
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COLLABORATIVE DETERMINISTIC–PROBABILISTIC
FORECASTING FOR DIVERSE SPATIOTEMPORAL SYS-
TEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Probabilistic forecasting is crucial for real-world spatiotemporal systems, such as
climate, energy, and urban environments, where quantifying uncertainty is essential
for informed, risk-aware decision-making. While diffusion models have shown
promise in capturing complex data distributions, their application to spatiotem-
poral forecasting remains limited due to complex spatiotemporal dynamics and
high computational demands. we propose CoST, a general forecasting framework
that Collaborates deterministic and diffusion models for diverse SpatioTemporal
systems. CoST formulates a mean-residual decomposition strategy: it leverages a
powerful deterministic model to capture the conditional mean and a lightweight
diffusion model to learn residual uncertainties. This collaborative formulation sim-
plifies learning objectives, improves accuracy and efficiency, and generalizes across
diverse spatiotemporal systems. To address spatial heterogeneity, we further design
a scale-aware diffusion mechanism to guide the diffusion process. Extensive exper-
iments across ten real-world datasets from climate, energy, communication, and ur-
ban systems show that CoST achieves 25% performance gains over state-of-the-art
baselines, while significantly reducing computational cost. Code and datasets are
available at: https://anonymous.4open.science/r/CoST_17116.

1 INTRODUCTION

Real-world spatiotemporal systems underpin many critical domains, such as climate science, energy
systems, communication networks, and urban environments. Accurate forecasting of the dynamics
is essential for planning, resource allocation, and risk management (Xie et al., 2020; Boussif et al.,
2023; Xu et al., 2021; Sheng et al., 2025). Existing approaches fall into two categories: deterministic
and probabilistic forecasting. Deterministic methods estimate the conditional mean by minimizing
MAE or MSE losses to capture spatiotemporal patterns (Zhang et al., 2017; Ma et al., 2024; Yuan
et al., 2024). In contrast, probabilistic methods aim to learn the full predictive distribution of observed
data (Rasul et al., 2021; Li et al., 2024; Yuan & Qiao, 2024), enabling uncertainty quantification to
support forecasting. This is particularly important in many domains, for example, in climate modeling
and renewable energy, where assessing prediction reliability is essential for risk-aware decisions such
as disaster preparedness and energy grid management (Palmer, 2012; Vargas Zeppetello et al., 2022).

In this paper, we highlight the critical role of probabilistic forecasting in capturing uncertainty
and improving the reliability of spatiotemporal predictions. However, it is non-trivial due to three
challenges. First, these systems exhibit complex evolving dynamics, characterized by periodic trends,
seasonal variations, and stochastic fluctuations (Cao et al., 2021; Yuan & Qiao, 2024). Second, these
systems involve intricate spatiotemporal interactions and nonlinear dependencies (Jiang et al., 2017;
Yuan et al., 2024). Third, real-world applications require both computationally efficient and scalable
models (Palmer, 2014; Sheng et al., 2025). Recently, diffusion models have been widely adopted for
probabilistic forecasting (Wen et al., 2023; Yuan & Qiao, 2024; Rasul et al., 2021; Sheng et al., 2025).
Compared with existing approaches such as Generative Adversarial Networks (GANs) (Goodfellow
et al., 2020; Gao et al., 2022) and Variational Autoencoders (VAEs) (Kingma, 2013; Li et al., 2022),
diffusion models offer superior capability in capturing complex data distributions while ensuring
stable training (Ho et al., 2020; Tashiro et al., 2021; Ho et al., 2022). These advantages make
diffusion models a promising alternative. However, originally developed for image generation, they
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face inherent limitations in capturing temporal correlations in sequential data, as evidenced in video
generation (Zhang et al., 2024; Qiu et al., 2023; Chang et al., 2024; Ge et al., 2023) and time series
forecasting (Yuan & Qiao, 2024; Rühling Cachay et al., 2023; Shen & Kwok, 2023).

Existing Spatiotemporal Forecasting 
Models

Deterministic 
Model

Diffusion
Model

Deterministic 
Model

Diffusion
Model

Our Mean-Residual Decomposition
Framework

Deterministic Probabilistic

Figure 1: Comparison of existing models with our
mean-residual decomposition framework.

To address this issue, recent efforts have ex-
plored incorporating temporal correlations as
conditional inputs to guide the diffusion pro-
cess (Rasul et al., 2021; Shen & Kwok, 2023;
Wen et al., 2023), or injecting temporal priors
into the noised data to explicitly model temporal
correlations across time steps (Li et al., 2024;
Sheng et al., 2025; Yuan & Qiao, 2024). While
these approaches improve temporal modeling,
they remain constrained by the inherent limita-
tions of the diffusion framework (Li et al., 2024;
Rühling Cachay et al., 2023). In contrast, we
introduce a new perspective: rather than relying
solely on diffusion models to capture the full
data distribution, we propose a collaborative approach that combines a deterministic model and a
diffusion model, leveraging their complementary strengths for probabilistic forecasting. Our design of-
fers two key advantages. First, by leveraging powerful deterministic models to predict the conditional
mean, it effectively captures the primary spatiotemporal patterns and benefits from advancements
in established architectures. Second, instead of requiring the diffusion model to learn the full data
distribution from scratch, we employ it to model the residuals, focusing its capacity on capturing
uncertainty beyond the mean. This collaborative framework simplifies the learning objectives for
each component and enhances both predictive accuracy and probabilistic expressiveness.

Building on this insight, we propose CoST, a general forecasting framework that Collaborates
deterministic and diffusion models for a wide range of SpatioTemporal systems. As illustrated in
Figure 1, we first leverage an advanced deterministic spatiotemporal forecasting model to estimate
the conditional mean E[y|x], effectively capturing the regular patterns. Based on this, we model the
residual distribution p(r|x) = p((y − E[y|x])|x) using a diffusion model, which complements the
deterministic forecasting with uncertainty quantification. Since the diffusion model focuses solely
on residuals, it allows us to adopt a lightweight denoising network and mitigate the computational
overhead associated with multi-step diffusion processes. To address spatial heterogeneity, we quantify
differences across spatial units and introduce a scale-aware diffusion mechanism. More importantly,
we propose a comprehensive evaluation protocol for spatiotemporal probabilistic forecasting by
incorporating metrics such as QICE and IS, rather than relying solely on traditional measures like
CRPS, MAE, and RMSE. In summary, our main contributions are as follows:

• We highlight the importance of probabilistic forecasting for complex spatiotemporal systems
and introduce a novel perspective that integrates deterministic and probabilistic modeling in a
collaborative framework.

• We propose CoST, a mean-residual decomposition approach that employs a deterministic model
to estimate the conditional mean and a diffusion model to capture the residual distribution. We
further design a scale-aware diffusion mechanism to address spatial heterogeneity. CoST is broadly
applicable across a wide range of critical real-world spatiotemporal systems.

• Extensive experiments on ten real-world datasets spanning climate science, energy systems, com-
munication networks, and urban environments show that CoST consistently outperforms state-of-
the-art baselines on both deterministic and probabilistic metrics, achieving an average improvement
of 25% while offering notable gains in computational efficiency.

