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ABSTRACT

The design of effective heuristics for complex combinatorial optimization prob-
lems has traditionally relied on extensive domain expertise and manual effort.
While Large Language Model-based Automated Heuristic Design (LLM-AHD)
offers a promising path toward autonomous heuristic generation, existing methods
often suffer from undirected search processes and poor interpretability, resulting
in a black-box optimization paradigm. To address these limitations, we intro-
duce Textual Preference Differentiation for Automatic Heuristic Design (TPD-
AHD), a novel framework that integrates preference optimization with textual
feedback to guide LLM-driven heuristic evolution. TPD-AHD employs a best-
anchored strategy to pair heuristic candidates and generates a natural language
textual loss. This loss is then translated into a textual gradient, which provides ex-
plicit, interpretable instructions for iterative heuristic refinement. This approach
not only enhances the transparency of the optimization trajectory but also ensures
a directed search toward high-performance regions. Extensive experiments on
a suite of NP-hard combinatorial optimization problems demonstrate that TPD-
AHD consistently outperforms both manually designed heuristics and existing
LLM-AHD methods. Furthermore, it exhibits strong generalization capabilities
across diverse domains and provides clear insights into the heuristic improvement
process. TPD-AHD establishes a new paradigm for interpretable, efficient, and
scalable automatic heuristic design.

1 INTRODUCTION

Combinatorial optimization (CO) constitutes a cornerstone of industrial and scientific computing,
with broad applications spanning logistics, scheduling, and resource allocation (Desale et al., 2015;
Cappart et al., 2023). Traditional approaches often rely on handcrafted heuristics (Forrest, 1996;
Dorigo et al., 2007; Kennedy & Eberhart, 1997), whose design demands substantial domain exper-
tise and manual effort. To alleviate this burden, Automatic Heuristic Design (AHD), also known as
Hyper-Heuristics (Burke et al., 2013), has emerged as a promising paradigm for generating heuristic
functions within general optimization frameworks. However, conventional AHD methods typically
operate on fixed operator sets (Liu et al., 2024a), limiting their flexibility and adaptability in complex
real-world scenarios.

Recent advancements in large language models (LLMs) have opened new avenues for optimiza-
tion research (Naveed et al., 2025). Building on this progress, AHD has evolved into LLM-based
Automated Heuristic Design (LLM-AHD) (Liu et al., 2024a), or Language Hyper-Heuristics (Ye
et al., 2024). These methods leverage the generative capabilities of LLMs to autonomously pro-
duce high-quality heuristics for intricate optimization tasks. Current LLM-AHD methods can be
broadly categorized into three approaches: population evolution, tree search, and large neighbor-
hood search. Despite these advancements, LLM-AHD faces two critical challenges: (1) the search
process often lacks clear guidance, relying on trial-and-error mechanisms that ignore the interdepen-
dencies among heuristics, and (2) the optimization trajectory remains opaque, creating a black-box
problem that undermines credibility and practical deployment.
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The Textual Differentiation (TD) framework, recently highlighted in Nature (Yuksekgonul et al.,
2025), offers valuable insights for enhancing LLM-AHD. By expressing optimization signals in nat-
ural language, TD improves interpretability and aligns with human cognitive processes, thereby re-
ducing the black-box nature of traditional LLM-AHD. However, directly integrating TD into LLM-
AHD poses notable challenges. The complexity of TD prompts increases computational overhead,
while reliance on lengthy textual feedback exacerbates LLM hallucinations, limiting heuristic ex-
ploration and the discovery of high-quality solutions. Consequently, a straightforward application
of TD may fail to provide effective guidance for heuristic evolution.

To overcome these limitations, we introduce Textual Preference Differentiation for Automatic
Heuristic Design (TPD-AHD), a novel framework to incorporate textual differentiation and pref-
erence pairing mechanisms into LLM-AHD. Our approach introduces three key contributions:

1. We propose TPD-AHD, the first LLM-AHD framework to incorporate textual differentia-
tion for combinatorial optimization. It conceptualizes LLM feedback as a textual gradient,
enabling precise and interpretable prompt-based heuristic optimization.

2. We design a best-anchored preference pairing mechanism that efficiently generates a stable
textual loss. This allows TPD-AHD to function as an online algorithm design system,
iteratively refining heuristics through explicit preference feedback.

3. We demonstrate that TPD-AHD serves as a unified framework for generating high-
performing heuristics across diverse NP-hard problems. Extensive experiments show that
it outperforms both manually designed heuristics and existing LLM-AHD methods, while
providing unprecedented transparency into the heuristic evolution process.

2 RELATED WORK

LLM-based Automated Heuristic Design. The rapid development of LLMs brings new oppor-
tunities for optimization algorithm research. Existing research demonstrates that LLMs have been
widely applied in multiple optimization-related fields, including prompt optimization (Zhou et al.,
2022; Wang et al., 2024; Guo et al., 2023), reward function design (Ma et al., 2024; Xie et al., 2024),
self-optimization (Liu et al., 2024c; 2025; Zelikman et al., 2024), neural architecture search (Chen
et al., 2023), and general optimization problems (Wang et al., 2023; Yang et al., 2023).

LLM-AHD stands out as a pivotal approach within the self-optimization paradigm. As represen-
tative studies in this field, Funsearch (Romera-Paredes et al., 2024) and EoH (Liu et al., 2024a)
pioneeringly integrate large models with evolutionary computation, driving the automatic gener-
ation and optimization of heuristic functions through population iterative evolution. ReEvo (Ye
et al., 2024) integrates the reflection mechanism (Shinn et al., 2023), thereby boosting the trans-
fer and reasoning capabilities of LLMs across diverse function samples. HSEvo (Dat et al., 2025)
combines diversity metrics with the harmony search algorithm (Shi et al., 2012), significantly en-
hancing population diversity while guaranteeing performance. MCTS-AHD (Zheng et al., 2025)
is the first LLM-based automated tuning tree search method in LLM-AHD, thus breaking the con-
vention of population-based structures in previous methods. LLM-LNS (Ye et al., 2025) applies
the dual-layer self-evolutionary LLM agent to generating neighborhood selection strategies in Large
Neighborhood Search (LNS) (Ahuja et al., 2002), delivering promising performance for large-scale
Mixed Integer Linear Programming (MILP) problems. AlphaEvolve (Novikov et al., 2025), as a
general-purpose closed-source system combining LLMs with evolutionary computation, leverages
large-scale computing resources to demonstrate notable potential in a broad spectrum of problems,
such as automatic heuristic generation.

Preference Optimization for LLMs. Preference optimization techniques aim to align LLM out-
puts with human or task-specific preferences by learning from paired comparisons. Reinforcement
Learning from Human Feedback (RLHF) (Ouyang et al., 2022) established the foundational ap-
proach of training a reward model on preference data and then using it for policy optimization.
Rafailov et al. (2023) simplified this pipeline with Direct Preference Optimization (DPO), which op-
timizes the policy directly using the preference probabilities without an explicit reward model. More
recently, Li et al. (2025) proposed Test-Time Preference Optimization (TPO), an online method that
refines LLM responses during inference based on iterative feedback. Our method draws inspiration
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from the core idea of learning from pairwise comparisons. However, instead of tuning the parame-
ters of an LLM for general alignment, we adapt the preference optimization paradigm to guide the
generation of heuristic code within an automated design loop, using textual feedback to define the
optimization signal.

Textual Gradient Methods. Textual Gradient is an emerging optimization technique in natural
language processing. It simulates textual backpropagation using feedback from LLMs to iteratively
refine components within complex Artificial Intelligence (AI) systems.

The concept was first introduced by Hou et al. (2023) to generate high-quality adversarial examples
for language models, adapting methods like Projected Gradient Descent (PGD) from computer vi-
sion to the discrete text domain. Building on this foundation, Mavromatis et al. (2023) extended
gradient-based optimization to graph-structured text data, introducing the Graph-Aware Distillation
(GRAD) framework. Subsequently, Yuksekgonul et al. (2025) reformulated textual gradients as a
general-purpose framework that leverages natural language feedback from LLMs to simulate back-
propagation in AI computation graphs. Most recently, Ding et al. (2025) introduced the Textual
Gradient Descent with Momentum (TSGD-M) method, which incorporates sampling-based mo-
mentum to significantly enhance training efficiency and stability, enabling the application of textual
gradients at scale. These advancements highlight the growing maturity and applicability of textual
gradient methods in diverse AI optimization scenarios.

3 PRELIMINARIES

3.1 AUTOMATIC HEURISTIC DESIGN

For a given combinatorial optimization task P , Automatic Heuristic Design (AHD) (Stützle &
López-Ibáñez, 2018) seeks to determine the optimal heuristic h∗ from a candidate space H that
maximizes a performance measure g:

h∗ = argmax
h∈H

g(h). (1)

A heuristic h ∈ H is formally defined as an algorithm that maps the input space IP to the solution
space SP , i.e., h : IP → SP . The function g : H → R evaluates the performance of heuristic h and
produces a fitness value. For minimization tasks with an objective function f : SP → R, the fitness
value of h is often estimated as the expected value over all instances i in a dataset D ⊆ IP , where
D denotes a dataset of problem instances:

g(h) = Ei∈D[−f(h(i))]. (2)

To streamline the design process, AHD frameworks often operate within a predefined meta-
algorithmic template (e.g., a constructive search or local search framework). The AHD process
focuses on optimizing the heuristic components (e.g., a node selection rule in a greedy constructor
or a move strategy in a local search) that guide the algorithm’s decisions, rather than building an
entire solver from scratch.

3.2 AUTOMATIC DIFFERENTIATION VIA TEXT

Automatic Differentiation via Text, or TEXTGRAD (Yuksekgonul et al., 2025), enables gradient-
style optimization in natural language by converting textual feedback into differentiable signals.
These signals guide iterative refinement of discrete variables such as prompts or heuristics.

TEXTGRAD treats an LLM as a differentiable engine in a compositional process. Consider a prompt
optimization task structured as a chain:

x
LLM−−−→ y

LLM−−−→ L, (3)

where x is an input (e.g., a prompt instructing the generation of a heuristic), y = LLM(x) is the
intermediate output (e.g., the generated heuristic code), and L = LLM(y) is a scalar loss that
evaluates y (e.g., a textual critique of the heuristic’s quality).

3
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Figure 1: An overview of the TPD-AHD framework, consisting of forward and backward propaga-
tion. In forward propagation, N heuristics are generated via an LLM, and the best-anchor strategy
constructs preference pairs to compute textual loss. In backward propagation, the loss is converted
into textual gradient for iterative heuristic optimization. Heuristics are stored in a fixed-capacity
candidate heuristic solution pool, retaining only the top-ranked individuals.

Treating both mappings as differentiable black-boxes, TEXTGRAD defines textual gradients
∂y

∂x
= ∇LLM(x, y),

∂L
∂y

= ∇LLM(y,L) (4)

that quantify how perturbations in x propagate to y and subsequently to L. Applying the chain rule
yields the update direction

∂L
∂x

=
∂y

∂x
◦ ∂L
∂y

= ∇LLM

(
x, y,

∂L
∂y

)
, (5)

where ◦ denotes composition of gradient signals. Finally, the prompt is updated with any standard
optimizer or optimization rule:

xnew = Optim.step
(
x,

∂L
∂x

)
. (6)

Optim.step applies the textual gradient to the prompt x to produce xnew. Iterating this procedure re-
fines x to maximize L, yielding an interpretable, gradient-driven optimization loop in purely textual
space.

4 METHODOLOGY

4.1 OVERALL FRAMEWORK

The TPD-AHD framework introduced in this paper builds upon the TEXTGRAD concept but tailors it
specifically for the AHD setting. We introduce a novel best-anchored preference pairing mechanism
to generate a more stable and informative textual loss, which in turn yields more effective textual
gradients for guiding the evolution of heuristics. The core innovation lies in translating preference
optimization signals into interpretable textual forms, which enable a transparent and directed search
process.

The framework, as illustrated in Figure 1, is structured around two synergistic processes: forward
propagation and backward propagation, mimicking the gradient-based optimization paradigm in
continuous spaces but operating entirely in the discrete textual domain. In the forward propagation
phase, TPD-AHD generates a diverse set of candidate heuristics, evaluates their performance, and
constructs preference-based pairs using a best-anchoring strategy. This process yields a textual loss
that quantifies the relative quality between heuristics. During backward propagation, the textual loss
is converted into a textual gradient—a set of natural language instructions that guide the update
of the task prompt. This prompt is then used to generate improved heuristics in the next iteration.
By maintaining a fixed-capacity candidate pool, TPD-AHD ensures that only the most promising
heuristics are retained, balancing exploration and exploitation throughout the optimization process.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 FORWARD PROPAGATION: FROM HEURISTICS TO TEXTUAL LOSS

The forward propagation phase aims to assess the current heuristic population and quantify their rel-
ative performance through a structured loss signal. This phase consists of three key steps: candidate
pool management, best-anchored preference pairing, and textual loss computation.

Candidate Heuristic Pool Management. TPD-AHD maintains a dynamic candidate pool P =
{h1, h2, . . . , hN} of heuristics, where each hi is generated by an LLM based on a task-specific
prompt x(t) at iteration t. The pool is initialized by sampling N heuristics from the LLM using an
initial prompt Pinit(x, f) that incorporates the problem description x and a template function f :

h
(i)
init = LLM(Pinit(x, f)), i = 1, . . . , N. (7)

Each heuristic is evaluated on a dataset D of problem instances, and assigned a fitness score f(hi)
according to Equation (2). The pool is periodically updated to retain only the top-N heuristics based
on fitness, ensuring that high-quality candidates guide subsequent iterations.

Best-Anchored Preference Pairing. To focus learning on the most promising directions, TPD-
AHD employs a best-anchored strategy for constructing preference pairs. The heuristics in P are
ranked by fitness: P̄ = {h1 ≻ h2 ≻ · · · ≻ hN}, where h1 is the best-performing heuristic. Then,
N − 1 preference pairs are formed as:

P = {(h1, hi) | i = 2, . . . , N}, (8)

where each pair (hw, hl) satisfies hw ≻ hl. This strategy prioritizes comparisons with the current
best heuristic, reducing noise from low-quality candidates and providing a clear optimization anchor.

