
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Note that we choose λ such that λ
κµ

> 1. This allows us to show that Vt−1 ⪰ λ
κµ

I and hence

V −1
t−1 ⪯ κµ

λ I . Recall that Lemma 2 tells us that ∥θf − θ0∥2 ≤ B√
m

, which tells us that

1

κµ
∥λ(θf − θ0)∥V −1

t−1
=

λ

κµ

√
(θf − θ0)⊤V

−1
t−1(θf − θ0)

≤ λ

κµ

√
(θf − θ0)⊤

κµ

λ
(θf − θ0)

≤

√
λ

κµ
∥θf − θ0∥2

≤

√
λ

κµ

B√
m
.

(11)

Plugging Eq. (11) into Eq. (10) completes the proof.

Recall that we denote ys = µ(f(xs,1)−f(xs,2))+ εs, in which ys is a binary observation and εs can
be seen as the observation noise. Next, we derive an upper bound on the first term from Lemma 7:

1

κµ
∥Gt(θt)∥V −1

t−1
=

1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

[
µ(⟨θt − θ0, φ

′
s⟩)− µ(⟨θf − θ0, φ

′
s⟩)
]
φ′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

=
1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

(µ(ft,s)− µ (f(xs,1)− f(xs,2)))φ
′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

=
1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

(µ(ft,s)− (ys − εs))φ
′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

=
1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

(µ(ft,s)− ys)φ
′
s +

1

m

t−1∑
s=1

εsφ
′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

≤ 1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

(µ(ft,s)− ys)φ
′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

+
1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

εsφ
′
s

∥∥∥∥∥
V −1
t−1

.

(12)

Next, we derive an upper bound on the first term in Eq. (12). To simplify exposition, we define

A1 ≜
1

m

t−1∑
s=1

(
µ(ft,s)− ys

)(
φ′
s − φ̃′

s

)
, A2 ≜

1

m

t−1∑
s=1

(
µ(ft,s)− µ(h̃s,t)

)
φ̃′
s. (13)
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Now the first term in Eq. (12) can be decomposed as:

∣∣∣∣∣∣ 1
m

t−1∑
s=1

(
µ(ft,s)− ys

)
φ′
s + λ(θt − θ0)

∣∣∣∣∣∣
V −1
t−1

=
∣∣∣∣∣∣ 1
m

t−1∑
s=1

(
µ(ft,s)− ys

)(
φ′
s + φ̃′

s − φ̃′
s

)
+ λ(θt − θ0)

∣∣∣∣∣∣
V −1
t−1

=
∣∣∣∣∣∣ 1
m

t−1∑
s=1

(
µ(ft,s)− ys

)
φ̃′
s + λ(θt − θ0) +A1

∣∣∣∣∣∣
V −1
t−1

=
∣∣∣∣∣∣ 1
m

t−1∑
s=1

(
µ(ft,s) + µ(h̃s,t)− µ(h̃s,t)− ys

)
φ̃′
s + λ(θt − θ0) +A1

∣∣∣∣∣∣
V −1
t−1

=
∣∣∣∣∣∣ 1
m

t−1∑
s=1

(
µ(h̃s,t)− ys

)
φ̃′
s + λ(θt − θ0) +A2 +A1

∣∣∣∣∣∣
V −1
t−1

(a)
=
∣∣∣∣∣∣A2 +A1

∣∣∣∣∣∣
V −1
t−1

≤ ∥A2∥V −1
t−1

+ ∥A1∥V −1
t−1

≤
√

κµ

λ
∥A2∥2 +

√
κµ

λ
∥A1∥2 .

(14)

Note that step (a) above follows because

1

m

t−1∑
s=1

(
µ(h̃s,t)− ys

)
φ̃′
s + λ(θt − θ0)

=
1

m

t−1∑
s=1

(
µ(h(xs,1; θt)− h(xs,2; θt))− ys

)
(g(xs,1; θt)− g(xs,2; θt)) + λ(θt − θ0)

= 0,
(15)

which is ensured by the way in which we train our NN (see Eq. (6)). Next, we derive an upper bound
on the norm of A1. To begin with, we have that

∥φ′
s − φ̃′

s∥2 = ∥g(xs,1; θ0)− g(xs,2; θ0)− g(xs,1; θt) + g(xs,2; θt)∥2
≤ ∥g(xs,1; θ0)− g(xs,1; θt)∥2 + ∥g(xs,2; θ0)− g(xs,2; θt)∥2

≤ 2C1m
1/3
√
logm

(
Ct

λ

)1/3

L7/2,

in which the last inequality follows from Lemma 4. Now the norm of A1 can be bounded as:
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∥A1∥2 =

∥∥∥∥∥ 1

m

t−1∑
s=1

(
µ(ft,s)− ys

)(
φ′
s − φ̃′

s

)∥∥∥∥∥
2

≤ 1

m

t−1∑
s=1

∥∥∥(µ(ft,s)− ys

)(
φ′
s − φ̃′

s

)∥∥∥
2

=
1

m

t−1∑
s=1

|µ(ft,s)− ys| ∥φ′
s − φ̃′

s∥2

≤ 1

m

t−1∑
s=1

∥φ′
s − φ̃′

s∥2

≤ 1

m

t−1∑
s=1

2C1m
1/3
√
logm

(
t

λ

)1/3

L7/2

= m−2/3
√
logmt4/32C1λ

−1/3L7/2.

(16)

Next, we proceed to bound the norm of A2. Let λ′ ∈ (0, 1), and let at,s = λ′ft,s + (1 − λ′)h̃s,t.
Following the mean-value theorem, we have for some λ′ that

µ(ft,s)− µ(h̃s,t) = (ft,s − h̃s,t)µ̇(at,s).

Note that µ̇(at,s) ≤ Lµ which follows from our Assumption 1. This allows us to show that

|µ(ft,s)− µ(h̃s,t)| = |(ft,s − h̃s,t)µ̇(at,s)|

= |ft,s − h̃s,t||µ̇(at,s)|

≤ Lµ|ft,s − h̃s,t|
= Lµ

∣∣⟨θt − θ0, g(xs,1; θ0)⟩ − ⟨θt − θ0, g(xs,2; θ0)⟩ − (h(xs,1; θt)− h(xs,2; θt))
∣∣

≤ Lµ

(∣∣⟨θt − θ0, g(xs,1; θ0)⟩ − h(xs,1; θt)
∣∣+ ∣∣h(xs,2; θt)− ⟨θt − θ0, g(xs,2; θ0)⟩

∣∣)
≤ Lµ × 2× C2m

−1/6
√
logmL3

(
t

λ

)4/3

= 2LµC2m
−1/6

√
logmL3

(
t

λ

)4/3

in which we have used Lemma 5 in the last inequality. Also, Lemma 4 allows us to show that
∥φ̃′

s∥2 = ∥g(xs,1; θt)− g(xs,2; θt)∥2 ≤ ∥g(xs,1; θt)∥2 + ∥g(xs,2; θt)∥2 ≤ 2C3

√
mL.

Now we can derive an upper bound on the norm of A2:

∥A2∥2 =

∥∥∥∥∥ 1

m

t−1∑
s=1

(
µ(ft,s)− µ(h̃s,t)

)
φ̃′
s

∥∥∥∥∥
2

≤ 1

m

t−1∑
s=1

∥∥∥(µ(ft,s)− µ(h̃s,t)
)
φ̃′
s

∥∥∥
2

=
1

m

t−1∑
s=1

|µ(ft,s)− µ(h̃s,t)| ∥φ̃′
s∥2

≤ 1

m

t−1∑
s=1

2LµC2m
−1/6

√
logmL3

(
t

λ

)4/3

× 2C3

√
mL

≤ 4LµC2C3m
−2/3

√
logmt7/3L7/2λ−4/3.

(17)
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Lastly, plugging Eq. (16) and Eq. (17) into Eq. (14), we can derive an upper bound on the first term
in Eq. (12):

1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

(µ(ft,s)− ys)φ
′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

≤ 1√
κµλ

m−2/3
√
logmt4/32C1λ

−1/3L7/2+

1√
κµλ

4LµC2C3m
−2/3

√
logmt7/3L7/2λ−4/3.

(18)

Next, plugging equation Eq. (18) into equation Eq. (12), and plugging the results into Lemma 7, we
have that

∥θf − θt∥Vt−1

≤ 1

κµ
√
m

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

+

√
λ

κµ

B√
m

+
1√
κµλ

m−2/3
√
logmt4/32C1λ

−1/3L7/2+

1√
κµλ

4LµC2C3m
−2/3

√
logmt7/3L7/2λ−4/3.

Here we define

εm,t ≜ B

√
λ

κµ
+

1√
κµλ

m−1/6
√
logmt4/32C1λ

−1/3L7/2+

1√
κµλ

4LµC2C3m
−1/6

√
logmt7/3L7/2λ−4/3.