2 RELATED WORK

We have provided definitions and related work on spatiotemporal deterministic forecasting and
probabilistic forecasting in Appendix B.

Diffusion-based spatiotemporal probabilistic forecasting. Most diffusion-based forecasting meth-
ods formulate the task as conditional generation without explicitly modeling temporal dynamics,
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which hinders the generation of temporally coherent sequences (Tashiro et al., 2021; Gao et al.,
2023; Wen et al., 2023; Rühling Cachay et al., 2023). Moreover, the progressive corruption of
time series during diffusion often distorts key patterns like long-term trends and periodicity, making
temporal recovery difficult (Yuan & Qiao, 2024; Liu et al., 2023). To address this, methods such as
TimeGrad (Rasul et al., 2021) and TimeDiff (Shen & Kwok, 2023) incorporate temporal embeddings
as conditional inputs to enhance temporal awareness. Other approaches like NPDiff (Sheng et al.,
2025) and Diffusion-TS (Yuan & Qiao, 2024) inject temporal priors into the diffusion process to
better preserve temporal dynamics. More recently, DYffusion (Rühling Cachay et al., 2023) redefines
the denoising process to explicitly model temporal transitions at each diffusion step. Unlike prior
methods, we avoid using diffusion to model temporal dynamics. Instead, we decouple forecasting
into deterministic mean prediction and residual uncertainty estimation, allowing the diffusion model
to focus exclusively on modeling the residual distribution.

Hybrid Deterministic and Diffusion-based Forecasting Models. A promising recent trend involves
hybridizing deterministic and diffusion models to achieve better results (Mardani et al., 2023; Gong
et al., 2024; Li et al., 2024; Yu et al., 2024). For instance, CorrDiff (Mardani et al., 2023) refines the
output of a deterministic UNet using a diffusion model for high-resolution atmospheric downscaling.
Similarly, CasCast (Gong et al., 2024) adopts a cascaded pipeline where the coarse global prediction
from a deterministic model guides a latent diffusion model to generate a refined full future state.
In time series forecasting, TMDM (Li et al., 2024) conditions its diffusion process on the output
of a transformer model to better learn the full data distribution. DiffCast (Yu et al., 2024) takes a
coupled, end-to-end training approach for precipitation nowcasting, jointly optimizing a deterministic
backbone with a diffusion model. In contrast, our approach, CoST, introduces a two-stage mean-
residual decomposition strategy that distinctly separates mean prediction and residual distribution
modeling. More importantly, while prior methods are typically tailored to a single domain, CoST
is designed as a general framework that incorporates spatiotemporal considerations and residual
heterogeneity, making it broadly applicable across diverse spatiotemporal systems.

3 PRELIMINARIES

We provide a summary of notations used in this paper in Appendix C.1 for clarity.

Spatiotemporal systems. Spatiotemporal systems underpin many domains such as climate science,
energy, communication networks, and urban environments. The data recording spatiotemporal
dynamics are typically represented as a tensor x ∈ RT×V×C , where T , V , and C denote the
temporal, spatial, and feature dimensions, respectively. Depending on the spatial structure, the data
can be organized as grid-structured (V = H×W ) or graph-structured (where V represents the set of
nodes). Given a historical context xco = xt−M+1:t of length M , the goal is to predict future targets
xta = xt+1:t+P over a horizon P using a model F .

Conditional diffusion models. The diffusion-based forecasting includes a forward process and a
reverse process. In the forward process, noise is added incrementally to the target data xta

0 , gradually
transforming the data distribution into a standard Gaussian distribution N (0, I). At any diffusion
step, the corrupted target data can be computed using the one-step forward equation:

xta
n =

√
ᾱnx

ta
0 +

√
1− ᾱnϵ, ϵ ∼ N (0, I), (1)

where ᾱn =
∏n

i=1 αi and αn = 1− βn. In the reverse process, prediction begins by first sampling
xta
N from the standard Gaussian distribution N (0, I), followed by a denoising procedure through the

following Markov process:

pθ(x
ta
0:N ) := p(xta

N )

N∏
n=1

pθ(x
ta
n−1|xta

n ,xco
0 ),

pθ(x
ta
n−1|xta

n ) := N (xta
n−1;µθ(x

ta
n , n|xco

0 ),Σθ(x
ta
n , n)),

µθ(x
ta
n , n|xco

0 ) =
1√
ᾱn

(
xta
n − βn√

1− ᾱn
ϵθ(x

ta
n , n|xco

0 )

) (2)

where the variance Σθ(x
ta
n , n) = 1−ᾱn−1

1−ᾱn
βn, and ϵθ(x

ta
n , n|xco

0 ) is predicted by the denoising
network trained by the loss function below:

L(θ) = En,x0,ϵ

[∥∥ϵ− ϵθ(x
ta
n , n|xco

0 )
∥∥2
2

]
. (3)
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(a) Pretrain of the Deterministic Model

Deterministic
Model

(b) Customized Fluctuation Scale: 

Grid Data

Graph Data

Repeat

Random 

Deterministic
Model

Forward Process:

Denoising Process:

Scale-aware Diffusion Model

(c) Mean-Residual Decomposition Framework

Figure 2: Overview of CoST: (a) Pretraining of the deterministic model; (b) Computation of the
customized fluctuation scale; (c) Overall framework of the mean-residual decomposition.
Evaluations of probabilistic forecasting. We argue that probabilistic forecasting should be assessed
from two key perspectives: Data Distribution—the predicted distribution should match the empirical
distribution, and Prediction Usability—prediction intervals should achieve high coverage while
remaining sharp. While metrics like CRPS, MAE and RMSE are widely used, they fail to assess: (i)
the accuracy of quantile-wise coverage; (ii) whether the interval width reflects true uncertainty. To
address this, we introduce Quantile Interval Coverage Error (QICE) (Han et al., 2022) and Interval
Score (IS) (Gneiting & Raftery, 2007) as complementary metrics.

(i) QICE measures the mean absolute deviation between the empirical and expected proportions of
ground-truth values falling into each of equal-sized quantile intervals. QICE evaluates how well the
predicted distribution aligns with the expected coverage across quantiles, which is defined as follows:

QICE :=
1

MQIs

MQIs∑
m=1

∣∣∣∣rm − 1

MQIs

∣∣∣∣ , rm =
1

N

N∑
n=1

1yn≥ŷlowm
n

· 1
yn≤ŷ

highm
n

, (4)

where ŷlowm
n and ŷ

highm
n denote the bounds of the m-th quantile interval for yn. Ideally, each QI

should contain 1/MQIs of the observations, yielding a QICE of 0. Lower QICE indicates better
alignment between predicted and true distributions.

(ii) IS evaluates prediction interval (PI) quality by jointly accounting for sharpness and empirical
coverage, and is defined as:

IS :=
1

N

N∑
n=1

[
(uαCI

n − lαCI
n ) +

2

αCI
(lαCI
n − yn)1yn<l

αCI
n

+
2

αCI
(yn − uαCI

n )1yn>u
αCI
n

]
,

(5)
where uαCI

n and lαCI
n are the upper and lower bounds of the central prediction interval for the n-th

data point, derived from the corresponding predictive quantiles. A narrower interval improves the
score, while missed coverage incurs a penalty scaled by αCI . Lower IS indicates better performance.