Textual Loss Computation. For each preference pair (hw, hl), a textual loss function
Ploss(hw, hl) is constructed. This prompt-based function asks the LLM to compare hw and hl and
explain why hw is preferred. The output is a natural language summary Ltext that captures the
strengths of hw and weaknesses of hl:

Ltext = LLM(Ploss(hw, hl)). (9)

This textual loss serves as a interpretable performance signal that will guide the backward update.

4.3 BACKWARD PROPAGATION: FROM TEXTUAL LOSS TO PROMPT UPDATE

The backward phase translates the textual loss into actionable update directions via textual gradients,
which are then used to refine the prompt and generate improved heuristics.

Textual Gradient Generation. Using a gradient prompt Pgrad(Ltext), the LLM is instructed to
generate a set of natural language instructions—the textual gradient—that suggest how the prompt
x should be modified to reduce the loss:

∂Ltext

∂x
= LLM(Pgrad(Ltext)). (10)

This gradient approximates the effect of prompt changes on heuristic quality, effectively simulating
backpropagation in textual space. Formally, since Ltext depends on both (hw, hl) generated from x,
the chain rule yields:

∂Ltext

∂x
=

∂hw

∂x
◦ ∂Ltext

∂hw
+

∂hl

∂x
◦ ∂Ltext

∂hl
, (11)

where ∂hw

∂x and ∂hl

∂x reflect the sensitivity of the prompt, ∂Ltext
∂hw

and ∂Ltext
∂hl

capture the loss change with
respect to the heuristic.
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Prompt Update and Heuristic Regeneration. The prompt x(t) is updated by incorporating the
guidance from the textual gradient. This is achieved through a symbolic optimization step:

x(t+1) = Optim.step
(
x(t),

∂Ltext

∂x

)
. (12)

In practice, Optim step typically involves appending or integrating the gradient instructions into the
existing prompt. This new prompt x(t+1) is then used to generate a new set of heuristics:

hnew = LLM(x(t+1)). (13)

This process is repeated for each of the N−1 preference pairs, producing N−1 new heuristics. The
candidate pool is then updated by merging these new heuristics with the existing ones, re-ranking
by fitness, and retaining the top N . The entire forward-backward cycle is iterated T times, enabling
continuous heuristic improvement.

4.4 COMPUTATIONAL ANALYSIS

The computational complexity is dominated by LLM inference. Each iteration requires O(N) calls
for heuristic generation, O(N) calls for loss computation (as best-anchored pairing reduces com-
parisons from O(N2) to O(N)), and O(N) calls for gradient generation and heuristic regeneration.
Thus, the overall complexity for T iterations is O(TN), ensuring scalability.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

This section outlines the experimental protocol used to evaluate the proposed TPD-AHD framework
across a suite of challenging tasks, including classic NP-hard Combinatorial Optimization Problems
(NP-hard COPs) and practical optimization tasks. Detailed definitions of these tasks are provided in
Appendix A. The experiments aim to validate TPD-AHD’s ability to generate high-quality heuristics
while ensuring methodological transparency and reproducibility. The LLM4AD platform (Liu et al.,
2024b) was utilized to conduct these experiments, offering a robust infrastructure for LLM-AHD
research.

Baselines. To assess the heuristic design capability of TPD-AHD, we compared it with several
state-of-the-art LLM-AHD methods, including Funsearch (Romera-Paredes et al., 2024), EoH (Liu
et al., 2024a), ReEvo (Ye et al., 2024), and MCTS-AHD (Zheng et al., 2025). Funsearch and ReEvo
rely on manually designed seed functions to initiate the heuristic development process. In con-
trast, EoH, MCTS-AHD, and TPD-AHD can commence the heuristic evolution process without
predefined seed functions, thereby demonstrating greater general applicability. In our experiments,
identical seed functions were provided for each design scenario to ensure a fair comparison without
leveraging external domain-specific knowledge.

Experimental Configuration. Following the configuration of EoH, the maximum number of
heuristic search samples for all LLM-AHD methods was set to 200. For EoH, the population size
was configured to 10 with 20 iterations. For TPD-AHD, the candidate solution pool size was set
to N = 10, with a total of T = 20 iterations. To mitigate statistical bias, each LLM-based AHD
method was independently executed three times for the heuristic algorithm design in each appli-
cation scenario. Details on the construction of the evaluation dataset D and the general framework
settings for each task are provided in Appendix B. The experiments primarily utilized the DeepSeek-
Chat and GPT-4o-Mini language models, with a temperature setting of 1.0 to balance exploration
and exploitation during heuristic generation.

5.2 EXPERIMENTS ON CLASSIC NP-HARD COPS

We evaluated TPD-AHD on a comprehensive suite of NP-hard COPs, including the Traveling Sales-
man Problem (TSP), Capacitated Vehicle Routing Problem (CVRP), Open Vehicle Routing Problem

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of LLM-based AHD methods on TSP, CVRP, and JSSP using the
step-by-step construction framework. Optimal solutions for TSP were obtained via Concorde, those
for CVRP via LKH3, and JSSP optima are sourced from standard JSP benchmarks (TA instances).
The best-performing method for each LLM model is highlighted with shading.

Task TSP CVRP JSSP
Problem Size N = 50 N = 100 N = 50, C = 40 N = 100, C = 40 S = 50 × 15 S = 100 × 20

Method Obj.↓ Gap% Obj.↓ Gap% Obj.↓ Gap% Obj.↓ Gap% Obj.↓ Gap% Obj.↓ Gap%
Optimal 5.71 - 7.56 - 9.52 - 16.40 - 2773.8 - 5365.7 -

LLM Model: DeepSeek-Chat
Funsearch 6.85 19.98 9.46 21.93 13.86 45.62 23.85 45.43 3596.67 29.67 5394.89 0.54

EoH 6.59 15.30 9.18 18.31 13.89 45.94 24.11 47.03 2800.22 0.95 5389.39 0.44
ReEvo 6.61 15.75 9.22 18.81 13.81 45.01 23.79 49.08 2812.81 1.41 5384.33 0.35

MCTS-AHD 6.64 16.13 9.24 19.15 13.57 42.61 23.46 43.06 2894.59 4.35 5365.78 3.73
TPD-AHD 6.44 12.79 8.89 14.65 13.27 39.74 22.93 39.81 2802.00 1.02 5384.22 0.35

LLM Model: GPT-4o-Mini
Funsearch 6.72 17.54 9.32 20.16 13.86 45.62 24.26 47.95 2783.52 0.35 5389.5 0.54

EoH 6.42 12.45 8.95 15.34 13.88 45.84 23.97 46.16 2798.44 0.89 5389.93 0.45
ReEvo 6.73 17.76 9.32 20.19 13.79 44.93 23.74 44.77 2807.93 1.23 5385.22 0.36

MCTS-AHD 6.73 17.84 9.33 20.29 13.91 46.20 24.10 46.94 2936.94 5.88 5445.41 1.49
TPD-AHD 6.39 11.34 8.85 14.03 13.71 44.04 23.39 42.61 2796.00 0.80 5384.22 0.35

Table 2: Performance of LLM-based AHD methods on TSP, CVRP, and MKP using the Ant Colony
Optimization framework. Results are averaged across 64 instances per test set over three runs.

Task TSP CVRP MKP
Problem Size N = 50 N = 100 N = 50, C = 40 N = 100, C = 40 N = 100,M = 5 N = 200,M = 5

Method Obj.↓ Gap% Obj.↓ Gap% Obj.↓ Gap% Obj.↓ Gap% Obj.↑ Gap% Obj.↑ Gap%
Optimal 5.71 - 7.76 - 9.52 - 16.40 - 23.26 - 42.49 -

LLM Model: DeepSeek-Chat
Funsearch 6.27 9.80 13.36 20.16 11.06 16.22 19.64 19.77 22.861 1.717 41.024 3.453

EoH 5.94 4.01 8.76 12.93 10.70 12.41 19.02 15.99 22.857 1.730 41.027 3.459
ReEvo 5.92 3.64 8.84 14.00 10.75 13.00 18.95 15.53 22.864 1.700 41.021 3.459

MCTS-AHD 5.81 1.66 8.25 6.38 10.54 10.80 18.67 13.83 22.853 1.748 41.129 3.206
TPD-AHD 5.80 1.58 8.22 6.00 10.34 8.67 18.48 12.67 22.873 1.665 41.027 3.446

LLM Model: GPT-4o-Mini
Funsearch 5.81 1.67 8.26 6.41 10.40 9.25 18.67 13.82 22.843 1.793 41.068 3.349

EoH 5.79 1.41 8.21 5.89 10.39 9.14 18.54 13.05 22.587 1.731 41.027 3.444
ReEvo 5.80 1.49 8.34 7.44 10.59 11.24 18.71 14.12 22.863 1.706 41.000 3.508

MCTS-AHD 5.77 1.06 8.20 5.70 10.65 11.94 18.74 14.30 22.834 1.832 41.092 3.293
TPD-AHD 5.79 1.35 8.21 5.88 10.35 8.73 18.34 11.86 22.867 1.688 41.083 3.314

(OVRP), Vehicle Routing Problem with Time Windows (VRPTW), Job Shop Scheduling Problem
(JSSP), Capacitated Facility Location Problem (CFLP), Multiple Knapsack Problem (MKP) and
Maximum Admissible Set Problem (MASP). To demonstrate framework generality, we instanti-
ated TPD-AHD within two established heuristic paradigms: step-by-step construction (Asani et al.,
2023) and Ant Colony Optimization (ACO) (Dorigo et al., 2007).

Step-by-Step Construction Framework. The constructive heuristic framework provides a princi-
pled approach for generating feasible solutions through sequential decision-making. This paradigm
is widely adopted in both traditional heuristic design and neural combinatorial optimization (NCO)
research (Bello et al., 2017). We integrated TPD-AHD into this framework to automatically design
construction heuristics for all studied problems, with detailed results for CFLP, OVRP, VRPTW and
ASP presented in Appendix C.

Experimental Configuration. For TSP, CVRP, and JSSP, the training set Dtrain comprised 256 TSP
instances (50 nodes), 16 CVRP instances (50 nodes, capacity 40), and 16 JSSP instances (50 jobs ×
15 machines). The test set Dtest included 1,000 TSP instances (50/100 nodes), 64 CVRP instances
(50/100 nodes, capacity 40), and 16 JSSP instances (50×15, 15×15 configurations). The core heuris-
tic function iteratively selects the next state based on partial solution context.

Performance Analysis. Table 1 presents comparative results against state-of-the-art LLM-AHD
methods. TPD-AHD consistently outperformed all baselines across problem domains and instance
sizes. Notably, it achieved relative gaps of 11.34% (TSP-50) and 14.03% (TSP100) with GPT-4o-
Mini, showing robust optimization capabilities. The method’s superiority is particularly evident in
complex routing problems, where it reduced CVRP100 gaps by 3–8% compared to alternatives.
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Table 3: Performance comparison on practical optimization tasks.
Machine Learning Science Discovery

Task Acrobot (Obj.↓) Mountain Car (Obj.↓) Bactgrow (Obj.↓) Feynman SRSD (Obj.↓) Oscillator (Obj.↓) Circle Packing (Obj.↑)
Funsearch 0.147 0.16 0.014 0.15 4.10E-04 -

EoH 0.143 0.18 0.009 0.005 3.22E-06 2.11
ReEvo 0.218 0.68 0.002 0.040 6.49E-07 2.31

TPD-AHD 0.141 0.09 0.005 0.019 3.86E-08 2.40

Table 4: Ablation analysis of TPD-AHD components on TSP construction tasks. Performance
averages (three runs, 1,000 instances) show degradation when disabling preference pairing (TPD-
p1–p3) or gradient mechanisms (TPD-g1–g2).

TPD-AHD TPD-p1 TPD-p2 TPD-p3 TPD-g1 TPD-g2
Problem Size N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100 N=50 N=100

Run 1 6.46 8.93 7.00 9.68 7.00 9.68 6.50 8.96 6.48 8.97 7.00 9.68
Run 2 6.46 8.92 6.67 9.30 6.49 8.99 6.47 8.92 7.00 9.68 6.49 9.03
Run 3 6.41 8.83 6.49 8.99 7.00 9.68 6.63 9.23 6.47 8.92 6.47 8.95

Average 6.44 8.89 6.72 9.32 6.83 9.45 6.53 9.04 6.65 9.19 6.65 9.22

Ant Colony Optimization Framework. The ACO framework models optimization as a collec-
tive intelligence process, using pheromone matrices and heuristic information to guide solution con-
struction. We adapted TPD-AHD to automatically design the heuristic component of ACO, enabling
domain-specific adaptation without manual engineering.

Experimental Configuration. For TSP and CVRP, we maintained consistent training/test splits with
the constructive framework. MKP experiments used 10 training instances (100 items, 5 constraints)
and 64 test instances (100/200 items, 5 constraints). The LLM-generated heuristics determined state
transition probabilities within the ACO metaheuristic.

Performance Analysis. As shown in Table 2, TPD-AHD achieved state-of-the-art results across all
ACO-based optimization tasks. On TSP100, it attained a minimal 1.58% gap with DeepSeek-Chat,
significantly outperforming Funsearch (9.80%) and ReEvo (3.64%). The framework demonstrated
particular strength in CVRP, where it reduced optimality gaps by 4–6% compared to the nearest
competitor. These results highlight TPD-AHD’s ability to effectively optimize within population-
based metaheuristic frameworks.

5.3 EXPERIMENTS ON PRACTICAL OPTIMIZATION TASKS

To evaluate the generalization capability of TPD-AHD beyond classical COPs, we conducted ex-
periments on practical optimization tasks spanning machine learning control problems and scientific
discovery challenges. These tasks include Acrobot (Swing-up), Mountain Car, Bacterial Growth
modeling, Feynman Symbolic Regression (SRSD), Oscillator Design, and Circle Packing problems.
Detailed problem definitions are provided in Appendix A.

