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ABSTRACT

Probabilistic forecasting is crucial for real-world spatiotemporal systems, such as
climate, energy, and urban environments, where quantifying uncertainty is essential
for informed, risk-aware decision-making. While diffusion models have shown
promise in capturing complex data distributions, their application to spatiotem-
poral forecasting remains limited due to complex spatiotemporal dynamics and
high computational demands. we propose CoST, a general forecasting framework
that Collaborates deterministic and diffusion models for diverse SpatioTemporal
systems. CoST formulates a mean-residual decomposition strategy: it leverages a
powerful deterministic model to capture the conditional mean and a lightweight
diffusion model to learn residual uncertainties. This collaborative formulation sim-
plifies learning objectives, improves accuracy and efficiency, and generalizes across
diverse spatiotemporal systems. To address spatial heterogeneity, we further design
a scale-aware diffusion mechanism to guide the diffusion process. Extensive exper-
iments across ten real-world datasets from climate, energy, communication, and ur-
ban systems show that CoST achieves 25% performance gains over state-of-the-art
baselines, while significantly reducing computational cost. Code and datasets are
available at: https://anonymous.4open.science/r/CoST_17116.

1 INTRODUCTION

Real-world spatiotemporal systems underpin many critical domains, such as climate science, energy
systems, communication networks, and urban environments. Accurate forecasting of the dynamics
is essential for planning, resource allocation, and risk management (Xie et al., 2020; Boussif et al.,
2023} Xu et al., 20215 Sheng et al.| [2025). Existing approaches fall into two categories: deterministic
and probabilistic forecasting. Deterministic methods estimate the conditional mean by minimizing
MAE or MSE losses to capture spatiotemporal patterns (Zhang et al.| 2017; [Ma et al.| 2024; Yuan
et al.,|2024). In contrast, probabilistic methods aim to learn the full predictive distribution of observed
data (Rasul et al., 2021} |Li et al., 2024} |Yuan & Qiao, |2024), enabling uncertainty quantification to
support forecasting. This is particularly important in many domains, for example, in climate modeling
and renewable energy, where assessing prediction reliability is essential for risk-aware decisions such
as disaster preparedness and energy grid management (Palmer, |2012; Vargas Zeppetello et al., [2022).

In this paper, we highlight the critical role of probabilistic forecasting in capturing uncertainty
and improving the reliability of spatiotemporal predictions. However, it is non-trivial due to three
challenges. First, these systems exhibit complex evolving dynamics, characterized by periodic trends,
seasonal variations, and stochastic fluctuations (Cao et al.,|2021; |[Yuan & Qiao, [2024). Second, these
systems involve intricate spatiotemporal interactions and nonlinear dependencies (Jiang et al., 2017}
Yuan et al., |2024)). Third, real-world applications require both computationally efficient and scalable
models (Palmer, 2014} [Sheng et al., |2025). Recently, diffusion models have been widely adopted for
probabilistic forecasting (Wen et al., 2023;|Yuan & Qiaol [2024; |Rasul et al.,2021; |Sheng et al.| [2025)).
Compared with existing approaches such as Generative Adversarial Networks (GANs) (Goodfellow
et al., [2020; Gao et al.,|2022) and Variational Autoencoders (VAEs) (Kingmal 2013} |Li et al., 2022),
diffusion models offer superior capability in capturing complex data distributions while ensuring
stable training (Ho et al.l 2020; Tashiro et al.| 2021; Ho et al., [2022)). These advantages make
diffusion models a promising alternative. However, originally developed for image generation, they
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face inherent limitations in capturing temporal correlations in sequential data, as evidenced in video
generation (Zhang et al.l [2024; |Qiu et al.| 2023 |Chang et al.| 2024; |Ge et al.| 2023)) and time series
forecasting (Yuan & Qiao, |2024; Riihling Cachay et al., 2023} Shen & Kwok, [2023).
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solely on diffusion models to capture the full

data distribution, we propose a collaborative approach that combines a deterministic model and a
diffusion model, leveraging their complementary strengths for probabilistic forecasting. Our design of-
fers two key advantages. First, by leveraging powerful deterministic models to predict the conditional
mean, it effectively captures the primary spatiotemporal patterns and benefits from advancements
in established architectures. Second, instead of requiring the diffusion model to learn the full data
distribution from scratch, we employ it to model the residuals, focusing its capacity on capturing
uncertainty beyond the mean. This collaborative framework simplifies the learning objectives for
each component and enhances both predictive accuracy and probabilistic expressiveness.

Building on this insight, we propose CoST, a general forecasting framework that Collaborates
deterministic and diffusion models for a wide range of SpatioTemporal systems. As illustrated in
Figure[T]| we first leverage an advanced deterministic spatiotemporal forecasting model to estimate
the conditional mean E[y|x], effectively capturing the regular patterns. Based on this, we model the
residual distribution p(r|z) = p((y — E[y|z])|z) using a diffusion model, which complements the
deterministic forecasting with uncertainty quantification. Since the diffusion model focuses solely
on residuals, it allows us to adopt a lightweight denoising network and mitigate the computational
overhead associated with multi-step diffusion processes. To address spatial heterogeneity, we quantify
differences across spatial units and introduce a scale-aware diffusion mechanism. More importantly,
we propose a comprehensive evaluation protocol for spatiotemporal probabilistic forecasting by
incorporating metrics such as QICE and IS, rather than relying solely on traditional measures like
CRPS, MAE, and RMSE. In summary, our main contributions are as follows:

* We highlight the importance of probabilistic forecasting for complex spatiotemporal systems
and introduce a novel perspective that integrates deterministic and probabilistic modeling in a
collaborative framework.

* We propose CoST, a mean-residual decomposition approach that employs a deterministic model
to estimate the conditional mean and a diffusion model to capture the residual distribution. We
further design a scale-aware diffusion mechanism to address spatial heterogeneity. CoST is broadly
applicable across a wide range of critical real-world spatiotemporal systems.

* Extensive experiments on ten real-world datasets spanning climate science, energy systems, com-
munication networks, and urban environments show that CoST consistently outperforms state-of-
the-art baselines on both deterministic and probabilistic metrics, achieving an average improvement
of 25% while offering notable gains in computational efficiency.

