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ABSTRACT

Although neural networks have achieved remarkable results, they still encounter
doubts due to the intransparency. To this end, neural network prediction expla-
nation is attracting more and more attentions. State of the art methods, however,
rarely introduce human-understandable external knowledge, making the explana-
tion hard to interpret by human beings. In this paper, we propose a knowledge-
aware framework to explain neural network predictions for image scene classifi-
cation. We introduce two notions of core concepts, with the help of knowledge
graphs, to measure the association of concepts with respect to image scenes, and
analyse solutions for prediction explanation and model manipulation. In our ex-
periments on two popular scene classification datasets ADE20k and Opensurfaces,
the proposed solutions produce better results than baseline and state of the art
methods, e.g., our method produces over 25% IoU gain on compositional expla-
nation for neuron behaviors. In addition, our core concepts and related explanation
metrics can help effectively manipulate the model prediction, further leading to a
new training method with 26.7% performance improvement.

1 INTRODUCTION

While neural networks have been achieving unprecedented advancements in various areas of arti-
ficial intelligence, deep architectures are not fully transparent and often perceived as “black-box”
algorithms Adadi & Berrada (2018). This limitation has been identified in many fields Che et al.
(2017), undermining users’ trust and hence decreasing usability of such systems Ribeiro et al.
(2016); Stepin et al. (2021). For instance, as shown in Figure 1(a), a neural model predicts the
image as utility room, which is different from the ground truth (target label) bedroom. Without
proper explanations, it is unclear why the model predicts this label and what is its relationship to the
target label, making it hard to debug and optimise.

There has been a growing interest in exploring explanations of model predictions, which, gener-
ally speaking, could be categorized into two methods: decision analysis and functional analysis
Shahroudnejad (2021). The former methods explore explanation by analyzing the internal compo-
nents’ behavior. Practically, they consider the effect of each neuron by decomposing the network
classification decision into contributions of its input elements Montavon et al. (2017); Tian & Liu
(2020). CGL Varshneya et al. (2021) and CompositionalNet Kortylewski et al. (2021) try to learn
and adjust the neuron behavior by modifying the training objectives, but they do not aim at capturing
which and why an element (e.g., layer, neuron) in the neural architectures plays a more important
role in predictions. Functional analysis methods try to capture overall behavior by investigating
the relation between inputs and outputs, using saliency map Zeiler & Fergus (2014); Zintgraf et al.
(2017), occlusion and related techniques Smilkov et al. (2017); Sundararajan et al. (2017).

We focus on concept based explanations, a sub-category of decision analysis methods. The most rel-
evant efforts are automatic concept based explanation (ACE) Ghorbani et al. (2019), ConceptSHAP
Yeh et al. (2020) and VRX Ge et al. (2021), which focus on automatically identifying higher-level
concepts for the neural models. Such image segments are extracted from many input samples (of a
target class) together with their importance using TCAV Kim et al. (2018) for predicting that target
class. However, these approaches are mainly capturing visual concepts through images segments,
which are disconnected from one another and not necessarily human interpretable (cf. Figure 5(b)).
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(a) Core concepts absent. (b) Non-core concepts dominate.

Figure 1: Two types of false predictions. We build the concept relations by ConceptNet, and the model can
predict all the concepts (except concept bed).

In this work, we argue that concepts should be defined based on the human-understandable knowl-
edge bases. Therefore, we propose a knowledge aware model prediction explanation approach, by
introducing the notion of core concepts, which are knowledge graph (KG) based inter-connected
concepts for scene identification. There are different ways of using core concepts. (1) Absence of
core concepts: a model fails to capture some core concepts and thus makes wrong predictions. For
example, in Figure 1(a), the model does not predict the core concept bed of the scene bedroom, and
thus mistakenly predicts the scene to be utility room. (2) Domination by non-core concepts: a model
predicts many non-core concepts and thus makes wrong predictions. For example, in Figure 1(b),
the model predicts many non-core concepts, including book and bookcase, which are the core con-
cepts of a wrong scene library indoor. Furthermore, core concept based explanations can be used to
help debug the bad cases and optimise the model.