(19)

It is easy to verify that as long as the conditions on m from Eq. (8) are satisfied (i.e., the width m of
the NN is large enough), we have that εm,t ≤ B

√
λ
κµ

+ 1.

This allows us to show that

√
m ∥θf − θt∥Vt−1

≤ 1

κµ

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

+ εm,t

≤ 1

κµ

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

+B

√
λ

κµ
+ 1.

(20)

Finally, in the next lemma, we derive an upper bound on the first term in Eq. (20).

Lemma 8. Let βT ≜ 1
κµ

√
d̃+ 2 log(1/δ). With probability of at least 1− δ, we have that

1

κµ

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

≤ βT .

Proof. To begin with, we derive an upper bound on the log determinant of the matrix Vt ≜∑t
s=1 φ

′
sφ

′⊤
s

1
m + λ

κµ
I. Here we use CK

2 to denote all possible pairwise combinations of the indices

of K arms. Here we denote zij(s) ≜ φ(xs,i)− φ(xs,j). Also recall we have defined in the main text
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that H′ ≜
∑T

s=1

∑
(i,j)∈CK

2
zij(s)z

i
j(s)

⊤ 1
m . Now the determinant of Vt can be upper-bounded as

det(Vt) = det

(
t∑

s=1

(φ(xs,1)− φ(xs,2)) (φ(xs,1)− φ(xs,2))
⊤ 1

m
+

λ

κµ
I

)

≤ det

(
T∑

s=1

(φ(xs,1)− φ(xs,2)) (φ(xs,1)− φ(xs,2))
⊤ 1

m
+

λ

κµ
I

)

≤ det

 T∑
s=1

∑
(i,j)∈CK

2

zij(s)z
i
j(s)

⊤ 1

m
+

λ

κµ
I


= det

(
H′ +

λ

κµ
I

)
.

(21)

Recall that in our algorithm, we have set V0 = λ
κµ

Ip. This leads to

log
detVt

detV0
≤ log

det
(
H′ + λ

κµ
I
)

detV0

= log
(λ/κµ)

p det
(κµ

λ H′ + I
)

(λ/κµ)p

= log det
(κµ

λ
H′ + I

)
.

(22)

We use εs to denote the observation noise in iteration s ∈ [T ]: ys = µ(f(xs,1) − f(xs,2)) + εs.
Let Ft−1 denote the sigma algebra generated by history {(xs,1, xs,2, εs)s∈[t−1] , xt,1, xt,2}. Here we
justify that the sequence of noise {εs}s=1,...,T is conditionally 1-sub-Gaussian conditioned on Ft−1.

Note that the observation yt is equal to 1 if xt,1 is preferred over xt,2 and 0 otherwise. Therefore, the
noise εt can be expressed as

εt =

{
1− µ(f(xt,1)− f(xt,2)), w.p. µ(f(xt,1)− f(xt,2))

−µ(f(xt,1)− f(xt,2)), w.p. 1− µ(f(xt,1)− f(xt,2)),

It can be easily seen that εs is Ft-measurable. Next, if can be easily verified that that conditioned on
Ft−1 (i.e., given xt,1 and xt,2), we have that E [εt|Ft−1] = 0. Also note that the absolute value of εt
is bounded: |εt| ≤ 1. Therefore, we can infer that εt is conditionally 1-sub-Gaussian, i.e.,

E [exp(λεt)|Ft] ≤ exp

(
λ2σ2

2

)
, ∀λ ∈ R.

with σ = 1.

Next, making use of the 1-sub-sub-Gaussianity of the sequence of noise {εs} and Theorem 1 from
Abbasi-Yadkori et al. (2011), we can show that with probability of at least 1− δ,∥∥∥∥∥

t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

≤

√
log

(
detVt−1

detV0

)
+ 2 log(1/δ)

≤
√
log det

(κµ

λ
H′ + I

)
+ 2 log(1/δ)

≤
√
d̃+ 2 log(1/δ),

in which we have made use of the definition of the effective dimension d̃ = log det
(κµ

λ H′ + I
)
.

This completes the proof.

Finally, we plug Lemma 8 into equation Eq. (20) to complete the proof of Lemma 6:

√
m ∥θf − θt∥Vt−1

≤ βT +B

√
λ

κµ
+ 1, ∀t ∈ [T ].
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A.2.2 PROOF OF THEOREM 1

Theorem 1. Let δ ∈ (0, 1), ε′m,t
.
= C2m

−1/6
√
logmL3

(
t
λ

)4/3
for some absolute constant C2 > 0.

As long as m ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ,

| [f(x)− f(x′)]− [h(x; θt)− h(x′; θt)] | ≤ νTσt−1(x, x
′) + 2ε′m,t,

for all x, x′ ∈ Xt, t ∈ [T ].

Proof. Denote φ(x) = g(x; θ0). Recall that Lemma 2 tells us that f(x) = ⟨g(x; θ0), θf − θ0⟩ =
⟨φ(x), θf − θ0⟩ for all x ∈ Xt, t ∈ [T ]. To begin with, for all x, x′ ∈ Xt, t ∈ [T ] we have that

|f(x)− f(x′)− ⟨φ(x)− φ(x′), θt − θ0⟩|
= |⟨φ(x)− φ(x′), θf − θ0⟩ − ⟨φ(x)− φ(x′), θt − θ0⟩|
= |⟨φ(x)− φ(x′), θf − θt⟩⟩|

= |⟨ 1√
m
φ(x)− φ(x′),

√
m (θf − θt)⟩|

≤
∥∥∥∥ 1√

m
(φ(x)− φ(x′))

∥∥∥∥
V −1
t−1

√
m ∥θf − θt∥Vt−1

≤
∥∥∥∥ 1√

m
(φ(x)− φ(x′))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
,

(23)

in which we have used Lemma 6 in the last inequality. Now making use of the equation above and
Lemma 1, we have that

|f(x)− f(x′)− (h(x; θt)− h(x′; θt))|
= |f(x)− f(x′)− ⟨φ(x)− φ(x′), θt − θ0⟩

+ ⟨φ(x)− φ(x′), θt − θ0⟩ − (h(x; θt)− h(x′; θt))|
≤ |(f(x)− f(x′))− ⟨φ(x)− φ(x′), θt − θ0⟩|

+ |⟨φ(x)− φ(x′), θt − θ0⟩ − (h(x; θt)− h(x′; θt))|

≤
∥∥∥∥ 1√

m
(φ(x)− φ(x′))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
+ 2ε′m,t.

This completes the proof of Theorem 1.

A.3 REGRET ANALYSIS

Now we can analyze the instantaneous regret. To begin with, we have

2rt = f(x∗
t )− f(xt,1) + f(x∗

t )− f(xt,2)

(a)

≤ ⟨φ(x∗
t )− φ(xt,1), θt − θ0⟩+

∥∥∥∥ 1√
m

(φ(x∗
t )− φ(xt,1))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ ⟨φ(x∗

t )− φ(xt,2), θt − θ0⟩+
∥∥∥∥ 1√

m
(φ(x∗

t )− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
= ⟨φ(x∗

t )− φ(xt,1), θt − θ0⟩+
∥∥∥∥ 1√

m
(φ(x∗

t )− φ(xt,1))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ ⟨φ(x∗

t )− φ(xt,1), θt − θ0⟩+ ⟨φ(xt,1)− φ(xt,2), θt − θ0⟩

+

∥∥∥∥ 1√
m

(φ(x∗
t )− φ(xt,1) + φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
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≤ 2⟨φ(x∗
t )− φ(xt,1), θt − θ0⟩+ 2

∥∥∥∥ 1√
m

(φ(x∗
t )− φ(xt,1))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ ⟨φ(xt,1)− φ(xt,2), θt − θ0⟩+

∥∥∥∥ 1√
m

(φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
(b)

≤ 2h(x∗
t ; θt)− 2h(xt,1; θt) + 4ε′m,t + 2

∥∥∥∥ 1√
m

(φ(x∗
t )− φ(xt,1))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ h(xt,1; θt)− h(xt,2; θt) + 2ε′m,t +

∥∥∥∥ 1√
m

(φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
(c)

≤ 2h(xt,2; θt)− 2h(xt,1; θt) + 2

∥∥∥∥ 1√
m

(φ(xt,2)− φ(xt,1))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ h(xt,1; θt)− h(xt,2; θt) + 6ε′m,t +

∥∥∥∥ 1√
m

(φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
= h(xt,2; θt)− h(xt,1; θt) + 3

∥∥∥∥ 1√
m

(φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ 6ε′m,t

(d)

≤ 3

(
βT +B

√
λ/κµ + 1

)∥∥∥∥ 1√
m

(φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

+ 6ε′m,t.

