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ABSTRACT

Learning a precise robotic grasping policy is crucial for embodied agents op-
erating in complex real-world manipulation tasks. Despite significant advance-
ments, most models still struggle with accurate spatial positioning of objects to be
grasped. We first show that this spatial generalization challenge stems primarily
from the extensive data requirements for adequate spatial understanding. How-
ever, collecting such data with real robots is prohibitively expensive, and relying
on simulation data often leads to visual generalization gaps upon deployment. To
overcome these challenges, we then focus on state-based policy generalization
and present ManiBox, a novel bounding-box-guided manipulation method built
on a simulation-based teacher-student framework. The teacher policy efficiently
generates scalable simulation data using bounding boxes, which are proven to
uniquely determine the objects’ spatial positions. The student policy then utilizes
these low-dimensional spatial states to enable zero-shot transfer to real robots.
Through comprehensive evaluations in simulated and real-world environments,
ManiBox demonstrates a marked improvement in spatial grasping generalization
and adaptability to diverse objects and backgrounds. Further, our empirical study
into scaling laws for policy performance indicates that spatial volume generaliza-
tion scales positively with data volume. For a certain level of spatial volume, the
success rate of grasping empirically follows Michaelis-Menten kinetics relative to
data volume, showing a saturation effect as data increases.1

1 INTRODUCTION

Robotic manipulation in dynamic environments is pivotal for advancing modern robotics (Fu et al.,
2024). Equipping robots with precise grasping capabilities in unstructured settings not only ex-
tends their utility beyond traditional static scenarios but also enhances their real-world effective-
ness, especially in industrial and domestic settings. A robot policy that achieves spatial general-
ization—defined as the ability of a manipulation model to complete tasks regardless of the target
object’s position within a defined spatial volume—would be particularly practical. Such generaliza-
tion is vital when deploying robots in diverse environments, such as different households, where they
must handle various objects on different platforms. The capability to perform successfully across
these varied spatial conditions is essential, as objects in real-world settings are rarely fixed in place,
and effective manipulation demands adaptability to a broad range of spatial challenges.

Recent works have made notable progress in robotic manipulation in multi-task and multi-
environment scenarios, which is largely driven by end-to-end training methodologies (Ahn et al.,
2022; Shridhar et al., 2022; 2023; Zitkovich et al., 2023). Notably, some large embodied foundation
models for manipulation, such as those fine-tuned from Vision-Language Models (VLMs) for multi-
task robot manipulation tasks (Brohan et al., 2022; Kim et al., 2024), have made significant strides.
However, these large manipulation models derived from VLMs often lack sufficient spatial aware-
ness and reasoning capabilities, posing substantial challenges for large-scale spatial generalization
in real-world applications (Cheng et al., 2024a). Our analysis in Lemma 1 suggests that achieving
spatial generalization over larger volumes requires substantially more data, a relationship we further
empirically verify to follow a positive scaling law (see Figure 4). For example, training a model to

1Our data and code are available in the supplementary material.
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Figure 1: Overview. We introduce ManiBox, a bbox-guided manipulation method using a teacher-
student framework to enhance spatial generalization in grasping policies. We reveal that spatial vol-
ume generalization scales positively with data volume, with grasping success following Michaelis-
Menten kinetics relative to data volume for specified spatial volumes. Extensive real-world tests
show ManiBox’s robust adaptability to varied spatial positions, objects, and backgrounds.

grasp at a fixed point may require only 50 to 600 trajectory datasets. However, when generalizing
the model to operate within a spatial volume of 34, 400cm3 (41cm×30cm×28cm), which approx-
imates the maximum reach of our robotic arm, the data requirement increases by roughly 40-fold,
demanding tens of thousands of trajectories

However, collecting such a large volume of data on real robots is prohibitively expensive. For in-
stance, RT-1 required 17 months to accumulate 130K episodes (Brohan et al., 2022), which is a
level of resource commitment unfeasible for most research labs. Although simulation data can help
bridge this gap, significant high-dimensional visual discrepancies between simulated and real envi-
ronments, known as the Sim2Real gap, pose additional challenges. While prior efforts have aimed
to enhance performance using various visual generalization techniques, each method comes with its
drawbacks. Some demand unobstructed third-person perspectives (Yuan et al., 2024), some consume
substantial computational resources (Shridhar et al., 2023; Ahn et al., 2022). These requirements can
impede real-time processing and practical deployment on resource-limited robotic platforms.

While perception models are essential for object and environmental recognition, the true effec-
tiveness of a robot in dynamic settings hinges on the robustness of its policy execution. A well-
generalized policy empowers the robot to autonomously adjust its actions in real-time, effectively
compensating for visual inaccuracies and adapting to changes in object positions or environmental
dynamics. Such adaptability is crucial for achieving task success and maintaining system stability,
especially in the face of imperfect or noisy perception data. To further enhance the robot’s ability to
manage unpredictable scenarios (e.g. Sec. B.2) and ensure reliable real-world performance, we shift
our focus to state-based policy generalization instead of relying solely on vision-based methods.
Our Lemma 2 demonstrates that bounding boxes, when captured from multiple cameras, effec-
tively encapsulate the 3D structure of convex objects, providing an optimal low-dimensional state
for policy generalization. Building on this foundation, we introduce a novel bounding-box-guided
methodology ManiBox to enhance spatial generalization and adaptability.

In the simulator, ManiBox utilizes reinforcement learning (RL) with privileged information to train
a sophisticated teacher policy. This policy generates scalable robot trajectory data, replacing tra-
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ditional visual inputs with bounding box coordinates to facilitate spatial generalization of grasping
policies. Subsequently, the student policy, trained on this simulation data, achieves robust zero-shot
transfer to real-world tasks, leveraging bounding boxes identified by advanced open-vocabulary
detection models, such as YOLO-World (Cheng et al., 2024b). Extensive experiments with both
simulators and real robots demonstrate a direct correlation between data volume and spatial general-
ization performance: more data consistently leads to higher grasping success rates, and generalizing
to larger spatial volumes requires even more data. For instance, to reliably grasp objects within a
1000cm3 workspace, tens of thousands of trajectories from various positions are required. Mani-
Box achieves nearly perfect success rates in real-world grasping tasks by leveraging large-scale
simulation data generated across diverse spatial volumes. Furthermore, ManiBox exhibits robust
generalization, successfully grasping objects in new scenarios, including unfamiliar object types,
complex surfaces, changing lighting conditions, and environments with distractions.

Our contributions include: (1) We introduce ManiBox, an innovative bounding-box-guided manip-
ulation method that addresses the limitations of visual generalization, offering a robust solution for
spatial generalization in grasping tasks; (2) ManiBox significantly enhances adaptability to diverse
spatial positions, object types, and backgrounds, as demonstrated by extensive experiments in both
simulated and real-world environments; (3) Through scalable simulation data generation, we pro-
vide novel insights into the relationship between data volume and spatial generalization, establishing
a framework for improving generalization across a variety of embodied systems.

2 RELATED WORK

Learning from Simulation. Simulators provide an efficient and scalable way to expand embodi-
ment datasets, offering a cost-effective means for parallel data collection and faster iteration cycles.
There are three main approaches for leveraging simulation in robotic control: 1) training reinforce-
ment learning (RL) agents through interaction within the simulator (Huang et al., 2023; Radosavovic
et al., 2024; Yuan et al., 2024), 2) using imitation learning based on expert demonstrations gener-
ated in simulation (Xie et al., 2020; Tan et al., 2024), and 3) employing a teacher-student framework,
where privileged information from simulation trains a teacher policy to guide a student policy (Lee
et al., 2020a; Geng et al., 2023; Zhuang et al., 2023), as demonstrated in the ManiBox framework.
These methods reduce the reliance on expensive real-world data collection.

Various techniques have been developed to bridge the Sim2Real gap, including realistic simula-
tors (Todorov et al., 2012; James et al., 2020; Makoviychuk et al., 2021), domain randomization (To-
bin et al., 2017; Peng et al., 2018; Zhuang et al., 2023), and vision-based policy generalization (Geng
et al., 2023; Tan et al., 2024; Ying et al., 2024; Yuan et al., 2024). These approaches enable robots
to generalize across diverse visual and physical conditions, which are critical in real-world environ-
ments. For example, domain randomization allows policies trained in varied simulated conditions
to transfer effectively to real-world scenarios (Tobin et al., 2017; Peng et al., 2018). While real-
world datasets such as Open X-Embodiment (Padalkar et al., 2023) provide 1M demonstrations,
they are much smaller than datasets in other domains like language and images (Lehmann et al.,
2015; Mühleisen & Bizer, 2012; Weyand et al., 2020; Wu et al., 2019). Thus, simulation-generated
datasets play a vital role in compensating for the limitations of real-world data collection.