2 RELATED WORK
We have provided definitions and related work on spatiotemporal deterministic forecasting and
probabilistic forecasting in Appendix [B]

Diffusion-based spatiotemporal probabilistic forecasting. Most diffusion-based forecasting meth-
ods formulate the task as conditional generation without explicitly modeling temporal dynamics,
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which hinders the generation of temporally coherent sequences (Tashiro et al.l 2021} |Gao et al.,
2023} [Wen et al., 2023 Riihling Cachay et al., [2023). Moreover, the progressive corruption of
time series during diffusion often distorts key patterns like long-term trends and periodicity, making
temporal recovery difficult (Yuan & Qiao, [2024; Liu et al.,|2023). To address this, methods such as
TimeGrad (Rasul et al., [2021) and TimeDiff (Shen & Kwok, |[2023) incorporate temporal embeddings
as conditional inputs to enhance temporal awareness. Other approaches like NPDiff (Sheng et al.|
2025) and Diffusion-TS (Yuan & Qiaol [2024)) inject temporal priors into the diffusion process to
better preserve temporal dynamics. More recently, DY ffusion (Riihling Cachay et al.}2023) redefines
the denoising process to explicitly model temporal transitions at each diffusion step. Unlike prior
methods, we avoid using diffusion to model temporal dynamics. Instead, we decouple forecasting
into deterministic mean prediction and residual uncertainty estimation, allowing the diffusion model
to focus exclusively on modeling the residual distribution.

Hybrid Deterministic and Diffusion-based Forecasting Models. A promising recent trend involves
hybridizing deterministic and diffusion models to achieve better results (Mardani et al., [2023;|Gong
et al.,[2024; [Li et al., 2024} |Yu et al., [2024)). For instance, CorrDiff (Mardani et al., [2023)) refines the
output of a deterministic UNet using a diffusion model for high-resolution atmospheric downscaling.
Similarly, CasCast (Gong et al., 2024)) adopts a cascaded pipeline where the coarse global prediction
from a deterministic model guides a latent diffusion model to generate a refined full future state.
In time series forecasting, TMDM (Li et al., 2024) conditions its diffusion process on the output
of a transformer model to better learn the full data distribution. DiffCast (Yu et al., [2024) takes a
coupled, end-to-end training approach for precipitation nowcasting, jointly optimizing a deterministic
backbone with a diffusion model. In contrast, our approach, CoST, introduces a two-stage mean-
residual decomposition strategy that distinctly separates mean prediction and residual distribution
modeling. More importantly, while prior methods are typically tailored to a single domain, CoST
is designed as a general framework that incorporates spatiotemporal considerations and residual
heterogeneity, making it broadly applicable across diverse spatiotemporal systems.

3 PRELIMINARIES

We provide a summary of notations used in this paper in Appendix [C.I]for clarity.

Spatiotemporal systems. Spatiotemporal systems underpin many domains such as climate science,
energy, communication networks, and urban environments. The data recording spatiotemporal
dynamics are typically represented as a tensor x € RTXV*C where T, V, and C denote the
temporal, spatial, and feature dimensions, respectively. Depending on the spatial structure, the data
can be organized as grid-structured (V' = H x W) or graph-structured (where V' represents the set of
nodes). Given a historical context x°° = x*~M+1 of length M, the goal is to predict future targets
xt® = xt+1#+P gver a horizon P using a model F.

Conditional diffusion models. The diffusion-based forecasting includes a forward process and a
reverse process. In the forward process, noise is added incrementally to the target data x5* , gradually
transforming the data distribution into a standard Gaussian distribution A (0, I). At any diffusion
step, the corrupted target data can be computed using the one-step forward equation:

= Vanxk* + V1 —ane, €~ N(0,1), (D
where &,, = []\_; ; and a,, = 1 — f3,,. In the reverse process, prediction begins by first sampling

x4¢ from the standard Gaussian distribution A/ (0, I), followed by a denoising procedure through the
following Markov process:

N
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where the variance Y (x%, n) = 1 Gn_13 and ep(x, n|xE°) is predicted by the denoising
network trained by the loss function below
L(0) = Ep g .c [||ef co(x%,n[x5°)|| ] 3)
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Figure 2: Overview of CoST: (a) Pretraining of the deterministic model; (b) Computation of the
customized fluctuation scale; (c¢) Overall framework of the mean-residual decomposition.

Evaluations of probabilistic forecasting. We argue that probabilistic forecasting should be assessed
from two key perspectives: Data Distribution—the predicted distribution should match the empirical
distribution, and Prediction Usability—prediction intervals should achieve high coverage while
remaining sharp. While metrics like CRPS, MAE and RMSE are widely used, they fail to assess: (i)
the accuracy of quantile-wise coverage; (ii) whether the interval width reflects true uncertainty. To
address this, we introduce Quantile Interval Coverage Error (QICE) (Han et al., 2022) and Interval
Score (IS) (Gneiting & Raftery), 2007) as complementary metrics.

(i) QICE measures the mean absolute deviation between the empirical and expected proportions of
ground-truth values falling into each of equal-sized quantile intervals. QICE evaluates how well the
predicted distribution aligns with the expected coverage across quantiles, which is defined as follows:
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where §°%m and g)?fgh’" denote the bounds of the m-th quantile interval for y,,. Ideally, each QI
should contain 1/Mqys of the observations, yielding a QICE of 0. Lower QICE indicates better
alignment between predicted and true distributions.

(ii) IS evaluates prediction interval (PI) quality by jointly accounting for sharpness and empirical
coverage, and is defined as:
1 2 2
IS .= N Z [(uﬁ“ — l,?;CI) + Tw(lgCI — yn)]lyn<l;’;01 + Tm(yn — ’U/gCI)]].yn>“?LCI 5
n=1
&)
where u°7 and [;;°7 are the upper and lower bounds of the central prediction interval for the n-th
data point, derived from the corresponding predictive quantiles. A narrower interval improves the
score, while missed coverage incurs a penalty scaled by o ;. Lower IS indicates better performance.

