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Abstract

Advanced spatial transcriptomics (ST) techniques provide comprehensive insights
into complex organisms across multiple scales, while simultaneously posing chal-
lenges in biomedical image analysis. The spatial co-profiling of biological tissues
by gigapixel whole slide images (WSI) and gene expression arrays motivates
the development of innovative and e�cient algorithmic approaches. Using Gen-
erative Adversarial Nets (GAN), we introduce Infinite Spatial Transcriptomic
editing (IST-editing) and establish gene expression-guided editing in a gener-
ated gigapixel mouse pup. Trained with patch-wise high-plex gene expression
(input) and matched image data (output), IST-editing enables the seamless syn-
thesis of arbitrarily large bioimages at inference, e.g., with a 106496 ⇥ 53248
resolution. After feeding edited gene expression values to the trained model, we
simulate cell-, tissue- and animal-level morphological transitions in the generated
mouse pup. Lastly, we discuss and evaluate editing e↵ects on interpretable mor-
phological features. The code and generated WSIs are publicly accessible via
https://github.com/CTPLab/IST-editing.

1 Introduction

Recent advances in multi-omics technologies (e.g., spatial transcriptomics (ST) (Moses & Pachter,
2022)) and generative artificial intelligence (AI) have the potential to revolutionize biomedical image
analysis (Royer, 2023). Leveraging spatial co-profiling of high-plex mRNA transcripts (acting as prox-
ies for gene expression) and high-resolution biomedical images, researchers possess unprecedented
opportunities to model the complex spatial organization of an entire organism.

Concurrently, generative AI (Bermano et al., 2022; Croitoru et al., 2023) has showcased remarkable
progress in creating high-quality visual content, paving the way towards novel applications in the
biomedical domain. Trained with Hematoxylin and Eosin (H&E)-stained or (immuno)fluorescence
images, prior studies (Carrillo-Perez et al., 2023; Lamiable et al., 2023; Wu & Koelzer, 2023)
have achieved impressive results of bioimage generation and manipulation using GAN approaches.
Recently, researchers (Wu & Koelzer, 2024) further demonstrated the algorithmic editability on
ST data and simulated cellular morphological transitions by shifting gene expression distributions.
Notably, these studies were carried out at cell- or tissue-level and the generated bioimage resolution
is usually smaller than 256 ⇥ 256. Due to scalability limitations and violation of the translation
equivariance property, the generative competence of such algorithmic methods cannot be extended to
the entirety of a WSI without inducing visible stitching artifacts, which can be partially mitigated by
employing more hardware resources. A series of StyleGAN studies (Karras et al., 2020; 2021) first
showed the feasibility of training 1024 ⇥ 1024 images on 8 V100 GPUs. In a recent paper, a GAN-
based approach (Kang et al., 2023) has accomplished 4096 ⇥ 4096 image generation with remarkably
fine details. Critically, this achievement was made possible by training a scaled GAN model on
96-128 A100 GPUs. Despite impressive breakthroughs in generating megapixel-resolution images,
the hardware requirements for synthesizing WSIs at the gigapixel scale can be computationally
intractable, making the application of such a model prohibitively expensive in biomedical research.

To extend the model applicability to arbitrarily large images, Single GAN (SinGAN) (Shaham et al.,
2019) and Single Denoising Di↵usion Model (SinDDM) (Kulikov et al., 2023) were proposed to
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learn the internal statistics of a given training image. Their shared coarse-to-fine architectural design
enables the generation of image samples of any desired dimensions. Di↵ering from single-image
training, InfinityGAN (Lin et al., 2022) re-introduced large-scale training on patch-wise image
data using low computational resources. Tailored for high-resolution natural scene creation, strong
coordinate priors, such as vertical rapid saturation and horizontal repetitive patterns of sky, land, or
ocean, were imposed within the structure and texture synthesizer of InfinityGAN.

In bioimage generation, the utility of coordinate priors is nonetheless undesirable. This is because
the arrangement of biological structures is not dictated by a rigid coordinate system, but rather by
the intricate interplay between genetic, epigenetic, and gene expression variability that leads to the
phenotype of a living system (Hani↵a et al., 2021). Here, we propose Infinite Spatial Transcriptomic
editing (IST-editing) in a generated gigapixel mouse pup. To the best of our knowledge, we are the
first to introduce algorithmic gene expression editing at the scale of an entire organism:

• Taken gene expression data as the input, we achieve the seamless generation of 106496 ⇥
53248 WSIs of a whole mouse pup.
• By gene expression-guided editing, we simulate cell-, tissue- and animal-level morphological

transitions, measured with interpretable morphological features.
• Importantly, the model training and inference can be e�ciently executed on a single

consumer-grade GPU, e.g., GeForce RTX 3090 Ti.