Visual Generalization for Robotic Manipulation. Visual generalization is fundamental for
robotic manipulation in dynamic environments, where robots must handle varying visual inputs
and changing conditions, such as object positions and lighting variations. Vision-based policy gen-
eralization, which leverages both simulated and real-world data, addresses these challenges. By
simulating diverse visual scenarios, robots can better generalize to new environments and tasks. For
instance, multi-task and multi-object manipulation studies have extended behavior cloning to handle
a wide range of visual inputs, improving generalization to unseen objects and scenes (Vuong et al.,
2023; Fang et al., 2023). Additionally, language-conditioned policies (Brohan et al., 2022; Zitkovich
et al., 2023; Shridhar et al., 2023) and imitation learning from human videos (Chen et al., 2021; Nair
et al., 2023) enable robots to interpret and manipulate objects using both visual and language cues.

However, scaling real-world demonstrations to improve generalization remains challenging due to
resource constraints. Simulation-based learning mitigates this by offering large, diverse visual data.
Domain randomization techniques (Tobin et al., 2017; Peng et al., 2018) have proven effective in
generating varied visual conditions, enabling models to generalize more robustly across real-world
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Figure 2: ManiBox illustration. (a) Utilizing PPO and domain randomization, we train a sophis-
ticated teacher policy in the simulator that utilizes privileged object information to determine ac-
tions. (b) The teacher policy generates scalable trajectory data, utilizing bounding box coordinates
instead of traditional high-dimensional visual inputs or privileged information. (c) A state-based
student policy, generalizable and capable of zero-shot transfer, is trained on this extensive simula-
tion dataset, greatly improving spatial generalization. (d) Guided by bounding boxes, the student
policy precisely executes actions for real robots, achieving improved generalization capabilities.

tasks. While methods like bounding box annotations assist in specific tasks such as pose estima-
tion (Huang et al., 2023), understanding the relationship between dataset scale and generalization
remains an area that requires further exploration. As simulation data grows, more research is needed
to evaluate how data volume impacts policy generalization, particularly in dynamic environments.

3 METHODOLOGY

In this section, we first formulate the problem and then introduce our method ManiBox, including
the teacher policy training, simulation data generalization, and student policy distillation.

3.1 PROBLEM FORMULATION

For robotic manipulation, especially within dynamic environments, achieving spatial generalization
(i.e., the ability to effectively perform tasks across varied spatial configurations) is essential for us-
ability and overall efficacy. We formulate robotic manipulation as a partially observable Markov
decision process (POMDP) (Cassandra et al., 1994), by considering the robot’s limited access to
complete state information, the necessity to make decisions under uncertainty, as well as the in-
herently stochastic nature of its interactions with the environment. Formally, the decision-making
process is characterized by the tupleM = (S,A,O, T ,R, γ), where S represents the state space,
including all configurations of the robot and its environment;A denotes the action space, containing
all possible robot actions; O is the observation space, which reflects the limited state information
accessible to the robot; T defines the state transition dynamics, T (st+1|st,at); R is the reward
function, providing feedback based on the state-action pairR(st,at); and γ is the discount factor.

In real-world scenarios, the robot receives partial observations ot ∈ O through an observation func-
tion, which provides incomplete and potentially noisy information about the true state st. The obser-
vation can be represented as ot ∼ O(st). The robot’s objective is to find a policy π that maps obser-
vations (or histories of observations) to actions at ∼ π(at|τt), where τt = (o0,a0,o1,a1, . . . ,ot)
is the history up to time t. The policy is expected to maximize the expected cumulative reward:

J(π) = Eπ

[ ∞∑
t=0

γtR(st,at)

]
, (1)

where the expectation is over the trajectories induced by the policy π. However, solving POMDPs
for manipulation tasks is computationally expensive, as it requires maintaining a belief distribution
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over all possible states, including the precise position, orientation, and object dynamics. This com-
plexity is compounded by the need to handle occlusions, sensor noise, and dynamic changes in the
environment, making it challenging for robots to operate efficiently in real-world settings where the
state is constantly evolving and uncertain (Kaelbling et al., 1998; Kochenderfer, 2015).

To reduce this complexity and ensure Sim2Real transfer, we adopt a widely used teacher-student
framework (Lee et al., 2020a; Geng et al., 2023), building upon which, we develop ManiBox, a
novel bounding-box-guided manipulation method that offers significant advantages in spatial gener-
alization over vision-based RL methods. First, ManiBox enables efficient, scalable data generation,
as the teacher policy in simulation can produce a large and diverse set of trajectories. Additionally,
by using low-dimensional bounding box states, the state-based student policy can accelerate learning
and effectively transfer from simulation to the real world.

However, this framework also faces notable challenges. The teacher policy must efficiently explore
a high-dimensional state space in simulation, which can be computationally intensive. The student
policy must derive optimal actions from incomplete observations and adjust to real-world variations
such as sensor noise and dynamic environmental conditions not present in simulations. Detailed
strategies for overcoming these challenges are discussed in the following sections.

3.2 TEACHER POLICY TRAINING

To automatically and efficiently generate a large amounts of diverse data, we first train an expert
teacher policy πβ : S → A using RL, as the expert data generator. The teacher policy πβ(at|st)
is trained in a simulated environment where it has access to full state information st, including
privileged information such as precise object positions. The teacher policy is optimized using rein-
forcement learning (RL) to maximize the expected reward:

Jβ = Eπβ

[ ∞∑
t=0

γtR(st,at)

]
, (2)

where the reward function is defined to guide the policy in grasping the object and moving it to
a specified location. We select the grasping task to validate our approach’s core concept. This
allows the teacher to generate a diverse set of optimal trajectories across a wide range of spatial
configurations. These trajectories serve as training data for the student policy, guiding it to learn
effective manipulation policies.

The advantages of state-based teacher policies lie in their lower-dimensional states, enabling more
efficient learning, reduced exploration space through privileged information, and support for larger
parallel environments. To leverage these benefits, in addition to optimizing the policy using the
Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm, we make adjustments to
the RL environment to reduce the exploration space and make it easier for the policy πβ to find the
point with the highest return. Moreover, to support follow-up Sim2Real and spatial generalization,
we carefully design the environment below (More details are in Appendix E.1):

Environment Setup. To ensure efficient data generation and policy training, we utilize Isaac
Lab (Mittal et al., 2023), which supports large-scale parallelism environments. The scene includes
basic elements like a platform, objects, and a robot, arranged simply to facilitate future domain ran-
domization. The robot’s goal is to grasp the object on the table and move it to a designated location.
We integrate the dual-arm Mobile ALOHA (Fu et al., 2024) robot, equipped with three first-person
view RGB cameras, into the simulator and ensure its dynamics are consistent with the real world.

State. For training efficiency, our teacher policy is state-based and can access full state information
st. As the robot lacks visual input, we include privileged information like the object’s position in
the state information. The privileged information accelerates RL training and enables the agent to
learn more efficient and generalized policies.

Domain Randomization. To improve the generalization of the teacher policy and enhance the
spatial diversity of the generated data, we adopt several domain randomization techniques:

• objective position (x, y, z): To generalize the grasping policy to the whole space, we ap-
ply the domain randomization for all three dimensions of x, y, and z, ensuring that the
x-coordinate and y-coordinate of the object, which is chosen randomly, can cover a large
range. Moreover, the height of the platform is randomized to ensure that the z-coordinate
of the object in the data can cover the feasible working space of the robotic arm.

5
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• object size: To ensure that the grasping policy covers objects of various sizes, the size of
the object is also randomized.

These two domain randomization techniques allow teacher policy can grasp different objects of
different positions and sizes, which is significant for real-world generalization. By combining priv-
ileged information and domain randomization, the teacher policy can efficiently generate a large
amount of diverse data to achieve spatial generalization.

3.3 SIMULATION DATA GENERATION

We utilize the teacher policy to automatically generate data for training a student policy that can be
deployed in the real world across different objects, grasping spatial positions, and backgrounds.

Data Volume Estimation. To guide the data volume needed for policy generalization to a specific
spatial volume, we now analyze the sample efficiency for generalizing in a b× b× b cube. Based on
the classical learning theory, the sample complexity of uniform convergence property is in proportion
to the VC dimension of the model hypothesis set (Shalev-Shwartz & Ben-David, 2014). Extending
previous results about generalization bounds for multi-task learning (Crammer & Mansour, 2012),
we can have the following results:

Lemma 1 (Details are in Appendix A.1). For training a grasp agent that can generalize spatially
within a cube whose size is b×b×b via imitation learning, under some mild assumptions in Crammer
& Mansour (2012), the VC dimension is at most proportional to d log

(
Cb3d

)
, where d is the VC

dimension of the hypothesis set for grasping the fixed point and C is a constant independent of d, b.