4 METHODOLOGY

In this section, we propose CoST, a unified framework that combines the strengths of deterministic
and diffusion models. Specifically, we first train a deterministic model to predict the conditional
mean, capturing the regular spatiotemporal patterns. Then, guided by a customized fluctuation scale,
we employ a scale-aware diffusion model to learn the residual distribution, enabling fine-grained
uncertainty modeling. An overview of the CoST architecture is shown in Figure 2.

4.1 THEORETICAL ANALYSIS OF MEAN-RESIDUAL DECOMPOSITION

Current diffusion-based probabilistic forecasting approaches typically employ a single diffusion model
to capture the full distribution of data, incorporating both the regular spatiotemporal patterns and the
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random fluctuations. However, jointly modeling these components remains challenging (Yuan & Qiao,
2024). Inspired by Mardani et al. (2023) and the Reynolds decomposition in fluid dynamics (Pope,
2001), we propose to divide probabilistic forecasting into two parts: predicting the conditional mean
and modeling the residual distribution. The spatiotemporal data xta can therefore be expressed as:

xta = E[xta|xco]︸ ︷︷ ︸
:=µ(Deterministic)

+(xta − E[xta|xco])︸ ︷︷ ︸
:=r(Diffusion)

, (6)

where µ is the conditional mean representing the regular patterns, and r is the residual representing
the random variations. If the deterministic model approximates the conditional mean accurately,
the expected residual becomes negligible, i.e. E[r|xco] ≈ 0, and we can obtain that var(r|xco) =
var(xta|xco). Based on the law of total variance (Bertsekas & Tsitsiklis, 2008), we can express the
variance of the target data and residuals as:

var(r) = E[var(r|xco)] + var(E[r|xco])︸ ︷︷ ︸
=0

, var(xta) = E[var(xta|xco)] + var(E[xta|xco])︸ ︷︷ ︸
≥0

. (7)

Due to var(r|xco) = var(xta|xco), we have var(r) ≤ var(xta). Moreover, the highly dynamic
nature of the spatiotemporal system results in a larger var(E[xta|xco]), which consequently makes
var(r) smaller compared to var(xta). Our core idea is that if a deterministic model can accurately
predict the conditional mean, that is, µ ≈ Eθ[x

ta|x], then the diffusion model can be dedicated solely
to learning the simpler residual distribution. This design avoids the challenge diffusion models face
in modeling complex spatiotemporal dynamics, while fully exploiting their strength in uncertainty
estimation. By collaborating high-performing deterministic architectures and diffusion models, our
method effectively captures regular dynamics and models uncertainty via residual learning.

4.2 MEAN PREDICTION VIA DETERMINISTIC MODEL

To capture the conditional mean Eθ[x
ta|xco], our framework leverages existing high-performance

deterministic architectures, which are designed to capture complex spatiotemporal dynamics effi-
ciently. In our main experiments, we use the STID (Shao et al., 2022) model as the backbone for
mean prediction, and also validate our framework with ConvLSTM (Shi et al., 2015), STNorm (Deng
et al., 2021), and iTransformer (Liu et al.) to ensure its generality ( See Section 5.1). In the first stage
of training, we pretrain the deterministic model for 50 epochs using historical conditional inputs xco

to output the mean estimate Eθ[x
ta|xco]. The model is trained with the standard L2 loss:

L2 =
∥∥Eθ[x

ta|xco]− xta
∥∥2
2
. (8)

4.3 RESIDUAL LEARNING VIA DIFFUSION MODEL

The residual distribution of spatiotemporal data is not independently and identically distributed
(i.i.d.) nor does it follow a fixed distribution, such as N (0, σ). Instead, it often exhibits complex
spatiotemporal dependence and heterogeneity. We use the diffusion model to focus on learning
the distribution of residual rta = xta − Eθ[x

ta|xco]. Accordingly, the target data xta for diffusion
models in Eqs. equation 1, equation 2, and equation 3 is replaced by rta. We incorporate timestamp
information as a condition in the denoising process and concatenate the context data xco

0 with noised
residual rtan as input to capture real-time fluctuations. Notably, no noise is added to xco

0 during
diffusion training or inference. To model the spatial patterns of the residuals, we propose a scale-
aware diffusion process to further distinguish the heterogeneity for different spatial units. In this
section, we detail the calculation of Q and how it is integrated into the scale-aware diffusion process.

(i) Customized fluctuation scale. Specifically, we apply the Fast Fourier Transform (FFT) to
spatiotemporal sequences in the training set to quantify fluctuation levels in different spatial units and
use the custom scale Q as input to account for spatial heterogeneity in residual. Specifically, we first
employ FFT to extract the fluctuation components for each spatial unit within the training set. The
detailed steps are as follows:
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Ak = |FFT(x)k| , ϕk = ϕ (FFT(x)k) , Amax = max
k∈{1,··· ,⌊L

2 ⌋+1}
Ak,

K =

{
k ∈

{
1, · · · ,

⌊
L

2

⌋
+ 1

}
: Ak < 0.1×Amax

}
,

xr[i] =
∑
k∈K

Ak

[
cos (2πfki+ ϕk) + cos

(
2πf̄ki+ ϕ̄k

) ]
,

(9)

where Ak, ϕk reprent the amplitude and phase of the k−th frequency component. L is the temporal
length of the training set. Amax is the maximum amplitude among the components, obtained using
the max operator. K represents the set of indices for the selected residual components. fk is the
frequency of the k-th component. f̄k, ϕ̄k represent the conjugate components. xr ref to the extracted
residual component of the training set. We then compute the variance σ2

v of the residual sequence for
each location v and expand it to match the shape as rta0 ∈ RB×V×P , where B represents the batch
size. And we can get the variance tensor M:

Mb,v,p = σ2
v , ∀b ∈ {1, · · · , B}, ∀v ∈ {1, · · · , V }, ∀p ∈ {1, · · · , P}. (10)

The residual fluctuations are bidirectional, encompassing both positive and negative variations, so
we generate a random sign tensor S ∈ RB×V×P for M, where each element Sb,v,p of S is sampled
from a Bernoulli distribution with p = 0.5. The customized fluctuation scale Q is computed as:

Qb,v,p = Sb,v,p ×Mb,v,p, ∀b ∈ {1, · · · , B}, ∀v ∈ {1, · · · , V }, ∀p ∈ {1, · · · , P}. (11)

Then Q is used as the input of the denoising network.

(ii) Scale-aware diffusion process. The vanilla diffusion models assume a shared prior distribution
N (0, I) across all spatial locations, failing to capture spatial heterogeneity. To further model such
differences, we adopt the technique proposed by Han et al. (2022) to make the residual learning
location-specific conditioned on Q. Specifically, we redefine the noise distribution at the endpoint of
the diffusion process as follows:

p(rtaN ) = N (Q, I), (12)
Accordingly, the Eq (1) in the forward process is rewritten as:

rtan =
√
ᾱnr

ta
0 + (1−

√
ᾱn)Q+

√
1− ᾱnϵ, ϵ ∼ N (0, I). (13)

And in the denoising process, we sample rtaN from N (Q, I), and denoise it use Eq (2), the computation
of µθ(r

ta
n , n|xco

0 ) in Eq (2) is modified as:

µθ(r
ta
n , n|xco

0 ) =
1√
ᾱn

(
rtan − βn√

1− ᾱn
ϵθ(r

ta
n , n|xco

0 )

)
+ (1− 1√

ᾱn
)Q. (14)

This modification allows the diffusion process to be conditioned on location-specific priors Q,
enhancing its ability to model spatial heterogeneity in uncertainty.