4 METHODOLOGY

In this section, we propose CoST, a unified framework that combines the strengths of deterministic
and diffusion models. Specifically, we first train a deterministic model to predict the conditional
mean, capturing the regular spatiotemporal patterns. Then, guided by a customized fluctuation scale,
we employ a scale-aware diffusion model to learn the residual distribution, enabling fine-grained
uncertainty modeling. An overview of the CoST architecture is shown in Figure 2]

4.1 THEORETICAL ANALYSIS OF MEAN-RESIDUAL DECOMPOSITION

Current diffusion-based probabilistic forecasting approaches typically employ a single diffusion model
to capture the full distribution of data, incorporating both the regular spatiotemporal patterns and the
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random fluctuations. However, jointly modeling these components remains challenging (Yuan & Qiao}
2024)). Inspired by Mardani et al.|(2023) and the Reynolds decomposition in fluid dynamics (Pope,
2001), we propose to divide probabilistic forecasting into two parts: predicting the conditional mean
and modeling the residual distribution. The spatiotemporal data x*® can therefore be expressed as:

Xta — E[Xta‘xco} + (Xta _ E[xta|xw]), (6)
—_——
:=p(Deterministic) :=r(Dif fusion)

where p is the conditional mean representing the regular patterns, and r is the residual representing
the random variations. If the deterministic model approximates the conditional mean accurately,
the expected residual becomes negligible, i.e. E[r|x“°] = 0, and we can obtain that var(r|x®) =
var(xt“|x“’). Based on the law of total variance (Bertsekas & Tsitsiklis, [2008)), we can express the
variance of the target data and residuals as:

var(r) = E[var(r|x“)] + var(E[r|x®]), var(x') = E[var(x"*|x°)] + var(E[x"*|x*°]). (7)
—_——— —_——

=0 >0

Due to var(r|x®) = var(x!*|x), we have var(r) < var(x'®). Moreover, the highly dynamic
nature of the spatiotemporal system results in a larger var(E[x'*|x“]), which consequently makes
var(r) smaller compared to var(x'®). Our core idea is that if a deterministic model can accurately
predict the conditional mean, that is, u ~ Eg[x'®|x], then the diffusion model can be dedicated solely
to learning the simpler residual distribution. This design avoids the challenge diffusion models face
in modeling complex spatiotemporal dynamics, while fully exploiting their strength in uncertainty
estimation. By collaborating high-performing deterministic architectures and diffusion models, our
method effectively captures regular dynamics and models uncertainty via residual learning.

4.2 MEAN PREDICTION VIA DETERMINISTIC MODEL

To capture the conditional mean Ey[x!*|x°], our framework leverages existing high-performance
deterministic architectures, which are designed to capture complex spatiotemporal dynamics effi-
ciently. In our main experiments, we use the STID (Shao et al., 2022) model as the backbone for
mean prediction, and also validate our framework with ConvLSTM (Shi et al.} 2015), STNorm (Deng
et al.,|2021)), and iTransformer (Liu et al.) to ensure its generality ( See Section @ In the first stage
of training, we pretrain the deterministic model for 50 epochs using historical conditional inputs x“°
to output the mean estimate Eg[x'®|x“°]. The model is trained with the standard L5 loss:

Lo = ||Eg[x*xc] — x*e|> . ®)

4.3 RESIDUAL LEARNING VIA DIFFUSION MODEL

The residual distribution of spatiotemporal data is not independently and identically distributed
(i.i.d.) nor does it follow a fixed distribution, such as N'(0, ). Instead, it often exhibits complex
spatiotemporal dependence and heterogeneity. We use the diffusion model to focus on learning
the distribution of residual r¢ = x** — Ey[x'?|x°°]. Accordingly, the target data x** for diffusion
models in Eqgs. equation [I| equation 2] and equation [3|is replaced by r*®. We incorporate timestamp
information as a condition in the denoising process and concatenate the context data x5° with noised
residual r’® as input to capture real-time fluctuations. Notably, no noise is added to x{° during
diffusion training or inference. To model the spatial patterns of the residuals, we propose a scale-
aware diffusion process to further distinguish the heterogeneity for different spatial units. In this
section, we detail the calculation of Q and how it is integrated into the scale-aware diffusion process.

(i) Customized fluctuation scale. Specifically, we apply the Fast Fourier Transform (FFT) to
spatiotemporal sequences in the training set to quantify fluctuation levels in different spatial units and
use the custom scale QQ as input to account for spatial heterogeneity in residual. Specifically, we first
employ FFT to extract the fluctuation components for each spatial unit within the training set. The
detailed steps are as follows:



Under review as a conference paper at ICLR 2026
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xp[i] = Z Ay [cos (27fii + @) + cos (27rfki + qﬁk) ] ,
keK
where Ay, ¢y reprent the amplitude and phase of the k—th frequency component. L is the temporal
length of the training set. A« is the maximum amplitude among the components, obtained using
the max operator. K represents the set of indices for the selected residual components. fi is the
frequency of the k-th component. fy, ¢y represent the conjugate components. x, ref to the extracted
residual component of the training set. We then compute the variance o2 of the residual sequence for
each location v and expand it to match the shape as rf® € REXV*F 'where B represents the batch
size. And we can get the variance tensor M:

Mpwp=02¥be{l,--- By, Wwe{l,--- , V},¥pe{l,---,P}L (10)

The residual fluctuations are bidirectional, encompassing both positive and negative variations, so
we generate a random sign tensor S € RP*V*P for M, where each element S, ,, , of S is sampled
from a Bernoulli distribution with p = 0.5. The customized fluctuation scale Q is computed as:

Qbop=Sbwp X Mpyp,Voe{l,--- ,B},Vvoe{l,--- ,V},Vpe{l,---, P} (11)
Then Q is used as the input of the denoising network.

(ii) Scale-aware diffusion process. The vanilla diffusion models assume a shared prior distribution
N (0, I) across all spatial locations, failing to capture spatial heterogeneity. To further model such
differences, we adopt the technique proposed by |Han et al.|(2022) to make the residual learning
location-specific conditioned on Q. Specifically, we redefine the noise distribution at the endpoint of
the diffusion process as follows:

p(ry) = N(Q. 1), (12)
Accordingly, the Eq (I) in the forward process is rewritten as:
rl = \/anrh + (1 — Van)Q + V1 —ane, e~ N(0,I). (13)

And in the denoising process, we sample r’¢ from N (Q, I), and denoise it use Eq , the computation
of g (rt®, n|x5°) in Eq () is modified as:

1 n 1
o (217, m[x5%) = (r?ifﬁee(rza,nxso))m Q. a4

/an Vi—a, N
This modification allows the diffusion process to be conditioned on location-specific priors Q,
enhancing its ability to model spatial heterogeneity in uncertainty.

4.4 TRAINING AND INFERENCE

We adopt a two-stage training procedure: first pretraining a deterministic model to predict the
conditional mean, then training a diffusion model to capture the residual distribution (Algorithm T).
During inference, the deterministic model provides the mean prediction, while the diffusion model
estimates residuals; their outputs are combined to form the final forecast (Algorithm 2).