This lemma demonstrates that the data required for policy generalization to a certain volume grows,
thus it is necessary to collect data from the simulator. This result gives us a rough estimation of how
much data we need to collect with the increasing of the spatial cube needs to generalize.

In light of this Lemma 1, we need a large scale of trajectories to train a student policy feasible
under full spatial range. This calls for conciseness in data generation and collection, otherwise it
will place a heavy burden on student policy training. On the other hand, since the teacher policy
trained with privileged information (i.e. object positions) cannot directly transfer from simulation
to reality (Sim2Real), the student policy needs visual observations that implicitly encode object
position information. However, there remains a significant Sim2Real gap between visual images in
the simulator and those in the real world because the vast complexity of real-world environments
cannot be fully simulated by the simulator (e.g. various backgrounds and objects). Additionally,
vision-based policy is difficult to train on a large scale and requires data augmentation.

To address this Sim2Real gap and enable robust spatial generalization, we propose using an individ-
ual vision module to extract the bounding box from camera views as a consistent, low-dimensional,
and complete representation of the object’s spatial properties, such as position and size.

Using Bounding Boxes to Provide Complete 3D Information about the Object. To efficiently
generate a large amount of simulator data that aligns with real-world visual images, the vision mod-
ule must be robust, mature, and efficient. Considering open-vocabulary detection, we selected
YOLO-World (Cheng et al., 2024b) as the frozen 2D visual feature extraction module. This pro-
vides us with the bounding box of the objects as the 2D low-dimensional visual feature, which is
consistent and low-dimensional. Notably, the inference time of YOLO-World for a single image is
around 30ms , ensuring the data generalization efficiency and real-time inference in the real world.

In addition, to ensure that these multi-view 2D low-dimensional visual features can offer complete
information about object position and size, we present a lemma: Suppose the object is a sphere, the
3D information of the object can be uniquely determined by the bounding boxes from two cameras:

Lemma 2 (Details and proofs are in Appendix A.2). Given: (1) Two pinhole cameras with known
intrinsic parameters Ki and extrinsic parameters (Ri, ti); (2) A sphere of unknown radius r is fully
visible in both camera images without occlusion; (3) Normalized image coordinates of the bounding
boxes of the sphere in both images: Camera i: (u1min, vimin, uimax, vimax), the image dimensions are
known (width Wi and height Hi for each camera).

Then the 3D coordinates of the sphere’s center C in the world coordinate system and the radius r
of the sphere can be uniquely determined using the known camera parameters, and the normalized
bounding box coordinates, provided that the cameras are not in degenerate configurations.
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This lemma illustrates that 3D position information of a sphere can be implied by utilizing multi-
view bounding boxes (Hartley & Zisserman, 2003), indicating our ManiBox can capture complete
spatial position information of target objects for real-world control policies.

In short, our approach of using an individual vision module simplifies the transition from simula-
tion to the real world by providing the student policy with consistent inputs across both domains.
Specifically, the student policy receives both proprioceptive data orob

t and bounding box data ovis
t as

inputs:
πθ : O = Orob ×Ovis → A. (3)

3.4 STUDENT POLICY DISTILLATION

While the teacher policy and data generation are completed in the simulator, the student policy is
deployed on a real robot and relies only on partial observations in the real world. The student policy
needs to ensure high generalizability in real-world environments. Consequently, real-world varia-
tions, such as sensor noise and dynamic environments, pose challenges not encountered in the simu-
lation environment to our student policy. For instance, an open-vocabulary detection model(namely
YOLO-World (Cheng et al., 2024b) in our practice) can fail to recognize real-world target objects
at times because of background distraction or robot gripper occlusion, while the recognition of the
simulated target object rarely fails.

In this context, we introduce the random mask to bridge this sim-to-real gap and further improve
the robustness of our policy. In detail, when distilling our student policy from the simulation data
D, for each trajectory, we randomly mask some bboxes(i.e., set them to 0) with a probability pre-
defined as random mask ratio, indicating that this camera does not recognize the target object.
This approach replicates the real-world scenarios where the open-vocabulary detection model fails
to generate the bounding box.

On top of this expected unpredictable failure and partial observability, our policy requires encoding
sufficient history information (Hafner et al., 2019; Lee et al., 2020b; Ying et al., 2023). For this
reason, we use RNN for our student policy:

xt,ht = LSTM(s′t,ht−1),

at = FC2(drop(gelu(FC1(xt)))),
(4)

where s′t and ht denotes the input state and the hidden state of the LSTM at time t, xt is the
intermediate output of the LSTM, and at is the action vector output by the policy. Furthermore,
LSTM(·), gelu(·),drop(·),FC·(·) represent the Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997), Gaussian Error Linear Unit (GELU) activation (Hendrycks & Gimpel, 2016),
dropout (Srivastava et al., 2014), and Fully Connected layer (FC) respectively.

This combination of random mask and trajectory modeling significantly contributes to the robust-
ness and generalization of our student policy in deployment, conquering the challenge of partial
observations and unseen real-world variations. (More Sim2Real techniques in Appendix E.4)

4 EXPERIMENTS

In this section, we conduct extensive experiments in both the simulator and the real world, covering
various random backgrounds, objects, and positions to answer the following questions: (1) What
is the scaling relationship between spatial generalization and data amounts in the grasping task?
(Sec. 4.2) and (2) What about the efficacy of our method, especially its generalization ability to
different backgrounds, objects, and object spatial positions in real-world applications? (Sec. 4.3)

4.1 EXPERIMENTAL SETUP

Tasks. To validate the generalization of Manibox, we test our approach under the grasping task. In
the simulator, the articulated arm and end effector are required to pick up a green apple randomly
placed on a table in a 41cm ∗ 30cm ∗ 28cm (length*width*height) spatial scale, which is referred to
as ”Full Space.” Also, real-world counterparts are established with alternative objects, backgrounds,
and settings to further demonstrate the generalization ability. In both scenarios, three RGB images
taken by wrist cameras and the exterior camera are taken as observations.
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Figure 3: The scaling relationship between spatial generalization and data volume in the grasping
task, measured under different spatial ranges. Data volume represents the number of trajectories
used to train the student policy. The estimated 80% success point is marked, with blue points
showing the average success rate across three seeds and error bars indicating standard deviation.

Real Robot. Mobile ALOHA (Fu et al., 2024) is a cost-effective and highly stable robot designed
for both data collection and manipulation tasks. It owns four arms: two for teleoperation during data
collection and two subordinate arms that perform manipulation tasks. Each subordinate arm is fitted
with an RGB camera on its wrist, complemented by another RGB camera centrally mounted on the
robot’s body. Mobile ALOHA has demonstrated strong generalization capabilities across a diverse
range of complex grasping tasks, making it an ideal choice for implementing our student policy.

4.2 SPATIAL SCALING LAW WITH DATA

To guide us in determining the data volume required for a certain level of spatial generalization,
we investigate the relationship between policy performance and data volume. We conduct extensive
experiments in the simulator to evaluate the success rate of policies trained on different data volumes.
We select five distinct spatial ranges to explore this scaling behavior, including one fixed range and
four dynamic ranges of 5, 10, 20 units, and full space. For each spatial range, we select more than 8
data volumes to train the student policy and evaluate its grasping success rate at random positions.
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Figure 4: The relationship between spatial volume and data
amounts needed to reach 80% grasping success rate. The
fitted curve represents a power function y = 640.32 · x0.35.

The results shown in Fig. 3 demon-
strate that a scaling law holds in this
context: For each spatial range, the
pattern is as follows: when the data
volume is zero, the policy inevitably
fails. As the data volume increases,
the success rate of the grasping policy
improves, but the growth slows down.
Eventually, the success rate surpasses
80% and tends to 100%.

Furthermore, we identify the data
volume required to achieve an 80%
success rate for each spatial range (as
shown in Fig. 3) and find that the volume of the spatial range and the required data follow a power
rate relationship (as shown in Fig. 4). The positive correlation between data volume and spatial
volume provides guidance for data-driven spatial generalization: The more data we have, the higher
the robot’s manipulation success rate. As the spatial range increases, more data is required, and
the data volume needed grows with the space volume as a power rate relationship. In fact, for the
same task, achieving high generalization success over a 41cm ∗ 30cm ∗ 28cm = 34440cm3 range
may require at least 20,000 trajectory data from different spatial positions. Such large-scale data
collection would be expensive in the real world, making simulator-generated data a more affordable
and efficient option. This further emphasizes the significance of simulation data.
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Figure 5: Demonstration of the generalization of our methods across different backgrounds, objects,
and positions. The h1, h2, h3, h4 are randomly selected object heights in the real world, which
are approximately 57cm, 65cm, 72cm, and 65cm. LB, LF, RF, RB, and C are abbreviations for
Left-Back, Left-Front, Right-Front, Right-Back, and Center area respectively.