Table 3 presents comparative results across these diverse domains. TPD-AHD demonstrates ro-
bust performance, achieving state-of-the-art results on 4 out of 6 tasks. Particularly noteworthy is its
performance on the Mountain Car control task, where it achieved an objective value of 0.09—signif-
icantly outperforming the next best method (Funsearch at 0.16). In scientific discovery tasks, TPD-
AHD obtained near-optimal solutions for the Oscillator design problem (3.86E-08) and Circle Pack-
ing (2.40). These results highlight TPD-AHD’s versatility across various optimization paradigms.

5.4 ABLATION STUDY, CONVERGENCE AND PARAMETER SENSITIVITY ANALYSIS

To systematically evaluate the contribution of each component in TPD-AHD, we conduct compre-
hensive ablation studies focusing on two core modules: the best-anchored preference pairing mecha-
nism and the textual differentiation framework. We examine five variants: TPD-p1–p3 progressively
remove components of the preference pairing strategy, while TPD-g1–g2 disable aspects of the gra-
dient generation mechanism. The specific implementation of the ablation variants is presented in
Appendix C.
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Figure 2: Comparative convergence analysis of TPD-AHD against baseline LLM-AHD methods.
Results show mean performance (solid lines) with standard deviation (shaded regions) across three
independent runs. Left: TSP task. Right: CVRP task.
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Figure 3: Parameter sensitivity analysis of TPD-AHD. Left: Performance variation across LLM
architectures. Center: Effect of temperature parameter on generation diversity and quality. Right:
Impact of candidate pool size on optimization effectiveness.

Table 4 demonstrates that TPD-AHD’s superior performance emerges from the synergistic integra-
tion of its components. The performance degradation observed in all ablated variants confirms that
effective heuristic optimization requires both accurate preference modeling through anchoring and
proper utilization of textual gradient signals. The complete framework achieves optimal perfor-
mance by maintaining the interdependence between these components.

We further analyze TPD-AHD’s convergence properties and sensitivity to key hyperparameters. Fig-
ure 2 presents comparative convergence trajectories, while Figure 3 examines the impact of critical
parameters on solution quality. The convergence analysis in Figure 2 demonstrates that TPD-AHD
achieves superior solution quality with more stable optimization trajectories compared to existing
methods. The parameter sensitivity study reveals robust performance across configurations, with
optimal results obtained using either DeepSeek-Chat or GPT-4o-Mini models, temperature setting
of 1.0, and candidate pool size of 10. These findings indicate that TPD-AHD maintains consistent
performance without requiring extensive hyperparameter tuning.

6 CONCLUSION

This paper introduces TPD-AHD, a novel framework that integrates textual differentiation with large
language models for automated heuristic design. By introducing a best-anchored pairing strategy
and a forward-backward-update loop, TPD-AHD translates LLM feedback into interpretable textual
loss and gradient signals, enabling guided and transparent heuristic optimization. Extensive experi-
ments on NP-hard COPs demonstrate that TPD-AHD consistently outperforms existing LLM-AHD
methods across diverse problem domains and algorithmic frameworks. The framework provides a
unified, interpretable, and effective approach for automatic heuristic generation, establishing a new
paradigm for transparent and reliable LLM-based optimization systems. Future work will explore
more efficient gradient approximation methods and adaptive pool sizing strategies. Additionally,
extending the framework to dynamic problem settings presents promising research directions.
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A DEFINITION OF TASKS

A.1 CLASSIC NP-HARD COPS

Traveling Salesman Problem The Traveling Salesman Problem (TSP) (Matai et al., 2010) aims to
find the shortest route that visits all given locations exactly once and returns to the starting point. It is
one of the most important combinatorial optimization problems and serves as a common testbed for
heuristic design methods. The heuristic search process is conducted on a set of 64 TSP-50 instances.
The coordinates for these instances are randomly sampled from the range [0, 1] (Kool et al., 2019),
and the negative of the total route distance is used as the fitness value. The average distance of the
solutions generated by Concorde (Applegate et al., 2006) is taken as the optimal value.

Open Vehicle Routing Problem The Open Vehicle Routing Problem (OVRP) (Li et al., 2007)
considers a fleet of vehicles that are not required to return to the depot after serving the last customer.
In this benchmark suite, 10 OVRP-50 instances are generated; each instance contains 50 customer
nodes. Coordinates are uniformly sampled from [0, 1]2, integer demands are drawn from U(1, 9),
and vehicle capacity is fixed at 40. The edge-cost matrix is computed as the Euclidean distance
between every pair of nodes. The objective is to construct a set of open routes that jointly visit
every customer exactly once while respecting capacity limits and minimizing the total travel cost.
The average cost of the solutions produced by the LKH3 solver (Helsgaun, 2017) is taken as the
reference optimum.

Capacitated Vehicle Routing Problem The Capacitated Vehicle Routing Problem (CVRP) (Fitz-
patrick et al., 2024) seeks a set of minimum-cost vehicle routes that start and end at a single depot,
such that every customer is visited exactly once, the total demand on each route does not exceed
the vehicle capacity, and the fleet size is unlimited. It is a cornerstone combinatorial optimization
problem and a standard benchmark for heuristic and learning-based methods. Two benchmark suites
are employed: 64 CVRP-50 instances and 64 CVRP-100 instances. For every instance, customer
coordinates are uniformly sampled from [0, 1]2, integer demands are drawn from {1, . . . , 9} (the
depot demand is set to 0), and the Euclidean distance matrix is computed; vehicle capacity is fixed
at 50 for CVRP-50 and 100 for CVRP-100. The negative of the total route distance is used as the
fitness value. The average distance of the solutions produced by the LKH3 (Helsgaun, 2017) is taken
as the optimal value.

Vehicle Routing Problem with Time Windows The Vehicle Routing Problem with Time Win-
dows (VRPTW) (Chen et al., 2025) aims to find a set of minimum-distance vehicle routes that start
and end at a single depot, visiting each customer exactly once within its prescribed time window,
while respecting vehicle-capacity and route-duration limits. Two benchmark suites are employed:
64 VRPTW-50 instances and 64 VRPTW-100 instances. For every instance, customer coordinates
are uniformly sampled from [0, 1]2, integer demands are drawn from {1, . . . , 9} (depot demand is
0), and vehicle capacity is fixed at 40. Service times are sampled from U(0.15, 0.2), time-window
lengths from U(0.15, 0.2), and early-time values are randomly scaled so that all windows lie within
the horizon [0, 4.6]. The negative of the total route distance is used as the fitness value. The average
distance of the solutions produced by the LKH3 (Helsgaun, 2017) is taken as the optimal value.

Job Shop Scheduling Problem The Job Shop Scheduling Problem (JSSP) (Xiong et al., 2022)
seeks a non-preemptive assignment of operations to machines that minimizes the makespan, i.e. the
maximum completion time over all jobs. Each job consists of a fixed sequence of operations, each
of which must be processed on a pre-specified machine for a given duration, and no machine can
process more than one operation at a time. The evaluation process is conducted on a set of 10 JSSP
instances selected from the Taillard benchmark suite(Taillard, 1993), each containing 50 jobs and 10
machines. Processing times and machine routing are read from the corresponding ta51–ta60 files;
these values are deterministic and publicly available. The negative of the obtained makespan is used
as the fitness value.

Capacitated Facility Location Problem The Capacitated Facility Location Problem
(CFLP) (Zhang & Kalcsics, 2025) aims to select a subset of facilities to open and assign
each customer to exactly one open facility so that the total cost, comprising fixed opening costs

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(here folded into assignment costs) and variable serving costs, is minimized while respecting the
capacity limit of every facility. The evaluation process is conducted on a set of 16 CFLP-50 in-
stances. For every instance, facility capacities are uniformly sampled from {5, . . . , 100}, customer
demands from {5, . . . , 20}, and assignment costs from {5, . . . , 50}. The negative of the total cost
of a feasible assignment is used as the fitness value.

Multiple Knapsack Problem The Multidimensional Knapsack Problem (MKP) (Puchinger et al.,
2010) aims to select a subset of items that maximizes the total profit while respecting multiple
resource constraints, each of which is normalized to a unit capacity. The evaluation process is
conducted on three benchmark suites: 64 MKP-100, 64 MKP-200, and 64 MKP-300 instances. For
every instance, item profits are uniformly sampled from [0, 1], the 5-dimensional weight matrix is
drawn from U(0, 1) and then row-wise normalized so that the sum of weights along each constraint
dimension equals 1. The negative of the total profit of the selected items is used as the fitness value.

Maximum Admissible Set Problem The Maximum Admissible Set Problem (MASP) (Du et al.,
2025) seeks the largest symmetric constant weight admissible set I(n,w), a collection of n di-
mensional vectors over {0, 1, 2} with fixed Hamming weight w that avoids specified forbidden
triple wise patterns. The heuristic search process is conducted on four ASP suites with parame-
ters {n = 12, w = 7}, {n = 15, w = 10}, {n = 21, w = 15}, {n = 24, w = 17}, each containing
64 instances generated by a Taillard style expand and filter routine using seed 2024(Taillard, 1993).
Candidate vectors are grouped into n

3 triples, rotated and filtered against the forbidden triple list,
then the surviving set is greedily grown under a learned priority function.

A.2 OTHER OPTIMIZATION TASKS

A.2.1 MACHINE LEARNING CATEGORY

Acrobot Problem The Acrobot Control Problem (Sengupta et al., 2019) requires learning a policy
that swings a two-link robotic arm upward so that the upper link reaches a target height. It is a clas-
sical benchmark in reinforcement learning and control, widely used to evaluate heuristic methods.
In our experiments, we adopt the OpenAI Gym implementation (Brockman et al., 2016) with a fixed
episode horizon. At each step, the heuristic determines an action from the observed system state.
Performance is assessed by a fitness-based metric that may include additional penalties when the
task is not accomplished. Effective heuristics achieve the goal with reduced oscillations and control
effort. In the experiments, we set the maximum number of steps to 500.

Mountain Car Problem The Mountain Car Problem (Sutton, 1995) requires designing a control
policy for an underpowered car to reach the top of a steep hill. It is a widely used benchmark
in reinforcement learning and heuristic design. Experiments are conducted in the OpenAI Gym
environment (Brockman et al., 2016) with a fixed episode horizon. At each step, the heuristic selects
an action from the observed system state. Performance is evaluated through a fitness-based metric
that rewards reaching the goal efficiently while penalizing failure or excessive oscillations. In the
experiments, we set the maximum number of steps to 500.

A.2.2 SCIENCE DISCOVERY CATEGORY

Bacterial Growth Modeling Problem The Bacterial Growth Modeling Problem (Monod, 2012)
aims to identify a parameterized function that predicts Escherichia coli growth rates based on en-
vironmental and population factors. It is employed as a benchmark for heuristic and algorithmic
model discovery. Heuristic search is conducted on observational datasets, with candidate functions
optimized to minimize prediction error. Evaluation is based on the negative mean squared error
(MSE), with optimal solutions achieving accurate and generalizable fits across varying conditions.

Feynman SRSD The Feynman Symbolic Regression Problem (Udrescu & Tegmark, 2020) aims
to discover mathematical expressions that accurately capture relationships in sampled datasets de-
rived from Feynman equations. It is a standard benchmark for symbolic regression and automated
equation discovery. Candidate functions are optimized to minimize the MSE between predicted and
observed outputs, with invalid results discarded. Optimal solutions correspond to expressions that
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generalize well while achieving high predictive accuracy. The FeynmanEvaluation class encapsu-
lates the evaluation process, enabling configuration of runtime constraints and dataset sampling, and
assesses candidate equations through parameter optimization.

Oscillator Problem The Damped Nonlinear Oscillator Function Discovery Problem (DNOFDP)
aims to recover the underlying acceleration function of a damped nonlinear oscillator with driving
force from observed trajectories. As a canonical benchmark in system identification and physics-
informed modeling, it evaluates the ability of heuristic and symbolic regression methods to capture
nonlinear dynamics. Candidate functions are optimized to minimize prediction error on observed
data, with robust evaluation ensuring invalid results are excluded. Optimal solutions accurately
reproduce oscillator dynamics while maintaining generalization.

Circle Packing The Circle Packing Problem (CPP) seeks to arrange n non-overlapping circles
within a unit square to maximize an objective such as the sum of radii or packing density. As a clas-
sical combinatorial and geometric optimization problem, CPP is challenging due to its continuous,
high-dimensional search space and strict non-overlap constraints. Heuristic approaches typically
place circles iteratively, using constructive or grid-based methods, ensuring each new circle max-
imizes space utilization while avoiding overlaps. Deterministic evaluation is ensured by fixing all
random seeds across relevant libraries. CPP serves as both a benchmark for optimization heuristics
and a study case for spatial packing efficiency.

B DEFINITION OF GENERAL HEURISTIC FRAMEWORKS

To address NP-hard COPs, we utilize the TPD-AHD method to design key functions within a general
heuristic framework. To demonstrate the framework-agnostic nature of TPD-AHD, our experiments
incorporate two widely used COP frameworks: constructive methods and ant colony optimization
(ACO). Below, we provide a detailed exposition of them.

B.1 STEP-BY-STEP CONSTRUCTION FRAMEWORK

The constructive method is a versatile framework capable of addressing a wide range of COPs. It
incrementally extends an initial solution (or multiple solutions) of an NP-hard COPs until a complete
and feasible solution is formed. At each step of the construction process, the framework assigns a
priority to each candidate variable (decision variable), and the candidate with the highest priority is
incorporated into the current solution.

Within the constructive framework, both TPD-AHD and the LLM-based AHD baseline employ the
same key heuristic function, which is repeatedly executed to compute the priorities of candidate
nodes. In this study, the constructive framework is applied to solve several COPs, including the
Traveling Salesman Problem (TSP), Multiple Knapsack Problem (MKP), and Maximum Admissible
Set Problem (MASP). The specific configuration of the key heuristic function within the constructive
framework is as follows:

• TSP and Vehicle Routing Problems (VRPs): TPD-AHD designs a function that selects
the next node to visit based on node coordinates, the starting point, the distance matrix, and
all unvisited nodes.

