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Abstract

Probabilistic circuits (PCs) serve as a unifying representation
for probabilistic models that support tractable inference. Nu-
merous applications of PCs, such as controllable text genera-
tion, depend on the ability to efficiently multiply two circuits.
Existing multiplication algorithms require that the circuits re-
spect the same structure, i.e., variable scopes decompose ac-
cording to the same vtree. In this work, we propose and study
the task of restructuring structured(-decomposable) PCs, that
is, transforming a structured PC such that it conforms to a
target vtree. We propose a generic approach for this prob-
lem and show that it leads to novel polynomial-time algo-
rithms for multiplying circuits respecting different vtrees, as
well as a practical depth-reduction algorithm that preserves
structured decomposability. Our work opens up new avenues
for tractable PC inference, suggesting the possibility of train-
ing with less restrictive PC structures while enabling efficient
inference by changing their structures at inference time.

1 Introduction
Probabilistic circuits represent distributions as computation
graphs of sums and products. A crucial aspect to the design
of PCs is the structure of the computation graph, that is, how
distributions are factorized into (conditionally) independent
components. The structure of PCs affects their tractability,
modeling performance and computational efficiency. In this
work, we consider the problem of restructuring PCs: con-
structing a new PC that follows a target structure while rep-
resenting the same distribution. We present a general algo-
rithm for restructuring structured-decomposable circuits by
considering their graphical model representations. Specifi-
cally, we leverage the graphical models to reason about con-
ditional independencies and recursively construct a new PC
conforming to the desired structure.

We then investigate two key applications of PC restructur-
ing: circuit multiplication and depth reduction. Circuit mul-
tiplication is a fundamental operation used for various in-
ference queries (Vergari et al. 2021), such as conditioning
on logical constraints (Choi, Van den Broeck, and Darwiche
2015; Ahmed et al. 2022; Liu, Niepert, and Van den Broeck
2024; Zhang et al. 2023, 2024), computing expected predic-
tions of classifiers (Khosravi et al. 2019) and causal back-
door adjustment (Wang and Kwiatkowska 2023). Though
the problem of multiplying circuits of different structures is

in general #P-hard (Vergari et al. 2021), we identify a new
class of PCs, which we call contiguous circuits, where it is
possible to multiply circuits of different structures in poly-
nomial (or quasi-polynomial) time using our algorithm. We
also consider depth reduction, a well-established theoreti-
cal tool for reducing the depth of a circuit (Valiant et al.
1983; Raz and Yehudayoff 2008). We show that our re-
structuring algorithm can be used to transform a structured-
decomposable circuit to an equivalent log-depth circuit, with
much tighter upper bounds than given by prior work.

2 Probabilistic Circuits
Notation We use uppercase to denote variables (e.g. X)
and lowercase to denote values of variables (e.g. x). We use
boldface to denote sets of variables/values (e.g. X,x).

Definition 2.1 (Probabilistic Circuit). A probabilistic circuit
(PC) A = (G,w) represents a joint probability distribution
over random variables X through a rooted directed acyclic
(computation) graph (DAG), consisting of sum (⊕), product
(⊗), and leaf nodes (L), parameterized by w. Each node t
represents a probability distribution pt(X), defined recur-
sively by:

pt(x) =


ft(x) if t is a leaf node∏

c∈ch(t) pc(x) if t is a product node∑
c∈ch(t) wt,cpc(x) if t is a sum node

where ft(x) is a univariate input distribution function (e.g.
Gaussian, Categorical), we use ch(t) to denote the set of
children of a node t, and wt,c is the non-negative weight
associated with the edge (t, c) in the DAG, which satisfy the
constraint that

∑
c∈ch(t) wt,c = 1 for every sum node t. We

define the scope of a node t to be the variables it depends
on. The function represented by a PC, denoted pA (x), is the
function represented by its root node; and the size of a PC,
denoted |A |, is the number of edges in its graph.

Intuitively, product nodes represent a factorization of their
child distributions, while sum nodes represent a weighted
mixture of their child distributions. For simplicity, in the rest
of this paper we assume that sum/leaf and product nodes al-
ternate (i.e., child of a sum is a product, and child of a prod-
uct is a leaf or sum), and that each product has exactly two
children. The key feature of PCs is their tractability, i.e., the



ability to answer queries about the distributions they rep-
resent exactly and in polynomial time. Two commonly as-
sumed properties known as smoothness and decomposabil-
ity ensure efficient marginalization:
Definition 2.2 (Smoothness and Decomposability). A sum
node is smooth if all of its children have the same scope. A
product node is decomposable if its children have disjoint
scope. A PC is smooth (resp. decomposable) if all of its sum
(resp. product) nodes are smooth (resp. decomposable).

Intuitively, decomposability requires that a product node
partitions its scope among its children. For many other im-
portant queries, it is useful to enforce a stronger form of de-
composability, known as structured-decomposability, which
requires that product nodes with the same scope decompose
in the same way.
Definition 2.3 (Vtree). A vtree V over variables X is a
rooted binary tree, where each X ∈ X is associated with a
unique leaf node v (we write Xv for the variable associated
with node v). Each inner node v covers a set of variables Xv ,
satisfying Xv = Xl ∪ Xr where l, r are the children of v.
We write Vv to denote the subtree rooted at v.
Definition 2.4 (Structured Decomposability). A PC A is
structured-decomposable (w.r.t. a vtree V ) if every product
node t ∈ A partitions its scope according to some inner
vtree node v ∈ V .