Step (a) follows from Eq. (23), step (b) results from Lemma 1,
step (c) follows from the way in which xt,2 is selected: xt,2 =

argmaxx∈Xt

(
h(x; θt) +

∥∥∥ 1√
m
(φ(x)− φ(xt,1))

∥∥∥
V −1
t−1

(
βT +B

√
λ
κµ

+ 1
))

, and step (d)

follows from the way in which xt,1 is selected: xt,1 = argmaxx∈Xt h(x; θt).

Now denote σ2
t−1(xt,1, xt,2)

.
= λ

κµ

∥∥∥ 1√
m
(φ(xt,1)− φ(xt,2))

∥∥∥2
V −1
t−1

. Of note, σ2
t−1(xt,1, xt,2)

can be interpreted as the Gaussian process posterior variance with the kernel defined as
k
(
(x1, x2), (x

′
1, x

′
2)
)
= ⟨ 1√

m
(φ(x1)− φ(x2)) , (

1√
m
(φ(x′

1) − φ(x′
2))⟩, and with a noise variance

of λ
κµ

. It is easy to see that the kernel is positive semi-definite and is hence a valid kernel. Following
the derivations of the Gaussian process posterior variance, it is easy to verify that

σ2
t−1(xt,1, xt,2) ≤ (φ(xt,1)− φ(xt,2))

⊤(φ(xt,1)− φ(xt,2))
1

m

=

∥∥∥∥(φ(xt,1)− φ(xt,2))
1√
m

∥∥∥∥2
2

=
1

m
∥φ(xt,1)− φ(xt,2)∥22 ≤ c0,

in which we have denoted c0 > 0 as an absolute constant such that 1
m ∥φ(x)− φ(x′)∥22 ≤

c0,∀x, x′ ∈ Xt, t ∈ [T ]. Note that this is similar to the standard assumption in the literature
that the value of the NTK is upper-bounded by a constant (Kassraie & Krause, 2022). Therefore, this
implies that σ2

t−1(xt,1, xt,2)/c0 ≤ 1 for some constant c0 ≥ 1. Recall that we choose λ such that
λ/κµ ≥ 1. Note that for any α ∈ [0, 1], we have that α/2 ≤ log(1 + α). With these, we have that

1

2

(
λ

κµ

)−1 σ2
t−1(xt,1, xt,2)

c0
≤ log

(
1 +

(
λ

κµ

)−1 σ2
t−1(xt,1, xt,2)

c0

)

≤ log

(
1 +

(
λ

κµ

)−1

σ2
t−1(xt,1, xt,2)

)
,

which leads to
σ2
t−1(xt,1, xt,2) ≤ 2c0

λ

κµ
log
(
1 +

κµ

λ
σ2
t−1(xt,1, xt,2)

)
. (24)
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Following the analysis of Chowdhury & Gopalan (2017) and using the chain rule of conditional
information gain, we can show that

t∑
s=1

log
(
1 +

κµ

λ
σ2
s−1(xs,1, xs,2)

)
= log det

(
I+

κµ

λ
Kt

)
,

in which Kt is a t× t matrix in which every element is Kt[i, j] =
1
m (φ(xi,1)−φ(xi,2))

⊤(φ(xj,1)−
φ(xj,2)). Define the p × t matrix Jt = [ 1√

m
(φ(xi,1)− φ(xi,2))]i=1,...,t. Then we have that

Kt = J⊤
t Jt. This allows us to show that

t∑
s=1

log
(
1 +

κµ

λ
σ2
s−1(xs,1, xs,2)

)
= log det

(
I+

κµ

λ
Kt

)
= log det

(
I+

κµ

λ
J⊤
t Jt

)
= log det

(
I+

κµ

λ
JtJ

⊤
t

)
= log det

(
I+

κµ

λ

t∑
s=1

(φ(xs,1)− φ(xs,2)) (φ(xs,1)− φ(xs,2))
⊤ 1

m

)
≤ log det

(κµ

λ
H′ + I

)
= d̃

(25)

in which we have followed the same line of analysis as Eq. (21) and Eq. (22) in the second last
inequality.

Combining the results from Eq. (24) and Eq. (25), we have that
T∑

t=1

σ2
t−1(xt,1, xt,2) ≤ 2c0

λ

κµ

T∑
t=1

log
(
1 +

κµ

λ
σ2
t−1(xt,1, xt,2)

)
≤ 2c0

λ

κµ
d̃.

Finally, we can derive an upper bound on the cumulative regret:

RT =

T∑
t=1

rt ≤
T∑

t=1

1

2

(
3

(
βT +B

√
λ

κµ
+ 1

)√
κµ

λ
σt−1(xt,1, xt,2) + 6ε′m,t

)

≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
κµ

λ

T∑
t=1

σt−1(xt,1, xt,2) + 6Tε′m,T

≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
κµ

λ

√√√√T

T∑
t=1

σ2
t−1(xt,1, xt,2) + 6Tε′m,T

≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
κµ

λ

√
T2c0

λ

κµ
d̃+ 6Tε′m,T .

≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
T2c0d̃+ 6Tε′m,T .

Recall that ε′m,t = C2m
−1/6

√
logmL3

(
t
λ

)4/3
. It can be easily verified that as long as the conditions

on m specified in Eq. (8) are satisfied (i.e., as long as the NN is wide enough), we have that
6Tε′m,T ≤ 1. Recall that βT = Õ( 1

κµ

√
d̃). This allows us to simplify the regret upper bound to be

RT ≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
T2c0d̃+ 1 = Õ

((√
d̃

κµ
+B

√
λ

κµ

)√
d̃T

)
.
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B THEORETICAL ANALYSIS FOR NDB-TS

Denote νT ≜
(
βT +B

√
λ/κµ + 1

)√
κµ/λ, ct ≜ νT (1 +

√
2 log(Kt2)), and σ2

t−1(x1, x2) ≜

λ
κµ

∥∥∥ 1√
m
(φ(x1)− φ(x2))

∥∥∥2
V −1
t−1

. Here we use Ft−1 to denote the filtration containing the history

of selected inputs and observations up to iteration t − 1. To use Thompson sampling (TS) to
select the second arm xt,2, firstly, for each arm x ∈ Xt, we sample a reward value r̃t(x) from the
normal distribution N

(
h(x; θt)− h(xt,1; θt), ν

2
Tσ

2
t−1(x, xt,1)

)
. Then, we choose the second arm as

xt,2 = argmaxx∈Xt
r̃t(x).

Lemma 9. Let δ ∈ (0, 1). Define Ef (t) as the following event:

| [f(x)− f(xt,1)]− [h(x; θt)− h(xt,1; θt)] | ≤ νTσt−1(x, xt,1) + 2ε′m,t.

According to Theorem 1, we have that the event Ef (t) holds with probability of at least 1− δ.
Lemma 10. Define Eft(t) as the following event

|r̃t(x)− [h(x; θt)− h(xt,1; θt)] | ≤ νT
√

2 log(Kt2)σt−1(x, xt,1).

We have that P
[
Eft(t)|Ft−1

]
≥ 1− 1/t2 for any possible filtration Ft−1.

Definition 1. In iteration t, define the set of saturated points as

St = {x ∈ Xt : ∆(x) > ctσt−1(x, xt,1) + 4ε′m,t},

where ∆(x) = f(x∗
t )− f(x) and x∗

t ∈ argmaxx∈Xt
f(x).

Note that according to this definition, x∗
t is always unsaturated.

Lemma 11. For any filtration Ft−1, conditioned on the event Ef (t), we have that ∀x ∈ Q,

P
(
r̃t(x) + 2ε′m,t > f(x)− f(xt,1)|Ft−1

)
≥ p,

where p = 1
4e

√
π

.

Proof. Adding and subtracting µt−1(x)
νtσt−1(x)

both sides of P (ft(x) > ρmf(x)|Ft−1), we get

P
{
r̃t(x) + 2ε′m,t > f(x)− f(xt,1)|Ft−1

}
= P

{
r̃t(x) + 2ε′m,t − [h(x; θt)− h(xt,1; θt)]

νTσt−1(x, xt,1)
>

f(x)− f(xt,1)− [h(x; θt)− h(xt,1; θt)]

νTσt−1(x, xt,1)
|Ft−1

}
≥ P

{
r̃t(x) + 2ε′m,t − [h(x; θt)− h(xt,1; θt)]

νTσt−1(x, xt,1)
>

|f(x)− f(xt,1)− [h(x; θt)− h(xt,1; θt)] |
νTσt−1(x, xt,1)

|Ft−1

}
≥ P

{
r̃t(x)− [h(x; θt)− h(xt,1; θt)]

νTσt−1(x, xt,1)
>

|f(x)− f(xt,1)− [h(x; θt)− h(xt,1; θt)] | − 2ε′m,t

νTσt−1(x, xt,1)
|Ft−1

}
≥ P

{
r̃t(x)− [h(x; θt)− h(xt,1; θt)]

νTσt−1(x, xt,1)
> 1|Ft−1

}
≥ 1

4e
√
π
,

in which the third inequality makes use of Lemma 9 (note that we have conditioned on the event
Ef (t) here), and the last inequality follows from the Gaussian anti-concentration inequality: P(z >
a) ≥ exp(−a2)/(4

√
πa) where z ∼ N (0, 1).