5 EXPERIMENTS

Datasets. We evaluate our method on ten datasets spanning four domains, including climate (SST-
CESM2 and SST-ERAS), energy (SolarPower), communication (MobileNJ and MobileSH), and
urban systems (CrowdBJ, CrowdBM, TaxiBJ, BikeDC and Los-Speed), each featuring distinct
spatiotemporal characteristics. Detailed information on the datasets can be found in Appendix

Baselines. We compare against nine representative state-of-the-art baselines commonly adopted in
spatiotemporal modeling, including: Gaussian Process (GP), DeepState (Rangapuram et al., 2018)),
D3VAE (Li et al., 2022)), DiffSTG (Wen et al.l2023)), TimeGrad (Rasul et al.|2021)), CSDI (Tashiro
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Table 1: Short-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DY ffusion is limited to grid-format data,
and “-” denotes results that are not applicable.

Model Climate MobileSH TaxiBJ SolarPower CrowdBJ
CRPS QICE IS CRPS QICE IS CRPS QICE 1S CRPS QICE IS CRPS QICE IS
GP 0.083 0.158 9.98 0495 0.120 6.90 0217 0.137 2589 0.732 0222 769.0 0.601 0.152 17.1

DeepState  0.027  0.010 505 0441 0.043 0.651 0.384 0.050 47023 0.654 0.097 6568 0.630 0.054 347
D3VAE 0.053 0.071 158 0856 0.105 1.73 0433 0.160 9857 0475 0.083 731.1 0.668 0.099 53.6
DiffSTG ~ 0.026  0.068 7.42 0.303 0.078 0.526 0299 0.074 4165 0213 0.068 240.6 0436 0.089 32.1
TimeGrad  0.042  0.147 160 0489 0.143 0.759 0.170 0.102 2132 1.000 0.128 781.7 0.385 0.113 48.6
CSDI 0.027 0.019 5.18 0200 0.052 0295 0.122 0.048 121.8 0.267 0.050 221.6 0306 0.028 16.4
TMDM 0.198 0.127 174 181 0.126 141 0493 0.113 961.0 0.845 0.124 9927 148 0.127 774
NPDiff 0.022 0.031 424 0201 0.106 0627 0222 0.112 4741 0209 0.020 1753 0287 0.120 345
DYffusion 0.020 0.123 124 0230 0.096 0573 0.084 0.054  99.5 - - - - - -

CoST 0.021  0.009 4.04 0.147 0.014 0215 0.100 0.023 95.3 0.208 0.019 192.1 0.215 0.014 115

Table 2: Short-term forecasting results in terms of MAE and RMSE.

Model Climate MobileSH TaxiBJ SolarPower CrowdBJ
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
GP 1.51 1.64 0359 0.611 28.0 30.5 439 97.1 3.37 4.70

DeepState  0.960 1.21 0.100  0.135 55.3 77.0 41.7 78.5 5.64 8.04
D3VAE 1.75 2.31 0.186  0.373 493 84.8 60.1 122.8 5.16 10.1
DiffSTG 0.90 1.13 0.066  0.103 41.8 69.4 311 63.8 3.68 6.63

TimeGrad  1.31 1.48 0.047  0.053 29.1 34.1 39.3 94.8 4.37 5.43

CSDI 0.94 120  0.044  0.075 18.2 31.6 38.8 69.6 2.71 5.51
TMDM 4.29 5.38 0.526  0.660 74.5 96.7 65.2 137.9 12.8 18.5
NPDiff 0.79 1.07  0.037 0.057 26.7 522 32.1 53.6 2.05 3.27

DYffusion  0.86 1.07 0.050  0.072 12.3 18.0 - - - -

CoST 0.74 096 0.033 0.051 15.1 25.6 29.7 51.9 1.92 3.04

et al.,[2021), DYffusion (Riihling Cachay et al.,[2023), TMDM (Li et al.,[2024), and NPDiff (Sheng
et al., [2025)). Detailed descriptions of each baseline are provided in Appendix [E.2]

Metrics. We evaluate performance using two deterministic metrics (MAE, RMSE) and three proba-
bilistic metrics (CRPS, QICE, IS). For QICE, we set Mg, = 10 bins following its original design (Han
et al., [2022), which offers a balanced trade-off between granularity and stability. For IS, we choose a
confidence level of 90% (i.e., o = 0.1) following common practice in spatiotemporal forecasting
tasks (Tashiro et al., |2021; |Rasul et al.,|2021)).

Experimental configuration. We define short-term forecasting as predicting the next 12 steps from
the previous 12 observations (Sheng et al., 2025; Wen et al., 2023)), and long-term forecasting as
predicting the next 64 steps from the previous 64 (Yuan et al., 2024; Jin et al., |2023b). As temporal
granularity varies across datasets, the actual durations differ. Full configurations are in Appendix [E.3]

5.1 SPATIOTEMPORAL PROBABILISTIC FORECASTING

Short-term forecasting. Table|l|reports probabilistic metrics, with additional results in Appendix
Table[6] CoST consistently outperforms baselines, achieving average improvements of 17.4% in
CRPS, 46.6% in QICE, and 16.5% in IS. This indicates superior distribution modeling and more
reliable prediction intervals. While not always best on every single metric, CoST remains competitive
across datasets. Deterministic results (Table[2] Appendix Table[7) show reductions of 7% in MAE
and 6.1% in RMSE, confirming that integration with a strong conditional mean estimator enhances
regular pattern capture. In contrast, TMDM underperforms other baselines, mainly because its time-
series—oriented design limits generalization to spatiotemporal data, and its focus on long sequences
weakens short-term prediction, as evidenced in Appendix Tables[§]and 0] Further experiments on the
ETThI and ETTh2 time-series datasets show notable performance gains (Appendix Table[TT).

Long-term forecasting. As shown in Appendix Table[8] CoST achieves substantial improvements
in long-term forecasting under probabilistic metrics, with an improvement of 15.0% and 70.4% in
terms of CRPS and QICE. Despite adopting a simple MLP architecture, CoST achieves higher overall
accuracy than CSDI, a Transformer-based model tailored for capturing long-range dependencies.
Furthermore, it provides significantly better training efficiency and inference speed, as detailed in
Section In addition, CoST performs well on deterministic metrics (Appendix Table[9), achieving
an average reduction of 9.0% in MAE and 11.0% in RMSE compared to the best-performing baseline.