4.4 TRAINING AND INFERENCE

We adopt a two-stage training procedure: first pretraining a deterministic model to predict the
conditional mean, then training a diffusion model to capture the residual distribution (Algorithm 1).
During inference, the deterministic model provides the mean prediction, while the diffusion model
estimates residuals; their outputs are combined to form the final forecast (Algorithm 2).

5 EXPERIMENTS

Datasets. We evaluate our method on ten datasets spanning four domains, including climate (SST-
CESM2 and SST-ERA5), energy (SolarPower), communication (MobileNJ and MobileSH), and
urban systems (CrowdBJ, CrowdBM, TaxiBJ, BikeDC and Los-Speed), each featuring distinct
spatiotemporal characteristics. Detailed information on the datasets can be found in Appendix E.1.

Baselines. We compare against nine representative state-of-the-art baselines commonly adopted in
spatiotemporal modeling, including: Gaussian Process (GP), DeepState (Rangapuram et al., 2018),
D3VAE (Li et al., 2022), DiffSTG (Wen et al., 2023), TimeGrad (Rasul et al., 2021), CSDI (Tashiro
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Table 1: Short-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DYffusion is limited to grid-format data,
and “-” denotes results that are not applicable.

Model Climate MobileSH TaxiBJ SolarPower CrowdBJ
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS

GP 0.083 0.158 9.98 0.495 0.120 6.90 0.217 0.137 258.9 0.732 0.222 769.0 0.601 0.152 17.1
DeepState 0.027 0.010 5.05 0.441 0.043 0.651 0.384 0.050 470.23 0.654 0.097 656.8 0.630 0.054 34.7
D3VAE 0.053 0.071 15.8 0.856 0.105 1.73 0.433 0.160 985.7 0.475 0.083 731.1 0.668 0.099 53.6
DiffSTG 0.026 0.068 7.42 0.303 0.078 0.526 0.299 0.074 416.5 0.213 0.068 240.6 0.436 0.089 32.1

TimeGrad 0.042 0.147 16.0 0.489 0.143 0.759 0.170 0.102 213.2 1.000 0.128 781.7 0.385 0.113 48.6
CSDI 0.027 0.019 5.18 0.200 0.052 0.295 0.122 0.048 121.8 0.267 0.050 221.6 0.306 0.028 16.4

TMDM 0.198 0.127 17.4 1.81 0.126 14.1 0.493 0.113 961.0 0.845 0.124 992.7 1.48 0.127 77.4
NPDiff 0.022 0.031 4.24 0.201 0.106 0.627 0.222 0.112 474.1 0.209 0.020 175.3 0.287 0.120 34.5

DYffusion 0.020 0.123 12.4 0.230 0.096 0.573 0.084 0.054 99.5 - - - - - -

CoST 0.021 0.009 4.04 0.147 0.014 0.215 0.100 0.023 95.3 0.208 0.019 192.1 0.215 0.014 11.5

Table 2: Short-term forecasting results in terms of MAE and RMSE.
Model Climate MobileSH TaxiBJ SolarPower CrowdBJ

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
GP 1.51 1.64 0.359 0.611 28.0 30.5 43.9 97.1 3.37 4.70

DeepState 0.960 1.21 0.100 0.135 55.3 77.0 41.7 78.5 5.64 8.04
D3VAE 1.75 2.31 0.186 0.373 49.3 84.8 60.1 122.8 5.16 10.1
DiffSTG 0.90 1.13 0.066 0.103 41.8 69.4 31.1 63.8 3.68 6.63

TimeGrad 1.31 1.48 0.047 0.053 29.1 34.1 39.3 94.8 4.37 5.43
CSDI 0.94 1.20 0.044 0.075 18.2 31.6 38.8 69.6 2.71 5.51

TMDM 4.29 5.38 0.526 0.660 74.5 96.7 65.2 137.9 12.8 18.5
NPDiff 0.79 1.07 0.037 0.057 26.7 52.2 32.1 53.6 2.05 3.27

DYffusion 0.86 1.07 0.050 0.072 12.3 18.0 - - - -

CoST 0.74 0.96 0.033 0.051 15.1 25.6 29.7 51.9 1.92 3.04

et al., 2021), DYffusion (Rühling Cachay et al., 2023), TMDM (Li et al., 2024), and NPDiff (Sheng
et al., 2025). Detailed descriptions of each baseline are provided in Appendix E.2.

Metrics. We evaluate performance using two deterministic metrics (MAE, RMSE) and three proba-
bilistic metrics (CRPS, QICE, IS). For QICE, we set MQIs = 10 bins following its original design (Han
et al., 2022), which offers a balanced trade-off between granularity and stability. For IS, we choose a
confidence level of 90% (i.e., αCI = 0.1) following common practice in spatiotemporal forecasting
tasks (Tashiro et al., 2021; Rasul et al., 2021).

Experimental configuration. We define short-term forecasting as predicting the next 12 steps from
the previous 12 observations (Sheng et al., 2025; Wen et al., 2023), and long-term forecasting as
predicting the next 64 steps from the previous 64 (Yuan et al., 2024; Jin et al., 2023b). As temporal
granularity varies across datasets, the actual durations differ. Full configurations are in Appendix E.3.

5.1 SPATIOTEMPORAL PROBABILISTIC FORECASTING

Short-term forecasting. Table 1 reports probabilistic metrics, with additional results in Appendix
Table 6. CoST consistently outperforms baselines, achieving average improvements of 17.4% in
CRPS, 46.6% in QICE, and 16.5% in IS. This indicates superior distribution modeling and more
reliable prediction intervals. While not always best on every single metric, CoST remains competitive
across datasets. Deterministic results (Table 2, Appendix Table 7) show reductions of 7% in MAE
and 6.1% in RMSE, confirming that integration with a strong conditional mean estimator enhances
regular pattern capture. In contrast, TMDM underperforms other baselines, mainly because its time-
series–oriented design limits generalization to spatiotemporal data, and its focus on long sequences
weakens short-term prediction, as evidenced in Appendix Tables 8 and 9. Further experiments on the
ETTh1 and ETTh2 time-series datasets show notable performance gains (Appendix Table 11).

Long-term forecasting. As shown in Appendix Table 8, CoST achieves substantial improvements
in long-term forecasting under probabilistic metrics, with an improvement of 15.0% and 70.4% in
terms of CRPS and QICE. Despite adopting a simple MLP architecture, CoST achieves higher overall
accuracy than CSDI, a Transformer-based model tailored for capturing long-range dependencies.
Furthermore, it provides significantly better training efficiency and inference speed, as detailed in
Section 5.4. In addition, CoST performs well on deterministic metrics (Appendix Table 9), achieving
an average reduction of 9.0% in MAE and 11.0% in RMSE compared to the best-performing baseline.