The main advantage of structured decomposability is that
it enables tractable multiplication of two circuits respecting
the same vtree, which is a core subroutine for many appli-
cations. However, structured-decomposable circuits can be
less expressive efficient in general (de Colnet and Mengel
2021).

3 PC Restructuring
In this section, we describe a generic approach that restruc-
tures any structured-decomposable PC respecting a target
vtree. The approach consists of three steps: (1) construct a
Bayesian network representation of the PC; (2) find sets of
latent variables in the Bayesian network that induce condi-
tional independencies required by the target vtree; (3) con-
struct a new structured PC recursively leveraging the condi-
tional independence derived in (2).

Structured PCs as Bayesian Networks
It is known that one can efficiently compile a tree-shaped
Bayesian network to an equivalent probabilistic circuit (Dar-
wiche 2003; Poon and Domingos 2011; Dang, Vergari, and
Broeck 2020; Liu and Van den Broeck 2021). It is also
known how to convert a (structured) PC into a Bayesian net-
work, but requiring either exponentially many latent vari-
ables (Zhao, Melibari, and Poupart 2015) or a compilation
assumption (Butz, Oliveira, and Peharz 2020; Papantonis
and Belle 2023). Here, we describe a simple construction
for converting an arbitrary structured-decomposable PC to a
tree-shaped Bayesian network with linearly many variables.

Let A be a structured PC over variables X respecting
vtree V . Given a vtree node v ∈ V , we write prod(v) to de-
note the set of all product nodes with scope Xv . We define
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(a) A vtree V
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(b) Bayesian network Vv 7→Zv
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(c) A labelling of vtree W .

Figure 1: Fig. 1a shows a vtree V for some PC A ; Fig. 1b
shows a Bayesian network representation GA for A ; Fig. 1c
shows a valid labelling of vtree W with respect to GA .

the hidden state size h of the circuit to be maxv∈V |prod(v)|.
Writing n for the number of variables, the size of the cir-
cuit is then O(nh2).1 Given some vtree node v, let us as-
sociate each t ∈ prod(v) with a unique index idx(t) ∈
{0, ..., |prod(v)| − 1}, also writing tv,i to refer to the prod-
uct node with index i in prod(v). Then we can introduce a
categorical latent variable Zv whose value corresponds to a
particular product node in prod(v).

Let GA := Vv→Zv
be the rooted DAG obtained by re-

placing all inner nodes v in vtree V with variable Zv (cf. Fig.
1). Now, it can be shown that the PC (with latent variables)
has the same distribution as a Bayesian network with graph
structure Vv→Zv

(with conditional probability distributions
given by the PC’s corresponding conditional distributions).
We provide full details and a proof in Appendix A.

Recursive PC Restructuring
Suppose we have a PC A with its Bayesian network repre-
sentation GA and vtree V , and let W be some other vtree.
We now show how to construct a new PC respecting W that
encodes the same distribution as A . The rough idea is to
label each vtree node w ∈ W with a subset of latent vari-
ables Cw ⊆GA such that Xw is conditionally independent
from X\Xw given Cw. To characterize such properties, we
introduce covers:
Definition 3.1 (Cover). Given a tree-shaped Bayesian net-
work GA as constructed in Sec. 3, we say that C ⊆ Z covers

1The number of active sum nodes per vtree node is at most h,
as each such node must have a different product node parent corre-
sponding to the parent vtree node scope. This leads to O(h2) edges
per vtree node.
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Figure 2: Recursive construction of vectors of sum nodes
representing p(Xw |Cw)

S ⊆ X if C blocks2 all paths between S and X\S in GA
3.

Our goal is to recursively construct vectors of sum nodes
⊕i representing the probability distributions p(Xw |Cw= i).
Letting l and r be the children of w, we will establish a
recurrence relation between p(Xw | Cw), p(Xl | Cl) and
p(Xr |Cr). This requires the vtree labels to satisfy the fol-
lowing properties:

Definition 3.2 (Valid Vtree Labelling). Given the Bayesian
network GA and target vtree W , a valid labelling of W with
respect to GA associates each node w∈W with a subset of
latent variables Cw⊆GV s.t.

1. Cw covers Xw in GA .
2. Cl blocks all paths between Xl and Cr ∪Cw.
3. Cr blocks all paths between Xr and Cl ∪Cw.

Furthermore, w.l.o.g., we set Croot of W := ∅ and CXj
:=

parent of Xj in GA for the leaf nodes Xj ∈W . See Figure
1c for an example.