To further demonstrate the importance of other variables (e.g. time) in spatial intelligence and the
robustness of policy generalization to visual uncertainty, we have further discussion on the spatial
intelligence of our policy through detailed ablation experiments. Details are provided in Appendix B.

4.3 REAL-WORLD RESULTS

To validate the generalization ability of our method and policy in the real world, we compare the
success rate of our policy with the vision-based ACT. In practice, we deploy models trained on sim-
ulation data onto a real robot and test their performance on grasping tasks across multiple arbitrarily
chosen positions, eight objects(with some of them out-of-distribution), five backgrounds, and three
complex settings as illustrated in Figure 5. More tasks, pictures, and videos of the experiment are
available in the Appendix C and supplementary materials. More experiment details of these tests are
in the Appendix D.3.

Spatial generalization. To justify the efficacy of our method, we assess the generalization capa-
bility of our student policy across four spatial ranges and a fixed point. For each experiment, we
randomly place an apple, different from its counterpart in the simulator in both shape and mate-
rial, on the table at arbitrarily chosen heights within the given range(as illustrated in the first three
rows of Fig. 5). Alongside the difference in form and appearance, the apple presents considerable
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unpredictability to the visual detection model due to factors including background, lighting, target
object, etc. Consequently, the bounding box varies in size or even disappears at times, emphasizing
the need for robustness in the policy. As shown in Tab. 1, our policy generalizes well to objects
falling in different spatial volumes, achieving a success rate between 70% and 100%. In contrast,
vision-based ACT, which trains the student policy with the vision input ACT (Zhao et al., 2023) on
video-action simulation data, experiences a visible drop on success rate when spatial range scales
up, despite its considerable success rate of 70% on a fixed point. The wanting performance of the
baseline further demonstrates the significance and necessity of exploring spatial generalization. The
results demonstrate that our method harbors strong generalization when addressing uncertainties
arising from real-world objects, variations in spatial positions, and visual detection interferences.

Table 1: The real-world success rate of our method and vision-based
ACT under varied spatial volumes. We select an approximate data
amount based on the results in Fig. 3.

SPATIAL RANGE METHODS SUCCESS RATE

Fix Point Vision-Based ACT 70%
ManiBox (Ours) 100%

5cm*5cm*5cm Vision-Based ACT 0%
ManiBox (Ours) 70%

10cm*10cm*10cm Vision-Based ACT 0%
ManiBox (Ours) 100%

20cm*20cm*20cm Vision-Based ACT -
ManiBox (Ours) 80%

Full Space
(41cm*30cm*28cm)

Vision-Based ACT -
Vision-Based ACT (100 real-world data) 0%
ManiBox (Ours) 90%

Object generalization.
In addition, to justify
the object generalization
ability of our method, we
test our model across eight
objects including original
apple, unseen apple,
yellow pear, orange, steel
cup, tin can, glass beaker,
and plastic bottle at arbi-
trarily selected positions.
For each unseen object,
feeding the corresponding
name as a supplement into
the open-vocabulary visual detection model is enough for the policy to grasp the target object.
Tab. 4 shows detailed object size information for training and inference. It is worth noting that
five of the selected objects are out-of-distribution in size (their bounding box sizes are unseen
in the simulation data) in an attempt to further illustrate the object generalization ability of our
method. This certain level of generalization observed, even when there is significant variation in
the bounding box, aligns with our Lemma 2, which proves that the 3D position information of the
object is complete in the dataset.

Background Generalization. Utilizing the open-vocab detection ability of YOLO-World, Mani-
Box can handle various backgrounds and vision disruptions without intentionally varied visual do-
main randomization. To verify this ability, we experiment with tables of three different shapes and
tablecloths in two colors under the minimal setting of a table, an object, and a robot. In addition,
we alter the lighting conditions by employing a single stationary point light source and a single
flickering point light, as well as playing videos in the background as distractions. Furthermore, we
construct two more complex scenarios, one representing a multi-object environment and the other
replicating a typical daily workplace desktop. The results demonstrate the strong background gener-
alization ability of our policy. Even though the visual detection model occasionally makes mistakes,
the generalization of our policy compensates for those errors. This can be attributed to our policy’s
endeavor to integrate historical information and random masking to increase the visual model’s tol-
erance for errors. Arguments for them can be found in Appendix B.

5 CONCLUSION

In this work, we present ManiBox, a novel bbox-guided manipulation method, using a simulation-
based teacher-student framework to enhance the spatial generalization of grasping policies. To ad-
dress the challenge of the generalization gap in vision-based models from simulation to real-world
deployment, we propose a generalizable, state-based student policy that is innovatively equipped
with bbox positions. This policy is trained on scalable simulation data generated by the teacher
policy. Extensive experiments in both simulated and real-world environments demonstrate that
ManiBox significantly outperforms existing methods in adapting to diverse spatial positions, ob-
ject configurations, and background variations. Moreover, our theoretical and empirical analyses
reveal that the generalization of spatial volume scales positively with the data volume, and the suc-
cess rate follows Michaelis-Menten kinetics for specified spatial volumes. These findings pave the
way for the development of robust spatial generalization across a wide range of embodied systems.
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A PROOFS

A.1 DETAILS AND PROOF OF THE LEMMA 1

We follow the setting in Crammer & Mansour (2012). First, assume the hypothesis set of policies to
grasp a fixed single point isH and its VC dimension is d. When considering T tasks each represented
by a different grasping position, we take the k-shared task classifier (Hk, g) (Crammer & Mansour,
2012). HereHk = {h1, ..., hk} ⊆ H is a subset ofH and g maps each task t ∈ T to some hi ∈ Hk.
Thus the k-shared task classifier hypothesis is defined as FH,k = {fHk,g : |Hk| = k,Hk ⊆ H, g :
T → K}, here fHk,g(·, t) = hg(t)(·). Then Crammer & Mansour (2012) has shown that the VC
dimension of FH,k is at most O(T log k + kd log(Tkd)).

As we considerH as the set of neural networks, previous works have shown that the VC dimension
of multi-layer neural networks is around the parameters of the neural networks (Maass, 1994; Sontag
et al., 1998). Thus d≫ T in our setting and O(T log k + kd log(Tkd)) ≈ O(kd log(Tkd)).
Finally, we consider the task number T . Assume that grasping two points of which the distance
below ϵ is similar, we need around b3/ 4

3πϵ
3 points for covering the grasping cube with size b×b×b.

Thus the VC dimension is at most

O(kd log(Tkd)) = O(kd log( b3

4
3πϵ

3
kd)) = O(kd log(3b

3kd

4πϵ3
)). (5)

A.2 PROOF OF THE LEMMA 2

Proof. Firstly, we convert normalized coordinates to pixel coordinates:

uimin(pixel) = uimin ×Wi

vimin(pixel) = vimin ×Hi

uimax(pixel) = uimax ×Wi

vimax(pixel) = vimax ×Hi

Then, we compute the center of the bounding box in pixel coordinates:

uicenter =
uimin(pixel) + uimax(pixel)

2

vicenter =
vimin(pixel) + vimax(pixel)

2

These points represent the projections of the sphere’s center onto the image planes.

Secondly, for each camera, we back-project the center point into a 3D viewing ray in camera coor-
dinates:

di = K−1
i

[
uicenter
vicenter

1

]
This gives the direction vector di in the camera coordinate system.

Therefore, we can express the sphere center in camera coordinates since the sphere’s center lies
somewhere along the viewing ray:

Ci,cam = λidi

where λi > 0 is an unknown scalar representing the distance along the ray from the camera center
to the sphere’s center.

Thirdly, we transform the sphere center from camera coordinates to world coordinates:

C = R⊤
i Ci,cam + ti = R⊤

i (λidi) + ti

This must hold true for both cameras:

C = R⊤
1 (λ1d1) + t1 = R⊤

2 (λ2d2) + t2

14
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By equating the expressions for C we get:

R⊤
1 (λ1d1) + t1 = R⊤

2 (λ2d2) + t2

By rewriting we have:
R⊤

1 d1λ1 −R⊤
2 d2λ2 = t2 − t1

Let’s denote:

a1 = R⊤
1 d1

a2 = R⊤
2 d2

b = t2 − t1

So the equation becomes:
a1λ1 − a2λ2 = b

Note that this is a system of three linear equations with two unknowns λ1 and λ2:
a1xλ1 − a2xλ2 = bx
a1yλ1 − a2yλ2 = by
a1zλ1 − a2zλ2 = bz

Since we have more equations than unknowns (overdetermined system), we can solve for λ1 and λ2

using least squares estimation.