Framework generalization. To demonstrate the generality of CoST, we instantiate it with four
representative spatiotemporal forecasting models: STID (Shao et al., 2022), STNorm (Deng et al.,
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Table 3: Performance of different deterministic backbone models within the CoST framework.
“Diffusion (w/o m)” denotes the results obtained using a single diffusion model.

Model Climate MobileNJ BikeDC
MAE RMSE CRPS QICE IS MAE RMSE CRPS QICE IS MAE RMSE CRPS QICE IS

Diffussion (w/o m) 1.070 1.361 0.030 0.030 6.58 0.195 0.6711 0.159 0.036 1.364 2.387 10.79 1.090 0.059 12.6

+iTransformer 0.818 1.088 0.023 0.018 4.83 0.122 0.207 0.123 0.021 0.815 0.526 2.23 0.454 0.035 3.82
Reduction 23.6% 20.1% 23.3% 40.0% 26.6% 37.4% 69.2% 22.6% 41.7% 40.2% 78.0% 79.3% 58.3% 40.7% 69.7%

+ ConvLSTM 0.889 1.151 0.027 0.024 5.54 0.137 0.231 0.120 0.025 0.913 0.454 2.01 0.443 0.037 6.07
Reduction 16.9% 15.4% 10.0% 20.0% 15.8% 29.7% 65.6% 24.5% 30.6% 33.1% 81.0% 81.4% 59.4% 37.3% 51.8%

+STNorm 0.819 1.066 0.023 0.007 4.52 0.144 0.276 0.123 0.016 0.825 0.600 2.71 0.500 0.029 3.74
Reduction 23.5% 21.7% 23.3% 76.7% 31.3% 26.2% 58.9% 22.6% 55.6% 39.5% 74.9% 74.9% 54.1% 50.8% 70.3%

2021), ConvLSTM (Shi et al., 2015), and iTransformer (Liu et al.). These models cover a diverse
set of deep learning architectures, including CNNs, RNNs, MLPs, and Transformers. As shown in
Table 3, CoST consistently enhances the performance of these backbones by effectively integrating
deterministic and probabilistic modeling. Compared to using a single diffusion model, CoST yields
more accurate predictions and better-calibrated uncertainty estimates, validating the framework’s
broad applicability and effectiveness.

Figure 3: (a) and (b) show the ground-truth and predicted
value of SST, and (c) displays the spatial distribution of
forecasting uncertainty.

Case study of SST forecasting. To
assess our model’s ability to quantify
uncertainty under complex climate dy-
namics, we evaluate its performance
in a key region for ENSO-related
Sea Surface Temperature (SST) fore-
casting. As shown in Figure 3,
our model produces high-fidelity SST
forecasts that closely match ground
truth across both warm pool and cold
tongue regions. In addition to ac-
curate mean predictions, it provides
well-calibrated uncertainty estimates,
revealing elevated variance in the cen-
tral equatorial Pacific, especially near
0° latitude and 140°–130°W, where
sharp thermocline gradients and non-
linear feedbacks make forecasting par-
ticularly challenging. These high-
uncertainty areas align with known regions of model divergence in climate science (McPhaden
et al., 2006; Cane, 2005; Cao et al., 2021), demonstrating that our method delivers both accurate
predictions and geophysically consistent uncertainty estimates.

5.2 ABLATION STUDY

We perform an ablation study to assess the contribution of each proposed module. Specifically, we
construct three model variants by progressively removing key components: (w/o s) removes the
scale-aware diffusion process; (w/o q) excludes the customized fluctuation scale as a prior; (w/o m)
removes the conditional mean predictor, relying solely on the diffusion model. Experiments on two
datasets (Appendix Figure 8) show that the deterministic predictor notably improves performance
by capturing regular spatiotemporal patterns, while also reducing the diffusion model’s complexity.
Adding the customized fluctuation scale further enhances accuracy, indicating its utility in providing
valuable fluctuation information across different spatial units. And the scale-aware diffusion process
enables the diffusion model to better utilize this condition.

5.3 QUALITATIVE ANALYSIS

Analysis of distribution alignment. As shown in Figure 4, the ground truth exhibits clear spa-
tiotemporal multi-modality. In Figure 4(a), three peaks likely correspond to different time points or
varying states at the same time. CoST accurately captures all three peaks, while CSDI only fits two,
showing CoST’s superior multi-modal modeling. In Figure 4(b), both models capture two peaks,
but CoST aligns better with the peak spacing in the true distribution, reflecting stronger temporal
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Figure 4: KDE plots of the MobileSH dataset for
different regions: (a) Region 182, (b) Region 520.
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Figure 5: PICP comparison between our model
and CSDI on CrowdBM and MobileSH.

sensitivity. These strengths arise from CoST’s hybrid design: the diffusion component models
residual uncertainty to capture multi-modal traits, while the deterministic backbone learns regular
trends. See Appendix E.5.1 for more analysis and results.
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Figure 6: Visualizations of predictive uncertainty
for both CSDI and CoST on the CrowdBJ dataset.
The shaded regions represent the 90% confidence
interval. The dashed lines denote the median of
the predicted values for each model.

Analysis of prediction quality. To intuitively
demonstrate the effectiveness of our predictions,
we visualize results on the CrowdBJ dataset
in Figure 6 (More Cases shown in Appendix
Figure 10), comparing our model with the best
baseline, CSDI. As shown in Figures 6 (a, c, f),
our model, aided by a deterministic backbone,
better captures regular spatiotemporal patterns.
Meanwhile, the diffusion module enhances un-
certainty modeling by focusing on residuals, as
reflected in Figures 6 (b, d, e). Beyond sample-
level comparison, we evaluate prediction inter-
val calibration via dynamic quantile error curves
on CrowdBM and MobileSH (Figure 5). For
each confidence level α, we compute the cor-
responding quantile interval and its Prediction
Interval Coverage Probability (PICP). Closer
alignment with the diagonal (black dashed line)
indicates better calibration. Our model consis-
tently outperforms CSDI in this regard.

5.4 COMPUTATIONAL COST

We benchmark training and inference time (including 50 sampling iterations and pretraining for
our mean predictor) on the MobileSH dataset. As shown in Appendix Table 10, CoST is markedly
more efficient than existing probabilistic models. The efficiency comes from modeling only the
residual distribution with a lightweight denoising network. In contrast, other baselines incur high
computational costs by modeling the full data distribution with complex networks, while our approach
is well-suited for time-sensitive applications such as mobile traffic prediction.

6 CONCLUSION

In this work, we highlight the importance of probabilistic forecasting for complex spatiotemporal
systems and propose CoST, a collaborative framework that integrates deterministic and diffusion
models. By decomposing data into a conditional mean and residuals, CoST bridges deterministic
and probabilistic modeling, accurately capturing regular patterns and uncertainties across diverse
spatiotemporal systems. Experiments on ten real-world datasets show that CoST outperforms state-of-
the-art methods by 25% on average. Our approach offers an effective solution for combining precise
pattern learning with uncertainty modeling in spatiotemporal forecasting.