Assuming that we have computed a valid labelling for
W , we can then proceed to construct the desired PC by a
bottom-up recursion on W . For the base case, if w is a leaf
node representing some random variable Xj , p(Xj |CXj ) =
p(Xj | parent of Xj in GA ), which is directly given by the
conditional probability table of GA . For the induction step,
when w is a inner node with children l and r, we have the
recurrence relation:

p(Xw |Cw)

=
∑

(Cl∪Cr)\Cw

p(Xl,Xr |Cl,Cr) · p(Cl,Cr |Cw)

=
∑

(Cl∪Cr)\Cw

p(Xl |Cl) · p(Xr |Cr) · p(Cl,Cr |Cw)

Here the first step follows from Property 2 and 3, and the
second step follows from all properties in Defintion 3.2. The
circuit materialization of the recurrence relation is shown in
Figure 2. Note that if w is the root, then p(Xw |Cw) becomes
p(X), which is a single sum node representing the distribu-
tion of A . The complete recursion is given by Algorithm 1.
The following Theorem bounds the size of the resulting PC:

2a path P is blocked by a set S if P ∩ S ̸= ∅.
3This is a special case of d-separation (Geiger, Verma, and

Pearl 1990).

Algorithm 1: Construct PC with respect to W

procedure CONSTRUCTCIRCUIT(w)
if w is a leaf node Xi then

return p(Xi |CXi
)

end if
l, r ← CHILDREN(w)⊕

Xl,Cl
←CONSTRUCTCIRCUIT(l)⊕

Xr,Cr
←CONSTRUCTCIRCUIT(r)⊕

Xw,Cw
←

∑
(Cl∪Cr)\Cw

⊕
Cl
·
⊕

Cr
·p(Cl,Cr |Cw)

return
⊕

Cw

end procedure

Algorithm 2: Computing Cw for w∈W
procedure COMPUTELABEL(w,Cw)
{Gi} ← CONNECTEDCOMPONENTS(GA ,Cw)
Ci ← MINIMUMSEPARATOR(Gi,Xl∩Gi,Xr∩Gi)
Dw ← (

⋃
iCi) ∪Cw

Cl ← {Zj ∈Dw : PATHS(Xl, Zj) ∩Dw={Zj}}
Cr ← {Zj ∈Dw : PATHS(Xr, Zj) ∩Dw={Zj}}
COMPUTELABEL(l,Cl)
COMPUTELABEL(r,Cr)

end procedure

Theorem 3.3. The number of hidden states of the restruc-
tured PC is given by O(hM ) where M=maxw∈W |Cl∪Cr|
and the size of the restructured PC is bounded by O(nhM ′

)
where M ′ =maxw∈W |Cl ∪Cr ∪Cw| ≤ 2M . We refer to
M ′ as the cardinality of the labelling Cw.

Computing Vtree Labelling
The next question that arises is how to compute a (compact)
valid labelling for W with respect to GA . Here we present
a greedy approach that computes a labelling while trying to
minimize M ′. The algorithm (Algorithm 2) proceeds top-
down on W . For the base case where w is the root, we set
Cw := ∅. For the inductive step, let l and r be the chil-
dren of w and assume that we have computed Cw as a cover
for Xw in GA : we (1) split GA into connected components
{Gi} via Cw; then (2) within each connected component
Gi, compute a minimum d-separator Ci that blocks all paths
between Xl ∩ Gi and Xr ∩ Gi by calling the sub-routine
MINIMUMSEPARATOR. We set Dw := (

⋃
iCi) ∪ Cw and

observe that Dw covers both Xl and Xr in GA . To compute
Cl, similarly for Cr, we consider all paths starting from Xl

and stopping immediately when reaching some Zj ∈ Dw,
and we let Cl to be the set containing all such Zjs.
Proposition 3.4. Algorithm 2 computes a valid labelling
with respect to GA .

We leave open the problem of whether M ′ =
maxw∈W |Cl ∪Cr ∪Cw| is globally minimized.

4 Applications
Circuit Multiplication One important application of re-
structuring PCs is circuit multiplication: given two PCs A
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Figure 3: GA for A with a linear vtree

and B, the goal is to construct a tractable PC C such that
pC (x) ∝ pA (x) · pB(x). PC multiplication was previ-
ously only addressed for structured PCs respecting the same
vtree (Shen, Choi, and Darwiche 2016; Vergari et al. 2021).
Circuit restructuring immediately gives us a means of mul-
tiplying two structured circuits respecting different vtrees,
as we can simply restructure one of them to be compatible
with the other. Though the restructured PC will in general
have exponential size, in this section, we consider practical
cases where circuit multiplications with respect to different
vtrees is tractable. We start by introducing a new structural
property of tractable PCs called contiguity.

Definition 4.1 (Contiguity). Given the canonical ordering
of variables X1, X2, . . . , Xn, a PC node is contiguous if its
scope is of the form Xa, Xa+1, . . . , Xb for some 1≤a≤b≤
n. A smooth and decomposable PC is contiguous if all of its
nodes are contiguous.

We start by considering the case when A is a contigu-
ous structured PC respecting the linear vtree V and B is a
contiguous structured PC respecting an arbitrary vtree W . It
follows from Section 3 that the Bayesian network represen-
tation for A is a hidden Markov model (Rabiner 1989), as
shown in Figure 3. By the definition of contiguity, each node
w∈W has a scope of the form Xa:b := {Xa, . . . , Xb} and
we can label it with Ca:b := {Za, Zb+1}; in particular, we
drop Za if a = 1 and drop Zb+1 if b = n.