2 The proposed IST-editing

To e�ciently process the paired transcript count array and biomedical image with matched gigapixel
resolutions, we develop IST-editing upon the StyleGAN (Karras et al., 2020; 2021) framework.
This is motivated by recent publications on GAN studies (Sauer et al., 2022; 2023; Kang et al.,
2023) in response to the remarkable advances made by di↵usion models. While being orders of
magnitude faster at inference time, these methods, built upon advanced GAN architectures such as
StyleGAN, exhibit superior generation and editing performance that remain competitive with their
di↵usion counterparts. Notably, IST-editing can be e↵ortlessly adapted to various spatial multi-omics
technologies that enable concurrent profiling of spatially resolved molecular and bioimage data.

2.1 ST data

Spatial gene expression as the input and representation: In the natural image domain, previous
generative models (Shaham et al., 2019; Kulikov et al., 2023) typically utilize (spatial) noise input for
unconditional image generation. In addition, learned textural representations (Radford et al., 2021)
can be incorporated into the model to guide the image alterations (Bermano et al., 2022). However,
semantic ambiguity often occurs in interpreting a single latent code and qualitative analysis is mostly
made possible for a subset of representations (Härkönen et al., 2020). Given the well-established
biological understanding of many individual genes, we utilize gene expression as both the input data

and interpretable representation for bioimage generation and editing.

Training data pair: As shown in Fig. 1 (left), we take the patch-wise spatial gene expression (input)
and biomedical image (output) as the training data pair. During the training, we randomly and densely
crop 2n ⇥ 2n gene expression arrays that are center-aligned on the paired n ⇥ n image. With a 2⇥
higher resolution than the associated image, these gene arrays will eventually allow the construction
of a spatial grid that imposes seamless WSI generation at inference. In the experiments, we employ
the paired 256 ⇥ 256 gene array and 128 ⇥ 128 image in the experiments.

2.2 Training

Coordinate- and padding-free generator G: Instead of relying on strong coordinate-based priors
including the vertical saturation and horizontal repetition of natural scenes, the design of our generator
is driven by the intricate interaction between genes (causative factors) and phenotypes (observable
characteristics). To model the directed linkage from gene expression to the biomedical image, we
propose a straightforward coordinate-free generator, which is constructed using a series of padding-
free StyledConv layers (Fig. 1). No external prior knowledge, aside from gene expression data, is
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incorporated into the output images. In all padding-free layers, we discard pixel values that are
padded at both spatial ends of the output. Consider i = 1, 2, . . . , l, we then have the intermediate
output with (2i+2 + 5) ⇥ (2i+2 + 5) spatial resolutions for the i-th layer. After discarding 5 boundary
pixels of the last layer output, we obtain the generated patch-wise image.

Cell-subtype conditioned discriminator D: Inspired by conditional generations of well-
characterized normal and cancer cellular images (Wu & Koelzer, 2024), we integrate cell subtype
information into the discriminator to adversarially and conditionally train the generator. Concretely,
we project cell label embeddings into D and train both models with the conditional adversarial loss
Ladc. Along with the R1 regulation LR1 and path length regulation loss Lpath (Karras et al., 2020), we
have the objective minG((maxDLadc)+↵R1LR1+↵pathLpath), where ↵R1 and ↵path are hyperparameters.
Then, we train the GAN model for 800k iterations with a batch size of 16. Eventually, the optimal
model performance is determined using Fréchet Inception Distance (dFID) (Heusel et al., 2017) and
high Peak Signal-to-Noise Ratio (PSNR). For the former, we use a more e�cient implementation (Wu
& Koelzer, 2022) and robust CLIP features (Radford et al., 2021; Kynkäänniemi et al., 2022).

2.3 Inference

Spatial gene expression grid: We employ a divide-and-conquer strategy at inference, breaking down
the WSI generation into parallelizable subtasks of patch-wise image generation. To guarantee the
boundary consistency of neighboring patches and as shown in Fig. 1 (middle), we use the spatial
gene expression grid (dotted lines) that is overlaid on the image grid (solid lines). This grid is formed
and merged with 2n ⇥ 2n gene expression arrays center-aligned on n ⇥ n images, in which the stride
size of array shift is n ⇥ n. Together with the padding-free layer design (Fig. 1 (right)), we generate
arbitrarily large WSIs given gene expression data as the input. Using a single GeForce RTX 3090 Ti,
it takes ⇠ 30 mins to synthesize 106496 ⇥ 53248 WSIs, which are accessible via README.md and
can be thoroughly examined by open-source software such as QuPath (Bankhead et al., 2017).