Framework generalization. To demonstrate the generality of CoST, we instantiate it with four
representative spatiotemporal forecasting models: STID (Shao et al., 2022), STNorm (Deng et al.,
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Table 3: Performance of different deterministic backbone models within the CoST framework.
“Diffusion (w/o m)” denotes the results obtained using a single diffusion model.
Climate MobileNJ BikeDC
MAE RMSE CRPS QICE IS MAE RMSE CRPS QICE 1S MAE RMSE CRPS QICE IS
Diffussion (w/om) 1.070 1.361 0.030  0.030 6.58 0.195 0.6711 0.159 0.036 1.364  2.387 10.79 1.090  0.059 12.6
+iTransformer 0.818 1.088 0.023  0.018 4.83 0.122 0.207 0.123  0.021 0.815 0.526 223 0.454  0.035 3.82

Model

Reduction 23.6% 20.1% 233% 40.0% 26.6% 374% 69.2% 22.6% 41.7% 402% 78.0% 193% 58.3% 40.7% 69.7%
+ ConvLSTM 0.889  1.I51  0.027 0.024 554 0.137 0231 0.120 0.025 0913 0454 2.01 0443 0.037  6.07
Reduction 16.9% 154% 10.0% 20.0% 158% 29.7% 65.6% 24.5% 30.6% 33.1% 81.0% 81.4% 59.4% 37.3% 51.8%
+STNorm 0819  1.066 0.023 0.007 452 0.144 0276 0.123 0.016 0.825 0.600 2.71 0.500 0.029 3.74
Reduction 23.5% 21.7% 233% 76.7% 313% 262% 589% 22.6% 55.6% 39.5% 749% 149% 54.1% 50.8% 70.3%

2021)), ConvLSTM (Shi et al., 2015)), and iTransformer (Liu et al.). These models cover a diverse

set of deep learning architectures, including CNNs, RNNs, MLPs, and Transformers. As shown in
Table 3] CoST consistently enhances the performance of these backbones by effectively integrating
deterministic and probabilistic modeling. Compared to using a single diffusion model, CoST yields
more accurate predictions and better-calibrated uncertainty estimates, validating the framework’s
broad applicability and effectiveness.
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. .. (] S
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revealing elevated variance in the cen- Longitude

tral equatorial Pacific, especially near

0° latitude and 140°-130°W, where Figure 3: (a) and (b) show the ground-truth and predicted
sharp thermocline gradients and non- value of SST, and (c) displays the spatial distribution of
linear feedbacks make forecasting par- forecasting uncertainty.

ticularly challenging. These high-

uncertainty areas align with known regions of model divergence in climate science (McPhaden|
let all, [2006; [Cane] 2005} [Cao et al 2021), demonstrating that our method delivers both accurate
predictions and geophysically consistent uncertainty estimates.

5.2 ABLATION STUDY

We perform an ablation study to assess the contribution of each proposed module. Specifically, we
construct three model variants by progressively removing key components: (w/o s) removes the
scale-aware diffusion process; (w/o q) excludes the customized fluctuation scale as a prior; (w/o m)
removes the conditional mean predictor, relying solely on the diffusion model. Experiments on two
datasets (Appendix Figure[8) show that the deterministic predictor notably improves performance
by capturing regular spatiotemporal patterns, while also reducing the diffusion model’s complexity.
Adding the customized fluctuation scale further enhances accuracy, indicating its utility in providing
valuable fluctuation information across different spatial units. And the scale-aware diffusion process
enables the diffusion model to better utilize this condition.

5.3 QUALITATIVE ANALYSIS

Analysis of distribution alignment. As shown in Figure [d] the ground truth exhibits clear spa-
tiotemporal multi-modality. In Figured(a), three peaks likely correspond to different time points or
varying states at the same time. CoST accurately captures all three peaks, while CSDI only fits two,
showing CoST'’s superior multi-modal modeling. In Figure f{b), both models capture two peaks,
but CoST aligns better with the peak spacing in the true distribution, reflecting stronger temporal
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Figure 4: KDE plots of the MobileSH dataset for Figure 5: PICP comparison between our model
different regions: (a) Region 182, (b) Region 520. and CSDI on CrowdBM and MobileSH.

sensitivity. These strengths arise from CoST’s hybrid design: the diffusion component models
residual uncertainty to capture multi-modal traits, while the deterministic backbone learns regular
trends. See Appendix [E.5.T]for more analysis and results.

40
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alignment with the diagonal (black dashed line) interval. The dashed lines denote the median of
indicates better calibration. Our model consis- the predicted values for each model.

tently outperforms CSDI in this regard.

5.4 COMPUTATIONAL COST

We benchmark training and inference time (including 50 sampling iterations and pretraining for
our mean predictor) on the MobileSH dataset. As shown in Appendix Table[I0] CoST is markedly
more efficient than existing probabilistic models. The efficiency comes from modeling only the
residual distribution with a lightweight denoising network. In contrast, other baselines incur high
computational costs by modeling the full data distribution with complex networks, while our approach
is well-suited for time-sensitive applications such as mobile traffic prediction.

6 CONCLUSION

In this work, we highlight the importance of probabilistic forecasting for complex spatiotemporal
systems and propose CoST, a collaborative framework that integrates deterministic and diffusion
models. By decomposing data into a conditional mean and residuals, CoST bridges deterministic
and probabilistic modeling, accurately capturing regular patterns and uncertainties across diverse
spatiotemporal systems. Experiments on ten real-world datasets show that CoST outperforms state-of-
the-art methods by 25% on average. Our approach offers an effective solution for combining precise
pattern learning with uncertainty modeling in spatiotemporal forecasting.

Limitations and future work. CoST relies on a strong deterministic backbone, which may limit its
applicability in domains lacking mature models. Moreover, it has not yet been validated on complex
physical systems governed by PDEs or coupled dynamics. Future work will explore physics-informed
extensions, adaptive decomposition, and more generalizable architectures.
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REPRODUCIBILITY STATEMENT

We provide detailed experimental settings in Section [5|and Appendix [E] To facilitate the reproduction
of our results, the source code and datasets used in this work have been made publicly available in an
anonymous repository at: https://anonymous.4open.science/r/CoST_17116,
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A USAGE OF LLMs

In compliance with the stated policy, we report the use of a large language model (LLM) as a general-
purpose assistance tool in the writing of this paper. Its application was confined to copy-editing and
language polishing, such as correcting grammar and syntax. The LLM played no role in the research
ideation or the generation of the substantive content of this work.

B RELATED WORK

B.1 SPATIOTEMPORAL DETERMINISTIC FORECASTING.