Claim 4.2. Ca:b is a valid vtree labelling of W respecting
GA with cardinality M ′ = 3.

It follows from Theorem 3.3 that the size of A ′, i.e., the
PC obtained by restructuring A respecting W , is bounded
by O(nh3), with O(|A |2) being a looser bound. Further, we
can compute the product of A ′ with B tractably by the ex-
isting algorithm for multiplying circuits respecting the same
vtree (Shen, Choi, and Darwiche 2016; Vergari et al. 2021).

Theorem 4.3. Let A and B be contiguous structured PCs.
If A has a linear vtree, then A and B can be multiplied in
polynomial time and the size of the product PC is bounded
by O(|A |2|B|).

We can derive a similar result for arbitrary contiguous
structured PCs, essentially by application of Algorithm 2;
we provide details in Appendix D.

Depth Reduction Depth reduction of a probabilistic cir-
cuit refers to the construction of an equivalent circuit with
reduced depth, e.g. to a depth logarithmic in the number of
variables. A depth reduction algorithm for general circuits is
known (Valiant et al. 1983; Raz and Yehudayoff 2008; Yin
and Zhao 2024) but does not take advantage of structured-
ness. We show how to reduce a structured-decomposable cir-
cuit to an equivalent log-depth circuit by restructuring.

Algorithm 3: Depth Reduction Vtree

1: procedure BALANCEDVTREE(V,Sl = ∅,Sr = ∅)
2: if |V | = 1 then
3: return LEAF(V ; Sl ∪ Sr)
4: end if
5: v ← ROOT(V )
6: l, r ← CHILDREN(v)
7: while |Vr| > 2

3 |V | do
8: v ← r
9: l, r ← CHILDREN(v) ▷ assume |Vl|≤|Vr|

10: end while
11: V ′

l ← BALANCEDVTREE(V[v 7→l],Sl, {Zv})
12: V ′

r ← BALANCEDVTREE(Vr, {Zv},Sr)
13: return JOIN(V ′

l , V
′
r ;Sl ∪ Sr)

14: end procedure

Algorithm 3 constructs a log-depth vtree labelling of
constant cardinality. Intuitively, each step of the algorithm
breaks a vtree down into two connected components, which
are then depth-reduced recursively. One selects a single vtree
node by traversing the vtree top-down, until the split would
be balanced in the sense that the two connected components
have size between 1

3 and 2
3 of the input vtree (Lines 7-10).

The algorithm simultaneously constructs a valid label for the
vtree node. The JOIN routine then returns a labelled vtree
that consists of a single root node with the aforementioned
label, connected to the depth-reduced component vtrees. It
can be easily verified that the vtree labelling produced is
valid and has cardinality 3. This gives the following result:
Theorem 4.4. Any structured PC over n variables and with
hidden state size h can be restructured to a structured PC
of depth O(log n) and size O(nh3) that represents the same
distribution.

Thus, we have shown that one can depth-reduce a struc-
tured PC while (i) retaining structured decomposability and
(ii) having a sub-quadratic bound on the size of the depth-
reduced PC (as compared with a cubic bound for the general
algorithm (Raz and Yehudayoff 2008)).

5 Discussion
Our work takes a first step to understanding when and how
the space of structured circuits -- hierarchical tensor factor-
izations (Loconte et al. 2024) -- can be “connected” through
tractable transformations. Many interesting theoretical prob-
lems remain open: for instance, the optimality of our al-
gorithm, and circuit lower bounds for particular structures.
We also envisage that our restructuring algorithm will en-
able new methodology both within the PC community and
broadly in structured low-rank representations. For exam-
ple, multiplication for contiguous PCs enables one to com-
bine hidden Markov models with more flexible logical con-
straints for constrained language generation (Zhang et al.
2024). Additionally, our sub-quadratic depth reduction al-
gorithm enables one to practically trade off model size
for greater parallelization, potentially improving processing
throughput on modern hardware.
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A Structured PC to BN Construction
We begin by providing a latent variable interpretation of
structured PCs. Specifically, we define an augmented PC
which explicitly associates latent variables with product
nodes for each variable scope. Given some vtree node v,
let us associate each t ∈ prod(v) with a unique index
idx(t) ∈ {0, ..., |prod(v)|−1}, also writing tv,i to refer to the
product node with index i in prod(v). Then we can introduce
a categorical latent variable Zv whose value corresponds to
a particular product node in prod(v):

Definition A.1 (Augmented PC). Given a structured-
decomposable and smooth PC A over variables X respect-
ing vtree V , we define the augmented PC Aaug to be a copy
of A where for each vtree node v ∈ V , we add an additional
child taug to each product node t ∈ prod(v) that is a leaf node
with scope Zv and leaf function ftaug(Zv) = 1Zv=idx(t).