Note that this can be written in matrix form:[
a1x −a2x
a1y −a2y
a1z −a2z

] [
λ1

λ2

]
=

[
bx
by
bz

]
Let A be the 3× 2 matrix of coefficients, λ the vector of unknowns, and b the vector of constants:

A =

[
a1x −a2x
a1y −a2y
a1z −a2z

]
, λ =

[
λ1

λ2

]
, b =

[
bx
by
bz

]
We can compute the least squares solution:

λ = (A⊤A)−1A⊤b

Once λ1 and λ2 are found, C can be calculated using either camera’s equation:

C = R⊤
1 (λ1d1) + t1

Alternatively, we compute both and average them for robustness:

C =
1

2

(
R⊤

1 (λ1d1) + t1 +R⊤
2 (λ2d2) + t2

)
Finally, since λi and λ2 are found, we can compute the distance Zi from the camera along the
viewing direction di:

Ci,cam = λidi = Zi · d̂i

where d̂i is normalized by:

d̂i =
di

∥di∥
The projected radius of the sphere si (in pixels) is half the size of the bounding box width or height
(assuming the sphere projects to a circle):

si =
wi + hi

4

where

wi = uimax(pixel) − uimin(pixel)

hi = vimax(pixel) − vimin(pixel)

15
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Consider similar triangles in the imaging geometry:
si
fi

=
r

Zi

We can compute the radius of the sphere:

r =
si · Zi

fi

Additionally, the solution is unique provided that:

• The Cameras Are Not Aligned: The direction vectors a1 and a2 are not colinear.

• Non-Degenerate Configuration: The cameras have different positions or orientations,
ensuring the lines of sight intersect at a single point.

Under these conditions, the least squares solution yields a unique λ, and thus unique C and r.

B ABLATION STUDY

To demonstrate the essential role of 3D spatial and 1D temporal information for spatial intelligence,
we perform an additional experiment focusing on temporal variability, in addition to the spatial
generalization tests in Sec. 4. This experiment includes an ablation study comparing models trained
on a few selected key timesteps with those trained on all timesteps in a full trajectory. To further
illustrate the robust inference capabilities achieved by the enhanced policy generalization, we test
the policy’s ability to handle significant uncertainty in the output of the visual model. During infer-
ence, we apply random masks and noise to the visual model’s bounding box outputs, allowing us to
evaluate the policy’s generalization ability under such conditions.

B.1 TRAINING WITH ONLY KEY STEPS.

To assess the impact of temporal information on policy effectiveness, we conduct an experiment
where the model is trained using only key steps from the trajectory. The specific key steps selected
were [0, 18, 20, 22, 70], chosen to represent pivotal moments in the trajectory for the grasping task:
0 corresponds to the initial state before the gripper starts approaching the apple, 70 represents the
final state when the robotic arm retracts, and steps 18 to 22 denote intermediate states where the
gripper makes contact with the apple and closes around it.

Table 2: Success Rates for Training with Only Key Steps

Experiment Real Robot Success Rate Simulation Success Rate

Training with Full Trajectory 90% 81.25%
Training with Key Steps 0% 4.17%

The results in Tab. 2 indicate a stark difference in performance between training with the full tra-
jectory and training with only key steps. Training with the full trajectory resulted in a success rate
of 90% on the real robot and 81.25% in simulation. In contrast, training with only key steps leads
to complete failure on the real robot (0% success rate) and a significantly reduced success rate of
4.17% in simulation. This outcome highlights that relying solely on key steps fails to provide the
temporal continuity necessary for effective spatial generalization. The policy’s inability to capture
sufficient context from isolated states results in poor action generation and overall task failure.

B.2 ROBUSTNESS AGAINST DETECTION FAILURE DURING INFERENCE.

During the inference phase, visual models such as YOLO-World may not always successfully iden-
tify objects, leading to significant uncertainty in visual input.
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Figure 6: A case of detection failure. The task is to catch apples to a specified location in a normal
environment.

Figure 7: A case of detection failure. The task is to catch apples to a specified location in a flittering
light environment.

Our policy still works well in situations where the visual model fails to detect. For example,
visual models may fail to detect target objects when the robotic arm approaches the target, under
dim lighting conditions, or when there is partial occlusion of the target by the background (see
Figures 6 and 7). Especially, when using flickering and swaying point light sources in dimly lit
environments, the detection by visual models is particularly unstable. Such failures may occur at
any timestep during manipulation and may persist for several timesteps. Moreover, these failures
are unstable and unpredictable. For the same object placement, the occurrence of detection failures
during manipulation does not consistently happen or not happen at the same timestep.

Despite all those failures and instabilities in detecting bounding boxes, our model can still success-
fully and accurately accomplish the manipulation tasks.

To test our policy’s robustness against this visual uncertainty, we introduce masks that randomly
obscured bounding box input at varying ratios (0.0 to 1.0) during inference.

0.0 0.2 0.4 0.6 0.8 1.0
Random Mask Ratio
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Figure 8: The relationship between random mask ratio and success rate. The fitted curve represents
a Gaussian function of y = 92.23 exp

(
− (x−0.09)2

2·0.412

)
.

As shown in Fig. 8, the results reveal that the policy maintains a high success rate and generalization
capability when the mask ratio is below 0.4. As the mask ratio exceeds 0.4, the success rate signifi-
cantly declines, leading to consistent policy failures. Coincidentally, the random mask ratio we add
in the student policy training phase is 0.3. This trend reveals that our approach focusing on policy
generalizability can resist visual uncertainty up to 40% of the masking ratio. That is, even if 40%
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of the visual information is lost, the policy still has good spatial generalizability. We fitted the data
points with a Gaussian curve to represent this trend, defined by the equation:

y(x) = a · e−
(x−b)2

2c2 (6)

where a, b, and c are parameters that define the height, center, and width of the curve, respectively.
This curve demonstrates that the policy is resilient up to moderate levels of visual masking (mask
ratios up to 0.3), but performance degrades significantly as the masking ratio increases beyond 0.4.

This experiment validates that our policy can withstand moderate visual uncertainties during infer-
ence, maintaining robust performance. This shows that our focus on policy generalization can easily
cope with situations where the visual model has large uncertainty, leading to more robust manipula-
tion. However, the steep decline in success rate for higher mask ratios highlights the importance of
reliable visual input for effective spatial reasoning and task execution.

As to whether the random mask in the training phase gives some increase in the success rate of our
policy, please refer to Sec. B.3.

B.3 RANDOM MASK DURING STUDENT POLICY TRAINING AFFECTS PERFORMANCE.

The uncertainty of visual detection in the real world is mentioned in the previous subsection, in order
to demonstrate that random masking during training does favor the performance of the student pol-
icy, Specifically, we compare the success rates of policies trained with and without a random mask
ratio of 0.3 across five different spatial ranges. During training, we randomly mask out 0 to 30% of
the bounding box information in each trajectory. This encourages the policy to adapt to scenarios
where bounding box detection is incomplete or inaccurate. Table 3 demonstrated that in all range
of spaces, the policy trained with random masks shows outstanding performance compared with
one without masks. In addition, the policy shows better robustness in larger spatial ranges, where
the variability and uncertainty of detection are more pronounced, highlighting the effectiveness of
random masking in improving spatial adaptability and generalization.

Table 3: Comparison of Success Rates With and Without Random Mask

Spatial Range Random Mask Ratio = 0.3 Without Random Mask

Fix Point 100.0% 100.0%
5 cm× 5 cm× 5 cm 83.33% 79.17%
10 cm× 10 cm× 10 cm 97.92% 64.58%
20 cm× 20 cm× 20 cm 87.5% 70.83%
Full Space (41 cm× 30 cm× 28 cm) 87.5% 68.75%

B.4 RANDOM NOISE IN BOUNDING BOXES DURING INFERENCE.

To further examine the policy’s robustness against visual uncertainty, we introduce random noise
to the bounding boxes during inference. We tested noise ratios at increments of 0.01, 0.02, 0.05,
0.1, 0.2, and 0.5. Fig. 9 illustrates the success rate as a function of noise ratio, where a monotonic
decay fit highlights the policy’s performance trend. The results show that the policy maintains a
high success rate at low noise ratios but experienced a significant decrease as noise levels increased.
Since our normalized bounding box value ranges from 0 to 1, the policy still achieves a high success
rate with a visual detection error of 0.05, demonstrating the robustness of the policy generalization
to cope with visual uncertainty and visual sim2real gap.

Our experiments highlight that achieving spatial intelligence requires both continuous temporal in-
formation and sufficient spatial data. The experiments in our main text demonstrate that spatial
generalizability requires sufficient spatially varying data. The first ablation experiment shows that
continuous temporal context is crucial for effective policy performance, while the second and third
ablation experiments demonstrate that policy generalization can cope with notable visual uncer-
tainty.
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Figure 9: The relationship between random mask ratio and success rate. The fitted curve represents
a exponential function of y = 63.62 exp(10.01x) + 24.75.