Contributions: To the best of our knowledge, this is the first effort to use general purpose knowl-
edge graphs, such as ConceptNet, to define core concepts for image scene classification, by mod-
elling semantic relationships between the originally disconnected concepts predicted by neurons.
Accordingly, we propose solutions for the prediction explanation problem, for both prediction ex-
planation for the model and compositional explanations for neuron behaviors, and model manipu-
lation problem. It is worth mentioning that our approach relies on no additional image annotations
and is adaptable to different CNNs. In this study, we evaluated several classic CNNs including
ResNet, DenseNet, AlexNet and MobileNet, and have conducted extensive empirical experiments
on ADE20k and Opensurfaces. The explanation achieves high quality according to the analysis
on different metrics and human assessment. Our experiments show that core concepts and related
explanation metrics can help optimise the model, leading to 26.7% of performance improvement. !

2 PRELIMINARY

2.1 KNOWLEDGE GRAPHS

Knowledge Graphs (KGs) have become well known in knowledge representation and knowledge
management applications widely across search Dietz et al. (2018); Gu et al. (2019), recommenda-
tion Guo et al. (2020), image classification Geng et al. (2021), visual question answering Chen et al.
(2021) and industrial domains Bader et al. (2020).

In our study, we use ConceptNet Speer et al. (2017), a popular commonsense knowledge graph,
containing large-scale triples, such as (pillow, AtLocation, bed) and (wheels, Parts of, car), with
nodes representing general concepts and edges representing relations between concepts. We remove
the relation pairs that connect to itself and obtain 37 relations, 1,785,572 concepts, and 3,377,895
triples, respectively.

'Code and data are available at: https://github.com/neuroninterpretation/EIIC
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2.2 NEURON COMPOSITION

Neuron composition aims to improve the interpretability of neural network models by understanding
the neuron behavior. Bau et al. (2017) proposed the NetDissect framework, evaluating the alignment
between individual hidden units and a set of concepts. Assumed that f is a neural network and f;
is #-th neuron in intermediate layer. C' is the pre-defined atomic concept set, and concepts are
image segmentation masks for image pixels. For bookcase concept in Figure 1(b), it means an
image region containing bookcase. NetDissect (f) measures Intersection over Union score (IoU)
between neuron features and concepts in input to find the most similar concept to neuron f;:

NetDissect (fi) = argmaz o(A(X),¢;), (1)
c;e C

where o denotes measure function, A;(x) is activated neuron features of f; with binary masks, and
x denotes the whole input.

2.3 PROBLEM STATEMENT

Let D = {x1,29,..., 1;|D‘} be a set of images, C be the overall concept set, and Y =
{y1,92,..,y)yv|} be a set of scene labels; e.g., the image of Figure 1(a) is labelled as scene
bedroom. Each image x; € D belongs to a scene y; € Y, and contains multiple concepts rep-
resenting the objects in x; such as wall, floor, lamp, armchair in the image of Figure 1(a). For
each scene y;, it has multiple images in D, denoted as D,,; C D. We assume the neural network
f is trained and used for prediction. It maps an image x; to a latent representation which is also
known as neuron features or hidden states, denoted as { f1, fa, ..., fn}, where f; is known as t-th
neuron features and n denotes the dimension. IC(z;) is the learning concepts by neuron features
fi. CC(y;) is the core concept set for scene y;. In the rest of the paper, we assume that the KG

contains all concepts in C.2

For each image x;, it has a label y, predicted by f and a target (ground truth) label y;. Given a
KG G, we consider three tasks: (T7) prediction explanation: explaining why f predicts x; as yy,
and why the prediction is correct (i.e., y, = y;) or wrong (i.e., y, # ¥;); (T2) neuron behavior
explanation: identifying compositional logical concepts that closely approximate neuron behavior;
(T3) model manipulation: studying methods to optimise model prediction performance.

3 APPROACH

In this section, we present a knowledge-aware framework, starting by introducing a MinMax-based
NetDissect method (Sec. 3.1) learning which concepts are closely aligned with neuron behavior,
as well as the notion of core concepts (Sec. 3.2). In Sec. 3.3, we propose two types of prediction
explanation, based on core concepts and concepts learned by neurons. In Sec. 3.4, we propose to
optimise explanations via concept filtering. Last but not least, we propose how to improve model
prediction based on features from our explanations in Sec. 3.5.