3 Experiments

We test IST-editing on the public Xenium (Janesick et al. (2022) and README.md) ST dataset of a
one-day mouse pup. This gigapixel-resolution dataset provides a well-curated sparse 3D array of
379-plex gene transcript counts (App. Fig. 4) and the spatially matched DAPI-stained WSI at the
identical resolution, o↵ering a comprehensive morpho-molecular landscape of the whole organism.

3.1 Evaluation of generation results

We benchmark IST-editing against state-of-the-art di↵usion- and GAN-based models such as Infinity-
GAN. Consistent with the IST-editing approach, we feed all the models with patch-wise spatial gene
expression data (input) and DAPI images (output) for systematic and fair comparisons. Following
the single-image training paradigm, we train SinGAN (Shaham et al., 2019) and SinDDM (Kulikov
et al., 2023) on individual tissue-level images (e.g., 4096 ⇥ 4096) and generate high-resolution
images for direct comparison with the IST-editing results. In contrast, StyleGAN2, InfinityGAN,
and IST-editing are trained on patch-wise data pairs extracted from the entire WSI. As shown in
Fig. 2 (a), SinGAN and SinDDM can recreate low-resolution images (small inset, left) including
texture similarities to the original tissue such as the alveolar pattern observed in samples from the
lung region. However, the image generation cannot be consistently scaled to a higher resolution: Only
basic and biologically meaningless tissue textures remain. StyleGAN2 preserved a pattern resembling
cell nuclei in generated high-resolution images. Nevertheless, the tissue structure corresponding to
the individual organ regions is lost, as is evident from the ‘StyleGAN2’ column of Fig. 2 (a). Owing
to undesired coordinate priors for bioimage generation, we observed horizontal lines and repetitive
patterns in images generated by InfinityGAN and clearly identifiable tissue structures are not present
in these image examples. After inputting the 379-plex gene expression data (e.g., see Fig. 2 (b) and
App. Fig. 4), our approach successfully generates tissue-level images at the scale of 4096 ⇥ 4096
resolution, with biologically meaningful details (Fig. 2 (a), right). The generated images show a high
level of similarity both in tissue organization, texture and cell-level detail to the biological prior, as
supported by expert pathologist interpretation. Quantitatively illustrated in Fig. 2 (c), IST-editing
outperforms compared methods in terms of low dFID and high PSNR score. Using the padding-free
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Figure 1: Conceptual illustrations of the proposed model.
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Figure 2: Experimental results of the WSI generation. a. The visual comparison of tissue-level (4096 ⇥ 4096)
synthesized images obtained by training with 100% of the available data using SinGAN (Shaham et al., 2019),
SinDDM (Kulikov et al., 2023), StyleGAN2 (Karras et al., 2020) and InfinityGAN (Lin et al., 2022) as compared
to IST-editing. b. The mean and standard deviation of transcript counts of the highly expressed genes (per cell)
w.r.t. individual tissue regions. c. The comparison of tissue-level generation results between the compared
methods by PSNR (left) and dFID (right). d. The comparison of PSNR and dFID scores obtained by training
IST-editing on progressively smaller subsets of available data (left) and at di↵erent numbers of iterations for
training with 3% of the available data (right). For these experiments, subsets of the available data are sampled
following the ‘checkerboard’ patterns, as illustrated underneath the ‘Training data proportion’ plot. e. The visual
illustration of 3% of available training data. f. The cell-, tissue- and animal-level visualization of ground-truth
(left) and generated (right) mouse pup WSI. To visualize the spatial pattern of leading gene expressions in the
right plot, we first downscale the resolution of gene expression array using sum reduction and then shift the gene
expression level to [0, 255].
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StyledConv operations and spatial gene expression grid, IST-editing achieved the WSI generation
with a 106496 ⇥ 53248 pixel resolution. Please see also App. Fig. 5 for more visualization.

Training data utility (100% - 3%): Next, we evaluate the generation robustness of the proposed
approach under conditions of increasing data scarcity. For this purpose, we utilize progressively
smaller subsets of the available data for training. As depicted in Fig. 2 (d, left), the optimal dFID
and PSNR scores remain consistent as the amount of available data decreases. Only when reducing
the training data to 1/36 of the original size (Fig. 2 (e)) do we start to observe a mild degradation
in quantitative performance by dFID. Upon comparing the cell-, tissue- and animal-level generation
quality achieved by training on the entire dataset (App. Fig. 5 (a, b)) and 3% (Fig. 2 (f, right)) of the
available data, the visual discrepancy between the two gigapixel-resolution WSIs appears marginal,
substantiating the adaptability of IST-editing to limited data scenarios. Please see App. C for the
failure case discussion and App. Fig. 9 and 10 for generalization results.