• Job Shop Scheduling Problem (JSSP): TPD-AHD designs a function that selects the
next operation to schedule based on the current status of machines and jobs, as well as all
feasible operations, each specified by a job ID, machine ID, and processing time.

• Capacitated Facility Location Problem (CFLP): TPD-AHD designs a function that se-
lects the next customer from all unassigned customers and assigns them to a facility with
sufficient capacity and the lowest assignment cost, based on the current facility capacities,
customer demands, existing assignments, and assignment costs.

B.2 ANT COLONY OPTIMIZATION FRAMEWORK

ACO is a meta-heuristic evolutionary algorithm inspired by the foraging behavior of ants, designed
to find high-quality solutions for combinatorial optimization problems. ACO guides solution con-
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struction by maintaining a pheromone matrix τ and a heuristic matrix η. Each element τij in the
pheromone matrix represents the priority of including edge (i, j) in a solution, and the pheromone
trails are iteratively updated based on the quality of the solutions found, encouraging subsequent
ants to follow better paths. The heuristic information ηij is a problem-specific measure reflecting
the immediate benefit of choosing a particular path. For example, when solving the TSP, a manually
designed heuristic matrix often sets ηij as the inverse of the distance between cities i and j, i.e.,
ηij = 1/dij , whereas LLM-based AHD methods can leverage problem-specific inputs to design a
more effective heuristic matrix η.

During solution construction, ants move from node to node, probabilistically selecting the next node
based on a combination of pheromone and heuristic information. After all ants have constructed
their solutions, the pheromone levels are updated. A typical ACO iteration consists of solution
construction, optional local search, and pheromone update. By iteratively applying these steps,
ACO algorithms can efficiently explore the solution space and gradually converge toward optimal or
near-optimal solutions for NP-hard COPs. In this study, following the settings of Ye et al. (2024), we
evaluate TPD-AHD by designing heuristic metric generation functions for TSP, CVRP, and MKP.

• TSP: The function requires the distance matrix as input. The number of ants is set to 30,
and the number of iterations is set to 100 during the heuristic evaluation phase. In testing,
the number of iterations is increased to 500.

• CVRP: The input function takes the distance matrix, node coordinates, customer demands,
and vehicle capacity C. The number of ants and iterations are the same as for TSP.

• MKP: The function takes item values and weights as input. The number of ants is set to
10, with 50 iterations during evaluation on the dataset D and 100 iterations on the test set.

C FURTHER DETAILS OF EVALUATIONS AND EXPERIMENTS

C.1 DETAILS OF EVALUATIONS

This section details the configuration of the evaluation budget T and the evaluation dataset D used
in the heuristic assessment phase. The evaluation protocol adopted in this work is primarily based
on the methodologies proposed in Funsearch, EoH, ReEvo, and MCTS-AHD.

Configuration of T . In EoH, the setting is 20 generations with a population size of 10 for TSP and
FSSP. Accordingly, this work designs a comparable scheme for the maximum number of evaluations
T : TPD-AHD adopts the same settings as EoH, while the maximum iteration numbers for the other
methods (Funsearch, ReEvo, and MCTS-AHD) are set to 200.

Configuration of D. For most tasks considered, TPD-AHD uses the same evaluation dataset D
as the LLM-based baseline methods (e.g., EoH, ReEvo, Funsearch, MCTS-AHD). Additionally, for
certain problems and for experimental convenience, we conduct experiments based on the default
settings of the LLM4AD platform.

Comparison of Evolutionary Features. Table 5 presents a detailed comparison of several rep-
resentative methods in the LLM-AHD and TPD-AHD frameworks in terms of their evolutionary
characteristics. Specifically, the comparison considers three key aspects: the presence of a clear evo-
lution direction, the explainability of the evolutionary trajectory, and the incorporation of a reflection
mechanism. As shown in the table, while methods such as ReEvo, HsEvo, MCTS, and LLM-LNS
exhibit a clear direction in their evolutionary process, only TPD-AHD consistently combines a clear
direction with both an explainable trajectory and a reflection mechanism. This highlights TPD-
AHD’s advantage in providing more interpretable and guided evolutionary behavior compared to
other methods.

C.2 ADDITIONAL RESULTS OF VARIOUS OPTIMIZATION TASKS

Table 6 presents the performance of different LLM-AHD methods on additional optimization tasks
not detailed in the main text. These tasks are categorized into three main groups: Classic NP-hard
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Table 5: Comparative analysis of evolutionary characteristics in LLM-AHD methods.

EoH ReEvo HsEvo MCTS LLM-LNS TPD-AHD

Clear direction ✗ ✓ ✓ ✓ ✓ ✓

Explainable trajectory ✗ ✗ ✗ ✓ ✗ ✓

Reflection mechanism ✗ ✓ ✓ ✗ ✓ ✓

Table 6: Detailed results of various optimization tasks. Several NP-hard COPs, machine learning
problems, and scientific discovery problems are presented in this table. Each LLM-AHD method is
executed three times for each problem, and the average value is reported.

Classic NP-hard COPs Machine Learning Science Discovery
Task CFLP OVRP VRPTW MASP Acrobot Mountain Car Bactgrow Feyman SRSD Oscillator Circle Packing

Method Obj. ↓ Obj. ↓ Obj. ↓ Obj. ↓ Obj. ↓ Obj. ↓ Obj.↓ Obj. ↓ Obj. ↓ Obj. ↑

Funsearch
278.06 12.52 32.47 228 0.13 0.17 0.011 14.392 4.1E-04 -
5.00 12.68 32.47 927 0.14 0.02 0.015 0.089 4.1E-04 -

277.38 12.59 32.47 249 0.17 0.31 0.015 0 .002 4.1E-08 -
Average 186.81 12.60 32.47 468 0.15 0.16 0.014 4.828 2.7E-04 -

EoH
13.94 12.69 20.48 273 0.13 0.29 0.005 0.003 4.6E-08 1.93
12.31 12.66 19.91 336 0.15 0.02 0.021 0.011 4.4E-08 2.20
277.13 12.41 20.12 885 0.15 0.23 0.002 0.002 4.1E-04 2.19

Average 101.13 12.59 20.17 498 0.14 0.18 0.009 0.005 9.6E-06 2.11

ReEvo
192.69 12.18 20.12 963 0.25 0.17 0.003 0.041 1.2E-06 2.12
277.38 12.00 19.98 1161 0.26 1.71 0.001 0.021 9.9E-08 2.39
77.06 12.44 20.29 1194 0.14 0.17 0.002 0.057 1.3E-06 1.96

Average 182.38 12.21 20.13 1106 0.22 0.68 0.002 0.040 8.7E-07 2.16

TPD-AHD
107.94 11.97 19.98 258 0.13 0.17 0.005 0.002 3.9E-08 2.52
93.06 11.87 19.98 237 0.15 0.01 0.005 0.037 5.0E-08 2.42
5.00 12.17 19.91 237 0.14 0.27 0.005 0.016 1.1E-09 2.27

Average 68.67 12.00 19.96 244 0.14 0.15 0.005 0.019 3.0E-08 2.40

Combinatorial Optimization Problems (COPs), Machine Learning, and Science Discovery. The
table includes a total of 10 problems, each evaluated based on their respective performance metrics.

Across these diverse tasks, TPD-AHD consistently demonstrates superior performance, achieving
the best results in 8 out of the 10 problems. Even in the Bacterial Growth Modeling (Bactgrow) and
Feynman Symbolic Regression and Symbolic Discovery (Feynman SRSD) problems, where TPD-
AHD does not secure the highest score, it ranks second, just one position below the top performer.
This consistent near-optimal performance underscores the robustness and versatility of TPD-AHD
across a wide range of optimization tasks, highlighting its potential for broad applicability in various
domains.

C.3 ADDITIONAL DETAILS ABOUT ABLATION STUDY

To systematically evaluate the contributions of individual components in TPD-AHD, we conducted
ablation experiments targeting its two core modules, resulting in five variants. The first three vari-
ants focused on the optimal anchoring pairing mechanism, while the last two targeted the textual
differentiation mechanism. These experiments allowed us to assess the impact of each component
on the overall performance of TPD-AHD.

TPD-p1: Replaces the optimal anchoring pairing with a best-worst binary pairing strategy. This
variant iteratively generates new heuristics to compare their performance with the original scheme,
evaluating the impact of using a simpler binary comparison. In this variant, only the logic for
selecting heuristics from the solution pool is modified, while all other aspects remain unchanged. In
this variant, only the logic for selecting heuristics from the solution pool is modified, while all other
aspects remain unchanged.

TPD-p2: Uses only the current best heuristic as the reference for all comparisons. This variant
examines the effect of a single-best preference on heuristic quality, assessing whether focusing solely
on the best heuristic improves performance. Since the pairing mechanism was removed, the prompt
for the text loss has been modified as shown in Figure 4.
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'''You are a code evaluation expert. Your task is to evaluate a piece of code by providing an assessment and 

analyzing two advantages and two disadvantages of the code.

**Code**:

{chosen_code}

I hope you can provide evaluations as much as possible from the perspective of the code's running logic and the 

algorithm itself, rather than always being confined to the superficial content of the code.'''

Prompt of TPD-p2

Figure 4: The prompt of TPD-p2.

"""You are tasked with optimizing the following code based on the chchosen_code and rejected_code.

Please strictly follow the template to generate code; nested functions within a function are not allowed.

**Task Description**:

{task_prompt}

**Template Function**:

{str(temp_func)}

**Chosen Code**:

{chosen_code}

**Rejected Code**:

{rejected_code}

Please strictly follow the template function and don't use any other Python libraries except numpy! You don't need to 

generate anything other than the code. No need to add comments to the code."""

Prompt of Constraint (TPD-g1)

Figure 5: The constraint prompt of TPD-g1.

TPD-p3: Employs a score-weighted random pairing strategy, selecting heuristics probabilistically
based on their performance scores. This variant evaluates the effectiveness of stochastic pairing in
maintaining diversity while still guiding optimization. In this variant, only the logic for selecting
heuristics from the candidate solution pool is modified, while everything else remains the same.

TPD-g1: Retains the optimal anchoring pairing but replaces the customized textual differentiation
module with the native TEXTGRAD module. This variant quantifies the gains from using a special-
ized textual differentiation mechanism tailored for heuristic optimization. In this variant, in addition
to modifying the framework components related to TEXTGRAD, the prompts are also adjusted, with
the constraint prompt and text loss prompt shown in Figures 5 and 6.

TPD-g2: Retains the optimal anchoring pairing while completely removing the textual differen-
tiation mechanism, omitting any textual loss or gradient propagation. This variant assesses the
necessity of textual loss signals and gradients for effective heuristic optimization. Since this variant
does not use the text differentiation mechanism, we retain the forward-propagation part of the loss
while removing the text gradient prompts for backpropagation. The variables are fixed to prevent
the effects of changes in the best-anchoring method, and the prompts are shown in Figure 7.

Our experiments revealed that setting the temperature parameter to 1.0 optimally balances explo-
ration and exploitation, accommodating both solution diversity and the pursuit of optimal solutions.
Additionally, we found that a moderate candidate pool size of 10 yields the best performance. This
is likely because a moderate pool size balances diversity and reliability: it reduces evaluation noise,
concentrates gradient signals, and enables efficient convergence within the given iteration budget.
This finding aligns with observations in other LLM-guided heuristic optimization frameworks, sug-
gesting an interaction between pool size and the effectiveness of preference-based selection.

In summary, our ablation studies confirm that the optimal anchoring pairing and the customized
textual differentiation mechanism are critical components of TPD-AHD. These components work
synergistically to enhance the framework’s ability to generate high-quality heuristics efficiently.
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'''You are a language model tasked with evaluating a chosen code by comparing it with a rejected code to a task. 

Analyze the two strongest advantages of the chosen code, and the two most significant weaknesses of the rejected code. 

Finally, explain why one is chosen or rejected in concise language.

**Task Description**:

{task_prompt}

**Rejected Code**:

{rejected_code}

I hope you can provide evaluations as much as possible from the perspective of the code's running logic and the 

algorithm itself, rather than always being confined to the superficial content of the code.'''

Prompt of Loss (TPD-g1)

Figure 6: The loss prompt of TPD-g1.

"""You are tasked with optimizing the following code based on the chchosen_code and rejected_code.

Please strictly follow the template to generate code; nested functions within a function are not allowed.

**Task Description**:

{task_prompt}

**Template Function**:

{str(temp_func)}

**Chosen Code**:

{chosen_code}

**Rejected Code**:

{rejected_code}

Please strictly follow the template function and don't use any other Python libraries except numpy! You don't need to 

generate anything other than the code. No need to add comments to the code."""

Prompt of TPD-g2

Figure 7: The prompt of TPD-g2.

D IMPLEMENTATION DETAILS OF TPD-AHD

D.1 PROMPT DESIGN OF TPD-AHD

We describe the design and function of the core prompts used in the TPD-AHD framework. These
prompts are instrumental in guiding the LLM through the heuristic generation and refinement pro-
cess, directly influencing both the accuracy of the generated heuristics and the efficiency of the
overall optimization loop.

STRUCTURED_ORIENTED_ENGINEER = """You are an algorithm engineer, who prioritizes clean structure and maintainability. 
Your primary goal is to generate well-organized, executable, and easy-to-maintain code, even if it’s not the most 
performant. The code should be scalable and logically coherent. You may take a conservative approach to ensure every 
line follows solid engineering practices."""

EFFICIENCY_ORIENTED_OPTIMIZER = """You are a master of efficiency optimization. Your goal is to make the code as fast, 
high-scoring, and resource-efficient as possible, while still ensuring functional correctness. You may sacrifice 
structural elegance and generality as long as the code runs faster, uses less memory, or achieves higher scores.What 
you pursue is the most score-effective code, not the most elegant form."""

INSTRUCTION_FAITHFUL_IMPLEMENTER = """You are an expert in following user instructions. Your core objective is to 
**generate code that faithfully reflects the user's requirements, descriptions, and context**, even if it means using 
unconventional methods, inconsistent styles, or sacrificing some structure and efficiency.Your code should prioritize 
**task completion first**, and only then consider **how** it is implemented."""