3.1 MINMAX-BASED NETDISSECT

The procedure described in Eq.(1) can compute the general neuron behavior based on the whole
dataset level while ignoring features that are unique and useful for an individual image prediction.
Take image in Figure 1(a) as an example, based on the whole dataset, neuron 1 and 2 are related to
concepts sea and highway respectively. However, this observation is useless for explaining image
prediction. We would like to learn the neuron behavior on scene bedroom to see whether it can help
explain model prediction. To achieve this, we propose a new variant of NetDissect Bau et al. (2017),
named MinMax-based NetDissect, to learn the neuron behavior of individual image level. Formally,
for an image x;, measure function o, and activated neuron features A; of the ¢-th neuron, we have:

MinMaz-NetDissect (f;) = Ths{ o(A¢(x;),Cy;)} 2)

Thus the concepts IC(x;) learned by a target neuron in image classification can be obtained from the
concept selection strategy® Ths. We consider three ways of selecting concepts that a neuron learns:

*In practice, if some concepts in C' are not in the KG, we could often align them to some close KG concepts.
3In the original NetDissect, they directly use the concept with highest score for neuron. However, neurons
do not express a single concept, but make predictions from multiple concepts Mu & Andreas (2020).



Under review as a conference paper at ICLR 2023

1) whole layer: use all concepts with IoU scores larger than 0; 2) highest loU: only the concept with
the highest IoU; 3) threshold: use only the concepts with ToU scores higher than a MinMax-based
threshold that we compute as follows: (a) select the concept with the highest IoU for each neuron;
(b) use the lowest IoU value among the IoU values of the selected concepts as the threshold.

3.2 CoORE CONCEPTS

In this section, we address the problem of how to define the core concepts for each scene y;. In
the definitions of such core concepts, we exploit human understandable knowledge from a KG,
which is different from implicit knowledge in visual concepts that are used in some other concept-
based explanations Ghorbani et al. (2019). Towards this end, we define two kinds of core concepts:
Scoping Core Concepts (SCC) and Identifier Core Concepts (ICC). Informally speaking, the SCCs
of a scene y; are the intersection of the concepts associated with 3/; and the concepts in a background
KG that are related to ;. Thus the KG is used to help scope the set of core concepts.

Definition. (Scoping Core Concepts) Given a set of scenesy; € Y (j € {1,...,|Y|}), its associated
concepts are denoted as C, @ KG G, and the set of concepts RC’(yj, G) from G that are related to
y;. We define the scoping core concepts for scene y; as follows: SCC(y;,G) = RC(y;,G) N C,,.

Note that we do not give a specific definition of RC(y;,G), as one can use different similarity
measures to define such relatedness, even using different ones for SCC and ICC. There are some
limitations for SCC though. Firstly, SCC does not formally guarantee that different scenes come
with different sets of core concepts, failing to make SCC some kind of identifier of a given scene.
Secondly, SCC might include some knowledge graph related concepts that might not be crucial for
a given scene. To address these two limitations, we introduce the notion of Identifier Core Concepts.

Definition. (Identifier Core Concepts) Given a set of scenes y; € Y (j € {1,...,|Y|}), its associ-
ated images and concepts D, and C, ., respectively, and a KG G, we assume that:

» Count(y;j,p) € Cy, is the set of overlapping ground truth concepts, from C,., over at
least p% of the images in D,

o P, is the highest percentage such that, for any i,j € {1,...,|Y|}, i # j, Count(y;, P.) #

Count(y;, Pe),
» TopkO fCount(y;) is the set of the top k concepts of Count(y;, P.),

» SCount(y;, G, p) is the set of overlapping ground truth concepts, from (RC(y;,G)NCy, )U
TopkO fCount(y;), over at least p% of the images in D,

o Ps. is the highest percentage such that, for any i,j € {1,...,|Y
SCount(y;,G, Psc)).

We define the identifier core concepts for scene y; as follows: ICC(y;,G) = SCount(y;, G, Psc).

}, SCount(y;, G, Ps.) #

We consider the balance between concepts in the KG and annotated concepts of y;, by including the
top k (in our experiments, £ = 2) most popular annotated concepts, no matter whether they are in
the KG or not. As ICC is more selective, it often has a smaller size than SCC (cf. Appendix A).

3.3 MODEL PREDICTION EXPLANATIONS

In this section, we will make use of the concepts learned by neurons (Sec. 3.1) and SCC and ICC for
scenes (Sec. 3.2) to provide two kinds of explanations for model predictions: prediction explanation
and post-prediction explanation. For this purpose, we propose some metrics accordingly.