Deterministic forecasting of spatiotemporal systems focuses on point estimation. These models
are typically trained with loss functions like MSE or MAE to learn the conditional mean E[y|x],
capturing regular patterns. Common deep learning architectures include MLP-based (Shao et al.,
2022; |Qin et al.l 2023} Zhang et al., 2023), CNN-based (Li et al., 2017} [Liu et al., [2018}; [Zhang
et al.;2017), and RNN-based (Bai et al.,[2019b; [Lin et al., [2020; Wang et al.|, 2017;2018) models,
valued for their efficiency. GNN-based methods (Bai et al.l 2019a}; 2020} |Geng et al.,[2019; Jin et al.}
2023a) capture spatial dependencies in graph-based data, while Transformer-based models (Chen
et al.;2022; 2021bf Ma et al.| [2024} |Yu et al.||2020; Boussif et al.,[2023) are effective at modeling
complex temporal dynamics.

B.2 SPATIOTEMPORAL PROBABILISTIC FORECASTING.

The core of probabilistic forecasting lies in modeling uncertainty, aiming to capture the full data
distribution (Yang et al.,|2024; |Tashiro et al., 2021). This is particularly suited for modeling the
stochastic nature of spatiotemporal systems. While early methods include classical Bayesian ap-
proaches like Gaussian Processes (GP) (Roberts et al.,[2013)) and influential deep learning models such
as DeepAR (Salinas et al.,|2020) and DeepStateSpace (Rangapuram et al.,|2018)), recent advances
have explored generative models such as GANs (Jin et al., 2022} Zhang et al., 2021}, VAEs (Chen
et all [2021a; De Miguel et al., [2022), and diffusion models (Chai et al., [2024} [Lin et al., [2024).
Diffusion models, in particular, have gained traction for their ability to model complex distributions
with stable training, yielding strong performance in spatiotemporal forecasting (Rasul et al., 2021}
Riihling Cachay et al., 2023 |Shen & Kwok, [2023} |Sheng et al., 2025).

C BACKGROUND

C.1 GLOSSARY

We summarize all notations and symbols used throughout the paper in Table 4]

C.2 SPATIOTEMPORAL DATA

Spatiotemporal data typically come in two forms: (i) Grid-based data, where the spatial dimension
V' can be expressed in a two-dimensional form as H x W, with H and W denoting height and
width, respectively. (ii) Graph-based data, where 1/ denotes the number of nodes in a spatial graph
G = (V,&,A), defined by its set of nodes V, the set of edges £ and the adjacency matrix A. Its
elements a;; show if there’s an edge between node ¢ and j in V, a;; = 1 when there’s an edge and
a;; = 0 otherwise.

D METHODOLOGY

D.1 ALGORITHM

The training and inference procedures of CoST are summarized in Algorithm [T]and Algorithm [2]
respectively.
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Table 4: Glossary of notations and symbols used in this paper.
Symbol Used for

G = (V,E,A) Graph structure where V is the node set, £ is the edge set, and A is the adjacency matrix.
x € RT*V*C  Spatiotemporal data.
The length of spatiotemporal series.
The number of spatial units.
The number of feature dimensions.
Batch size.
Prediction horizon.
Historical horizon.
The number of diffusion steps.
Height of the grid-based data.
Width of the grid-based data.
Customized fluctuation scale.
The variance tensor.
The random sign tensor.
Historical (conditional) term.
Predicted (target) term.
Noisy data at n-th diffusion step.
Mean.
Residual.
Gaussian noise.
K The set of indices for the selected FFT components.
{8}, The noise schedule in the diffusion process.
O, Oy an =1-3,, (_Yn:H::Nyz
Z10] The denoising network with parameter 6.
act Significance level for the prediction interval.
1 Indicator function, which takes the value 1 when a certain condition is true, and 0 when the condition is false.
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Algorithm 1 Training

1: Stage 1: Pretraining of Deterministic Model E,
2: repeat

3: Estimate the conditional mean Eq[x5*|x5°].

4 Update Ey using the following loss function:

L2 = ||Eolxt x5 — x|l

until The model has converged.

Stage 2: Training of Diffusion Model ¢

repeat
Initialize n ~ Uniform(1,..., N) and e ~ N(0, I).
Calculate the target r{® = x{* — Eg[x5*[x5°].
Calculate noisy targets r’” using Eq.
Update €4 using the following loss function:

_
YRR w

—

L) = ||e - eo(xie, nlx5)||2

12: until The model has converged.

E EXPERIMENTS

E.1 DATASETS

In our experiments, we evaluate the proposed method on ten real-world datasets across four domains:
climate, energy, communication systems, and urban systems. For climate forecasting, we train our
models on the simulated SST-CESM2 dataset and evaluate them on the observational SST-ERAS
dataset, using the first 30 years for validation and the remaining years for testing. The remaining
datasets are partitioned into training, validation, and test sets with a 6:2:2 ratio, and all datasets are
standardized during training.Table 5] provides a summary of the datasets. The details are as follows:

* Climate. We utilize two datasets for sea surface temperature (SST) prediction in the Nifio 3.4 region

(5°S-5°N, 170°W-120°W), which is widely used for monitoring El Nifio events: (i) SST-CESM2,
simulated SST data from the CESM2-FV2 model of the CMIP6 project, covering the period from
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Algorithm 2 Inference

1: Input: Context data x5°, customized fluctuation scale Q, trained diffusion model ¢y, trained
deterministic model [Eg

2: Output: Target data x5

3: Estimate the conditional mean Eg[x{*|x5°]

4: Sample ry frome ~ N(Q, 1)

5: forn = N to1ldo

6:  Estimate the noise e (1%, n|x5°)

7:  Calculate the pp(rt®, n|x5°) using Eq. (14)

8: Sample r!® ; using Eq.

9: end for
10: Return: x}* = Eg[x{*|x5°] + r§®

Table 5: The basic information of spatio-temporal data.

Dataset Location Type Temporal Period Spatial partition Interval
SST-CESM2  Global (Nifio 3.4) Simulated SST 1850-2014 1° x 1° Monthly
SST-ERAS5 Global (Nifio 3.4)  Reanalysis SST/U10/ V10 1940-2025 0.25° x 0.25° Monthly
SolarPower ~ China (a PV station) =~ GHI/ Weather / PV power  2024/03/01 - 2024/12/31 Station-level 15 min

TaxiBJ Beijing Taxi flow 2014/03/01 - 2014/06/30 32 x 32 Half an hour

BikeDC ‘Washington, D.C. Bike flow 2010/09/20 - 2010/10/20 20 x 20 Half an hour
MobileSH Shanghai Mobile traffic 2014/08/01 - 2014/08/21 32 x 28 One hour
MobileNJ Nanjing Mobile traffic 2021/02/02 - 2021/02/22 20 x 28 One hour
CrowdBJ Beijing Crowd flow 2018/01/01 - 2018/01/31 1010 One hour
CrowdBM Baltimore Crowd flow 2019/01/01 - 2019/05/31 403 One hour
Los-Speed Los Angeles Traffic speed 2012/03/01 - 2012/03/07 207 5 min

1850 to 2014, with a spatial resolution of 1° x 1°. (ii) SST-ERAS: reanalysis data from ERAS,
containing SST and 10-meter wind speed (U10/V10) variables from 1940 to 2025, with an original
spatial resolution of approximately 0.25° x 0.25°. All data are regridded to a 1° x 1° resolution
for consistency. The CESM2 data are used for training, while the first 30 years of ERAS are used
for validation and the remaining years for testing.