ROLES = [
    STRUCTURED_ORIENTED_ENGINEER,
    EFFICIENCY_ORIENTED_OPTIMIZER,
    INSTRUCTION_FAITHFUL_IMPLEMENTER
]

Role Templates

Figure 8: The ROLE prompt.
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'''{ROLES[num%3]}

Now, you need to generate code based on the task instruction provided below.

**Task Description**:

{task_prompt}

This is the tamplate you should follow, please implement the following Python function.

**Template Function**:

{str(temp_func)}

Please strictly follow the template function! You only need to generate code, and no other content is allowed.'''

Prompt of Initialize

Figure 9: The initialization prompt.

'''You are a language model tasked with evaluating a chosen code by comparing it with a rejected code to a task. 

Analyze the THREE strongest advantages of the chosen code, and the THREE most significant weaknesses of the rejected 

code. Finally, explain why one is chosen or rejected in concise language.

**Chosen Code**:

{chosen_code}

**Rejected Code**:

{rejected_code}

I hope you can provide evaluations as much as possible from the perspective of the code's running logic and the 

algorithm itself, rather than always being confined to the superficial content of the code.'''

Prompt of Loss

Figure 10: The prompt for the forward propagation.

During the initialization of the candidate solution pool, we introduce a ROLE field within the prompt
module to mitigate heuristic homogeneity and enhance search diversity (see Figure 8). This field
assigns the LLM a specific persona, such as expert in code optimization, heuristic algorithm re-
searcher, or engineering consultant, encouraging the generation of heuristics from varied perspec-
tives. This role-based prompting enriches the initial heuristic pool with diverse starting points,
thereby improving its overall quality and exploratory potential. The initialization prompt is shown
in Figure 9.

The prompt structure for the forward propagation phase, illustrated in Figure 10, is composed of
three modules: task description, chosen code, and rejected code. The task description frames
the LLM as a heuristic difference evaluator, directing it to compare the performance of chosen and
rejected heuristic code and summarize the differences into a structured textual loss. This approach
ensures a clear evaluation objective, minimizes bias, and yields a interpretable loss signal suitable
for gradient-based updates.

'''Based on the evaluation results above, please generate targeted suggestions for code improvement. Your suggestions 

should help future code retain the strengths of chosen code and avoid the weaknesses of rejected code.

**Evaluation Results**:

{loss}

**Chosen Code**:

{chosen_code}

**Rejected Code**:

{rejected_code}

Note: Your suggestions must be targeted, actionable, and concise. I hope you can provide suggestions as much as 

possible from the perspective of the code's running logic and the algorithm itself, rather than always being confined 

to the superficial content of the code.

Only provide the FIVE most important suggestions, it's no need to repeat the code. Don't use any other Python 

libraries except numpy.'''

Prompt of Gradient

Figure 11: The prompt for the backward propagation.
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In the backward propagation phase, the prompt structure is extended to include a textual loss mod-
ule, resulting in four components: task description, textual loss, chosen code, and rejected code
(see Figure 11). Here, the LLM acts as a gradient generator, leveraging the textual loss and code
comparisons to identify heuristic shortcomings and produce actionable textual gradients. These
gradients provide explicit, natural language instructions for refining the prompt in the subsequent
iteration, closing the optimization loop in a transparent and directed manner.

D.2 EXAMPLES OF TPD-AHD WORKFLOW

In this subsection, we present detailed examples of the TSP (constructive method) task within the
TPD-AHD framework. These examples illustrate the operational mechanism and optimization ef-
fects of the framework through visualization and detailed breakdowns. The specific illustrations
are shown in Figures 13 and 14. Both figures follow a consistent hierarchical logic, depicting the
complete loop from the initial heuristic selection to the final optimization.

Heuristic Comparison and Selection. The upper part of each figure presents a pair of heuris-
tic comparison samples selected using the best-anchoring pairing method. The left side displays
the superior-performing heuristic, which demonstrates stronger performance on key metrics such as
solution quality and computational efficiency. The right side shows the relatively inferior heuris-
tic. This clear contrast provides a reference foundation for subsequent gradient computation and
optimization.

Core Computational Results. The middle part of each figure sequentially presents two core com-
putational results:

• Text Loss Computation: The first layer shows the text loss value of the heuristic preference
pair computed via the forward feedback mechanism. This loss quantifies the performance
gap between the superior and inferior heuristics and serves as the “target signal” for subse-
quent optimization.

• Text Gradient Generation: Immediately following the loss computation, the text loss is
backpropagated through the backward propagation algorithm to obtain the text gradient.
The gradient information precisely identifies the key nodes and directions in the inferior
heuristic that require improvement, providing concrete guidance for iterative heuristic op-
timization.

At the bottom of each figure, the newly generated heuristic after gradient optimization is presented,
marking the completion of a single optimization cycle.

Validation of Framework Effectiveness. From the detailed examples, it is evident that almost
every targeted optimization suggestion contained in the text gradients is reflected in the updated
heuristic. This prominent feature fully validates the core value of the TPD-AHD framework: it
effectively addresses the interpretability limitations of traditional Large Language Model-based Au-
tomated Heuristic Design (LLM-AHD) frameworks by precisely transmitting gradient information.
This provides clear, controllable, and directionally accurate guidance for heuristic evolution, signif-
icantly enhancing the transparency and reliability of the heuristic optimization process.

D.3 EXAMPLES OF EVOLUTIONARY TRAJECTORY

As illustrated in Figure 12, we present the evolutionary trajectory of TPD-AHD on the TSP construct
task. In the first generation, TPD-AHD achieved an initial optimal solution with an objective value
of -6.87. No update occurred in the second generation. By the third generation, TPD-AHD identi-
fied the strengths of the superior heuristic from a pair of preference comparisons, notably the score
calculation method that could be retained, and recognized the weaknesses of the inferior heuristic,
indicating potential deficiencies in the distance matrix computation method. Consequently, TPD-
AHD proposed targeted improvement suggestions, including the introduction of a Dynamic Penal-
ization Factor, the incorporation of Heuristic Methods, the Limitation of Node Evaluation, and Score
Normalization.
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score = distance_to_current - (distance_to_destination / 10)

score = distance_to_current - (distance_to_destination / 
penalization_factor)

if len(unvisited_nodes) > 3 and distance_to_destination > 20:
    continue
score_normalized = score / max(1, np.max(distance_matrix))

Advantages:
Incorporation of Destination Awareness, Flexibility through 
Scoring Mechanism, More Inclusive Exploration of Unvisited Nodes
Weaknesses:
Simplicity Leading to Local Optima, Lack of Strategic Value 
Assessment, Minimal Adaptability
Improvement:
Dynamic Penalization Factor, Incorporate Heuristic Methods, Limit 
Node Evaluation, Score Normalization

shortest_distance = distance_matrix[current_node][nearest_node]Chosen 

Rejected 

Opitmize

Gradients

Figure 12: The evolutionary trajectory of TPD-AHD on the TSP construct task. The horizontal
axis represents the number of iterations, and the vertical axis represents the objective value of the
task. When the best heuristic in the candidate solution pool changed for the first time, the LLM
correctly identified the advantages of the better heuristic and the drawbacks of the worse one, and
based on this, successfully proposed improvements, leading to an increase in the objective value of
the offspring heuristics.

This evolutionary trajectory exemplifies TPD-AHD’s capability to provide human-understandable,
interpretable guidance for heuristic design. By leveraging the LLM’s ability to generate textual
feedback, TPD-AHD not only enhances the transparency of the heuristic optimization process but
also demonstrates its effectiveness in iteratively refining heuristics through explicit, natural language
instructions.
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Heuristic 2 (Obj Score: -6.411359052660979)
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: np.ndarray, distance_matrix: 
np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]

    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)
    recent_history = []
    dest_distances = distance_matrix[unvisited_nodes, destination_node]
    local_densities = np.mean(distance_matrix[unvisited_nodes][:, unvisited_nodes], axis=1)
    remaining_coords = distance_matrix[unvisited_nodes]
    if len(remaining_coords) > 1:
        remaining_center = np.mean(remaining_coords, axis=0)
        node_distances_to_center = np.linalg.norm(remaining_coords - remaining_center, axis=1)
        local_densities = np.clip(local_densities, 0.1, None) * (1 + node_distances_to_center)
    if total_nodes > 3:
        max_dist = np.max(distance_matrix[unvisited_nodes][:, unvisited_nodes])
        min_dist = np.min(distance_matrix[unvisited_nodes][:, 
unvisited_nodes][distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0])
        path_deviation = (max_dist - min_dist) / (max_dist + 1e-5)
    else:
        path_deviation = 0.5
    # Directional momentum vector calculation
    current_coords = distance_matrix[current_node]
    dest_coords = distance_matrix[destination_node]
    directional_vector = dest_coords[:2] - current_coords[:2]
    dir_norm = np.linalg.norm(directional_vector)
    directional_momentum = directional_vector / dir_norm if dir_norm > 0 else np.zeros(2)
    # Sliding window for backtracking detection
    window_size = 5
    historical_angles = []
    historical_positions = []
    # Continuous phase interpolation
    early_phase_weight = 1 - np.clip(visited_ratio / 0.2, 0, 1)
    mid_phase_weight = np.clip(visited_ratio / 0.6, 0, 1) * np.clip((1 - visited_ratio) / 0.4, 0, 1)
    late_phase_weight = np.clip((visited_ratio - 0.8) / 0.2, 0, 1)
    # Quadrant biasing with directional momentum
    quadrant_counts = [0, 0, 0, 0]
    for node in unvisited_nodes:
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        quadrant = int(np.arctan2(dy, dx) / (np.pi / 2)) % 4
        quadrant_counts[quadrant] += 1

    quadrant_weights = [1 - 0.05 * (count / (len(unvisited_nodes) + 1)) for count in quadrant_counts]
    # Node importance via connectivity potential
    node_potentials = []
    for idx, node in enumerate(unvisited_nodes):
        dist_to_others = distance_matrix[node][unvisited_nodes]
        valid_dists = dist_to_others[dist_to_others > 0]
        if len(valid_dists) > 0:
            avg_connectivity = 1 / np.mean(valid_dists)
        else:
            avg_connectivity = 0
        node_potentials.append(avg_connectivity)
    node_potentials = np.array(node_potentials)
    node_potentials = (node_potentials - np.min(node_potentials)) / (np.max(node_potentials) - 
np.min(node_potentials) + 1e-5)

    # Historical path context
    historical_distances = []
    for node in unvisited_nodes:
        if len(recent_history) >= window_size:
            window_nodes = recent_history[-window_size:]
            if len(window_nodes) >= 2:
                path_x = [distance_matrix[n][0] for n in window_nodes]
                path_y = [distance_matrix[n][1] for n in window_nodes]
                path_length = sum(distance_matrix[window_nodes[i]][window_nodes[i+1]] for i in 
range(len(window_nodes)-1))
                straight_line = distance_matrix[window_nodes[0]][node]
                if straight_line > 0:
                    inefficiency = path_length / straight_line
                    if inefficiency > 1.7:
                        penalty_angle = np.arccos(np.clip(
                            np.dot(directional_momentum, [distance_matrix[node][0] - current_coords[0], 
                                                          distance_matrix[node][1] - current_coords[1]]) /
                            (np.linalg.norm([distance_matrix[node][0] - current_coords[0], 
                                             distance_matrix[node][1] - current_coords[1]]) + 1e-5), -1, 1))
                        quadrant_weights[quadrant] *= (1 + penalty_angle / np.pi)
        historical_distances.append(path_length / (straight_line + 1e-5) if 'path_length' in locals() and 
'straight_line' in locals() and straight_line > 0 else 1.0)
    # Predictive cost estimation
    predictive_costs = []
    for idx, node in enumerate(unvisited_nodes):
        simulated_path = []
        current_sim_node = node
        visited_sim = set([current_sim_node])
        while len(visited_sim) < min(5, len(unvisited_nodes)):
            candidates = [n for n in unvisited_nodes if n not in visited_sim]
            if not candidates:
                break
            next_sim = min(candidates, key=lambda x: distance_matrix[current_sim_node][x] + 0.5 * 
distance_matrix[x][destination_node])
            simulated_path.append(next_sim)
            visited_sim.add(next_sim)
            current_sim_node = next_sim
        predictive_cost = sum(distance_matrix[simulated_path[i]][simulated_path[i+1]] for i in 
range(len(simulated_path)-1)) if len(simulated_path) > 1 else 0
        predictive_costs.append(predictive_cost)
    predictive_costs = np.array(predictive_costs)
    predictive_costs = (predictive_costs - np.min(predictive_costs)) / (np.max(predictive_costs) - 
np.min(predictive_costs) + 1e-5)
    # Node scoring with enhancements
    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]
        density = local_densities[idx]
        potential = node_potentials[idx]
        predictive_cost = predictive_costs[idx]
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        angle_to_candidate = np.arctan2(dy, dx)
        quadrant = int(angle_to_candidate / (np.pi / 2)) % 4
        quadrant_score = quadrant_weights[quadrant]
        # Directional momentum alignment
        candidate_vector = np.array([dx, dy])
        candidate_norm = np.linalg.norm(candidate_vector)
        if candidate_norm > 0 and dir_norm > 0:
            momentum_alignment = np.dot(directional_momentum, candidate_vector / candidate_norm)
            momentum_factor = 1 - (np.arccos(np.clip(momentum_alignment, -1, 1)) / np.pi)
        else:
            momentum_factor = 0.5
        # Adaptive quadrant weighting
        if len(unvisited_nodes) > 5:
            sparse_threshold = np.mean(quadrant_counts) * 0.5
            if quadrant_counts[quadrant] < sparse_threshold:
                quadrant_score = 1 + (1 - quadrant_score)

        # Phase blended scoring
        early_score = dist_to_candidate / (density + 1e-5) * (1 - 0.3 * potential)
        mid_score = dist_to_candidate + (0.4 + 0.6 * visited_ratio) * dist_candidate_to_dest
        late_score = dist_to_candidate + 0.9 * dist_candidate_to_dest + 0.4 * predictive_cost

        phase_score = (
            early_phase_weight * early_score +
            mid_phase_weight * mid_score +
            late_phase_weight * late_score
        )