Limitations and future work. CoST relies on a strong deterministic backbone, which may limit its
applicability in domains lacking mature models. Moreover, it has not yet been validated on complex
physical systems governed by PDEs or coupled dynamics. Future work will explore physics-informed
extensions, adaptive decomposition, and more generalizable architectures.
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REPRODUCIBILITY STATEMENT

We provide detailed experimental settings in Section 5 and Appendix E. To facilitate the reproduction
of our results, the source code and datasets used in this work have been made publicly available in an
anonymous repository at: https://anonymous.4open.science/r/CoST_17116.
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A USAGE OF LLMS

In compliance with the stated policy, we report the use of a large language model (LLM) as a general-
purpose assistance tool in the writing of this paper. Its application was confined to copy-editing and
language polishing, such as correcting grammar and syntax. The LLM played no role in the research
ideation or the generation of the substantive content of this work.

B RELATED WORK

B.1 SPATIOTEMPORAL DETERMINISTIC FORECASTING.

Deterministic forecasting of spatiotemporal systems focuses on point estimation. These models
are typically trained with loss functions like MSE or MAE to learn the conditional mean E[y|x],
capturing regular patterns. Common deep learning architectures include MLP-based (Shao et al.,
2022; Qin et al., 2023; Zhang et al., 2023), CNN-based (Li et al., 2017; Liu et al., 2018; Zhang
et al., 2017), and RNN-based (Bai et al., 2019b; Lin et al., 2020; Wang et al., 2017; 2018) models,
valued for their efficiency. GNN-based methods (Bai et al., 2019a; 2020; Geng et al., 2019; Jin et al.,
2023a) capture spatial dependencies in graph-based data, while Transformer-based models (Chen
et al., 2022; 2021b; Ma et al., 2024; Yu et al., 2020; Boussif et al., 2023) are effective at modeling
complex temporal dynamics.

B.2 SPATIOTEMPORAL PROBABILISTIC FORECASTING.

The core of probabilistic forecasting lies in modeling uncertainty, aiming to capture the full data
distribution (Yang et al., 2024; Tashiro et al., 2021). This is particularly suited for modeling the
stochastic nature of spatiotemporal systems. While early methods include classical Bayesian ap-
proaches like Gaussian Processes (GP) (Roberts et al., 2013) and influential deep learning models such
as DeepAR (Salinas et al., 2020) and DeepStateSpace (Rangapuram et al., 2018), recent advances
have explored generative models such as GANs (Jin et al., 2022; Zhang et al., 2021), VAEs (Chen
et al., 2021a; De Miguel et al., 2022), and diffusion models (Chai et al., 2024; Lin et al., 2024).
Diffusion models, in particular, have gained traction for their ability to model complex distributions
with stable training, yielding strong performance in spatiotemporal forecasting (Rasul et al., 2021;
Rühling Cachay et al., 2023; Shen & Kwok, 2023; Sheng et al., 2025).

C BACKGROUND

C.1 GLOSSARY

We summarize all notations and symbols used throughout the paper in Table 4.

C.2 SPATIOTEMPORAL DATA

Spatiotemporal data typically come in two forms: (i) Grid-based data, where the spatial dimension
V can be expressed in a two-dimensional form as H × W , with H and W denoting height and
width, respectively. (ii) Graph-based data, where V denotes the number of nodes in a spatial graph
G = (V, E ,A), defined by its set of nodes V , the set of edges E and the adjacency matrix A. Its
elements aij show if there’s an edge between node i and j in V , aij = 1 when there’s an edge and
aij = 0 otherwise.

D METHODOLOGY

D.1 ALGORITHM

The training and inference procedures of CoST are summarized in Algorithm 1 and Algorithm 2,
respectively.
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Table 4: Glossary of notations and symbols used in this paper.
Symbol Used for

G = (V, E ,A) Graph structure where V is the node set, E is the edge set, and A is the adjacency matrix.
x ∈ RT×V×C Spatiotemporal data.

T The length of spatiotemporal series.
V The number of spatial units.
C The number of feature dimensions.
B Batch size.
P Prediction horizon.
M Historical horizon.
N The number of diffusion steps.
H Height of the grid-based data.
W Width of the grid-based data.
Q Customized fluctuation scale.
M The variance tensor.
S The random sign tensor.

{·}co Historical (conditional) term.
{·}ta Predicted (target) term.
{·}n Noisy data at n-th diffusion step.
µ Mean.
r Residual.
ϵ Gaussian noise.
K K The set of indices for the selected FFT components.

{βn}Nn=1 The noise schedule in the diffusion process.
αn, ᾱn αn = 1− βn, ᾱn =

∏n
i=1 αi.

ϵθ(·) The denoising network with parameter θ.
αCI Significance level for the prediction interval.
1(·) Indicator function, which takes the value 1 when a certain condition is true, and 0 when the condition is false.

Algorithm 1 Training
1: Stage 1: Pretraining of Deterministic Model Eθ

2: repeat
3: Estimate the conditional mean Eθ[x

ta
0 |xco

0 ].
4: Update Eθ using the following loss function:

L2 =
∥∥Eθ[x

ta
0 |xco

0 ]− xta
0

∥∥2
2

5: until The model has converged.
6: Stage 2: Training of Diffusion Model ϵθ
7: repeat
8: Initialize n ∼ Uniform(1, . . . , N) and ϵ ∼ N (0, I).
9: Calculate the target rta0 = xta

0 − Eθ[x
ta
0 |xco

0 ].
10: Calculate noisy targets rtan using Eq. (13).
11: Update ϵθ using the following loss function:

L(θ) =
∥∥ϵ− ϵθ(r

ta
n , n|xco

0 )
∥∥2
2

12: until The model has converged.

E EXPERIMENTS

E.1 DATASETS

In our experiments, we evaluate the proposed method on ten real-world datasets across four domains:
climate, energy, communication systems, and urban systems. For climate forecasting, we train our
models on the simulated SST-CESM2 dataset and evaluate them on the observational SST-ERA5
dataset, using the first 30 years for validation and the remaining years for testing. The remaining
datasets are partitioned into training, validation, and test sets with a 6:2:2 ratio, and all datasets are
standardized during training.Table 5 provides a summary of the datasets. The details are as follows:

• Climate. We utilize two datasets for sea surface temperature (SST) prediction in the Niño 3.4 region
(5°S–5°N, 170°W–120°W), which is widely used for monitoring El Niño events: (i) SST-CESM2,
simulated SST data from the CESM2-FV2 model of the CMIP6 project, covering the period from
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Algorithm 2 Inference
1: Input: Context data xco

0 , customized fluctuation scale Q, trained diffusion model ϵθ, trained
deterministic model Eθ

2: Output: Target data xta
0

3: Estimate the conditional mean Eθ[x
ta
0 |xco

0 ]
4: Sample rtaN from ϵ ∼ N (Q, I)
5: for n = N to 1 do
6: Estimate the noise ϵθ(r

ta
n , n|xco

0 )
7: Calculate the µθ(r

ta
n , n|xco

0 ) using Eq. (14)
8: Sample rtan−1 using Eq. (2)
9: end for

10: Return: xta
0 = Eθ[x

ta
0 |xco

0 ] + rta0

Table 5: The basic information of spatio-temporal data.
Dataset Location Type Temporal Period Spatial partition Interval