The next lemma proves a lower bound on the probability that the selected input xt,2 is unsaturated.

Lemma 12. For any filtration Ft−1, conditioned on the event Ef (t), we have that,

P (xt,2 ∈ Xt \ St|Ft−1) ≥ p− 1/t2.
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Proof. To begin with, we have that

P (xt,2 ∈ Xt \ St|Ft−1) ≥ P (r̃t(x
∗
t ) > r̃t(x),∀x ∈ St|Ft−1) . (26)

This inequality can be justified because the event on the right hand side implies the event on the left
hand side. Specifically, according to Definition 1, x∗

t is always unsaturated. Therefore, because xt,2

is selected by xt,2 = argmaxx∈Xt
r̃t(x), we have that if r̃t(x∗

t ) > r̃t(x),∀x ∈ St, then the selected
xt,2 is guaranteed to be unsaturated. Now conditioning on both events Ef (t) and Eft(t), for all
x ∈ St, we have that

r̃t(x) ≤ f(x)− f(xt,1) + ctσt−1(x, xt,1) + 2ε′m,t

= f(x)− f(xt,1) + ctσt−1(x, xt,1) + 4ε′m,t − 2ε′m,t

≤ f(x)− f(xt,1) + ∆(x)− 2ε′m,t

= f(x)− f(xt,1) + f(x∗
t )− f(x)− 2ε′m,t

= f(x∗
t )− f(xt,1)− 2ε′m,t

(27)

in which the first inequality follows from Lemma 9 and Lemma 10 and the second inequality makes
use of Definition 1. Next, separately considering the cases where the event Eft(t) holds or not and
making use of Eq. (26) and Eq. (27), we have that

P (xt,2 ∈ Xt \ St|Ft−1) ≥ P (r̃t(x
∗
t ) > r̃t(x),∀x ∈ St|Ft−1)

≥ P
(
r̃t(x

∗
t ) > f(x∗

t )− f(xt,1)− 2ε′m,t|Ft−1

)
− P

(
Eft(t)|Ft−1

)
≥ p− 1/t2,

in which the last inequality has made use of Lemma 10 and Lemma 11.

Next, we use the following lemma to derive an upper bound on the expected instantaneous regret.
Lemma 13. For any filtration Ft−1, conditioned on the event Ef (t), we have that,

E[2rt|Ft−1] ≤
23ct
p

E [σt−1(xt,2, xt,1)|Ft−1] + 18ε′m,t +
4

t2
.

Proof. To begin with, define xt as the unsaturated input with the smallest σt−1(x, xt,1):

xt = argminx∈Xt\St
σt−1(x, xt,1).

This definition gives us:

E [σt−1(xt,2, xt,1)|Ft−1] ≥ E [σt−1(xt,2, xt,1)|Ft−1, xt ∈ Xt \ St]P (xt,2 ∈ Xt \ St|Ft−1)

≥ σt−1(xt, xt,1)(p− 1/t2),
(28)

in which the second inequality makes use of Lemma 12, as well as the definition of xt.

Next, conditioned on both events Ef (t) and Eft(t), we can decompose the instantaneous regret as

2rt = f(x∗
t )− f(xt,1) + f(x∗

t )− f(xt,2)

= f(x∗
t )− f(xt,2) + f(xt,2)− f(xt,1) + f(x∗

t )− f(xt,2)

= 2 [f(x∗
t )− f(xt,2)] + f(xt,2)− f(xt,1).

(29)

Next, we separately analyze the two terms above. Firstly, we have that

f(x∗
t )− f(xt,2) = f(x∗

t )− f(xt) + f(xt)− f(xt,2)

= ∆(xt) + [f(xt)− f(xt,1)]− [f(xt,2)− f(xt,1)]

≤ ∆(xt) + r̃t(xt) + ctσt−1(xt, xt,1) + 2ε′m,t − r̃t(xt,2) + ctσt−1(xt,2, xt,1) + 2ε′m,t

≤ ∆(xt) + ctσt−1(xt, xt,1) + ctσt−1(xt,2, xt,1) + 4ε′m,t

≤ ctσt−1(xt, xt,1) + 4ε′m,t + ctσt−1(xt, xt,1) + ctσt−1(xt,2, xt,1) + 4ε′m,t

≤ 2ctσt−1(xt, xt,1) + ctσt−1(xt,2, xt,1) + 8ε′m,t,

(30)
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in which the first inequality follows from Lemma 9 and Lemma 10, the second inequality follows from
the way in which xt,2 is selected: xt,2 = argmaxx∈Xt

r̃t(x) which guarantees that r̃t(xt) ≤ r̃t(xt,2).
The third inequality follows because xt is unsaturated. Next, we analyze the second term from
Eq. (29).

f(xt,2)− f(xt,1) ≤ h(xt,2; θt)− h(xt,1; θt) + νTσt−1(xt,2, xt,1) + 2ε′m,t

≤ νTσt−1(xt,2, xt,1) + 2ε′m,t

≤ ctσt−1(xt,2, xt,1) + 2ε′m,t,

(31)

in which the first inequality follows from Lemma 9, the second inequality results from the way
in which xt,1 is selected: xt,1 = argmaxx∈Xt h(x; θt), and the third inequality follows because
νT ≤ ct by definition. Now we can plug Eq. (30) and Eq. (31) into Eq. (29):

2rt ≤ 2
(
2ctσt−1(xt, xt,1) + ctσt−1(xt,2, xt,1) + 8ε′m,t

)
+ ctσt−1(xt,2, xt,1) + 2ε′m,t

≤ 4ctσt−1(xt, xt,1) + 3ctσt−1(xt,2, xt,1) + 18ε′m,t.
(32)

Next, by separately considering the cases where the event Eft(t) holds and otherwise, we are ready
to upper-bound the expected instantaneous regret:

E[2rt|Ft−1] ≤ E[4ctσt−1(xt, xt,1) + 3ctσt−1(xt,2, xt,1) + 18ε′m,t|Ft−1] +
4

t2

≤ E
[
4ctσt−1(xt,2, xt,1)

1

p− 1/t2
+ 3ctσt−1(xt,2, xt,1) + 18ε′m,t|Ft−1

]
+

4

t2

= ct

(
4

p− 1/t2
+ 3

)
E [σt−1(xt,2, xt,1)|Ft−1] + 18ε′m,t +

4

t2

≤ ct
23

p
E [σt−1(xt,2, xt,1)|Ft−1] + 18ε′m,t +

4

t2

in which the first inequality have made use of Eq. (32), the second inequality results from Eq. (28),
and the last inequality follows because 1

p−1/t2 ≤ 5/p and 1 ≤ 1/p.

Next, we define the following stochastic process (Yt : t = 0, . . . , T ), which we prove is a
super-martingale in the subsequent lemma by making use of Lemma 13.

Definition 2. Define Y0 = 0, and for all t = 1, . . . , T ,

rt = rtI{Ef (t)}, Xt = rt −
23ct
2p

σt−1(xt,2, xt,1)− 9ε′m,t −
2

t2
, and Yt =

t∑
s=1

Xs.

Lemma 14. (Yt : t = 0, . . . , T ) is a super-martingale with respect to the filtration Ft.

Proof. As Xt = Yt − Yt−1, we have

E [Yt − Yt−1|Ft−1] = E [Xt|Ft−1]

= E
[
rt −

23ct
2p

σt−1(xt,2, xt,1)− 9ε′m,t −
2

t2
|Ft−1

]
= E [rt|Ft−1]−

[
23ct
2p

E [σt−1(xt,2, xt,1)|Ft−1] + 9ε′m,t +
2

t2

]
≤ 0.

When the event Ef (t) holds, the last inequality follows from Lemma 13; when Ef (t) is false, rt = 0
and hence the inequality trivially holds.