It is not hard to see that the augmented PC Aaug is a PC
over variables X,Z and retains structured decomposability
and smoothness. Further, the standard marginalization algo-
rithm for PCs ensures that the augmented PC has the correct
distribution:

Proposition A.2. pA (X) =
∑

z pAaug(X, z)

Proof. Suppose that A is a structured decomposable and
smooth PC respecting vtree V . Write prod(v) and sum(v)
for the set of product and sum nodes with scope Xv . The
augmented PC Aaug is decomposable as if leaves with scope
{Zv} were contained in (the subcircuits rooted at) two dif-
ferent children t1, t2 of a product node, then their parents
(nodes in prod(v)) would be contained in t1, t2, which is a
contradiction of decomposability of A . It is also smooth as
for any sum node, if one sum node contains some leaf with
scope {Zv}, then it contains some node in sum(v), hence
by smoothness of A all sum nodes contain some node in
sum(v) and thus some leaf with scope {Zv}.

Consider the standard marginalization algorithm for PCs
(Darwiche 2003; Choi, Vergari, and Van den Broeck 2020),
where one replaces each leaf whose scope is contained
within the variables being marginalized out with the con-
stant 1. This correctly marginalizes the function represented
by the PC if the PC is decomposable and smooth. If we
marginalize over all newly introduced latents Z, it is imme-
diate that the resulting PC represents the same function as
A .

Let Vv→Zv
be the rooted DAG obtained by replacing

all inner nodes v in vtree V with variable Zv (cf. Fig. 1).
Now, we claim that the augmented PC can be interpreted
as a Bayesian network with graph structure Vv→Zv

. To do
this, we construct a distribution p∗(X,Z), based on the aug-
mented PC, that factorizes as required by the Bayesian net-
work structure.

There are three cases to consider: (i) the root node
p∗(ZROOT(V )), (ii) the leaf nodes p∗(Xv|Zp), and (iii) other
nodes p∗(Zv|Zp) (where we write p for the parent of v in
V ). In case (i), we set p∗(Zv = i) := wi where wi is the
weight of the edge from the root sum node to the product
node tv,i. In case (ii), we set p∗(Xv|Zp = j) = pt(Xv),

where t is the leaf node child (with scope Xv) of the product
node tp,j . Finally, in case (iii) we note that due to alternating
sums and products, tp,j must have a sum node child, which
may or may not have a weighted edge to tv,i (whose weight
we denote by wij if it exists). We thus define:

p∗(Zv = i|Zp = j) =

{
wij ∃ path from tp,j to tv,i
0 otherwise

It remains to show that this distribution faithfully repre-
sents the distribution of the augmented PC, i.e. pAaug = p∗.
The intuitive idea is that each value of Z corresponds to a
subtree of Aaug, whose value is precisely given by the prod-
uct of weights and leaf functions specified by the Bayesian
network.

Theorem A.3. Let A be a structured-decomposable and
smooth PC over variables X respecting vtree V . Then there
exists a Bayesian network GA over variables X and Z =
{Zv|v ∈ V } with graph Vv 7→Zv such that

∑
z pG(X, z) =

pA (X).

Proof. In Section 3 we described a Bayesian network pG =
p∗ with the required graph. It remains to show that this net-
work represents the same distribution as A . We will do this
by showing that the Bayesian network has the same distri-
bution as the augmented PC, i.e. pG(X,Z) = pAaug(X,Z).

The key observation is to consider the induced trees of the
augmented PC (Zhao, Poupart, and Gordon 2016):

Definition A.4 (Induced Trees). Given a decomposable and
smooth circuit A , let T be a subgraph of A . We say that T is
an induced tree of A if (1) ROOT(A ) ∈ T ; (2) If t ∈ T is a
sum node, then exactly one child of t (and the corresponding
edge) is in T ; and (3) If t ∈ T is a product node, then all
children of t (and the corresponding edges) are in T .

It is easy to see that an induced tree T is indeed a tree, as
otherwise decomposability would be violated. Let T be the
set of all induced trees of Aaug. Each induced tree defines a
function:

pAaug,T (X,Z) :=
∏

(ti,tj)∈SUMEDGES(T )

wti,tj∏
t∈LEAVESX(T )

ft(Xsc(t))∏
t∈LEAVESZ(T )

ft(Zsc(t))

where SUMEDGES(T ) denotes the set of outgoing edges
from sum nodes in T , and LEAVESX(T ), LEAVESZ(T ) de-
note the set of leaf nodes in T with scope corresponding to
a variable in X,Z respectively. The distribution of the aug-
mented PC is then in fact given by the sum of these functions
over all induced trees:

Proposition A.5 (Zhao, Poupart, and Gordon (2016)).
pAaug(X,Z) =

∑
T∈T pAaug,T (X,Z).



Now, let path(v, i, j) be a predicate indicating whether
there is a path between tp,j and tv,i (where we use p to de-
note the parent vtree node of v, and as before e.g. tv,i indi-
cates the product node with scope Xv and corresponding to
Zv = i). We will consider two cases depending on the value
of the latents. Specifically, we will say that an assignment
z is consistent if path(v, zv, zp) holds for all non-root inner
nodes in the vtree, and inconsistent otherwise.