Energy. This dataset contains real-time meteorological measurements and photovoltaic (PV) power
output collected from a PV power station in China, spanning from March 1st to December 31st,
2024. The features include: total active power output of the PV grid-connection point (P), ambient
temperature, back panel temperature, dew point, relative humidity, atmospheric pressure, global
horizontal irradiance (GHI), diffuse and direct radiation, wind direction and wind speed. Our
forecasting task focuses on GHI, which is the key variable for solar power prediction. Due to data
privacy restrictions, the raw dataset cannot be publicly released.

Communication Systems. Mobile communication traffic datasets are collected from two major
cities in Shanghai and Nanjing, capturing the spatiotemporal dynamics of network usage patterns.

Urban Systems. We adopt five widely used public datasets representing various urban sensing
signals: (i) CrowdBJ and CrowdBM, crowd flow data from Beijing and Baltimore, respectively. (ii)
TaxiBJ, taxi trajectory-based traffic flow data from Beijing. (iii) BikeDC, bike-sharing demand data
from Washington D.C. (iv) Los-Speed, traffic speed data from the Los Angeles road network. These
datasets have been extensively used in spatiotemporal forecasting research and provide diverse
signals for evaluating model generality across cities and domains.

E.2 BASELINES
We provide a brief description of the baselines used in our experiments:

* GP (Gaussian Processes): A non-parametric time series forecasting method that models data as a
Gaussian process, offering uncertainty estimates and effective modeling of non-linear relationships.

* DeepState Rangapuram et al.| (2018): A deep learning framework for time series forecasting that
integrates state space models with neural networks, enabling efficient probabilistic predictions by
learning latent states and observation processes.
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* D3VAE (Li et al., 2022): Aims at short-period and noisy time series forecasting. It combines
generative modeling with a bidirectional variational auto-encoder, integrating diffusion, denoising,
and disentanglement.

* DiffSTG (Wen et al.,|2023): First applies diffusion models to spatiotemporal graph forecasting.
By combining STGNNs and diffusion models, it reduces prediction errors and improves uncertainty
modeling.

* TimeGrad (Rasul et al.,|2021): An autoregressive model based on diffusion models. It conducts
probabilistic forecasting for multivariate time series and performs well on real-world datasets.

* CSDI (Tashiro et al., 2021):Utilizes score-based diffusion models for time series imputation. It
can leverage the correlations of observed values and also shows remarkable results on prediction
tasks.

» DYffusion (Riihling Cachay et al., 2023): A training method for diffusion models in probabilistic
spatiotemporal forecasting. It combines data temporal dynamics with diffusion steps and performs
well in complex dynamics forecasting.

 TMDM (Li et al.,[2024): TMDM integrates transformers with diffusion models for probabilistic
time series forecasting, using transformer-based prior knowledge to enable accurate distribution
forecasting and uncertainty estimation.

» NPDiff (Sheng et al.,|2025): A general noise prior framework for mobile traffic prediction. It
uses the data dynamics to calculate noise priors for the denoising process and achieve effective
performance.

E.3 EXPERIMENTAL CONFIGURATION

In our experiment, for our model, we set the training maximum epoch for both the deterministic
model and the diffusion model to 50, with early stopping based on a patience of 5 for both models.
For the diffusion model, we set the validation set sampling number to 3, and the average metric
computed over these samples is used as the criterion for early stopping. For the baseline models,
we set the maximum training epoch to 100 and the early stopping patience also to 5. We set the
number of samples to 50 for computing the experimental results presented in the paper. For the
denoising network architecture, we adopt a lightweight variant of the MLP-based STID (Shao et al.|
2022). Specifically, we set the number of encoder layers to 8 and the embedding dimension to
128. The diffusion model employs a maximum of 50 diffusion steps, using a linear noise schedule
with #; = 0.0001 and Sy = 0.5. During training, we set the initial learning rate to 0.001, and
after 20 epochs, we adjust it to 4e-4. We use the Adam optimizer with a weight decay of le-6. All
experiments are conducted with fixed random seeds. Models with lower GPU memory demands are
run on NVIDIA TITAN Xp (12GB GDDR5X) and NVIDIA GeForce RTX 4090 (24GB GDDR6X)
GPUs under a Linux environment. For the DY ffusion (Riihling Cachay et al.| 2023) baseline, which
requires substantially more resources, training is performed on NVIDIA A100 (80GB HBM2e) and
A800 (40GB HBM2e).

E.4 GEOGRAPHIC EXTENT OF THE ENSO REGION

To provide geographic context for the SST case study presented in Section |3} Figure [/|illustrates the
global location and spatial extent of the selected region. The red box highlights the area from 4.5°S
to 4.5°N and 169.5°W to 120.5°W in the central-to-eastern equatorial Pacific, a region known for
strong ocean-atmosphere coupling and ENSO-related variability.
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Figure 7: Global map indicating the spatial extent of ENSO region (highlighted in yellow). The
region spans from 4.5°S to 4.5°N and 169.5°W to 120.5°W in the equatorial Pacific.

Table 6: Short-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DY ffusion is limited to grid-format data,
and “-” denotes results that are not applicable.