Prediction explanations (PE) are explanations provided together with predictions, with ground
truth (target) scene unknown. Given an image x;, the concepts /C(z;) learned by a neuron, a scene
y;, and its core concepts CC;(y; ), where CC; € {SCC, ICC'}. We propose the consistency metric
(difference metric, similarity metric) for measuring the consistency (difference, similarity, resp.)
between the learned concepts from the neuron and core concepts from scene y/;:

_ [C(zi) N CCi(y;)|

M) = 100y ©
_ [IC(xi) \ CCi(y;)]

DM(28:) = =166 (5y)] @
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[LC(xi) N CCuly;)]

SM o) = 6 U0, ®
Note that y; is the predicted scene for PE. The larger (smaller) the CM and SM (DM) scores
become, the smaller the gap between the learned concepts and the scene. PE metrics can be used to
optimise prediction performance (cf. Sec. 3.5).

Post-prediction explanations (PPE) are explanations when both predicted and target scene are
known. Given an image x; of scene y;, and the scene y, predicted by the model, the task here is
to explain why the prediction is wrong, i.e. why y; # y,. One would expect that the learned con-
cepts should be closer to the predicted scene (i.e., CM (x;,y,) > CM(x;,y:) and SM (x;,yp) >
SM(z;,y:)) and be more different from the target scene (i.e., DM (x;,y,) > DM (z;,y;)). Thus,
the consistency metric for the set D of false predictions (as scene ¥,,) can be defined as follows:

[{zi € Dy|CM (2,yp) > CM (2, y¢)}|
|Dy|
The difference and similarity metrics, denoted as DM P and SM ¥ can be defined respectively.

cM"t =

(6)

Given an image x; of scene ¥, the task here is to explain why the prediction is correct. We propose
to compare the set of images with true prediction (D) against those with false prediction (D), with
the expectation that the consistency metric over the truly predicted images CMT* of D, should
be larger than that over the falsely predicted images (CM™F > CMT-F). Thus, the consistency
metric for the set D; of truly predicted images and that for the set D of falsely predicted images in
scene y; can be defined as follows:

Eﬂ)iEDth(’riayt) CMT’FP o EmEDfCM(xivyt)

| Dy 7 Dy

Similarly, we can define similarity metric for D; and Dy, denoted as SM TP and S
tively, with the expectation that SM ¥ > SMT-F'P,

CMTP _

(7

MT-FP respec-

3.4 EXPLANATION OPTIMIZATION VIA CONCEPT FILTERING

In this section, we propose a KG-based approach to optimize explanation via concept filtering. In the
context of image classification and object detection, there could be a large number of concepts and
many of which might have similar semantics, i.e. armchair and chair. This could lead to misleading
or even wrong explanations for incorrect predictions, i.e. “Figure 1(a) is predicted to be a utility room
because there is no chair” might not be correct, since an armchair is also a chair which could be seen
in a bedroom (cf. ConceptNet description of bedroom in Figure 1(a)). To address this challenge,
given each set of scene associated concepts C,;, we compute the embeddings of the concepts in
C,, and align them to concepts in a KG like ConceptNet, using classic KG embeddings techniques,
such as TransE Bordes et al. (2013), Dismult Yang et al. (2014) and TransD Ji et al. (2015), then
group them w.r.t. their distances, into clusters Cl;(Cy,), ..., Cl,(C,;). One can transform C,; into
CF(C,,) by selecting one representative concept in each cluster Cl;(C,,)(1 <14 < r) to represent
all concepts in Cl;(C,,). Our hypothesis is that replacing C,,, with CF'(C,,) could help optimise
model prediction explanation and compositional explanation of neuron behaviors.

Model Prediction Explanation Replacing C,; with CF(C,;) will affect the construction of SCC
and ICC, and thus the metrics proposed in Sec '33.

Compositional Explanation of Neuron Behavior The procedure described in Eq.(2) can only pro-
duce explanations from the fixed, pre-defined concepts in C,,. We follow CEN Mu & Andreas
(2020), to comblnatorlally expand the set of possible explanatlons to include logical forms defined
inductively over C,,;, using three operations including disjunction (OR), conjunction (AND), and
negation (NOT) for individual neurons. For each formula length, it exhaustively searches the overall
concepts. Replacing C,,; with CF(C,,) will affect the way that IoU is calculated in that the IoU
values in a cluster are aggregated into one value for the representative concept for each cluster.