        # Combine with directional momentum and quadrant bias
        final_score = phase_score * (0.7 + 0.3 * momentum_factor) * quadrant_score
        # Tie-breaking perturbation
        perturbation = final_score * np.random.uniform(0, 0.005 if idx == 0 else 0.02)
        final_score += perturbation
        if final_score < best_score:
            best_score = final_score
            next_node = node
            recent_history.append(node)
            if len(recent_history) > 7:
                recent_history.pop(0)

    return next_node

                        

   

Heuristic 1 (Obj Score: -6.2677441099390485)
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: np.ndarray, distance_matrix: 
np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]

    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)
    recent_history = []

    dest_distances = distance_matrix[unvisited_nodes, destination_node]
    local_densities = np.mean(distance_matrix[unvisited_nodes][:, unvisited_nodes], axis=1)

    remaining_coords = distance_matrix[unvisited_nodes]
    if len(remaining_coords) > 1:
        remaining_center = np.mean(remaining_coords, axis=0)
        node_distances_to_center = np.linalg.norm(remaining_coords - remaining_center, axis=1)
        local_densities = np.clip(local_densities, 0.1, None) * (1 + node_distances_to_center)

    if total_nodes > 3:
        max_dist = np.max(distance_matrix[unvisited_nodes][:, unvisited_nodes])
        min_dist = np.min(distance_matrix[unvisited_nodes][:, 
unvisited_nodes][distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0])
        path_deviation = (max_dist - min_dist) / (max_dist + 1e-5)
    else:
        path_deviation = 0.5

    if visited_ratio < 0.15 + path_deviation * 0.1:
        heuristic_phase = 'early'
    elif visited_ratio < 0.6 + path_deviation * 0.2:
        heuristic_phase = 'mid'
    else:
        heuristic_phase = 'late'

    current_coords = distance_matrix[current_node]
    quadrant_counts = [0, 0, 0, 0]
    for node in unvisited_nodes:
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        quadrant = int(np.arctan2(dy, dx) / (np.pi / 2)) % 4
        quadrant_counts[quadrant] += 1

    quadrant_weights = [1 - 0.05 * (count / (len(unvisited_nodes) + 1)) for count in quadrant_counts]

    node_degrees = np.sum(distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0, axis=1)

    if heuristic_phase == 'early':
        connectivity_scores = []
        for node in unvisited_nodes:
            reachable_nodes = np.where(distance_matrix[node][unvisited_nodes] > 0)[0]
            second_hop = []
            for r_node in reachable_nodes[:3]:
                second_hop.extend(np.where(distance_matrix[unvisited_nodes[r_node]][unvisited_nodes] > 0)[0])
            unique_reachable = len(set(reachable_nodes) | set(second_hop))
            connectivity_scores.append(unique_reachable / len(unvisited_nodes))
    else:
        connectivity_scores = [1.0] * len(unvisited_nodes)
    heading_angle = 0
    if len(recent_history) >= 2:
        prev_coords = distance_matrix[recent_history[-1]]
        prev_prev_coords = distance_matrix[recent_history[-2]]
        dx_h = prev_coords[0] - prev_prev_coords[0]
        dy_h = prev_coords[1] - prev_prev_coords[1]
        heading_angle = np.arctan2(dy_h, dx_h)

    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]
        density = local_densities[idx]
        degree = node_degrees[idx]
        connectivity = connectivity_scores[idx]
        is_backtracking = False
        if len(recent_history) >= 2:
            prev_node = recent_history[-1]
            prev_prev_node = recent_history[-2]
            direct_path = distance_matrix[prev_prev_node][node]
            detour_path = distance_matrix[prev_prev_node][prev_node] + distance_matrix[prev_node][node]
            if direct_path > 0 and detour_path / direct_path > 1.5 and visited_ratio > 0.1:
                is_backtracking = True
        if is_backtracking:
            continue
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        candidate_angle = np.arctan2(dy, dx)
        deviation = abs(candidate_angle - heading_angle)
        deviation = min(deviation, 2 * np.pi - deviation)
        deviation_deg = np.degrees(deviation)
        angle_penalty = 1.0
        if deviation_deg > 120:
            angle_penalty = 1.2

        if heuristic_phase == 'early':
            composite_distance = dist_to_candidate * (1 - 0.5 * connectivity)
            normalized_score = composite_distance / (density + 1e-5)
            score = normalized_score / (degree + 1)
        elif heuristic_phase == 'late':
            if degree < 2:
                continue
            lookahead_k = min(5, len(unvisited_nodes))
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_k]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.2 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            lookahead_component = 0.4 * np.min(lookahead_scores) if lookahead_scores else 0
            score = dist_to_candidate + dist_candidate_to_dest * 0.9 + lookahead_component
        else:
            local_progress = (local_densities.mean() - density) / (local_densities.std() + 1e-5)
            dynamic_weight = 0.4 + (visited_ratio - 0.2) * 0.6 + local_progress * 0.2
            dynamic_weight = max(0.2, min(0.8, dynamic_weight))

            score = dist_to_candidate + dynamic_weight * dist_candidate_to_dest

            avg_local_density = np.mean(local_densities)
            lookahead_depth = max(2, min(3, int(avg_local_density / (density + 1e-5) * 3)))
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_depth]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            if lookahead_scores:
                lookahead_scores = [s * (1 / (i + 1)) for i, s in enumerate(sorted(lookahead_scores))]
                score += 0.2 * min(lookahead_scores)

        quadrant = int(candidate_angle / (np.pi / 2)) % 4
        quadrant_score = quadrant_weights[quadrant]
        if len(unvisited_nodes) > 5:
            sparse_threshold = np.mean(quadrant_counts) * 0.5
            if quadrant_counts[quadrant] < sparse_threshold:
                quadrant_score = 1 + (1 - quadrant_score)

        score *= quadrant_score
        score *= angle_penalty

        perturbation = score * np.random.uniform(0, 0.005 if idx == 0 else 0.02)
        score += perturbation

        if score < best_score:
            best_score = score
            next_node = node
            recent_history.append(node)
            if len(recent_history) > 5:
                recent_history.pop(0)

    return next_node
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The losses:
# Code Evaluation: Chosen vs Rejected

## Three Strongest Advantages of the Chosen Code

### 1. **Strategic Phased Approach with Contextual Adaptation**
The chosen code implements a clear phase-based strategy (early/mid/late) that adapts the node selection criteria based on the proportion of visited nodes. This allows for specialized behaviors at 
different stages of the traversal process, optimizing for exploration in early phases, balance in mid-phases, and directness to destination in late phases. The adaptation to path deviation further 
enhances this contextual awareness.

### 2. **Sophisticated Connectivity Analysis**
The chosen code demonstrates superior connectivity analysis by incorporating multi-hop connectivity assessment in early phases. This provides a more comprehensive understanding of network 
topology than simple direct connections, allowing the algorithm to prioritize nodes that offer better overall network access, not just immediate proximity.

### 3. **Effective Backtracking Prevention with Temporal Awareness**
The implementation of a history-based backtracking detection mechanism is well-designed and effective. By analyzing the detour ratio compared to direct paths and combining this with the visited 
ratio, the code intelligently prevents inefficient revisiting of areas while allowing necessary detours when appropriate. This temporal awareness is crucial for path optimization.

## Three Most Significant Weaknesses of the Rejected Code

### 1. **Overly Complex and Coupled Scoring Mechanism**
The rejected code combines too many factors (historical distances, predictive costs, phase weights, quadrant biases, momentum alignment) in its scoring mechanism without clear prioritization. 
This results in a system where it's difficult to understand the relative importance of different factors and how they interact, reducing maintainability and interpretability.

### 2. **Inefficient Predictive Cost Estimation**
The predictive cost estimation, while conceptually valuable, is computationally expensive and potentially unreliable. The simulation of hypothetical paths with up to 5 nodes doesn't accurately 
represent the complete path and introduces significant computational overhead without clear benefits to the final path quality.

### 3. **Poorly Integrated Historical Context**
The historical path context implementation is overly complex and loosely integrated with the main scoring system. The window-based inefficiency calculation and its impact on quadrant weights 
lacks smooth transitions and could lead to abrupt changes in behavior, potentially causing erratic path selection.

## Why the Chosen Code Was Selected

The chosen code strikes a better balance between sophisticated path analysis and practical implementation. It maintains a clear logical structure with well-defined phases that guide the search 
strategy. Its connectivity analysis provides meaningful topological insight without excessive computational burden. The backtracking prevention mechanism is effective while maintaining flexibility.

The rejected code, while containing some valuable concepts like predictive estimation and momentum alignment, combines too many loosely integrated factors that create an overly complex 
system. Its complexity doesn't necessarily lead to better decisions and introduces potential instability and maintainability issues.

The chosen code represents a more principled approach where each component clearly contributes to the overall objective of finding an efficient path from the current node to the destination, while 
navigating the network of unvisited nodes effectively.

The Gradients:
Here are **five targeted, actionable suggestions** for improving the chosen code, based on its evaluation advantages and to further enhance its performance and maintainability:
---
### 1. **Introduce Smooth Transitions Between Phases to Avoid Abrupt Strategy Shifts**
Currently, phase transitions (early → mid → late) are based on hard thresholds of `visited_ratio`. This may cause sudden changes in behavior, potentially leading to suboptimal node selections 
at boundary conditions.  
**Suggestion**:  
Replace the current discrete phase logic with **fuzzy phase interpolation**. Calculate a weighted combination of early, mid, and late-phase scoring functions based on continuous phase 
weights derived from `visited_ratio`, ensuring smoother behavioral transitions.
---
### 2. **Optimize the Quadrant Weighting Mechanism for Better Spatial Balance**
While quadrant-based directional preference improves exploration, the current method of computing quadrant weights based on static node counts may lead to overcorrection in dense or 
sparse regions.  
**Suggestion**:  
Refine quadrant weighting by incorporating **spatial distribution density** using kernel density estimation (KDE) over node coordinates within each quadrant. This can yield more meaningful 
directional preferences and reduce erratic shifts in direction.
---
### 3. **Refactor the Composite Scoring Function for Better Interpretability and Maintainability**
The scoring function combines many components (distance, density, quadrant, angle penalty, etc.) in a way that makes it difficult to analyze the contribution of each factor.  
**Suggestion**:  
**Normalize and weight each component explicitly**, and expose these weights as configurable parameters (e.g., via a dictionary). This improves transparency and enables easier tuning 
without altering logic, promoting reuse across different problem instances.
---
### 4. **Improve the Backtracking Detection Mechanism with Temporal Decay and Path Context**
The current backtracking logic uses only the last two nodes and a fixed threshold. It may miss longer-term inefficiencies or allow subtle backtracking loops.  
**Suggestion**:  
Enhance the `recent_history` tracking by incorporating **exponential decay of node revisit penalties** over time, and introduce **angle deviation thresholds** for path coherence. This allows for 
more adaptive backtracking detection that considers path momentum.
---
### 5. **Precompute or Cache Connectivity and Density Metrics to Reduce Redundant Computation**
Multiple components (density, connectivity, lookahead) compute similar distance and neighborhood metrics repeatedly across iterations.  
**Suggestion**:  
**Cache or precompute key metrics** such as local density, connectivity, and nearest neighbor lists at the beginning of each selection round. This will reduce redundant computations and 
improve performance, especially for large graphs.
--- 
These improvements build upon the chosen code’s strengths—its phase-based strategy, connectivity awareness, and backtracking prevention—while refining its decision logic and efficiency.
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Heuristic 3 (Obj Score: -6.2454075785468355)
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: 
np.ndarray, distance_matrix: np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]
    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)
    recent_history = []
    dest_distances = distance_matrix[unvisited_nodes, destination_node]
    local_densities = np.mean(distance_matrix[unvisited_nodes][:, unvisited_nodes], 
axis=1)
    remaining_coords = distance_matrix[unvisited_nodes]
    if len(remaining_coords) > 1:
        remaining_center = np.mean(remaining_coords, axis=0)
        node_distances_to_center = np.linalg.norm(remaining_coords - remaining_center, 
axis=1)
        local_densities = np.clip(local_densities, 0.1, None) * (1 + 
node_distances_to_center)
    if total_nodes > 3:
        max_dist = np.max(distance_matrix[unvisited_nodes][:, unvisited_nodes])
        min_dist = np.min(distance_matrix[unvisited_nodes][:, 
unvisited_nodes][distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0])
        path_deviation = (max_dist - min_dist) / (max_dist + 1e-5)
    else:
        path_deviation = 0.5
    phase_weights = {
        'early': max(0, min(1, 0.6 - visited_ratio * 2)),
        'mid': max(0, min(1, visited_ratio * 2 - 0.4)),
        'late': max(0, min(1, visited_ratio - 0.6))
    }
    current_coords = distance_matrix[current_node]
    coords_x = remaining_coords[:, 0]
    coords_y = remaining_coords[:, 1]
    dx = coords_x - current_coords[0]
    dy = coords_y - current_coords[1]
    angles = np.arctan2(dy, dx)
    quadrants = (angles / (np.pi / 2)).astype(int) % 4
    unique_quad, counts = np.unique(quadrants, return_counts=True)
    quadrant_counts = np.zeros(4)
    for q, c in zip(unique_quad, counts):
        quadrant_counts[q] = c
    x_coords = coords_x
    y_coords = coords_y
    kde_values = np.zeros(len(x_coords))
    for i in range(len(x_coords)):
        dists = np.sqrt((x_coords - x_coords[i]) ** 2 + (y_coords - y_coords[i]) ** 2)
        kde = np.sum(np.exp(-dists ** 2 / 2))
        kde_values[i] += kde
    kde_norm = (kde_values - np.min(kde_values)) / (np.max(kde_values) - 
np.min(kde_values) + 1e-5)
    quadrant_kde = np.zeros(4)
    for q in range(4):
        mask = quadrants == q
        if np.any(mask):
            quadrant_kde[q] = np.mean(kde_values[mask])
    quadrant_kde_norm = (quadrant_kde - np.min(quadrant_kde)) / (np.max(quadrant_kde) - 
np.min(quadrant_kde) + 1e-5)
    quadrant_weights = 1 - 0.05 * (quadrant_kde_norm / (np.sum(quadrant_kde_norm) + 1e-
5))
    node_degrees = np.sum(distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0, 
axis=1)
    connectivity_scores = np.zeros(len(unvisited_nodes))
    for idx, node in enumerate(unvisited_nodes):
        reachable = np.where(distance_matrix[node][unvisited_nodes] > 0)[0]
        second_hop = []
        for r_idx in reachable[:3]:
            
second_hop.extend(np.where(distance_matrix[unvisited_nodes[r_idx]][unvisited_nodes] > 
0)[0])
        unique_reachable = len(set(reachable) | set(second_hop))
        connectivity_scores[idx] = unique_reachable / len(unvisited_nodes)
    connectivity_norm = (connectivity_scores - np.min(connectivity_scores)) / 
(np.max(connectivity_scores) - np.min(connectivity_scores) + 1e-5)
    heading_angle = 0
    if len(recent_history) >= 2:
        prev_coords = distance_matrix[recent_history[-1]]
        prev_prev_coords = distance_matrix[recent_history[-2]]
        dx_h = prev_coords[0] - prev_prev_coords[0]
        dy_h = prev_coords[1] - prev_prev_coords[1]
        heading_angle = np.arctan2(dy_h, dx_h)
    phase_params = {
        'early': {'connectivity_weight': 0.3, 'density_weight': 0.2, 'distance_weight': 
0.5},
        'mid': {'angle_weight': 0.2, 'progress_weight': 0.3, 'lookahead_weight': 0.5},
        'late': {'dest_weight': 0.7, 'degree_weight': 0.3}
    }
   