BikeDC MobileNJ CrowdBM Los-Speed
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS

GP 0494  0.120 6.69 0435 0.129 476 0.620 0.159 66.8 0.789 0.1579 61.7
DeepState  0.728  0.084 155 0.518 0.065 440 0.689 0.057 97.0 0.086 0.040 40.9
D3VAE 0.785 0.157 877 0565 0.096 6.03 0593 0.110 1364 0.119 0.089 90.5
DiffSTG ~ 0.692 0.157 8.08 0.291 0.071 3.11 0453 0.047 685 0.078 0.045 50.9
TimeGrad  0.469  0.130 5.65 0432 0.162 5.87 0240 0.085 469 0.031 0.098 20.8
CSDI 0.529 0.057 479 0.111 0.039 0.80 0.39 0.054 61.1 0.059 0.026 30.8
TMDM 232 0125 296 149 0126 875 346 0.124 2173 0897 0.126 834
NPDiff 0.442  0.066 7.11 0.128 0.133 222 0331 0119 91.2 0.057 0.023 30.5
DYffusion 0.573 0.079 646 0.196 0.080 1.80 - - - - - -

CoST 0.419 0.028 345 0.089 0.032 0.66 0256 0.027 37.8 0.056 0.023 319

Model

E.5 ADDITIONAL EXPERIMENTAL RESULTS

Table 7: Short-term forecasting results in terms of MAE and RMSE. Bold indicates the best perfor-
mance, while underlining denotes the second-best. DY ffusion is limited to grid-format data, and “-”
denotes results that are not applicable.

BikeDC MobileNJ CrowdBM Los-Speed

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
GP 0.941 1.74 0257 0.682 6.35 17.7 6.60 11.0
DeepState  1.98 3.81 0.582  0.827 139 232 6.50 9.23
D3VAE  0.871 3.59 0.580  1.135 11.0 24.7 8.28 11.9
DiffSTG  0.770  4.02 0.317  0.649 8.88 21.3 5.38 9.75
TimeGrad  0.843 1.07 0340 0.357 10.1 124 2.33 3.00
CSDI 0.592 310 0.129 0237 7.31 19.3 4.53 8.07
TMDM 2.44 4.11 3.27 4.10 72.9 94.8 9.42 13.9
NPDiff  0.435 190 0.123 0.175 542 13.7 4.07 7.64
DYffusion 0480 137 0222 0357 - - - -

CoST 0.492 176  0.102 0172 5.04 12.1 4.05 7.30

Model
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Figure 8: Ablation study on the CrowdBJ and CrowdBM comparing variants in terms of (a) CRPS
and (b) IS.

Table 10: Comparison of training and inference time on the MobileSH dataset.

Model Train Time Inference Time
D3VAE 3min 27s 2min 15s
DiffSTG 24min 16s 18min 38s

TimeGrad Smin 2min

CSDI 48min 40s 38min 49s

DyDiffusion 33h 3h
CoST 2min 50s

Table 8: Long-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DY ffusion is limited to grid-format data,
and “-” denotes results that are not applicable.

MobileSH Climate CrowdBJ CrowdBM Los-Speed
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS

GP 0537 0.112  7.13 0.08 0.146 9.18 0.660 0.143 194 0.622 0.153 765 0910 0.149 112.6
DeepState  0.707  0.066 0.924 0.031 0.018 6.09 0925 0073 424 102 0.080 1232 0.133 0.090 68.5
D3VAE 0.798 0.129 1.830 0.075 0.083 240 0.710 0.109 639 0.674 0.108 1523 0.138 0.101 113.2
DiffSTG 0374 0.107 0.923 0.027 0.077 790 0370 0.094 313 0400 0073 67.1 0.124 0.080 104.6
TimeGrad 0.245 0.075 0408 0.041 0.101 142 0371 0.073 324 0237 0.049 339 0.192 0.081 9838
CSDI 0.158 0.045 0.216 0.036 0.073 6.80 0229 0.038 12.0 0.235 0.052 33.7 0.134 0.090 59.2
TMDM 0799 0.127 16.1 0.093 0.115 736 0751 0.127 775 0346 0.125 187.7 0904 0.121 837.0
NPDiff 0204 0.102 0611 0.109 0.115 413 0288 0.114 336 0331 0.111 908 1366 0.126 950.4
DYffusion 0.308 0.086 0.550 0.030 0.147 15.2 - - - - - - - - -

CoST 0.158 0.016 0218 0.024 0.011 4.87 0217 0.011 115 0.235 0.009 31.2 0.089 0.040 64.6

Model

Table 9: Long-term forecasting results in terms of MAE and RMSE. Bold indicates the best perfor-
mance, while underlining denotes the second-best. DY ffusion is limited to grid-format data, and “-”
denotes results that are not applicable.

MobileSH SST CrowdBJ CrowdBM Los-Speed
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GP 0399  0.627 1.52 1.65 252 3.75 7.37 20.7 6.69 11.2
DeepState  0.160  0.199 1.13 1.40 8.53 11.0 21.5 31.9 10.1 14.2
D3VAE 0207 0.392 2.39 3.13 5.63 11.4 12.4 28.2 9.43 13.3

Model

DiffSTG ~ 0.078  0.125  0.94 1.19 3.04 6.37 7.59 18.8 1.77 14.2
TimeGrad  0.058  0.072 1.30 1.64 3.48 4.83 5.25 7.40 18.2 22.3
CSDI 0.035  0.057 1.31 1.63 1.99 3.64 4.64 12.4 11.3 15.0

TMDM  0.519  6.50 1.55 1.73 3.54 8.32 15.2 29.0 342 43.1
NPDiff ~ 0.037  0.057 1.91 2.82 2.06 3.28 5.44 13.8 46.0 58.3
DYffusion 0.047 0.066  0.85 1.06 - - - - - -

CoST 0.035 0.053  0.86 113 1.92 3.05 4.74 11.2 5.94 10.8
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(a) PIT Histogram Comparison

(b) Empirical CDF Comparison
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Figure 9: PIT analysis on the MobileSH dataset: (a) PIT histogram and (b) PIT empirical CDF.

Table 11: Long-term forecasting performance comparison of TMDM on ETTh1 and ETTh2 Datasets.

EETh1 EETh2
Model
CRPS QICE IS CRPS QICE IS
TMDM 0.395 0.041 48 0.196 0.018 22
CoST 0311 0.007 1.6 0.109 0.007 0.78

E.5.1 ANALYSIS OF DISTRIBUTION ALIGNMENT.

Additionally, we present the PIT (Probability Integral Transform) histogram in Figure [9] (a) and
the PIT empirical cumulative distribution function (CDF) in Figure [9| (b) to visually reflect the
alignment of the full distribution. Ideally, the true values’ quantiles in the predictive distribution
should follow a uniform distribution, corresponding to the dashed line in Figure[9](a). In the case
of perfect calibration, the PIT CDF should closely resemble the yellow diagonal line. Clearly, our

model outperforms CSDI.
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Figure 10: Visualizations of predictive uncertainty for both CSDI and CoST on the CrowdBJ dataset.
The shaded regions represent the 90% confidence interval. The dashed lines denote the median of the

predicted values for each model.
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