Lastly, we are ready to prove the upper bound on the cumulative regret of ou algorithm by applying
the Azuma-Hoeffding Inequality to the stochastic process defined above.
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Proof. To begin with, we derive an upper bound on |Yt − Yt−1|:

|Yt − Yt−1| = |Xt| ≤ |rt|+
23ct
2p

σt−1(xt,2, xt,1) + 9ε′m,t +
2

t2

≤ 2 +
23ct
2p

c0 + 9ε′m,t + 2

≤ 1

p

(
4 + 12ctc0 + 9ε′m,t

)
,

where the second inequality follows because σt−1(xt,2, xt,1) ≤ c0, and the last inequality follows
since 1

p ≥ 1. Now we are ready to apply the Azuma-Hoeffding Inequality to (Yt : t = 0, . . . , T ) with
an error probability of δ:

T∑
t=1

rt ≤
T∑

t=1

23ct
2p

σt−1(xt,2, xt,1) +

T∑
t=1

9ε′m,t +

T∑
t=1

2

t2

+

√√√√2 log(1/δ)

T∑
t=1

(
1

p

(
4 + 12ctc0 + 9ε′m,t

))2

≤ 12cT

T∑
t=1

σt−1(xt,2, xt,1) + 9Tε′m,T + 2

T∑
t=1

1/t2

+

(
1

p

(
4 + 12cT c0 + 9ε′m,T

))√
2T log(1/δ)

≤ 12cT

√
T2c0

λ

κµ
d̃+ 9Tε′m,T +

π2

3
+

4 + 12cT c0 + 9ε′m,T

p

√
2T log(1/δ).

The second inequality makes use of the fact that ct and ε′m,t are both monotonically increasing in

t. The last inequality follows because
∑T

t=1 σt−1(xt,1, xt,2) ≤
√

T2c0
λ
κµ

d̃ which we have shown

in the proof of the UCB algorithm, and
∑T

t=1 1/t
2 ≤ π2/6. Note that Appendix B holds with

probability ≥ 1 − δ. Also note that rt = rt with probability of ≥ 1 − δ because the event Ef (t)
holds with probability of ≥ 1− δ (Lemma 9). Therefore, replacing δ by δ/2, the upper bound from
Appendix B is an upper bound on RT =

∑T
t=1 rt with probability of 1− δ.

Lastly, recall we have defined that νT
.
=

(
βT +B

√
λ/κµ + 1

)√
κµ/λ, ct ≜

νT (1 +
√

2 log(Kt2)), and βT = Õ( 1
κµ

√
d̃). This implies that cT =

Õ
((

1
κµ

√
d̃+B

√
λ/κµ

)√
κµ/λ

)
= Õ

(√
d̃

κµλ
+B

)
. Also recall that as long as the

conditions on m specified in Eq. (8) are satisfied (i.e., as long as the NN is wide enough), we can
ensure that 9Tε′m,T ≤ 1. Therefore, the final regret upper bound can be expressed as:

RT = Õ

√ d̃

κµλ
+B

√T
λ

κµ
d̃+

√ d̃

κµλ
+B

√
T


= Õ

√ d̃

κµλ
+B

√T
λ

κµ
d̃

 = Õ

((√
d̃

κµ
+B

√
λ

κµ

)√
T d̃

)
.

This completes the proof. As we can see, our TS algorithm enjoys the same asymptotic regret upper
bound as our UCB algorithm, ignoring the log factors.

28



Published as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTS FOR SECTION 5

(a) 10(x⊤θ)2 (Average) (b) 10(x⊤θ)2 (Weak) (c) 20(x⊤θ)2 (Average) (d) 20(x⊤θ)2 (Weak)

(e) 30(x⊤θ)2 (Average) (f) 30(x⊤θ)2 (Weak) (g) 40(x⊤θ)2 (Average) (h) 40(x⊤θ)2 (Weak)

Figure 5: Comparisons of cumulative regret (average and weak) of different dueling bandits algorithms
for different form of Square function, i.e., a(x⊤θ)2, where a = {10, 20, 30, 40}.

(a) cos(3x⊤θ) (Average) (b) cos(3x⊤θ) (Weak) (c) 3cos(x⊤θ) (Average) (d) 3cos(x⊤θ) (Weak)

(e) 5cos(x⊤θ) (Average) (f) 5cos(x⊤θ) (Weak) (g) 10cos(x⊤θ) (Average) (h) 10cos(x⊤θ) (Weak)

Figure 6: Comparisons of cumulative regret (average and weak) of different dueling bandits algorithms
for different form of Cosine function, i.e., cos(3x⊤θ) and bcos(x⊤θ), where b = {3, 5, 10}.

C.1 COMPUTATIONAL EFFICIENCY AND SCALABILITY

To discuss the computational efficiency and scalability of our proposed algorithms, we consider the
following two key aspects:

Size of the neural network (NN): The primary computational complexity of our proposed algorithms
from the NN used to estimate the latent reward function. Let d be the dimension of the context-arm
feature vector (input dimension for the NN). Assume the NN has L hidden layers, each with m
neurons. Then, the inference cost from the input layer to the first hidden layer is O(dm), the inference
cost for hidden layers is O(Lm2), and the inference cost for the final layer is O(m). Therefore, the
overall inference cost for each context-arm pair is O(dm+Lm2+m). Note that p = dm+Lm2+m
is the total number of NN parameters. The training time for the NN is O(ECLm2), where E is
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the number of training epochs and C is the number of context-arm pairs observations. Therefore,
choosing the appropriate size of NN for the given problem is very important, as having smaller NNs
may not accurately approximate the latent reward function, while larger NNs can incur significant
training and inference costs.

Number of contexts and arms: Let K be the number of arms and p be the total number of NN
parameters. Since we use the gradients with respect to the current estimate of NN as context-arm
features, the gradient computation cost for each context is O(Kdp), where d is the dimension of the
context-arm feature vector. The computational costs for computing reward estimate and confidence
terms are O(Kp) and O(Kp2), respectively. For selection arms, the computational cost for the first
arm is O(Kp + K), which includes estimating the reward for each context-arm pair O(Kp) and
then selecting the arm with the highest estimated reward O(K); and the computational cost for the
second arm is O(Kp+ (K − 1)p2), i.e., computing estimated reward O(Kp) and confidence terms
O((K − 1)p2) for all arm with respect to the first selected arm Thus, the overall computational cost
of our proposed algorithms for selecting a pair of arms for each context is O(Kdp+Kp2). Since
each context-arm pair is independent of others, each arm’s gradients, reward estimate, and optimistic
term can be computed in parallel. Consequently, the computational cost for selecting a pair of arms
for each context can reduced to O(dp+ p2).

C.2 COMPARISION WITH EXISTING CONTEXTUAL DUELING BANDIT ALGORITHMS

Saha (2021) proposed a contextual linear dueling bandits algorithm using a logistic link function with
pairwise and subset-wise preference feedback. Whereas Bengs et al. (2022) generalized the setting to
the contextual linear stochastic transitivity model, and Li et al. (2024) proposed an algorithm based
on Feel-Good Thompson Sampling (Zhang, 2022). These existing works only consider the linear
reward function, which may not be practical in many real-life applications. Our work fills this gap in
the literature and generalizes the existing setting by considering the non-linear reward function in
contextual dueling bandits. Furthermore, the arm-selection strategies are different, as Saha (2021) and
Li et al. (2024) select the most informative pair of arms, and Bengs et al. (2022) select the first arm
optimistically and select the second arm that beats the first arm optimistically. In contrast, we select
the first arm greedily to ensure the best-performing arm is always selected and then the second arm
optimistically to focus on exploration, making the arm-selection process computationally efficient as
our algorithms only need to compare K − 1 pairs instead of all possible pairs (i.e., O(K2)). Since
we use an NN-based reward estimator, our optimistic term calculations for the context-arm pairs
differ from the existing work. Therefore, our regret analysis uses techniques different from existing
algorithms for contextual dueling bandits.

C.3 WHAT IF FIRST AND SECOND ARM ARE SAME

Since our proposed algorithms have a sub-linear regret guarantee, they will eventually select the
best arm and recommend it in duels. This implies that for a given context, both the first and second
arms chosen may ultimately be the same, representing the best-performing arm. Therefore, the first
and second arms can be the same in our proposed algorithms. However, observations in which both
arms are the same do not provide any useful preference information for estimating the latent reward
function, as no comparison is being made. Including such observations for estimating latent reward
function would only contribute to noise and result in a constant loss. Thus, we have to exclude these
observations from the reward estimation.

D NEURAL CONTEXTUAL BANDITS WITH BINARY FEEDBACK

We extend our results to the neural contextual bandit problem in which a learner only observes
binary feedback for the selected arms (note that the learner only selects one arm in every iteration).
Observing binary feedback is very common in many real-life applications, e.g., click or not in online
recommendation and treatment working or not in clinical trials (Li et al., 2017; Faury et al., 2020).