If an assignment z is inconsistent, then for any assignment
x of the observed variables, we have that pG(x, z) = 0 by
definition of the Bayesian network distribution. Now con-
sider any induced subtree T ∈ T . Each T must contain
one product node for every variable scope. In particular,
T must contain some product node tv,i such that zv ̸= i
(otherwise, since z is inconsistent, a (connected) tree would
be impossible). We then have pAaug,T (x, z) = 0 for all
x, as pAaug,T (x, z) then contains a leaf function ft(zv) =
1zv=i = 0. Thus pAaug(x, z) =

∑
T∈T pAaug,T (x, z) = 0

for any x.
If an assignment z is consistent, note that, by our assump-

tion of alternating sums and products, there can be exactly
one path from tp,j to tv,j , as tp,j has a unique sum node child
with scope containing Xv , and this sum node must immedi-
ately have tv,j as a child. Thus there is exactly one induced
tree T containing tv,zv for all (non-root) inner vtree nodes
v. Further, examining the definition of the Bayesian network
distribution pG(X, z), this exactly matches the definition of
pAaug,T (X, z): each sum node edge weight in the tree corre-
sponds to a sum node edge weight along a path from some
tp,zp to tv,zv and thus the CPT of Zv given Zp (the root sum
node edge weight corresponds to the CPT for ZROOT(V )),
and each leaf node distribution for observed variables cor-
responds to the CPT for that variable given its parent.

Thus we have shown that pAaug(X,Z) = pG(X,Z), as
required.

B PC Restructuring: Proofs
In this section we provide the proofs for results in Section 3.

Theorem 3.3. The number of hidden states of the restruc-
tured PC is given by O(hM ) where M=maxw∈W |Cl∪Cr|
and the size of the restructured PC is bounded by O(nhM ′

)
where M ′ =maxw∈W |Cl ∪Cr ∪Cw| ≤ 2M . We refer to
M ′ as the cardinality of the labelling Cw.

Proof. Let A ′ be the restructured circuit respecting W . As
described in Algorithm 1, for each inner node w ∈ W , we
construct two layers of nodes as shown in Figure 2. By con-
struction, the product layer contains all product nodes re-
specting the vtree node w and its cardinality is given by
O(h|Cl∪Cr|); we set M := maxw∈W |Cl ∪ Cr| and it fol-
lows that the hidden states size of B is given by O(hM ).
Similarly, the number of edges in the sum layer is given by
O(h|Cl∪Cr∪Cw|) and the number of product edges is given
by O(h|Cl∪Cr|); since there are O(n) vtree nodes in total,
the total number of edges in B is given by O(nhM ′

), with
M ′ = maxw∈W |Cl ∪Cr ∪Cw|.

Proposition 3.4. Algorithm 2 computes a valid labelling
with respect to GA .

Proof. We prove by a top-down induction on W that the
labelling Cw computed by Algorithm 2 is valid. Assume that
Cw covers Xw in GA , we want to show that Cl and Cr

satisfy the properties from Definition 3.2. To prove that Cl

covers Xl, we consider a path from Xa ∈Xl to Xb ∈X \
Xl. (1) If Xa and Xb are in the same Gi, then the path is
blocked by Ci. (2) If Xa and Xb are in different Gis, then
the path contains some node Z ∈ Cw, and we can choose
from the path the first Z∈Cw. Then Z∈Cl by construction,
implying that the path is blocked by Cl. Hence we conclude
that Cl is a cover for Xl, satisfying Property 1. To prove that
Cl satisfies Property 2, we argue that because Cr and Cw

are both subsets of Dw, all paths from Xl to Cr ∪Cw will
be blocked by Cl by the way that Cl is constructed. We can
show that Cr satisfies Property 1 and Property 3 by the same
argument.

C Determinism and Logical Circuits
In this section, we examine the restructuring of two other
types of circuits: namely, deterministic PCs, and logical cir-
cuits.

Definition C.1 (Determinism). A sum node is deterministic
if for every value x of X, at most one child c returns a non-
zero value (i.e. pc(x) > 0). A PC is determinstic if all of its
sum nodes are deterministic.

Determinism is crucial for tractability of various inference
queries such as computing the most likely state (MAP) (Pe-
harz et al. 2016; Conaty, Maua, and de Campos 2017) or
computing the entropy of the PC’s distribution (Shih and Er-
mon 2020; Vergari et al. 2021). It is thus of interest to ask
whether applying our restructuring algorithm maintains de-
terminism.

Claim C.2. Algorithm 1 preserves determinism.

Proof. If the original circuit is deterministic, then each as-
signment to the observed variables fully determines the val-
ues of all latent variables (and thus the latents being condi-
tioned on for the restructuring). Hence the constructed sum
nodes are deterministic.

Although we have focused on probabilistic circuits up to
this point, our restructuring algorithm also applies to log-
ical circuits - in particular, structured-decomposable nega-
tion normal form (SDNNF) circuits4 (Pipatsrisawat and Dar-
wiche 2008). To see this, we use a simple trick: (1) convert
the logical circuit into a probabilistic circuit by replacing ∨
with ⊕ and ∧ with ⊗, and assigning positive weights to ⊕
edges; (2) restructure the PC; (3) convert the PC back to a
logical circuit by replacing ⊕ with ∨ and ⊗ with ∧, and re-
moving the weights. It is immediate that the logical circuits

4Many other representations, such as the ordered binary deci-
sion diagram (OBDD) and deterministic finite automaton (DFA),
can be converted efficiently to (deterministic) SDNNFs (Amarilli
et al. 2024).



and the corresponding PCs have the same support through-
out the process.