3.2 Evaluation of editing effects

(1) Direct scaling of gene expressions: Organized structures of diverse tissue regions emerge when
progressively scaling the expression levels of the top four genes by a factor of 0.5, 1 (baseline),
and 2 (Fig. 3 (b, left and middle)), while remaining gene expressions are zeroed out. Such targeted
editing is driven by the observable dominant impact on the morphological generation of the top
four leading expressed genes (Fig. 2 (b)). Interestingly, the editing e↵ects exhibited biologically
explainable heterogeneity across the di↵erent regions. In the colon section, we observe the emergence
of crypt epithelial structures orchestrated by the upscaling of leading genes including Epithelial Cell
Adhesion Molecule, EPCAM. As muscle-specific genes are not represented in the top colon gene sets,
the outer muscle layer remains absent in the reconstruction. In other examples, the clear structures
and organizations of the lung region have been recovered by our approach, closely resembling the
GT lung image, and image artifacts (e.g., white flu↵ on GT WSI scan) are e↵ectively eliminated
in the reconstruction. Calculated on the proportional ratio between edited and GT tissue regions
highlighted in the bounding boxes (Fig. 3 (d)), the radar charts in Fig. 3 (b, right) demonstrate a
consistent increase in cell-level metrics approaching the GT with the up-scaling coe�cients.

(2) Indirect scaling of gene expressions: Similar to the cell-level manipulation study (Wu & Koelzer,
2024), we perform algorithmic editing on the sample covariance matrix (SCM) and scale the leading
eigenvalues by 0.1, 0.5, and 1 (baseline). Consider the SCM 1

n
G

T
G = O�O

T, where G is the
collection of n 379-plex gene expression data from a given tissue region, Oi is the 379 ⇥ 379
eigenbasis and � is the (sorted) diagonal eigenvalues derived from eigenvalue decomposition. Then,
we control � for indirectly conducting gene expression-guided editing. As illustrated in Fig. 3 (c),
there exists a rather homogeneous transition of tissue structures across the various regions of interest.
On the contrary to the results described above using the leading genes, the muscle layer of the colon
tissue as well as global architectural features of lung and skin are already observed at the scale
of 0.1 when using all genes as an input. After examining the editing e↵ects with up-scaling of
the eigenvalues, we witness a further increase in DAPI pixel intensity and increased sharpening of
architectural details closely resembling the GT image. This is reflected by the quantitative analysis of
the interpretable morphological features Fig. 3 (c, right), where we observe an expected increase in
the cellular region and DAPI signals.

(3) Interpolation between unorganized and well-organized gene expressions: To simulate mor-
phological transitions at the scale of a whole ‘in-silico mouse pup’, we conduct linear interpolation
between randomly sampled and ground truth spatial gene expressions, generating WSI results at
coe�cients of 0 (noise), 0.5, and 1 (mouse pup). The resulting WSIs exhibit a gradual progression
from chaotic cellular organization - as reflected through the appearance of ‘random noise’ across the
entire sample - to the highly organized structure of the one-day mouse pup.

3.3 Discussion and Conclusion

Notably, IST-editing can be readily extended to other broadly established staining techniques to
visualize cellular detail, as exemplified by the first H&E generation results of the same mouse
pup (App. Fig. 8). In-silico modeling holds great potential for the Replacement, Reduction, and
Refinement of animal research and extends beyond animal modeling.
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Figure 3: Gene expression profiles and experimental results of IST-editing. a. The heatmap of highly
expressed genes (average per cell) w.r.t. di↵erent tissue regions of the whole mouse pup and selected organ
systems of interest. b. The visual (left) and quantitative (right) IST-editing e↵ects on individual tissue regions
obtained by scaling the leading gene expressions (middle) while zeroing out the rest of gene expressions. c.
The visual (left) and quantitative (right) IST-editing e↵ects on individual tissue regions obtained by scaling the
leading eigenvalues of the sample covariance matrix (SCM) (Wu & Koelzer, 2022; 2024). For both (b) and (c),
**** means p  0.0001 and ‘ns’ stands for not statistically significant. The error bar of the box plot represents
the 5%–95% quantile. The radar plots report the proportional ratio of morphological features between edited
(numerator) and GT cells (denominator). d. The overall editing e↵ects on the whole mouse pup achieved by
the interpolation between random noise and ground-truth gene expressions. For plots (b)-(d), all the editing
experiments are conducted using the model trained with 100% of the available data.
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A The overall gene expression profiles