Contextual bandits with binary feedback. We consider a contextual bandit problem with binary
feedback. In this setting, we assume that the action set is denoted by A. Let Xt ⊂ Rd denote
the set of all context-arm feature vectors in the round t and xt,a represent the context-arm feature
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vector for context ct and an arm a ∈ A. At the beginning of round t, the environment generates
context-arm feature vectors {xt,a}a∈A and the learner selects an arm at, whose corresponding
context-arm feature vector is given by xt,a. After selecting the arm, the learner observes a stochastic
binary feedback yt ∈ {0, 1} for the selected arm. We assume the binary feedback follows a
Bernoulli distribution, where the probability of yt = 1 for context-arm feature vector xt,a is given by
P {yt = 1|xt,a} = µ (f(xt,a)) , where µ : R → [0, 1] is a continuously differentiable and Lipschitz
with constant Lµ, e.g., logistic function, i.e., µ(x) = 1/(1+e−x). The link function must also satisfy
κµ

.
= infx∈X µ̇(f(x)) > 0 for all arms.

Performance measure. The learner’s goal is to select the best arm for each context, denoted
by x⋆

t = argmaxx∈Xt
f(x). Since the reward function f is unknown, the learner uses available

observations {xs,a, ys}t−1
s=1 to estimate the function f and then use the estimated function to select

the arm at for context xt. After selecting the arm at, the learner incurs an instantaneous regret,
rt = µ (f(x⋆

t ))− µ (f(xt,a)). For T contexts, the (cumulative) regret of a policy that selects action
at for a context observed in round t is given by RT =

∑T
t=1 rt =

∑T
t=1 [µ (f(x⋆

t ))− µ (f(xt,a))] .
Any good policy should have sub-linear regret, i.e., limT→∞ RT /T = 0. Having sub-linear regret
implies that the policy will eventually select the best arm for the given contexts.

D.1 REWARD FUNCTION ESTIMATION USING NEURAL NETWORK AND OUR ALGORITHMS

To estimate the unknown reward function f , we use a fully connected neural network (NN) with
parameters θ as used in the Section 3. The context-arm feature vector selected by the learner in round
s is denoted by xs,a ∈ Xs, and the observed stochastic binary feedback is denoted by ys. At the
beginning of round t, we use the current history of observations {(xs,a, ys)}t−1

s=1 and use it to train
the neural network (NN) by minimizing the following loss function (using gradient descent):

Lt(θ) = − 1

m

t−1∑
s=1

[
ys logµ (h(xs,a; θ)) + (1− ys) log (1− µ (h(xs,a; θ)))

]
+

λ ∥θ − θ0∥22
2

, (33)

where θ0 represents the initial parameters of the NN. With the trained NN, we use UCB- and TS-based
algorithms that handle the exploration-exploitation trade-off efficiently.

UCB-based algorithm. We propose a UCB-based algorithm named NCBF-UCB, which works
as follows: At the beginning of the round t, it trains the NN using available observations. After
receiving a context, the algorithm selects the arm optimistically as follows:

xt,a = argmax
x∈Xt

[h(x; θt) + νTσt−1(x)] , (34)

where σ2
t−1(x)

.
= λ

κµ

∥∥∥ g(x;θ0)√
m

∥∥∥2
V −1
t−1

, in which Vt
.
=
∑t

s=1 g(x; θ0)g(x; θ0)
⊤ 1

m + λ
κµ

I, νT
.
= (βT +

B
√
λ/κµ + 1)

√
κµ/λ in which βT

.
= 1

κµ

√
d̃b + 2 log(1/δ) and d̃b is the effective dimension. We

define the effective dimension later in this section (see Eq. (35)), which is different from Eq. (4).

NCBF-UCB Algorithm for Neural Contextual Bandits with Binary Feedback based on UCB

1:Tuning parameters: δ ∈ (0, 1) and λ > 0
2: for t = 1, . . . , T do
3: Train the NN using {(xs,a, ys)}t−1

s=1 by minimizing the loss function defined in Eq. (33)
4: Receive a context and Xt denotes the corresponding context-arm feature vectors
5: Select xt,a = argmaxx∈Xt [h(x; θt) + νTσt−1(x)] (as given in Eq. (34))
6: Observe preference feedback binary yt
7: end for

TS-based algorithm. We also propose TS-based algorithm named NCBF-TS, which is
similar to NCBF-UCB except to select the arm xt,a, it firstly samples a reward rt(x) ∼
N
(
h(x; θt), ν

2
Tσ

2
t−1(x)

)
for every arm x ∈ Xt and then selects the arm xt,a = argmaxx∈Xt

rt(x).
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Regret analysis. Let K denote the finite number of available arms. Our analysis here makes use
of the same assumptions as the analysis in Section 3 (i.e., Assumption 1 and Assumption 2). Let
Hb

.
=
∑T

s=1

∑K
i=1 g(xs,i; θ0)g(xs,i; θ0)

⊤ 1
m . We now define the effective dimension as follows:

d̃b = log det
(κµ

λ
Hb + I

)
. (35)

Compared to H′ defined in Section 3.3, Hb contains only T ×K contexts, which is less than the
T ×K × (K − 1) contexts in H′. Therefore, our d̃b is expected to be generally smaller than in the
neural dueling bandit feedback, as binary reward is more informative than preference feedback. A
key step in our proof is that minimizing the loss function Eq. (1) allows us to achieve the following:

1

m

t−1∑
s=1

[µ (h(xs,a; θt))− ys] g(xs,a; θt) + λ(θt − θ0) = 0. (36)

We use the above fact to prove the following confidence ellipsoid result as done in linear reward
function (Li et al., 2017; Jun et al., 2017; Faury et al., 2020).

Theorem 4. Let δ ∈ (0, 1), ε′m,t
.
= C2m

−1/6
√
logmL3

(
t
λ

)4/3
for some absolute constant C2 > 0.

As long as m ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ,
we have

|f(x)− h(x; θt)| ≤ νTσt−1(x) + ε′m,t,

for all x ∈ Xt, t ∈ [T ].

Similar to Theorem 1, as long as the NN is wide enough (i.e., if the conditions on m in Eq. (8) are
satisfied. More details are in Appendix A), we have that ε′m,t = O(1/T ). Also note that in contrast
to Theorem 1 whose confidence ellipsoid is in terms of reward differences, our confidence ellipsoid
in Theorem 4 is in terms of the value of the reward function. This is because in contrast to neural
dueling bandits (Section 3), here we get to collect an observation for every selected arm.

In the following results, we state the regret upper bounds of our proposed algorithms for neural
contextual bandits with binary feedback.

Theorem 5 (NCBF-UCB). Let λ > κµ, B be a constant such that
√
2h⊤H−1h ≤ B, and

c0 > 0 be an absolute constant such that 1
m ∥g(xs,i; θ0)∥22 ≤ c0,∀x ∈ Xt, t ∈ [T ]. For m ≥

poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ, we have

RT = Õ


√
d̃b

κµ
+B

√
λ

κµ

√T d̃b


Theorem 6 (NCBF-TS). Under the conditions as those in Theorem 5 holds, then with probability of
at least 1− δ, we have

RT = Õ


√
d̃b

κµ
+B

√
λ

κµ

√T d̃b

 .

Note that in terms of asymptotic dependencies (ignoring the log factors), our UCB- and TS- algorithms
have similar growth rates. All missing proofs and additional details are in Appendix D.2.

Comparison with Neural Bandits. The regret upper bounds of our NCBF-UCB and NCBF-TS
algorithms are worse than the regret of NeuralUCB Zhou et al. (2020) and NeuralTS Zhang et al.
(2021): Õ(d̃b

√
T ) (with κµ = 1) because of our extra dependency on κµ and Lµ.3 Specifically, note

that κµ < 1, therefore, the regret bounds in Theorem 5 and Theorem 6 are increased as a result of the
dependency on κµ. In addition, the dependency on Lµ also places an extra requirement on the width

3Note that our effective dimension d̃b is defined using Hb Eq. (35), while the effective dimension d̃′ in Zhou
et al. (2020) and Zhang et al. (2021) are defined using H. However, as we have discussed in Footnote 2, d̃′ has
the same order of growth as log det (Hb/λ+ I). So, our regret upper bounds are comparable with those from
Zhou et al. (2020) and Zhang et al. (2021).
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m of the NN. Therefore, our regret bounds are worse than that of standard neural bandit algorithms
that do not depend on κµ and Lµ. This can be attributed to the additional difficulty of our problem
setting, i.e., we only have access to binary feedback, whereas standard neural bandits Zhou et al.
(2020); Zhang et al. (2021) can use continuous observations.

Also note that our regret upper bounds here (Theorem 5 and Theorem 6) are expected to be smaller
than those of neural dueling bandits (Theorem 2 and Theorem 3), because d̃b here is likely to be
smaller than d̃ from Theorem 2 and Theorem 3. This may be attributed to the extra difficulty in the
feedback in neural dueling bandits, i.e., only pairwise comparisons are available.