C MORE REAL-WORLD EXPERIMENTS

To demonstrate the extensibility of our approach, we supplement four more real-world experi-
ments: Pour Water (Figure 10), showcasing our approach’s extensibility to multi-object manip-
ulation tasks; Grab the handle of the cup (Figure 11), illustrating our approach’s extensibility to
the grasping of detailed parts of irregular objects; Mid-Air (Figure 12); and Cluttered Table at
varying heights (Figure 13 and Figure 14).

Figure 10: Task: Pour Water. The policy grasps the left water bottle and pours water into the
right cup, demonstrating the extensibility of our approach to complex tasks. By modifying the
teacher policy in the simulator, this method can be extended to more sophisticated tasks with
more objects.

Figure 11: Task: Grab the handle of the cup. More fine-grained detection can be achieved using
models such as Liu et al. (2023), so that our policy can catch irregular objects, such as the handle
of a cup. The first figure shows the recognition of the cup handle from the first-person view and the
other figures show the task completion process from the third-person view.

D EXPERIMENTAL DETAILS

We test the success rate of student policy in both simulator and real world.

D.1 EVALUATION IN SIMULATION

We run large-scale experiments in the simulator to test the spatial generalization curve for each range
and determine the minimum data amounts to achieve an optimal success rate. To align with real robot
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Figure 12: Task: Mid-Air. Grasp the bottle lifted by hand and suspended in mid-air, then move it
to the target position.

Figure 13: Task: Cluttered Table. Grasp the apple from a cluttered table with a height of 60 cm.

inference, we set the robot’s joints directly to target qpos instead of using environment stepping. We
mark the trajectory as success if there is a step both reaching reward > 0.6 and quat reward > 1.4.
For each policy, we test 48 trajectories and record the final success rate. The experiment consists of
three rounds of tests with different seeds, each with 16 trajectories. In each round, the target random
points are sampled from a uniform distribution.

D.2 EXPERIMENT RESULT ANALYSIS

We discuss here the analysis of the results of spatial scaling law.

data volume = 640.32 · spatial volume0.35 (7)

By fitting the resulting data points, we observe that as the training data increases, the success rate
of the policies quickly rises and eventually converges to an upper bound, which aligns well with the
form of the Michaelis-Menten (Michaelis et al., 1913) equation:

success rate =
Vmax × num traj
Km + num traj

(8)

where Vmax represents the maximum achievable success rate, and Km is the number of trajectories
at which the success rate is half of Vmax. This equation captures the saturation-type growth observed
in the policy performance.

Across different settings, the amount of data required to achieve an 80% success rate shows a power
function as the data increases:

For the functional relationship between the amount of data required for spatial generalization and
spatial volume, we explored two types of fits: a power law and a logarithmic function. The fitting
results of power law is given by y = a · xb = 640.32x0.35 , while the logarithmic fit is y =
a · ln(b · x) + c = 2095.51 · ln (0.3 · x) − 642.93. We found that the logarithmic fit becomes
unreasonable as the spatial volume x approaches 0, where the required data, y = a · ln(b · x) + c =
2095.51 · ln (0.3 · x) − 642.93 , tends to negative infinity, which is unrealistic since the amount of
data cannot be negative. Furthermore, the fit results in a negative value at x = 3.3, where bx = 1
and log(bx) = 0, leading to a required data amount of a log(bx)+c = −642.93. In the long run (for
larger spatial volumes), the power law fit better describes the relationship between the data required
for spatial generalization and spatial volume. Fig. 15 shows the selected power law relationship, and
Fig. 16 displays the logarithmic curve.
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Figure 14: Task: Cluttered Table. Grasp the apple from a cluttered table with a height of 74.5 cm.

0 5000 10000 15000 20000 25000 30000 35000
Volume (cm^3)

0

5000

10000

15000

20000

25000
D

at
a 

(n
um

_t
ra

j)

Relationship between Volume and Required Data
Data Points
Fitted Curve

Figure 15: Demonstration of the power-rate relationship between spatial volume and data amounts
needed to reach 80% success rate in the grasping task.

D.3 EVALUATION IN REAL WORLD

D.3.1 REAL-WORLD SUCCESS RATE

To verify our experiment results from the simulator, we evaluate our policy in the real robot. For each
range, we choose the first optimal policy that achieves 80% success rate in simulator and evaluate
with the real robot for 10 randomly chosen points.

Random Placement of Objects in Real-world Evaluation. To be more specific, we divide the
maximum range, namely the full space ( 41cm ∗ 30cm ∗ 28cm), into three equal parts in height, two
equal parts in width, and three equal parts in length, resulting in a total of 3 ∗ 2 ∗ 3 = 18 equally
sized spatial cuboid ranges at different positions. For each tested spatial range, ten different points
are uniformly selected to test the robot’s manipulation success rate.

D.3.2 REAL-WORLD EXPERIMENT SETTINGS

To verify our methods, we evaluate our policy in the real robot. We evaluate the student policy which
is trained on simulation data of full space ( 41cm ∗ 30cm ∗ 28cm) with the real robot.

Spatial Generalization. As illustrated in Fig. 5, we divide the spatial range horizontally into Left
(L), Right (R), and Center (C), and vertically into Front (F) and Back (B), and randomly select points
within these sections on different heights to test our policy2. All these points are arbitrarily selected,
which means that the target object has an equal chance of appearing at the center or the edge of the
table, far from or close to the robot, in positions that require the robotic arm to reach upwards or
downwards. We hope this approach reflects the spatial generalization of our policy comprehensively
and honestly.

In addition to the verification of spatial generalization, we also test the ability of Object generaliza-
tion and background generalization. The details of the experiment setting can be found in Tab. 4.

Object Generalization and Background Generalization. Furthermore, we have chosen objects
of various shapes, sizes, and materials as target objects for testing, all of which were previously

2The table is an elevated table and can therefore be adjusted to any height.
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Figure 16: Demonstration of the logarithmic relationship between spatial volume and data amounts
needed to reach 80% success rate in the grasping task.

unseen by our policy. To be more specific, during training, we only encountered apples with sizes of
approximately (6.9cm− 7.4cm, 6.9cm− 7.4cm, 6.9cm− 7.4cm) in the XYZ direction, while the
test target objects span a size range of (5.1cm − 7.0cm, 5.1cm − 9.7cm, 6.0cm − 22.7cm) in the
XYZ direction. Additionally, although apples are roughly spherical, the target objects also include
cylindrical and pyriform shapes. Moreover, the target objects encompass different materials such
as glass and metal. All these objects serve to demonstrate our policy’s capability to generalize to
varying shapes, sizes, and materials.

Table 4: Real-World Experiment Settings. Note that we use only the bounding boxes of the objects
for both student policy training and inference. Bolded object sizes are never seen in training.

Generalization Type Object Size (cm) of XYZ Setting Description

Object in Simulation Data
Apple (Domain Randomization) (6.9-7.4, 6.9-7.4, 6.9-7.4) Distribute uniformly in a configurable spatial volume

Object Generalization
Yellow Pear (6.5, 5.5, 10.7) h4: Point Random, Minimal setting
Orange (7.0, 6.7, 6.5) h4: Point Random, Minimal setting
Steel Cup (6.5, 9.7, 10.8) h4: Point Random, Minimal setting
Tin Can (5.1,5.1,7.2) h4: Point Random, Minimal setting
Glass Beaker (5.1, 5.1, 6.0) h4: Point Random, Minimal setting

Background Generalization
Apple (7.2, 7.4, 6.9) h4: Point Random, Orange tablecloth
Unseen Apple (7.0, 7.5, 7.0) h4: Point Random, Black tablecloth
Apple (7.2, 7.4, 6.9) h4: Point Random, Playing video
Apple (7.2, 7.4, 6.9) h4: Point Random, Dim light
Apple (7.2, 7.4, 6.9) h4: Point Random, Flittering light

Complex Generalization
Unseen Apple, Unseen Table (7.0, 7.5, 7.0) Point Random, Table 2
Unseen Apple, Unseen Desk (7.0, 7.5, 7.0) Point Random, Multiple objects
Steel Cup, Unseen Desk (6.5, 9.7, 10.8) Point Random, Daily desktop
Plastic Bottle, Unseen Desk (6.4, 6.4, 22.27) Point Random, Daily desktop

The three camera images, as well as the entire trajectory of grasping, are schematized below in
Figure 17:

E TEACHER-STUDENT TRAINING DETAILS

For ease of understanding, Alg. 1 is the pseudo algorithm for the ManiBox method.
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Algorithm 1 Training and Deployment Algorithm of ManiBox