Figure 4: The heatmap of 379-plex gene expressions (average per cell) w.r.t. di↵erent tissue regions.
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B The experimental results for the DAPI-stainedWSI
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(All)
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b Generated WSI  
(All)

Figure 5: The generation results of tissue region images (a) and WSI (b).
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Figure 6: The experimental results of diverse editing e↵ects. a. The visual (left) and quantitative (right)
editing e↵ects on various tissue regions by scaling the leading gene expressions (middle) while zeroing out
the rest of gene expressions. b. The visual (left) and quantitative (right) editing e↵ects by scaling the leading
eigenvalues of the sample covariance matrix (SCM) of individual tissue regions.
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C Evaluation of failure cases

Training data utility (0.1%): Pushing the limits further, we conduct extreme stress tests on the
proposed approach for reconstructing the whole mouse pup. This is carried out by training on a
single 2048÷2048 resolution image extracted from individual tissue regions such as kidney, lung, and
brain. Though the overall outline and structure of the mouse pup are retained, IST-editing struggles
to recreate the WSI with fine biological-aware details, as illustrated in App. Fig. 7. Remarkably,
heterogeneous generation patterns for di↵erent organs arise when training solely on one single image.
For instance, the training of the gut region image leads to the generation of blank space in the mouse
brain. This can be explained by the non-overlapping highly expressed genes between the gut (e.g.,
Cdh16, Ldhb, Epcam, Tfcp2l1) and brain (e.g., Stmn1, Gap43, Nnat, Tubb3) region, as presented
in Fig. 3 (a) and Fig. 4. When utilizing an ‘almost black’ image with a mere fragment of mouse
skin (Fig. 7), the overall structure of the mouse pup remains preserved, though the cellular and tissue
generation tends to exhibit a preference for mimicking skin epithelial morphology, suggesting a bias
towards replicating trained cellular subtypes.
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Figure 7: The failure cases of WSI generation brought by training on a single 2048 ⇥ 2048 image extracted

from individual tissue regions.
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D The first results for the H&E-stainedWSI

Generated WSI  
(All)

a

b
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Figure 8: The ground truth (a) and generated (b) H&E-stained WSIs.
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E The generalization results for coronal brain sections (Yao et al., 2023)

Groundtruth for training

Generation on trained data

Generation on unseen test data

Training Test

PSNR (mean) 27.64 27.53

PSNR (std) 9.94 9.64

d_FID (mean) 3.3 2.27

d_FID (std) 0.001 0.002

Quantitative metric

Figure 9: The ground truth (a) and generation result of the trained (b) and test (c) WSIs. Here, the training
brain section comes from the female mouse (ID: 609882, file: 1198980117) and the test section comes from
the male mouse (ID: 609889, file: 1198980478), where both ST datasets have been generated with the same
gene panel. By tile-wise quantitatively comparing the generated and ground truth WSIs, we report the mean
and standard deviation of PSNR and dFID for both training and unseen test data. Same as the results reported
in the main manuscript, we here use a more e�cient implementation (Wu & Koelzer, 2022) and robust CLIP
features (Radford et al., 2021; Kynkäänniemi et al., 2022) to carry out the dFID computation. To visualize the
spatial pattern of leading gene expression values in the middle and bottom plots, we first downscale the resolution
of the gene expression array using sum reduction and then shift the gene expression level to [0, 255].
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Groundtruth for training

Generation on trained data

Generation on unseen test data

Training Test

PSNR (mean) 27.37 21.77

PSNR (std) 9.76 5.63

d_FID (mean) 1.76 7.56

d_FID (std) 0.0002 0.005

Quantitative metric

Figure 10: The ground truth (a) and generation result of the trained (b) and test (c) WSIs. Here, the training
brain section comes from the male mouse (ID: 609889, file: 1198980478) and the test section comes from
the female mouse (ID: 609882, file: 1198980117). By tile-wise quantitatively comparing the generated and
ground truth WSIs, we report the mean and standard deviation of PSNR and dFID for both training and unseen
test data. Same as the results reported in the main manuscript, we here use a more e�cient implementation (Wu
& Koelzer, 2022) and robust CLIP features (Radford et al., 2021; Kynkäänniemi et al., 2022) to carry out the
dFID computation. To visualize the spatial pattern of leading gene expression values in the middle and bottom
plots, we first downscale the resolution of the gene expression array using sum reduction and then shift the gene
expression level to [0, 255].
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