    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]
        density = local_densities[idx]
        degree = node_degrees[idx]
        connectivity = connectivity_scores[idx]
        is_backtracking = False
        if len(recent_history) >= 2:
            prev_node = recent_history[-1]
            prev_prev_node = recent_history[-2]
            direct_path = distance_matrix[prev_prev_node][node]
            detour_path = distance_matrix[prev_prev_node][prev_node] + 
distance_matrix[prev_node][node]
            if direct_path > 0 and detour_path / (direct_path + 1e-5) > 1.5 and 
visited_ratio > 0.1:
                is_backtracking = True
        if is_backtracking:
            continue
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        candidate_angle = np.arctan2(dy, dx)
        deviation = abs(candidate_angle - heading_angle)
        deviation = min(deviation, 2 * np.pi - deviation)
        deviation_deg = np.degrees(deviation)
        angle_penalty = 1.0
        if deviation_deg > 120:
            angle_penalty = 1.2
        early_score = dist_to_candidate * (1 - 0.5 * connectivity) / (density + 1e-5)
        late_score = dist_to_candidate + dist_candidate_to_dest * 0.9
        lookahead_scores = []
        lookahead_k = min(5, len(unvisited_nodes))
        nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_k]]
        for neighbor in nearest_unvisited:
            if neighbor != destination_node:
                dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                neighbor_dest = distance_matrix[neighbor][destination_node]
                lookahead_score = dist_candidate_to_neighbor + 0.2 * neighbor_dest
                lookahead_scores.append(lookahead_score)
        if lookahead_scores:
            late_score += 0.4 * np.min(lookahead_scores)
        mid_score = dist_to_candidate
        if len(local_densities) > 1:
            avg_local_density = np.mean(local_densities)
            std_local_density = np.std(local_densities)
            local_progress = (avg_local_density - density) / (std_local_density + 1e-5)
            dynamic_weight = 0.4 + (visited_ratio - 0.2) * 0.6 + local_progress * 0.2
            dynamic_weight = max(0.2, min(0.8, dynamic_weight))
            mid_score += dynamic_weight * dist_candidate_to_dest
        lookahead_depth = max(2, min(3, int(avg_local_density / (density + 1e-5) * 3)))
        nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_depth]]
        lookahead_scores = []
        for neighbor in nearest_unvisited:
            if neighbor != destination_node:
                dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                neighbor_dest = distance_matrix[neighbor][destination_node]
                lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest
                lookahead_scores.append(lookahead_score)
        if lookahead_scores:
            lookahead_scores = [s * (1 / (i + 1)) for i, s in 
enumerate(sorted(lookahead_scores))]
            mid_score += 0.2 * min(lookahead_scores)
        quadrant = int(candidate_angle / (np.pi / 2)) % 4
        quad_score = quadrant_weights[quadrant]
        if len(unvisited_nodes) > 5:
            sparse_threshold = np.mean(quadrant_counts) * 0.5
            if quadrant_counts[quadrant] < sparse_threshold:
                quad_score = 1 + (1 - quad_score)
        early_score_norm = early_score / (np.max([early_score, 1]))
        mid_score_norm = mid_score / (np.max([mid_score, 1]))
        late_score_norm = late_score / (np.max([late_score, 1]))
        composite_score = (
            phase_weights['early'] * early_score_norm +
            phase_weights['mid'] * mid_score_norm +
            phase_weights['late'] * late_score_norm
        )
        composite_score *= quad_score
        composite_score *= angle_penalty
        perturbation = composite_score * np.random.uniform(0, 0.005 if idx == 0 else 0.02)
        final_score = composite_score + perturbation
        if final_score < best_score:
            best_score = final_score
            next_node = node
            recent_history.append(node)
            if len(recent_history) > 5:
                recent_history.pop(0)
    return next_node
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Figure 13: TSP Example 1.
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Heuristic 2 (Obj Score: -6.841203707276776)
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: np.ndarray, distance_matrix: 
np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]

    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)

    # Precompute distances to destination for all nodes
    dest_distances = distance_matrix[unvisited_nodes, destination_node]

    # Estimate local graph density
    current_degree = np.sum(distance_matrix[current_node] > 0) - 1  # Exclude self
    avg_neighbor_degree = np.mean([np.sum(distance_matrix[n] > 0) - 1 for n in unvisited_nodes])
    local_density = (current_degree + avg_neighbor_degree) / 2

    # Determine lookahead depth based on local density
    if local_density > 5:
        lookahead_depth = 3
    elif local_density > 2:
        lookahead_depth = 2
    else:
        lookahead_depth = 1

    # Path availability monitoring
    viable_path_threshold = 3
    use_fallback = len(unvisited_nodes) <= viable_path_threshold

    # Determine current phase for heuristic switching
    if visited_ratio < 0.3:
        heuristic_phase = 'early'
    elif visited_ratio < 0.7:
        heuristic_phase = 'mid'
    else:
        heuristic_phase = 'late'

    # Precompute nearest unvisited neighbors for each candidate
    nearest_neighbor_cache = {}
    for node in unvisited_nodes:
        nearest_unvisited = unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])]
        nearest_neighbor_cache[node] = nearest_unvisited

    # Track step efficiency for dynamic weighting
    if not hasattr(select_next_node, "step_history"):
        select_next_node.step_history = []
    if hasattr(select_next_node, "prev_positions") and len(select_next_node.prev_positions) >= 2:
        prev_current = select_next_node.prev_positions[-2]
        prev_dest = select_next_node.prev_positions[-1]
        step_efficiency = distance_matrix[prev_current][current_node] / 
(distance_matrix[prev_current][destination_node] + 1e-8)
        select_next_node.step_history.append(step_efficiency)
    
    avg_efficiency = np.mean(select_next_node.step_history[-5:]) if select_next_node.step_history else 0.5

    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]

        # Use fallback strategy if path availability is low
        if use_fallback:
            score = dist_to_candidate + dist_candidate_to_dest * 0.9
        else:
            # Phase-based heuristic selection
            if heuristic_phase == 'early':
                unvisited_neighbors = np.intersect1d(unvisited_nodes, nearest_neighbor_cache[node][:5])
                neighbor_contribution = len(unvisited_neighbors) + 1
                
                # Adaptive weighting based on phase and density
                density_factor = 1 + (local_density / 5)
                phase_factor = 1 - visited_ratio
                score = (dist_to_candidate * density_factor) / neighbor_contribution ** (0.5 + phase_factor * 
0.3)
                
            elif heuristic_phase == 'late':
                # Gradually reduce destination influence as we approach
                late_phase_weight = 1 - (1 - visited_ratio) * 0.7
                score = dist_to_candidate + dist_candidate_to_dest * late_phase_weight
            else:  # mid phase
                # Dynamic weighting based on both node count and path efficiency
                dynamic_weight = (0.4 + (visited_ratio - 0.3) * 0.5) * (avg_efficiency * 0.7 + 0.3)
                
                score = dist_to_candidate + dynamic_weight * dist_candidate_to_dest

                # Variable-step lookahead based on density
                nearest_unvisited = nearest_neighbor_cache[node][:3]
                lookahead_scores = []
                for neighbor in nearest_unvisited:
                    if neighbor != destination_node:
                        dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                        neighbor_dest = distance_matrix[neighbor][destination_node]
                        
                        # Recursive lookahead if depth > 1
                        if lookahead_depth > 1:
                            sub_lookahead = []
                            for sub_neighbor in nearest_neighbor_cache[neighbor][:2]:
                                sub_dist = distance_matrix[neighbor][sub_neighbor]
                                sub_dest = distance_matrix[sub_neighbor][destination_node]
                                sub_score = sub_dist + 0.2 * sub_dest
                                sub_lookahead.append(sub_score)
                            min_sub = np.min(sub_lookahead) if sub_lookahead else 0
                            lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest + 0.2 * min_sub
                        else:
                            lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest
                        
                        lookahead_scores.append(lookahead_score)
                
                if lookahead_scores:
                    score += (lookahead_depth * 0.2) * np.min(lookahead_scores)

        # Context-aware diversification
        tie_threshold = 0.02  # 2% of candidate score
        similar_scores = np.where(np.abs(best_score - score) < tie_threshold)[0]
     if len(similar_scores) > 0 and heuristic_phase != 'late':
            perturbation = score * np.random.uniform(0, 0.015)
            score += perturbation
        elif heuristic_phase != 'late':
            perturbation = score * np.random.uniform(0, 0.005)
            score += perturbation

        if score < best_score:
            best_score = score
            next_node = node

       # Update position history for efficiency tracking
       if not hasattr(select_next_node, "prev_positions"):
           select_next_node.prev_positions = []
       select_next_node.prev_positions.append(current_node)
       if len(select_next_node.prev_positions) > 5:
           select_next_node.prev_positions = select_next_node.prev_positions[-5:]

    return next_node

                        

Heuristic 1 (Obj Score: -6.5607966760939584)

def select_next_node(current_node: int, destination_node: int, unvisited_nodes: 
np.ndarray, distance_matrix: np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]

    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)
    recent_history = list()  # To track recent nodes for backtracking filter

    # Precompute distances to destination and local node density
    dest_distances = distance_matrix[unvisited_nodes, destination_node]
    local_densities = np.mean(distance_matrix[unvisited_nodes][:, unvisited_nodes], 
axis=1)

    # Determine phase
    if visited_ratio < 0.2:
        heuristic_phase = 'early'
    elif visited_ratio < 0.7:
        heuristic_phase = 'mid'
    else:
        heuristic_phase = 'late'

    # Estimate node degrees for graph awareness
    node_degrees = np.sum(distance_matrix[unvisited_nodes] > 0, axis=1)

    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]
        density = local_densities[idx]
        degree = node_degrees[idx]

        # Skip if node is too close to recent nodes (backtracking-aware filter)
        is_too_close = any(np.linalg.norm(distance_matrix[current_node][n] - 
distance_matrix[current_node][node]) < 0.1 for n in recent_history[-5:])
        if is_too_close and visited_ratio > 0.1:
            continue

        # Phase-adaptive scoring logic
        if heuristic_phase == 'early':
            # Early phase: favor well-connected nodes in sparse graphs
            normalized_score = dist_to_candidate / (density + 1e-5)
            score = normalized_score / (degree + 1)
        elif heuristic_phase == 'late':
            # Late phase: deep lookahead with top 5 neighbors
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:5]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.2 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            lookahead_component = 0.4 * np.min(lookahead_scores) if lookahead_scores 
else 0
            score = dist_to_candidate + dist_candidate_to_dest * 0.9 + 
lookahead_component
        else:  # mid phase
            # Dynamic weighting normalized by local context
            local_progress = (local_densities.mean() - density) / 
(local_densities.std() + 1e-5)
            dynamic_weight = 0.4 + (visited_ratio - 0.2) * 0.6 + local_progress * 0.2
            score = dist_to_candidate + max(0.2, min(0.8, dynamic_weight)) * 
dist_candidate_to_dest

            # 2-step lookahead with conditional perturbation
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:3]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            if lookahead_scores:
                score += 0.2 * np.min(lookahead_scores)

        # Local diversity boost with directional awareness
        if idx < len(unvisited_nodes) - 1 and np.isclose(score, best_score, atol=1e-2):
            # Directional perturbation toward under-explored quadrants
            angle = np.arctan2(distance_matrix[node][1] - 
distance_matrix[current_node][1],
                               distance_matrix[node][0] - 
distance_matrix[current_node][0])
            quadrant = int(angle / (np.pi / 2)) % 4
            quadrant_counts = [0, 0, 0, 0]
            for n in recent_history:
                a = np.arctan2(distance_matrix[n][1] - 
distance_matrix[current_node][1],
                               distance_matrix[n][0] - 
distance_matrix[current_node][0])
                q = int(a / (np.pi / 2)) % 4
                quadrant_counts[q] += 1
            score *= 1 - 0.05 * (quadrant_counts[quadrant] / (len(recent_history) + 1))