It is also not hard to see that this procedure for logical
circuits retains determinism, so, e.g, an ordered binary de-
cision diagram (OBDD) can be efficiently restructured into
a deterministic SDNNF with the reverse order while main-
taining the ability to perform model counting (Darwiche and
Marquis 2002).

D Circuit Multiplication
In the main paper, we described a restructuring that en-
ables tractable multiplication of contiguous structured cir-
cuits where one respects a linear vtree. Here we prove the
correctness of the proposed labelling:

Claim 4.2. Ca:b is a valid vtree labelling of W respecting
GA with cardinality M ′ = 3.

Proof. We first show that Cw satisfies the following proper-
ties:

1. Xa:b =
⋃

Zi∈Ca:b
LEAVES(Zi) is a disjoint union.

2. If a≤c≤ d≤ b, then for Z∈Cc:d, there exists Z ′ ∈ Ca:b

such that Z ′ is an ancestor of Z in GA .

Property 1 follows from the proof of correctness of the
segment tree querying algorithm. Property 2 follows from
Property 1 together with the key observation that we can
compute Cc:d via

⋃
Zi∈Ca:b

SEGMENTCOVER(Zi,Xc:d ∩
LEAVES(Zi)). Let w = a : b be a node in W with chil-
dren l = a : c and r = c + 1 : b; it follows from Property 1
that Ca:b covers Xa:b and Ca:c blocks all paths from Xa:c to
Cc+1:b; it follows from Property 2 that Ca:c blocks all paths
from Xa:c to Xa:b. Hence we conclude that Cw is a valid
labelling. A minor catch is that Cw may contain variables in
X, but we can replace them by their parent in GA without
affecting the validity of Cw.

We now consider the more general case where A is a
contiguous structured PC of depth d respecting vtree V and
B is a contiguous structured PC with an arbitrary vtree
W . Similarly to the previous case, our goal is to come up
with a small labelling of W with respect to GA . Since
A is contiguous, its vtree V can be viewed as a segment
tree (Cormen et al. 2022). Algorithm 4, which is adapted
from the segment tree querying algorithm, computes a cover
Ca:b ⊆ GA for each contiguous segment Xa:b. For each
w ∈W , Xw = Xa:b for some 1 ≤ a ≤ b ≤ n and we set
Cw = Ca:b = SEGMENTCOVER(V,Xa:b).

Proposition D.1. Cw is a valid vtree labelling with respect
to GA .

In addition to the fact that Cw is a valid labelling, by the
runtime analysis of the original segment tree querying al-
gorithm, we know that the number of nodes visited at each
level of V is at most 4 and it follows that |Cw| ≤ 4d; hence
the cardinality of Cw is bounded by 12d. Then following a
similar analysis, we have the following results for multiply-
ing two contiguous PCs.

Algorithm 4: Compute Cover for Segment Xa:b

procedure SEGMENTCOVER(v, Xa:b)
if Xa:b = ∅ then

return ∅
end if
if Xa:b = Xv then

return {Zv}
end if
l, r ← CHILDREN(v)
L← SEGMENTCOVER(l,Xl ∩Xa:b)
R← SEGMENTCOVER(r,Xr ∩Xa:b)
return L ∪R

end procedure

Theorem D.2. Let A and B be contiguous structured PCs.
Let d be the depth of the vtree for A , then A and B can be
multiplied in time O(|A |12d|B|).

Corollary D.3. If A is of depth O(log n) then A and B
can be multiplied in quasi-polynomial time.
Remark D.4. In this work, we assumed product nodes al-
ways have two children and binary vtrees. Hence the depths
of PCs are lower-bounded by Ω(log n) under such assump-
tions. However, if we allow product nodes to have arbitrarily
many children, we can have PCs of smaller or even constant
depths (Raz and Yehudayoff 2009) and we hypothesize that
Theorem 3.3 can be adapted to such generalized cases thus
giving a polynomial-time algorithm for multiplying contigu-
ous structured circuits of constant depths.
Remark D.5. Thus far, we have assumed that both A and
B are structured PCs. We claim that we can further gener-
alize our results by removing the constraint that B has to be
structured, and Theorems 4.3 and D.2 would still hold. We
illustrate the idea by showing how to multiply a contiguous
structured PC A respecting a linear vtree and an arbitrary
contiguous PC B. Since B is not structured decomposable,
we cannot restructure A to the vtree of B. However, we can
use the same idea as Algorithm 1 to restructure A “on-the-
fly” as we multiply it with B in a bottom-up way. Specifi-
cally, for each possible scope Xa:b that appears in B, we re-
cursively construct circuit representations for the functions
pq(Xa:b) · pA (Xa:b | Za= i, Zb=j) for i, j and q∈B with
scope Xa:b. The recurrence relation is similar to that of Al-
gorithm 1 and we refer readers to the Appendix for details.