SST-CESM2 Global (Niño 3.4) Simulated SST 1850-2014 1◦ × 1◦ Monthly
SST-ERA5 Global (Niño 3.4) Reanalysis SST / U10 / V10 1940-2025 0.25◦ × 0.25◦ Monthly
SolarPower China (a PV station) GHI / Weather / PV power 2024/03/01 - 2024/12/31 Station-level 15 min

TaxiBJ Beijing Taxi flow 2014/03/01 - 2014/06/30 32× 32 Half an hour
BikeDC Washington, D.C. Bike flow 2010/09/20 - 2010/10/20 20× 20 Half an hour

MobileSH Shanghai Mobile traffic 2014/08/01 - 2014/08/21 32× 28 One hour
MobileNJ Nanjing Mobile traffic 2021/02/02 - 2021/02/22 20× 28 One hour
CrowdBJ Beijing Crowd flow 2018/01/01 - 2018/01/31 1010 One hour
CrowdBM Baltimore Crowd flow 2019/01/01 - 2019/05/31 403 One hour
Los-Speed Los Angeles Traffic speed 2012/03/01 - 2012/03/07 207 5 min

1850 to 2014, with a spatial resolution of 1◦ × 1◦. (ii) SST-ERA5: reanalysis data from ERA5,
containing SST and 10-meter wind speed (U10/V10) variables from 1940 to 2025, with an original
spatial resolution of approximately 0.25◦ × 0.25◦. All data are regridded to a 1◦ × 1◦ resolution
for consistency. The CESM2 data are used for training, while the first 30 years of ERA5 are used
for validation and the remaining years for testing.

• Energy. This dataset contains real-time meteorological measurements and photovoltaic (PV) power
output collected from a PV power station in China, spanning from March 1st to December 31st,
2024. The features include: total active power output of the PV grid-connection point (P), ambient
temperature, back panel temperature, dew point, relative humidity, atmospheric pressure, global
horizontal irradiance (GHI), diffuse and direct radiation, wind direction and wind speed. Our
forecasting task focuses on GHI, which is the key variable for solar power prediction. Due to data
privacy restrictions, the raw dataset cannot be publicly released.

• Communication Systems. Mobile communication traffic datasets are collected from two major
cities in Shanghai and Nanjing, capturing the spatiotemporal dynamics of network usage patterns.

• Urban Systems. We adopt five widely used public datasets representing various urban sensing
signals: (i) CrowdBJ and CrowdBM, crowd flow data from Beijing and Baltimore, respectively. (ii)
TaxiBJ, taxi trajectory-based traffic flow data from Beijing. (iii) BikeDC, bike-sharing demand data
from Washington D.C. (iv) Los-Speed, traffic speed data from the Los Angeles road network. These
datasets have been extensively used in spatiotemporal forecasting research and provide diverse
signals for evaluating model generality across cities and domains.

E.2 BASELINES

We provide a brief description of the baselines used in our experiments:

• GP (Gaussian Processes):A non-parametric time series forecasting method that models data as a
Gaussian process, offering uncertainty estimates and effective modeling of non-linear relationships.

• DeepState Rangapuram et al. (2018): A deep learning framework for time series forecasting that
integrates state space models with neural networks, enabling efficient probabilistic predictions by
learning latent states and observation processes.
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• D3VAE (Li et al., 2022): Aims at short-period and noisy time series forecasting. It combines
generative modeling with a bidirectional variational auto-encoder, integrating diffusion, denoising,
and disentanglement.

• DiffSTG (Wen et al., 2023): First applies diffusion models to spatiotemporal graph forecasting.
By combining STGNNs and diffusion models, it reduces prediction errors and improves uncertainty
modeling.

• TimeGrad (Rasul et al., 2021): An autoregressive model based on diffusion models. It conducts
probabilistic forecasting for multivariate time series and performs well on real-world datasets.

• CSDI (Tashiro et al., 2021):Utilizes score-based diffusion models for time series imputation. It
can leverage the correlations of observed values and also shows remarkable results on prediction
tasks.

• DYffusion (Rühling Cachay et al., 2023): A training method for diffusion models in probabilistic
spatiotemporal forecasting. It combines data temporal dynamics with diffusion steps and performs
well in complex dynamics forecasting.

• TMDM (Li et al., 2024): TMDM integrates transformers with diffusion models for probabilistic
time series forecasting, using transformer-based prior knowledge to enable accurate distribution
forecasting and uncertainty estimation.

• NPDiff (Sheng et al., 2025): A general noise prior framework for mobile traffic prediction. It
uses the data dynamics to calculate noise priors for the denoising process and achieve effective
performance.

E.3 EXPERIMENTAL CONFIGURATION

In our experiment, for our model, we set the training maximum epoch for both the deterministic
model and the diffusion model to 50, with early stopping based on a patience of 5 for both models.
For the diffusion model, we set the validation set sampling number to 3, and the average metric
computed over these samples is used as the criterion for early stopping. For the baseline models,
we set the maximum training epoch to 100 and the early stopping patience also to 5. We set the
number of samples to 50 for computing the experimental results presented in the paper. For the
denoising network architecture, we adopt a lightweight variant of the MLP-based STID (Shao et al.,
2022). Specifically, we set the number of encoder layers to 8 and the embedding dimension to
128. The diffusion model employs a maximum of 50 diffusion steps, using a linear noise schedule
with β1 = 0.0001 and βN = 0.5. During training, we set the initial learning rate to 0.001, and
after 20 epochs, we adjust it to 4e-4. We use the Adam optimizer with a weight decay of 1e-6. All
experiments are conducted with fixed random seeds. Models with lower GPU memory demands are
run on NVIDIA TITAN Xp (12GB GDDR5X) and NVIDIA GeForce RTX 4090 (24GB GDDR6X)
GPUs under a Linux environment. For the DYffusion (Rühling Cachay et al., 2023) baseline, which
requires substantially more resources, training is performed on NVIDIA A100 (80GB HBM2e) and
A800 (40GB HBM2e).

E.4 GEOGRAPHIC EXTENT OF THE ENSO REGION

To provide geographic context for the SST case study presented in Section 3, Figure 7 illustrates the
global location and spatial extent of the selected region. The red box highlights the area from 4.5°S
to 4.5°N and 169.5°W to 120.5°W in the central-to-eastern equatorial Pacific, a region known for
strong ocean-atmosphere coupling and ENSO-related variability.
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Figure 7: Global map indicating the spatial extent of ENSO region (highlighted in yellow). The
region spans from 4.5°S to 4.5°N and 169.5°W to 120.5°W in the equatorial Pacific.

Table 6: Short-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DYffusion is limited to grid-format data,
and “-” denotes results that are not applicable.