D.2 THEORETICAL ANALYSIS

In this section, we show the proof of Theorem 5 and Theorem 6 for neural contextual bandits with
binary feedback (Appendix D). We can largely reuse the proof from Appendix A, and here we will
only highlight the changes we need to make to the proof in Appendix A.

To begin with, in our analysis here, we adopt the same requirement on the width of the NN specified
in Eq. (8). First of all, Lemma 2 still holds in this case, which allows us to approximate the unknown
utility function f using a linear function. It is also easy to verify that Lemma 3 still holds. As a
consequence, Lemma 4 and Lemma 5 both hold naturally.

D.2.1 PROOF OF CONFIDENCE ELLIPSOID

Similar to the our proof in Appendix A.2, in iteration s, we denote φ′
s ≜ g(xs; θ0), φ̃′

s ≜ g(xs; θt),
and h̃s,t ≜ h(xs; θt). Here we show how the proof of Lemma 6 should be modified. For any
θf ′ ∈ Rp, define

Gt(θf ′) ≜
1

m

t−1∑
s=1

[
µ (⟨θf ′ − θ0, φ

′
s⟩)− µ (⟨θf − θ0, φ

′
s⟩)
]
φ′
s + λ(θf ′ − θ0). (37)

Note that the definition of Gt in Eq. (37) is exactly the same as that in Eq. (9), except that here we use a
modified definition of φ′

s. Note that here Vt is defined as Vt
.
=
∑t

s=1 g(xs; θ0)g(xs; θ0)
⊤ 1

m + λ
κµ

I =∑t
s=1 φ

′
sφ

′
s
⊤ 1

m + λ
κµ

I. In addition, the definition of ft,s remains: ft,s = ⟨θt − θ0, φ
′
s⟩. With the

modified definitions of Vt−1, we can easily show that Lemma 7 remains valid. Note that here the
binary observation can be expressed as ys = µ(f(xs)) + εs, in which εs is the observation noise. It
is easy to verify that the decomposition in Eq. (12) remains valid.

Next, defining A1 and A2 in the same way as Eq. (13), it is easy to verify that Eq. (14) is still valid.
Note that during the proof of Eq. (14), we have made use of Eq. (36), which allows us to ensure the
validity of 1

m

∑t−1
s=1

(
µ(h̃s,t)− ys

)
φ̃′
s + λ(θt − θ0) = 0 in Eq. (15). This is ensured by the way we

train our neural network with the binary observations. Next, we derive an upper bound on the norm
of A1. To begin with, we have that

∥φ′
s − φ̃′

s∥2 = ∥g(xs; θ0)− g(xs; θt)∥2

≤ C1m
1/3
√
logm

(
Ct

λ

)1/3

L7/2,

in which the inequality follows from Lemma 4. Then, the proof in Eq. (16) can be reused to show
that

∥A1∥2 =

∥∥∥∥∥ 1

m

t−1∑
s=1

(
µ(ft,s)− ys

)(
φ′
s − φ̃′

s

)∥∥∥∥∥
2

≤ m−2/3
√
logmt4/3C1C̃

1/3λ−1/3L7/2.

Note that the upper bound above is smaller than that from Eq. (16) by a factor of 2. Similarly, we can
follow the proof of Eq. (17) to derive an upper bound on the norm of A2:

∥A2∥2 =

∥∥∥∥∥ 1

m

t−1∑
s=1

(
µ(ft,s)− µ(h̃s,t)

)
φ̃′
s

∥∥∥∥∥
2

≤ 2LµC2C3C̃
4/3m−2/3

√
logmt7/3L7/2λ−4/3,
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in which the upper bound is also smaller than that from Eq. (17) by a factor of 2. As a result, defining
εm,t in the same way as Eq. (19) (except that the second and third terms in εm,t are reduced by a
factor of 2), we can show that Eq. (20) is still valid:

√
m ∥θf − θt∥Vt−1

≤ 1

κµ

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

+B

√
λ

κµ
+ 1. (38)

Now we derive an upper bound on the first term in Eq. (38) in the next lemma, which is proved by
modifying the proof of Lemma 8.

Lemma 15. Let βT
.
= 1

κµ

√
d̃b + 2 log(1/δ). With probability of at least 1− δ, we have that

1

κµ

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

≤ βT .

Proof. Note that in the main text, we have the following modified definitions: Hb
.
=∑T

s=1

∑
i∈K g(xs,i; θ0)g(xs,i; θ0)

⊤ 1
m , and d̃b = log det

(κµ

λ Hb + I
)
.

To begin with, we derive an upper bound on the log determinant of the matrix Vt
.
=∑t

s=1 g(xs; θ0)g(xs; θ0)
⊤ 1

m + λ
κµ

I. Now the determinant of Vt can be upper-bounded as

det(Vt) = det

(
t∑

s=1

g(xs; θ0)g(xs; θ0)
⊤ 1

m
+

λ

κµ
I

)

≤ det

(
T∑

s=1

∑
i∈K

g(xs,i; θ0)g(xs,i; θ0)
⊤ 1

m
+

λ

κµ
I

)

= det

(
Hb +

λ

κµ
I

)
.

Recall that in our algorithm, we have set V0 = λ
κµ

Ip. This leads to

log
detVt

detV0
≤ log

det
(
Hb +

λ
κµ

I
)

detV0

= log
(λ/κµ)

p det
(κµ

λ Hb + I
)

(λ/κµ)p

= log det
(κµ

λ
Hb + I

)
.

Next, following the same line of argument in the proof of Lemma 8 about the observation noise ε, we
can easily show that in this case of neural contextual bandits with binary observation, the sequence of
noise {εs} is also conditionally 1-sub-Gaussian.

Next, making use of the 1-sub-sub-Gaussianity of the sequence of noise {εs} and Theorem 1 from
Abbasi-Yadkori et al. (2011), we can show that with probability of at least 1− δ,∥∥∥∥∥

t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

≤

√
log

(
detVt−1

detV0

)
+ 2 log(1/δ)

≤
√
log det

(κµ

λ
Hb + I

)
+ 2 log(1/δ)

≤
√
d̃b + 2 log(1/δ),

in which we have made use of the definition of the effective dimension d̃b = log det
(κµ

λ Hb + I
)
.

This completes the proof.
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Finally, plugging Lemma 15 into Eq. (38) allows us to show that Lemma 6 remains valid:

√
m ∥θf − θt∥Vt−1

≤ βT +B

√
λ

κµ
+ 1, ∀t ∈ [T ]. (39)

Now we can prove the confidence ellipsoid in Theorem 4:

Theorem 4. Let δ ∈ (0, 1), ε′m,t
.
= C2m

−1/6
√
logmL3

(
t
λ

)4/3
for some absolute constant C2 > 0.

As long as m ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ,
we have

|f(x)− h(x; θt)| ≤ νTσt−1(x) + ε′m,t,

for all x ∈ Xt, t ∈ [T ].

Proof. Denote φ(x) = g(x; θ0). Recall that Lemma 2 tells us that f(x) = ⟨g(x; θ0), θf − θ0⟩ =
⟨φ(x), θf − θ0⟩ for all x ∈ Xt, t ∈ [T ]. To begin with, for all x ∈ Xt, t ∈ [T ] we have that

|f(x)− ⟨φ(x), θt − θ0⟩| = |⟨φ(x), θf − θ0⟩ − ⟨φ(x), θt − θ0⟩|
= |⟨φ(x), θf − θt⟩⟩|

= |⟨ 1√
m
φ(x),

√
m (θf − θt)⟩|

≤
∥∥∥∥ 1√

m
φ(x)

∥∥∥∥
V −1
t−1

√
m ∥θf − θt∥Vt−1

≤
∥∥∥∥ 1√

m
φ(x)

∥∥∥∥
V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
,

(40)

in which we have used Lemma 6 (reproduced in Eq. (39)) in the last inequality. Now making use of
the equation above and Lemma 5, we have that

|f(x)− h(x; θt)|
= |f(x)− ⟨φ(x), θt − θ0⟩+ ⟨φ(x), θt − θ0⟩ − h(x; θt)|
≤ |f(x)− ⟨φ(x), θt − θ0⟩|+ |⟨φ(x), θt − θ0⟩ − h(x; θt)|

≤
∥∥∥∥ 1√

m
φ(x)

∥∥∥∥
V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
+ ε′m,t,

in which the last inequality follows from Eq. (40) and Lemma 5.

Recall that we have defined in the paper σ2
t−1(x)

.
= λ

κµ

∥∥∥ g(x;θ0)√
m

∥∥∥2
V −1
t−1

, and νT
.
= (βT +B

√
λ/κµ +

1)
√
κµ/λ in which βT

.
= 1

κµ

√
d̃b + 2 log(1/δ). This completes the proof of Theorem 4.