As an explicit application of circuit multiplication, let us
consider constrained text generation (Zhang et al. 2024), in
which linear PCs (HMMs) are multiplied with deterministic
finite automata (DFAs) representing the logical constraint.
Our results imply that one can also multiply a HMM with
a contiguous logical circuit such as a sentential decision di-
agram (SDD) (Darwiche 2011), which have been shown to
be exponentially more expressive efficient (Bova 2016).

E Depth Reduction
We now prove Theorem 4.4.
Theorem 4.4. Any structured PC over n variables and with
hidden state size h can be restructured to a structured PC



of depth O(log n) and size O(nh3) that represents the same
distribution.

Proof. We begin by showing the following results regarding
Algorithm 3 for constructing a labelled vtree to which the
circuit is to be restructured:

Proposition E.1 (Depth Reduction Vtree). Given any vtree
V , Algorithm 3 returns a vtree W of depth O(log |V |) with
a valid labelling of cardinality 3.

Proof. The depth reduction to O(log |V |) is achieved as the
algorithm increases the depth by one in each recursive call,
but reduces the vtree size by a multiplicative factor. The va-
lidity condition holds due to the separation into connected
components (the labels can also be obtained from Algorithm
2). The value of M ′ follows by noting that Sl and Sr are ei-
ther empty or singleton sets, and that the algorithm produces
Cw = Sl∪Sr, Cl = Sl∪{Zv(w)}, and Cr = {Zv(w)}∪Sl

where Zv(w) for each inner node w ∈W .

By Proposition E.1, given a structured PC X over n vari-
ables with hidden state size h and respecting vtree V , we
can generate a vtree W of depth O(log n) and with labelling
cardinality M ′ = 3. Thus, by Theorem 3.3 we can construct
a PC representing the same function and respecting vtree W
of size O(nh3). The depth of the PC is then also O(log n) as
we have assumed alternating sum and product nodes, so the
depth of the circuit is at most double that of the vtree.

Since the size of the original circuit is O(nh2), using
the known cubic bound on the size of the depth-reduced
circuit (Raz and Yehudayoff 2008) gives O(n3h6), while
our bound is sub-quadratic. While this result is of inde-
pendent theoretical interest, the sub-quadratic complexity
of O(nh3) also opens up practical applications of depth-
reduction. Almost all PC inference and learning algorithms
involve forward/backward passes through the computation
graph, where computation is only parallelized across nodes
of the same depth such that O(depth of PC) sequential com-
putations are required. This is problematic when the number
of variables n is large, as is often the case in applications
such as computational biology (Dang et al. 2022). In such
cases, depth reduction can be a practical strategy where the
improved parallelism outweighs the increased circuit size.

F Related Work
Probabilistic circuits have emerged as a unifying represen-
tation of tractable probabilistic models (Choi, Vergari, and
Van den Broeck 2020; Sidheekh and Natarajan 2024), such
as sum-product networks (Poon and Domingos 2011), cut-
set networks (Rahman, Kothalkar, and Gogate 2014), and
probabilistic sentential decision diagrams (Kisa et al. 2014).
Significant effort has been devoted to learning PC structures
to fit data (Liang, Bekker, and Van den Broeck 2017; Dang,
Vergari, and Broeck 2020; Yang, Gala, and Peharz 2023),
but the implications for the structure-dependent queries have
been less studied. We bridge this gap by providing a gen-
eral restructuring algorithm with specific cases of (quasi-
)polynomial complexity.

As tractable representations of distributions, PCs have
been employed extensively as a compilation target for in-
ference in graphical models (Darwiche 2003; Chavira and
Darwiche 2008; Rooshenas and Lowd 2014). Hidden tree-
structured Bayesian networks have also been used as a start-
ing point for the learning of a probabilistic circuit (Dang,
Vergari, and Broeck 2020; Liu and Van den Broeck 2021;
Dang, Liu, and Van den Broeck 2022). A particularly use-
ful analysis technique for learning probabilistic circuits has
been to interpret them as latent variable models (Peharz et al.
2016). Decomposable and smooth PCs can be interpreted as
Bayesian networks by introducing a latent variable for each
sum node in the PC (Zhao, Melibari, and Poupart 2015).
Our conversion from structured PC to Bayesian network is
most closely related to the decompilation methods of Butz,
Oliveira, and Peharz (2020); Papantonis and Belle (2023),
but we do not assume the PC has been compiled from a
Bayesian network.

The seminal work of Valiant et al. (1983) showed that
any poly-size arithmetic circuit can be transformed into an
equivalent circuit of polylogarithmic depth. Raz and Yehu-
dayoff (2008) show that this procedure maintains syntac-
tic multilinearity (decomposability). Recently, Yin and Zhao
(2024) showed a quasipolynomial upper bound on convert-
ing decomposable and smooth PCs to tree-shaped PCs via
a depth-reduction procedure. Our application of restructur-
ing focuses on structured-decomposable circuits and shows
a tighter bound based on a graphical model interpretation.