Model BikeDC MobileNJ CrowdBM Los-Speed
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS

GP 0.494 0.120 6.69 0.435 0.129 4.76 0.620 0.159 66.8 0.789 0.1579 61.7
DeepState 0.728 0.084 15.5 0.518 0.065 4.40 0.689 0.057 97.0 0.086 0.040 40.9
D3VAE 0.785 0.157 8.77 0.565 0.096 6.03 0.593 0.110 136.4 0.119 0.089 90.5
DiffSTG 0.692 0.157 8.08 0.291 0.071 3.11 0.453 0.047 68.5 0.078 0.045 50.9

TimeGrad 0.469 0.130 5.65 0.432 0.162 5.87 0.240 0.085 46.9 0.031 0.098 20.8
CSDI 0.529 0.057 4.79 0.111 0.039 0.80 0.390 0.054 61.1 0.059 0.026 30.8

TMDM 2.32 0.125 29.6 1.49 0.126 87.5 3.46 0.124 217.3 0.897 0.126 83.4
NPDiff 0.442 0.066 7.11 0.128 0.133 2.22 0.331 0.119 91.2 0.057 0.023 30.5

DYffusion 0.573 0.079 6.46 0.196 0.080 1.80 - - - - - -

CoST 0.419 0.028 3.45 0.089 0.032 0.66 0.256 0.027 37.8 0.056 0.023 31.9

E.5 ADDITIONAL EXPERIMENTAL RESULTS

Table 7: Short-term forecasting results in terms of MAE and RMSE. Bold indicates the best perfor-
mance, while underlining denotes the second-best. DYffusion is limited to grid-format data, and “-”
denotes results that are not applicable.

Model BikeDC MobileNJ CrowdBM Los-Speed
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GP 0.941 1.74 0.257 0.682 6.35 17.7 6.60 11.0
DeepState 1.98 3.81 0.582 0.827 13.9 23.2 6.50 9.23
D3VAE 0.871 3.59 0.580 1.135 11.0 24.7 8.28 11.9
DiffSTG 0.770 4.02 0.317 0.649 8.88 21.3 5.38 9.75

TimeGrad 0.843 1.07 0.340 0.357 10.1 12.4 2.33 3.00
CSDI 0.592 3.10 0.129 0.237 7.31 19.3 4.53 8.07

TMDM 2.44 4.11 3.27 4.10 72.9 94.8 9.42 13.9
NPDiff 0.435 1.90 0.123 0.175 5.42 13.7 4.07 7.64

DYffusion 0.480 1.37 0.222 0.357 - - - -

CoST 0.492 1.76 0.102 0.172 5.04 12.1 4.05 7.30
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Figure 8: Ablation study on the CrowdBJ and CrowdBM comparing variants in terms of (a) CRPS
and (b) IS.

Table 10: Comparison of training and inference time on the MobileSH dataset.

Model Train Time Inference Time

D3VAE 3min 27s 2min 15s
DiffSTG 24min 16s 18min 38s

TimeGrad 5min 2min
CSDI 48min 40s 38min 49s

DyDiffusion 33h 3h
CoST 2min 50s

Table 8: Long-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DYffusion is limited to grid-format data,
and “-” denotes results that are not applicable.

Model MobileSH Climate CrowdBJ CrowdBM Los-Speed
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS

GP 0.537 0.112 7.13 0.086 0.146 9.18 0.660 0.143 19.4 0.622 0.153 76.5 0.910 0.149 112.6
DeepState 0.707 0.066 0.924 0.031 0.018 6.09 0.925 0.073 42.4 1.02 0.080 123.2 0.133 0.090 68.5
D3VAE 0.798 0.129 1.830 0.075 0.083 24.0 0.710 0.109 63.9 0.674 0.108 152.3 0.138 0.101 113.2
DiffSTG 0.374 0.107 0.923 0.027 0.077 7.90 0.370 0.094 31.3 0.400 0.073 67.1 0.124 0.080 104.6

TimeGrad 0.245 0.075 0.408 0.041 0.101 14.2 0.371 0.073 32.4 0.237 0.049 33.9 0.192 0.081 98.8
CSDI 0.158 0.045 0.216 0.036 0.073 6.80 0.229 0.038 12.0 0.235 0.052 33.7 0.134 0.090 59.2

TMDM 0.799 0.127 16.1 0.093 0.115 7.36 0.751 0.127 77.5 0.346 0.125 187.7 0.904 0.121 837.0
NPDiff 0.204 0.102 0.611 0.109 0.115 41.3 0.288 0.114 33.6 0.331 0.111 90.8 1.366 0.126 950.4

DYffusion 0.308 0.086 0.550 0.030 0.147 15.2 - - - - - - - - -

CoST 0.158 0.016 0.218 0.024 0.011 4.87 0.217 0.011 11.5 0.235 0.009 31.2 0.089 0.040 64.6

Table 9: Long-term forecasting results in terms of MAE and RMSE. Bold indicates the best perfor-
mance, while underlining denotes the second-best. DYffusion is limited to grid-format data, and “-”
denotes results that are not applicable.

Model MobileSH SST CrowdBJ CrowdBM Los-Speed
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GP 0.399 0.627 1.52 1.65 2.52 3.75 7.37 20.7 6.69 11.2
DeepState 0.160 0.199 1.13 1.40 8.53 11.0 21.5 31.9 10.1 14.2
D3VAE 0.207 0.392 2.39 3.13 5.63 11.4 12.4 28.2 9.43 13.3
DiffSTG 0.078 0.125 0.94 1.19 3.04 6.37 7.59 18.8 7.77 14.2

TimeGrad 0.058 0.072 1.30 1.64 3.48 4.83 5.25 7.40 18.2 22.3
CSDI 0.035 0.057 1.31 1.63 1.99 3.64 4.64 12.4 11.3 15.0

TMDM 0.519 6.50 1.55 1.73 3.54 8.32 15.2 29.0 34.2 43.1
NPDiff 0.037 0.057 1.91 2.82 2.06 3.28 5.44 13.8 46.0 58.3

DYffusion 0.047 0.066 0.85 1.06 - - - - - -

CoST 0.035 0.053 0.86 1.13 1.92 3.05 4.74 11.2 5.94 10.8
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Figure 9: PIT analysis on the MobileSH dataset: (a) PIT histogram and (b) PIT empirical CDF.

Table 11: Long-term forecasting performance comparison of TMDM on ETTh1 and ETTh2 Datasets.

Model EETh1 EETh2
CRPS QICE IS CRPS QICE IS

TMDM 0.395 0.041 4.8 0.196 0.018 2.2

CoST 0.311 0.007 1.6 0.109 0.007 0.78

E.5.1 ANALYSIS OF DISTRIBUTION ALIGNMENT.

Additionally, we present the PIT (Probability Integral Transform) histogram in Figure 9 (a) and
the PIT empirical cumulative distribution function (CDF) in Figure 9 (b) to visually reflect the
alignment of the full distribution. Ideally, the true values’ quantiles in the predictive distribution
should follow a uniform distribution, corresponding to the dashed line in Figure 9 (a). In the case
of perfect calibration, the PIT CDF should closely resemble the yellow diagonal line. Clearly, our
model outperforms CSDI.
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Figure 10: Visualizations of predictive uncertainty for both CSDI and CoST on the CrowdBJ dataset.
The shaded regions represent the 90% confidence interval. The dashed lines denote the median of the
predicted values for each model.
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