D.2.2 REGRET ANALYSIS

Now we can analyze the instantaneous regret:

rt = f(x∗
t )− f(xt)

≤ h(x∗
t ; θt) + νTσt−1(x

∗
t ) + ε′m,t − h(xt; θt) + νTσt−1(xt) + ε′m,t

≤ h(xt; θt) + νTσt−1(xt)− h(xt; θt) + νTσt−1(xt) + 2ε′m,t

= 2νTσt−1(xt) + 2ε′m,t.

Next, the subsequent analysis in Appendix A.3 follows by replacing σt−1(xt,1, xt,2) by σt−1(xt),
which allows us to show that

T∑
t=1

σ2
t−1(xt) ≤ 2c0

λ

κµ
d̃b.
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Finally, we can derive an upper bound on the cumulative regret:

RT =

T∑
t=1

rt ≤
T∑

t=1

(
2νTσt−1(xt) + 2ε′m,t

)
≤ 2

T∑
t=1

νTσt−1(xt) + 2

T∑
t=1

ε′m,t

≤ 2νT

√√√√T

T∑
t=1

σ2
t−1(xt) + 2Tε′m,T

≤ 2νT

√
T2c0

λ

κµ
d̃b + 2Tε′m,T .

Again it can be easily verified that as long as the conditions on m specified in Eq. (8) are satisfied (i.e.,

as long as the NN is wide enough), we have that 2Tε′m,T ≤ 1. Also recall that βT = Õ( 1
κµ

√
d̃b),

and νT
.
= (βT +B

√
λ/κµ +1)

√
κµ/λ = Õ( 1√

κµ

√
d̃b +B +

√
κµ/λ). This allows us to simplify

the regret upper bound to be

RT ≤ 2νT

√
T2c0

λ

κµ
d̃b + 1

= Õ


√
d̃b

κµ
+B

√
λ

κµ

√d̃bT

 .

The proof for the Thompson sampling algorithm follows a similar spirit, which we omit here.

D.3 EXPERIMENTS FOR NEURAL GLM BANDITS

(a) 10(x⊤θ)2 (b) 40(x⊤θ)2 (c) cos(3x⊤θ) (d) 10cos(x⊤θ)

Figure 7: Comparing cumulative regret of GLM bandits algorithms for non-linear reward functions.

(a) Varying d (UCB) (b) Varying K (UCB) (c) Varying d (TS) (d) Varying K (TS)

Figure 8: Cumulative regret of Algorithm NCBF-UCB and NCBF-TS vs. different number of arms
(K) and dimension of the context-arm feature vector (d) for Square reward function (i.e., 10(x⊤θ)2).
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E THEORETICAL INSIGHTS FOR REINFORCEMENT LEARNING WITH HUMAN
FEEDBACK

Our algorithms and theoretical results can also provide insights on the celebrated reinforcement
learning with human feedback (RLHF) algorithm (Chaudhari et al., 2024), which has been the
most widely used method for the alignment of large language models (LLMs). In RLHF, we are
given a dataset of user preferences, in which every data point consists of a prompt and a pair of
responses generated by the LLM, as well as a binary observation indicating which response is
preferred by the user. Following our notations in Section 2, the action xt,1 (resp. xt,2) corresponds
to the concatenation of the prompt and the first response (resp. second response). Of note, RLHF
is also based on the assumption that the user preference over a pair of responses is governed by the
BTL model (Section 2). That is, the binary observation yt is sampled from a Bernoulli distribution,
in which the probability that the first response is preferred over the second response is given by
P {xt,1 ≻ xt,2} = µ (f(xt,1)− f(xt,2)). Here f is often referred to as the reward function, which is
equivalent to the latent utility function f in our setting (Section 2).

Typically, RLHF consists of two steps: (a) learning a reward model using the dataset of user
preferences and (b) fine-tuning the LLM to maximize the learned reward model using reinforcement
learning. In step (a), same as our algorithms, RLHF also uses an NN h (which takes as input the
embedding from a pre-trained LLM) to learn the reward model by minimizing the loss function (1).
The accuracy of the learned reward model is crucial for the success of RLHF (Chaudhari et al., 2024).
Importantly, our Theorem 1 provides a theoretical guarantee on the quality of the learned reward
model h, i.e., an upper bound on the estimation error of the estimated reward differences between
any pair of responses. Therefore, our Theorem 1 provides a theoretically principled measure of the
accuracy of the learned reward model in RLHF, which can potentially be used to evaluate the quality
of the learned reward model.

In addition, some recent works have proposed the paradigm of online/iterative RLHF (Bai et al.,
2022; Menick et al., 2022; Mehta et al., 2023; Ji et al., 2024; Das et al., 2024) to further improve the
alignment of LLMs. In online RLHF, the RLHF procedure is repeated multiple times. Specifically,
after an LLM is fine-tuned to maximize the learned reward model, it is then used to generate pairs of
responses to be used to query the user for preference feedback; then, the newly collected preference
data is added to the preference dataset to be used to train a new reward model, which is again used
to fine-tune the LLM. In this case, as the alignment of the LLM is improved after every round, the
newly generated responses by the improved LLM are expected to achieve progressively higher reward
values, which have been shown to lead to better alignment of LLMs (Bai et al., 2022; Menick et al.,
2022; Mehta et al., 2023; Ji et al., 2024; Das et al., 2024). In every round, we can let the LLM
generate a large number of responses (i.e., the actions in our setting, see Section 2), from which we
can use our algorithms to select two responses xt,1 and xt,2 to be shown to the user for preference
feedback. In addition, our algorithm can also potentially be used to select the prompts shown to the
user, which correspond to the contexts in our problem setting (Section 2). Our theoretical results
guarantee that our algorithms can help select responses with high reward values (Theorem 2 and
Theorem 3). Therefore, our algorithms can be used to improve the efficiency of online RLHF.

F RESPONSE OPTIMIZATION IN LARGE LANGUAGE MODELS (LLMS)

As demonstrated in recent works (Bai et al., 2022; Menick et al., 2022; Mehta et al., 2023; Das
et al., 2024; Ji et al., 2024), using responses with higher reward values can significantly improve the
alignment of LLMs, especially in online/iterative RLHF where the responses generated by the initial
LLM tend to have low rewards. Motivated by this, we use our proposed algorithms, NDB-UCB and
NDB-TS, to select the responses with higher estimated reward values for a given prompt. In our
experiment, we use the following setting from Lin et al. (2024): In each iteration, a user provides a
prompt (context in our setting) to ChatGPT, and then ChatGPT generates 50 responses (arms in our
setting). We use Sentence-BER (Reimers & Gurevych, 2019) to get embedding representation for each
prompt-response pair. Specifically, for iteration t, we use xt,i = (ct, at,i) to denote the embedding
representation generated by Sentence-BERT, where ct denotes the prompt and at,i represents the i-th
response. Of note, we adopt a reward model that is pre-trained using the Anthropic Helpfulness and
Harmlessness datasets (Bai et al., 2022). For every prompt-response pair xt,i, we use the output from
this pre-trained reward model as the value of the unknown reward function f(xt,i). This approach
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allows us to simulate the preference feedback in this experiment. Note that our approach to simulating
preference feedback is common in the literature (Dwaracherla et al., 2024).
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Figure 9: Scores of different algorithms
for response optimization.

The embeddings xt,i are used as input to a trained neural
network (NN) that estimates the latent reward model.
Our proposed algorithms compute the reward estimate
for each prompt-response pair to select the first response
(using Eq. (2)) and then use it with the optimistic reward
estimates of other responses to select the second response
(using either Eq. (3) or TS-based selection criterion for the
second response). This way, our algorithms will ensure
the selection of responses with consistently high reward
estimates. As shown in Fig. 9, we compare the score
(calculated as the sum of rewards for selected responses
divided by the number of iterations) after T iterations
(multiple of 10) of NDB-UCB and NDB-TS and against
two baselines: Linear variants (which uses a linear model to estimate latent reward model instead of
an NN): Lin-UCB and Lin-TS, and Random (where two responses are selected randomly). The results
clearly show that our algorithms achieve the highest score (especially NDB-UCB), demonstrating the
superior performance of our proposed algorithm in identifying high-reward responses.

The experimental results shown in Fig. 9 corroborate our theoretical results, which guarantee the
selection of responses with high reward values, as also discussed in Section 4.2 and Appendix E.
This result further shows that our proposed algorithms can be used to improve the quality of the
human preference dataset, which could then be used to improve the efficiency of online RLHF/DPO
for LLM alignment. We leave it to future works to verify that the preference dataset with high-reward
responses collected using our algorithms can indeed lead to better LLM alignment, which is beyond
the scope of the current work (since the focus of this work is primarily theoretical) and will require
significantly more extensive experiments.
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