Require: Simulator environment Sim, Real robot Robot
Require: Proximal Policy Optimization (PPO) for training teacher policy
Require: Bounding box extractor BBoxExtractor
Require: Maximum dataset size Nmax, reward function R, domain randomization module DR

1: Stage 1: Teacher Policy Training
2: Initialize teacher policy πβ with random weights
3: Set Sim environment with reward function R and domain randomization module DR
4: while not converged do
5: Collect trajectory data DT in Sim using πβ

6: Update πβ using PPO with DT

7: end while

8: Stage 2: Simulation Data Generation
9: Initialize dataset DS = ∅

10: while |DS | < Nmax do
11: Reset Sim environment
12: Apply domain randomization DR to environment
13: Generate trajectory τ = {(orobt , at, rt)}Tt=1 using πβ

14: Extract bounding boxes {ovist }Tt=1 using BBoxExtractor
15: Store {(ovist , orobt , at)}Tt=1 in DS

16: end while

17: Stage 3: Student Policy Training
18: Initialize student policy πθ with random weights
19: while not converged do
20: Sample trajectory τ = {(ovist , orobt , at)}Tt=1 from DS

21: Randomly mask some ovist to simulate detection failures
22: Update πθ(o

vis
≤t , o

rob
≤t ) using the masked τ

23: end while

24: Stage 4: Real-World Deployment
25: t← 0
26: while not terminated do
27: Extract real-world bounding boxes ovist using BBoxExtractor
28: Compute action at ∼ πθ(o

vis
≤t , o

rob
≤t )

29: Execute action at on Robot
30: t← t+ 1
31: end while
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Figure 17: Pictures of the entire trajectory of grasping, including perspective and three camera
views.

E.1 TEACHER POLICY DETAILS

We train our teacher policy using PPO with 8,192 parallel environments in Isaac Lab (Mittal et al.,
2023). With a carefully designed reward function and applied PPO techniques, the training is com-
pleted in around 40 minutes, reaching approximately 2,000 training iterations. The task involves
training a robot to grasp an apple randomly placed on a liftable table and transport it to a designated
target position (Figure 18).

Figure 18: The simulation environment consists of a room with a table, an apple, and a robot. The
task is for the robot to grasp the apple and place it in a specified location.

The advantages of using a teacher policy instead of direct visual RL training can be summarized in
three key aspects. First, the teacher policy relies solely on robot and object information as input,
significantly reducing the dimensionality of the state space. Second, the incorporation of privileged
information and tailored reward functions for critical steps offers more focused guidance during
training, thereby narrowing the exploration space. Lastly, visual RL suffers from limited paralleliz-
ability, which results in lower overall training efficiency.

E.1.1 SIMULATION SCENARIO SETUP

The environment is built based on the lift task in Isaac Lab. During training, the scene consists of a
table, an apple, and a robot. The robot is initialized at a fixed starting position at the beginning of
each episode. The apple’s size, as well as its x,y position, are uniformly randomized across envi-
ronments, while the height of the table is also uniformly randomized. The target position, however,
remains fixed throughout all training episodes. Key steps captured from three camera perspectives
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are shown in Figures 19, 20, and 21. To support future extensions to more complex tasks, such as
obstacle avoidance during grasping, we represent the robot’s behavior with a 30Hz trajectory. Each
environment in the simulator is evenly spaced to prevent interference between different training
instances. Further details on the randomized ranges can be found in Table 5.

Figure 19: Key steps of grasping in simulation in cam high view.

Figure 20: Key steps of grasping in simulation in cam left wrist view.

Figure 21: Key steps of grasping in simulation in cam right wrist view.

Table 5: Environment Randomization Parameters

Spatial Range Table Height (z) Apple X Position Apple Y Position

Fix Point (−0.00, 0.00) (−0.0, 0.0) (−0.0, 0.0)
5 cm × 5 cm × 5 cm (−0.025, 0.025) (−0.025, 0.025) (−0.025, 0.025)
10 cm × 10 cm × 10 cm (−0.07, 0.03) (−0.05, 0.05) (−0.05, 0.05)
20 cm × 20 cm × 20 cm (−0.1, 0.1) (−0.1, 0.1) (−0.05, 0.15)
Full Space (41 cm × 30 cm × 28 cm) (−0.13, 0.15) (−0.22, 0.08) (−0.05, 0.36)

Apple 3D Scale Range ((0.77, 0.82), (0.77, 0.82), (0.77, 0.82))

E.1.2 DETAILS OF OBSERVATION AND ACTION

We provide detailed information about the observations and actions used in training the teacher
policy for the multi-environment object-grasping manipulation task:

• Observations:
– Contact forces (24-dimensional)
– Joint position (8-dimensional)
– Joint velocity (8-dimensional)
– Object position (3-dimensional)
– Target location (7-dimensional)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

– Last action (8-dimensional)
• Actions:

– Joint Position (8-dimensional) (We choose position control. The action is the expected
joint position for the next timestep.)

E.1.3 IMPLEMENTATION OF PPO

Our PPO implementation is built on rsl rl, and leverages several techniques to improve stability and
performance. Key components and their settings are summarized in Table 6.

Table 6: PPO Parameter Settings

Techniques Parameter Value

Clipped Surrogate Objective clip param 0.2
Value Function Clipping use clipped value loss True
Value Loss Coefficient value loss coef 1.0
Adaptive KL Penalty desired kl 0.01
Entropy Regularization entropy coef 0.01
Generalized Advantage Estimation (GAE) gamma 0.99

lam 0.95
Gradient Clipping max grad norm 1.0
Learning Rate learning rate 0.001
Mini-Batch num mini batches 4
Learning Epochs num learning epochs 5
Schedule schedule adaptive
Empirical Normalization empirical normalization True

E.1.4 REWARD FUNCTION DESIGN

To ensure the policy achieves the desired grasping behavior on our robot, we design a reward func-
tion that reflects the task’s objectives. As grasping is complicated, it can be divided into a multi-stage
reward function: first reaching the object, then closing the jaws, then picking up the object, and fi-
nally retracting the robotic arm to a specified position. Definitions of different part of our reward
function for the specific object-grasp task are stated as follows:

• Fingers Open

Rfingers open = tanh

(
∥pobject − pee∥2

σ

)
·

2∑
i=1

finger pos[i]

where pobject represents the position of the object in world coordinates. pee represents the
position of the end-effector in world coordinates. finger pos represents the joint positions
of the robot’s fingers. σ = 0.1 is a scaling factor for distance normalization.

• Reaching Object

Rreaching object =

(
1− tanh

(
∥pobject − pee∥2

σ

))
+

(
1− tanh

(
∥pobject − pee∥2

σ/4

))
where pobject represents the position of the object in world coordinates. pee represents the
position of the end-effector in world coordinates. σ = 0.2 is a scaling factor for distance
normalization.

• Object Goal Tracking

Rgoal tracking = 1(pobject,z > zinit + hmin) ·
(
1− tanh

(
∥pgoal − pobject∥2

σ

))
where pgoal represents the target position of the object in world coordinates. pobject
represents the position of the object in world coordinates. pobject,z represents the z-
coordinate (height) of the object in world coordinates. zinit is the initial height of the object.
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hmin = 0.02 is the minimal height above the initial height required to achieve the goal.
σ = 0.3 is a scaling factor for distance normalization.

• Object Goal Tracking (Fine-Grained)

Rgoal tracking fine = 1(pobject,z > zinit + hmin) ·
(
1− tanh

(
∥pgoal − pobject∥2

σfine

))
where pgoal represents the target position of the object in world coordinates. pobject repre-
sents the position of the object in world coordinates. zinit is the initial height of the object.
hmin = 0.02 is the minimal height above the initial height required to achieve the goal.
σfine = 0.05 provides finer scaling for precise tracking.

• Action Rate Penalty
Raction rate = −∥at − at−1∥22

where at represents the action at the current time step. at−1 represents the action at the
previous time step.

• Joint Velocity Penalty
Rjoint vel = −

∑
i∈joint ids

q̇2i

where q̇i represents the joint velocity of the i-th joint. joint ids is the set of joint indices to
penalize.

• Contact Forces

Rcontact forces = 1

(
finger dist

4
< proj len <

finger dist
1.25

+ 0.2

)
·
(
1.2− tanh

(
object dist

0.2

))
·1 (∥pobject − ptop∥ < 0.1) ·

(
1− tanh

(
∥org vec− y∥

0.3

))
where ptop,pbottom,pleft,pright are the positions of the robot’s end-effector fingers (top, bot-
tom, left, right) in world coordinates. pobject is the position of the object in world coor-
dinates. org vec = pleft − pright is the vector between the left and right fingers, rotated
into the object’s local frame. y = [0, 1, 0] is the unit vector along the y-axis in the object’s
local frame. finger dist = ∥pleft − pright∥2 is the distance between the left and right fin-
gers. proj len =

(pobject−pleft)·(pright−pleft)
finger dist is the projection of the object’s position onto the

vector between the left and right fingers. object dist =
∥pobject−pbottom×(ptop−pbottom)∥

0.11 is the
perpendicular distance from the object to the line formed by the bottom and top fingers.