        # Small random perturbation only for tie-breaking
        if idx == 0 or not np.isclose(score, best_score, atol=1e-2):
            score += score * np.random.uniform(0, 0.005)
        else:
            score += score * np.random.uniform(0, 0.02)

        if score < best_score:
            best_score = score
            next_node = node
            recent_history.append(node)
            if len(recent_history) > 5:
                recent_history.pop(0)

    return next_node
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The Gradients:
Based on the evaluation and the algorithmic logic of the chosen code, here are the **five most important, targeted suggestions** to further improve and refine the implementation while 
preserving its strengths and avoiding weaknesses found in the rejected version:
---
### 1. **Improve Directional Awareness with Adaptive Quadrant Biasing**
- **Why**: The directional perturbation currently applies a fixed penalty per quadrant, which may not scale well with path complexity or graph size.
- **How**: Dynamically adjust quadrant penalties based on the **distribution of remaining nodes** across quadrants. For example, reduce penalties when a quadrant is sparsely populated 
and increase them in densely clustered areas.
- **Impact**: Enhances spatial diversity and prevents premature commitment to narrow directions, especially useful in grid-like or clustered graphs.
---
### 2. **Refine Backtracking Detection Using Distance Thresholding**
- **Why**: The current backtracking filter uses a simplistic Euclidean proximity check between nodes in the recent history, which may not reflect actual path redundancy.
- **How**: Replace or augment the proximity check with a **path efficiency metric**, such as comparing the distance from current → candidate → next node vs. a direct route from current → 
next node.
- **Impact**: Reduces inefficient detours and enhances real backtracking detection, especially in complex or asymmetric graphs.
---
### 3. **Introduce Adaptive Lookahead Depth Based on Node Proximity**
- **Why**: Fixed-depth lookahead (e.g., top 3 or 5 neighbors) may be excessive in sparse regions and insufficient in dense ones.
- **How**: Adjust the number of lookahead steps dynamically using a function of **local density** or **average distance to neighbors**. For instance, reduce lookahead depth in sparse areas 
to save computation and increase it in dense regions to improve decision quality.
- **Impact**: Balances computational cost and decision accuracy, making the heuristic more robust across varying graph structures.
---
### 4. **Use Relative Progress Metrics Instead of Absolute Phases**
- **Why**: Hard-coded phase boundaries (e.g., `visited_ratio < 0.2`) may not align with actual traversal progress in irregular graphs.
- **How**: Replace phase thresholds with **relative progress metrics**, such as comparing remaining nodes to a dynamic threshold based on graph diameter or current path deviation.
- **Impact**: Makes the phase logic more adaptive to topology, especially for graphs with uneven density or complex branching.
---
### 5. **Add a Local Graph Connectivity Check for Early-Phase Exploration**
- **Why**: In the early phase, choosing a node that leads to disconnected or weakly connected subgraphs can result in early dead-ends.
- **How**: Introduce a **local connectivity score** for each candidate node based on the number of reachable unvisited nodes within a small hop distance (e.g., 2 or 3 hops), computed using 
the distance matrix.
- **Impact**: Prevents premature isolation of subgraphs and improves early-phase node selection in disconnected or modular graphs.
---
These five suggestions aim to **extend the chosen code’s intelligent heuristics**, **reduce fragility in edge cases**, and **increase robustness across diverse graph types**, while staying 
aligned with the original logic and avoiding the pitfalls of the rejected implementation.

The losses:
### Evaluation of Chosen and Rejected Code
---
We are given two implementations of a `select_next_node` function, which presumably plays a role in a pathfinding or traversal algorithm (e.g., TSP, routing, or exploration of a graph). The **chosen code** was selected over the 
**rejected code**, and our task is to evaluate this choice by identifying **three strong advantages of the chosen code**, **three major weaknesses of the rejected code**, and then provide a concise explanation for the choice.
---
## ✅ Three Strong Advantages of the Chosen Code
### 1. **Sophisticated, Context-Aware Scoring with Phase Adaptation**
- The function divides traversal into **early**, **mid**, and **late** phases, adapting the selection heuristic accordingly.
- In early phases, it encourages **exploration and connectivity**, mid-phase balances **local and global distance**, and late-phase emphasizes **deep lookahead** and **goal-oriented decisions**.
- This **dynamic strategy** allows the algorithm to better adapt to different topologies and traversal contexts.

### 2. **Backtracking-Aware Exploration via Recent History Tracking**
- The function maintains a **short-term memory** (`recent_history`) of the last few visited nodes to **avoid backtracking or oscillating** between nearby nodes.
- This helps maintain **directional momentum**, prevents redundant exploration, and ensures smoother progress toward the destination.
- This is a significant advantage in graph exploration tasks, especially in dense or cyclic environments.

### 3. **Quadrant-Based Diversity Boost with Directional Perturbation**
- To avoid **local optima or clustering**, the function uses directional awareness (via angle-based quadrant tracking) to slightly **penalize nodes in already-explored directions**.
- This promotes **spatial diversity** and more **balanced exploration**, especially useful in spatial graphs or grids.
- This kind of directional heuristic is **absent or less sophisticated in the rejected code**.
---
## ❌ Three Major Weaknesses of the Rejected Code
### 1. **Less Adaptive Local Density Estimation**
- While the rejected code tries to estimate local density using **average neighbor degree**, it's a **simpler and less robust metric**.
- It doesn't fully integrate **local graph structure**, **mean distance**, or **connectivity** in a nuanced way, as the chosen code does through `local_densities` and `node_degrees`.

### 2. **Step Efficiency Tracking is Global and Inflexible**
- The rejected code tracks `step_efficiency` across iterations and adjusts weights based on average history.
- However, this is **not localized** to the node or path context and can **misrepresent actual traversal efficiency**.
- The chosen code instead **focuses on per-node adaptive heuristics**, making the decision more context-aware and dynamic.

### 3. **Weaker Tie-Breaking and Diversity Handling**
- The rejected code uses a **uniform random perturbation** for tie-breaking, which is less effective at ensuring **meaningful exploration diversity**.
- It lacks a directional or spatial component in perturbation, unlike the quadrant-based diversity boost in the chosen code.
- This can lead to **suboptimal path choices in dense or symmetric graphs**.
---
## � Final Evaluation: Why the Chosen Code Was Selected

The **chosen code** demonstrates a **more holistic and adaptive approach** to node selection by incorporating:
- **Phase-adaptive heuristics** that change based on progress,
- **Directional awareness** and **quadrant-based perturbation** for better exploration,
- **History tracking** to avoid redundant backtracking.

The **rejected code**, while functional, employs a **less nuanced understanding of graph topology**, has **simpler and less responsive heuristics**, and **fails to promote diversity** effectively in exploration.

Thus, the **chosen code is superior in terms of strategic decision-making, directional exploration, and adaptability**, making it better suited for complex, dynamic graph traversal tasks.
---
## ✅ Summary
| Aspect | Chosen Code | Rejected Code |
|-------|-------------|----------------|
| **Adaptive Phases** | ✔  ️Sophisticated phase-based logic | ⚠️  Simplified phase switching |
| **Diversity Handling** | ✔  ️Directional perturbation | ❌ Basic random tie-breaking |
| **Backtracking Avoidance** | ✔  ️Recent history tracking | ❌ No directional memory |
| **Local Density Estimation** | ✔  ️Uses mean distances and degrees | ⚠️  Relies on degree count only |
| **Lookahead Logic** | ✔  ️Deep, context-aware lookahead | ⚠️  Shallow and repetitive |

> ✅ **Chosen code is more intelligent, dynamic, and exploratory; rejected code is simpler and more static.**
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        # Backtracking detection with path efficiency metric
        is_backtracking = False
        if len(recent_history) >= 2:
            prev_node = recent_history[-1]
            prev_prev_node = recent_history[-2]
            direct_path = distance_matrix[prev_prev_node][node]
            detour_path = distance_matrix[prev_prev_node][prev_node] + 
distance_matrix[prev_node][node]
            if direct_path > 0 and detour_path / direct_path > 1.5 and visited_ratio > 
0.1:
                is_backtracking = True

        if is_backtracking:
            continue
        # Phase-adaptive scoring logic
        if heuristic_phase == 'early':
            normalized_score = dist_to_candidate / (density + 1e-5)
            score = normalized_score / (degree + 1) * (1 - 0.3 * connectivity)
        elif heuristic_phase == 'late':
            lookahead_k = min(5, len(unvisited_nodes))
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_k]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.2 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            lookahead_component = 0.4 * np.min(lookahead_scores) if lookahead_scores 
else 0
            score = dist_to_candidate + dist_candidate_to_dest * 0.9 + 
lookahead_component
        else:  # mid phase
            local_progress = (local_densities.mean() - density) / 
(local_densities.std() + 1e-5)
            dynamic_weight = 0.4 + (visited_ratio - 0.2) * 0.6 + local_progress * 0.2
            dynamic_weight = max(0.2, min(0.8, dynamic_weight))

            score = dist_to_candidate + dynamic_weight * dist_candidate_to_dest

            # Adaptive lookahead depth based on local density
            avg_local_density = np.mean(local_densities)
            lookahead_depth = max(2, min(5, int(avg_local_density / (density + 1e-5) * 
3)))
            nearest_unvisited = 
unvisited_nodes[np.argsort(distance_matrix[node][unvisited_nodes])[:lookahead_depth]]
            lookahead_scores = []
            for neighbor in nearest_unvisited:
                if neighbor != destination_node:
                    dist_candidate_to_neighbor = distance_matrix[node][neighbor]
                    neighbor_dest = distance_matrix[neighbor][destination_node]
                    lookahead_score = dist_candidate_to_neighbor + 0.3 * neighbor_dest
                    lookahead_scores.append(lookahead_score)
            if lookahead_scores:
                score += 0.2 * np.min(lookahead_scores)

        # Directional awareness with adaptive quadrant biasing
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        angle = np.arctan2(dy, dx)
        quadrant = int(angle / (np.pi / 2)) % 4
        quadrant_score = quadrant_weights[quadrant]

        # Apply adaptive quadrant weighting
        if len(unvisited_nodes) > 5:
            sparse_threshold = np.mean(quadrant_counts) * 0.5
            if quadrant_counts[quadrant] < sparse_threshold:
                quadrant_score = 1 + (1 - quadrant_score)  # Invert to boost sparse 
quadrants

        score *= quadrant_score

        # Small random perturbation for tie-breaking
        perturbation = score * np.random.uniform(0, 0.005 if idx == 0 else 0.02)
        score += perturbation

        if score < best_score:
            best_score = score
            next_node = node
            recent_history.append(node)
            if len(recent_history) > 5:
                recent_history.pop(0)

    return next_node

Heuristic 1 (Obj Score: -6.403566895729184)
def select_next_node(current_node: int, destination_node: int, unvisited_nodes: 
np.ndarray, distance_matrix: np.ndarray) -> int:
    if len(unvisited_nodes) == 1:
        return unvisited_nodes[0]

    best_score = float('inf')
    next_node = -1
    total_nodes = len(unvisited_nodes)
    visited_ratio = 1 - (len(unvisited_nodes) / total_nodes)
    recent_history = []  # Track recent nodes for backtracking detection

    # Precompute distances to destination and node densities
    dest_distances = distance_matrix[unvisited_nodes, destination_node]
    local_densities = np.mean(distance_matrix[unvisited_nodes][:, unvisited_nodes], 
axis=1)

    # Estimate local density of remaining nodes
    remaining_coords = distance_matrix[unvisited_nodes]
    if len(remaining_coords) > 1:
        remaining_center = np.mean(remaining_coords, axis=0)
        node_distances_to_center = np.linalg.norm(remaining_coords - 
remaining_center, axis=1)
        local_densities = np.clip(local_densities, 0.1, None) * (1 + 
node_distances_to_center)

    # Determine adaptive phase based on relative graph diameter
    if total_nodes > 3:
        max_dist = np.max(distance_matrix[unvisited_nodes][:, unvisited_nodes])
        min_dist = np.min(distance_matrix[unvisited_nodes][:, 
unvisited_nodes][distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0])
        path_deviation = (max_dist - min_dist) / (max_dist + 1e-5)
    else:
        path_deviation = 0.5

    # Dynamic phase thresholds based on graph deviation
    if visited_ratio < 0.15 + path_deviation * 0.1:
        heuristic_phase = 'early'
    elif visited_ratio < 0.6 + path_deviation * 0.2:
        heuristic_phase = 'mid'
    else:
        heuristic_phase = 'late'

    # Adaptive quadrant biasing based on node distribution
    current_coords = distance_matrix[current_node]
    quadrant_counts = [0, 0, 0, 0]
    for node in unvisited_nodes:
        coords = distance_matrix[node]
        dx = coords[0] - current_coords[0]
        dy = coords[1] - current_coords[1]
        quadrant = int(np.arctan2(dy, dx) / (np.pi / 2)) % 4
        quadrant_counts[quadrant] += 1

    # Normalize quadrant penalties based on density
    quadrant_weights = [1 - 0.05 * (count / (len(unvisited_nodes) + 1)) for count in 
quadrant_counts]

    # Compute node degrees with reachability
    node_degrees = np.sum(distance_matrix[unvisited_nodes][:, unvisited_nodes] > 0, 
axis=1)

    # Local connectivity check for early-phase exploration
    if heuristic_phase == 'early':
        connectivity_scores = []
        for node in unvisited_nodes:
            reachable_nodes = np.where(distance_matrix[node][unvisited_nodes] > 0)[0]
            second_hop = []
            for r_node in reachable_nodes[:3]:  # Limit to top 3 nearest for 
efficiency
                
second_hop.extend(np.where(distance_matrix[unvisited_nodes[r_node]][unvisited_nodes] 
> 0)[0])
            unique_reachable = len(set(reachable_nodes) | set(second_hop))
            connectivity_scores.append(unique_reachable / len(unvisited_nodes))
    else:
        connectivity_scores = [1.0] * len(unvisited_nodes)

    for idx, node in enumerate(unvisited_nodes):
        dist_to_candidate = distance_matrix[current_node][node]
        dist_candidate_to_dest = dest_distances[idx]
        density = local_densities[idx]
        degree = node_degrees[idx]
        connectivity = connectivity_scores[idx]
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Figure 14: TSP Example 2.
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E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, Large Language Models (LLMs) were used both as an auxiliary tool to improve the
clarity and readability of the manuscript and as experimental subjects, with their specific applications
detailed in the experimental section of the main text. They did not participate in the conception of
research ideas or the development of methodologies.
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