• Close Fingers

Rclose fingers = 1(grasp force > 0.5) ·

(
1− tanh

(∑2
i=1 finger pos[i]

0.1

))
where grasp force represents the force exerted by the fingers on the object. finger pos
represents the joint positions of the robot’s fingers.

• Lift End Effector (EE)

Rlift ee =
clamp(pee,z − 0.6, 0.0, 0.3)

0.3
· 1(grasp force > 0.5)

where pee,z represents the height of the end-effector above the ground.
• Lift Object

Rlift object = 1(pobject,z > zinit + hmin) ·
clamp(pobject,z − zinit − hmin, 0.0, 0.2)

0.2

where pobject,z represents the height of the object above the ground. zinit is the initial height
of the object. hmin = 0.02 is the minimal height above the initial height required to achieve
the goal.

Details of our weight design for the reward function can be found in Table 7
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Table 7: Reward Function Design

Reward Term Weight

Fingers Open 5.0
Reaching Object 15.0
Object Goal Tracking 80.0
Object Goal Tracking (Fine-Grained) 70.0
Action Rate Penalty -1e-4
Joint Velocity Penalty -1e-4
Contact Forces 10
Close Fingers 100
Lift End Effector (EE) 20
Lift Object 100

E.2 DATA GENERATION DETAILS

In data generation, as shown in Fig. 2, we feed the images from the ncam first-person cameras of
the robot to YOLO-World at each timestep to detect the nobj target objects to be manipulated, thus
obtaining ncam ∗ nobj bounding boxes. Then we normalize the bounding box, concatenate them,
and obtain a vector o of dimension 4 ∗ ncam ∗ nobj as the visual feature input for the control policy.
We then store the visual features ovis

t , all joint positions of the robot orob
t , and actions at for each

step in the form of trajectories.

To reduce visual interference between parallel environments and minimize the sim-to-real gap, we
incorporate a white room during data collection. The room is designed to be spacious enough
to accommodate the maximum working space, including robot, table, and apple. Three RGB-D
cameras3, calibrated with intrinsic and extrinsic parameters matching those of the real robot, capture
visual information. During inference, the images from these cameras are processed by YOLO-World
to generate object bounding boxes.

Table 8: Camera Parameters

Camera Link Image Shape and Type

cam high
fr link6 Shape: [480, 640, 4]

RGB, Range: 0-255 (torch.uint8)

cam left wrist
fl link6 Shape: [480, 640, 4]

RGB, Range: 0-255 (torch.uint8)

cam right wrist
fr link6 Shape: [480, 640, 4]

RGB, Range: 0-255 (torch.uint8)

Given the high memory demands of image data, we run 16 parallel environments on a single GPU
4 for data generation, achieving up to 36k successful trajectories per day. For ACT training, these
trajectories are subsequently stored in an HDF5 data structure5 (see Table 9). In our approach, we
convert images to bounding boxes using YOLO-World and store the results in a dictionary format.
Each trajectory consists of multiple steps, with each step containing bbox, qpos, and action data.

E.3 STUDENT POLICY DETAILS

We use RNN and ACT to train our student policy. The details of training parameters can be found
in Table 10 and Table 11.

3But we only use RGB information.
4For some 24 GB GPU.
5Video-based dataset
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Table 9: HDF5 Data Structure

Group/Attribute Dataset/Attribute Name Description

Root Attributes sim Boolean indicating simulation (False)
compress Compression flag from ‘CollectEpsBuf‘

Datasets

action Array of actions taken
reward Array of rewards received
base action Array of base actions
base action t265 (Optional) Base actions from T265 sensor

Observations: states
qpos Array of joint positions
qvel Array of joint velocities
effort Array of joint efforts

Observations: images
cam high Byte-encoded images from ‘cam high‘
cam left wrist Byte-encoded images from ‘cam left wrist‘
cam right wrist Byte-encoded images from ‘cam right wrist‘

Table 10: RNN Training Parameters

Parameter Value

lr 0.002
lr backbone 7e-05
epochs 50
warmup ratio 0.1
use scheduler cos
weight decay 0.0001
loss function l1
hidden dim 512
rnn layers 3
rnn hidden dim 512
actor hidden dim 512
policy class RNN
gradient accumulation steps 1
random mask ratio 0.3

E.4 SIM2REAL TECHNIQUE

We employ the student policy for sim-to-real transfer, where the inputs to the policy included pro-
prioception orobt which consists of joint positions, and the visual input ovist , represented by bounding
boxes. The output action is the desired joint position for the next step. Thus, the primary sim-to-real
gaps exist in the joint position and bounding box dimensions.

For joint positions, we develop a real-to-sim code that maps the joint positions obtained from tele-
operation on a real-world robot to a simulated robot. We evaluate whether the actions performed
at specific target positions were consistent between the real-world and simulated environments. For
example, when teleoperating to grasp an apple at a precisely measured location, both the real-world
and simulated apples are set at the same coordinates. We used the main arm of the real-world robot
to observe whether the simulated robot could successfully grasp the apple.

Special handling is required for the gripper, as there are discrepancies between the URDF model
of the gripper and its real-world counterpart. In the simulation, the gripper has two joints, while in
reality, it functions as a single joint, leading to differences in value interpretation. To address this,
we collect 10 data sets for fitting and utilize function interpolation to map the simulated gripper joint
positions to those of the real-world gripper. This approach ensures that the state space and action
space are aligned between the simulation and the real environment.

The sim-to-real gap for the bounding boxes corresponds to the image sim-to-real gap. We perform
hand-eye calibration on the camera to ensure that the cameras in both the simulation and the real-

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 11: ACT Training Parameters

Parameter Value

num epochs 1000
lr 4e-05
lr backbone 7e-05
weight decay 0.0001
kl weight 10
backbone resnet18
position embedding sine
loss function l1
chunk size 32
hidden dim 512
dim feedforward 3200
enc layers 4
dec layers 7
nheads 8
dropout 0.2
train loader len 23
warmup ratio 0.1
scheduler cosine

world robot are approximately aligned. For finer adjustments, we select a specific point in front of
the robot and a specific-sized object, observing the bounding boxes obtained from both the simu-
lator and the real-world camera. Since we use bounding boxes, other factors such as lighting and
background variations in the sim-to-real gap are not a concern. Ultimately, this method of adjust-
ment ensures that the intrinsic and extrinsic parameters of the camera are consistent between the
simulation and the real-world environment.

Other methods to ensure successful Sim2Real, such as domain randomization, are described in the
previous section (Sec. 3.2).

F HARDWARE DETAILS

The robot is equipped with a dual-arm design, providing a total of 14 degrees of freedom (DoF),
with 7 DoF per arm for versatile movement. Each arm has a maximum valid payload of 1500g,
and the gripper has a range of up to 80mm, allowing the robot to perform a variety of grasping and
manipulation tasks efficiently. The detailed hardware information and an image of the robot can be
found in Figure 22 and Table 12.

Parameter Value

Size 1080 × 700 × 1140
Arm weight 4.2 kg
Arm Payload 3000 g (peak)

1500 g (valid)
Arm reach 600 mm
Arm repeatability 1 mm
Arm working radius 653 mm
Joint motion range J1: ±154°, J2: 0°∼165°

J3: -175°∼0°, J4: ±106°
J5: ±75° , J6: ±100°

Gripper range 0-80 mm
Gripper max force 10 NM
DoF 7 × 2 = 14

Table 12: Technical specifications.

battery

laptop

wrist cameras 

front camera

control arms

Figure 22: Hardware features.
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G LIMITATIONS AND DISCUSSIONS

One of the limitations of ManiBox is that the accuracy of the obtained bounding box depends on
the capability of the preceding visual model. As the YOLO-World sometimes may not be able to
accurately partition the bounding box, ManiBox may grasp the wrong positions due to the wrong
input bounding box. Also, the bounding box is mainly for objects with convex shapes and may be
insufficient for handling flexible objects and fluids. In the future, a promising direction is to apply
more powerful visual models like Grounding DINO and capture more semantic visual signals like
segmentation via SAM in ManiBox to improve its ability. Also, for some complicated manipulation
tasks like folding up clothes, directly training an RL teacher agent in the simulator may be difficult.
Thus how to utilize human demonstration or state machine to get the expert teacher agent is also
worth researching.
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