3.5 MODEL MANIPULATION

In this section, we study whether the core concepts (from Sec. 3.2) could help to manipulate model
behavior, such as correcting a false prediction or corrupting a true prediction.We also propose using
PE metrics (from Sec. 3.3) for re-training.
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Neurons’ learned concepts: whole layer (%)

Neurons’ learned concepts: whole layer

CMTF DMIFP SMTP Consistency Metrics  Similarity Metrics
Top-10  43.04 19.13 4277 CM™ CMTT"  SM™"  SMT-TT
SCC 78.51 87.30 69.85 Top_10 0.11 0.06 0.04 0.02
ICC 51.43 69.32 29.58 Nee 0.13 0.10 0.08 0.06
Neurons’ learned concepts: highest IoU (%) ICC 0.54 0.47 0.23 0.23
Top-10 34.61 19.12 34.56 Neurons’ learned concepts: highest IoU
SCcC 65.77 85.76 64.07 Top_-10 0.09 0.05 0.07 0.04
ICC 49.42 67.76 42.24 Nee 0.06 0.05 0.06 0.05
Neurons’ learned concepts: threshold (%) ICC 0.26 0.22 0.21 0.18
Top-10 42.52 18,69 42.42 Neurons’ learned concepts: threshold
SCcC 78.03 87.38 72.13 Top-10 0.11 0.06 0.07 0.04
ICC 50.32 69.81 34.11 Nee 0.12 0.09 0.10 0.08
ICC 0.50 0.44 0.35 0.32

Table 1: Results of false prediction explanation.
Top-10 means the top 10 concepts of scene as CC. Table 2: Results of true prediction explanation.

Neuron Identification using CC Given a trained classification model, we identify the positive and
negative neurons by calculating contribution score to see the model behavior. The contribution score
for the neurons f;, over images x; in the scene y; with true prediction, can be calculated as follows:

Con_Score(f;) = Z (P(x;,CCy) — N(x;,CCY)) ®)

T
J,lEDyJ

where P(z;,CC}) and N (z;, CC)) are the number of IC in and not in C'Cy, respectively.

For a true prediction, we disable top-k positive neurons (by setting the neuron features to 0 Bau et al.
(2019); Mu & Andreas (2020)) for the corresponding scene and see whether the model still correctly
predicts the scene. For a false prediction, we disable top-k negative neurons for the corresponding
scene and see whether the model can make better prediction. k is set to 20 in our evaluation.

Re-training using CC The core concepts measure important components of the scene, which can
play an important role for scene classification, as shown in Figure 1. Thus we propose to integrate
core concepts into the model to further improve its performance. In the original models, the training
objective is scene loss L. We add another core concept loss L. = — > log P(c*|6), where ¢* € C
is the golden concept. For example, given a bedroom image with concepts of bed, TV and fridge,
the new objective will let model pay more attention to the core concepts (bed and TV).

Re-training using PE We use a classical classifier SVM Cesa-Bianchi et al. (2006), but not an
arbitrary neural network, as it will not introduce unexplained factors. For training the classifier, we
utilize three types of features: (1) the features of metrics CM, SM and DM; (2) the MRR (mean
reciprocal rank) feature which integrates the three metrics over all scenes; (3) the hidden states
which learned by the original CNN model.

4 EXPERIMENTS

4.1 DATASET AND PRE-TRAINED MODEL

For testing we use two scene datasets ADE20k Zhou et al. (2017) and Opensurfaces Bell et al. (2014)
with atomic concepts annotated.

ADE20K is a challenging scene parsing benchmark with pixel-level annotations, which contains
22,210 images. There are 1,105 unique concepts in ADE20k, categorized by scene, object, part, and
color, and each image belongs to a scene. We utilize the version from CEN Mu & Andreas (2020)*.

Opensurfaces is a large database created from real-world consumer photographs. It contains 25,329
images which are annotated with surface properties, including material, color and scene®. We re-
move the scene with less than 10 images, and delete the images that are not annotated with material.

*http://github.com/jayelm/compexp
>http://opensurfaces.cs.cornell.edu/intrinsic/
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Neurons’ concepts: whole layer (%) Neurons’ concepts: whole layer
Methods CM™™" DMTT SMTP Methods Consistency Metrics  Similarity Metrics
Top_10 58.76 26.14 58.82 cM™  omMTFP smqTP SsMT-EP
SCC 81.17 85.97 74.74 Top-10 0.15 0.09 0.06 0.03
ICC 55.73 69.85 37.39 SCC 0.25 0.19 0.18 0.15
ICC 0.66 0.60 0.41 0.38
Table 3: Integrating concept filtering for false
prediction. Table 4: Integrating concept filtering for true prediction.

We evaluate four popular CNN models with different network architectures, namely ResNet-18 He
et al. (2016), ResNet-50, DensenNet-161 Huang et al. (2017) and AlexNet Krizhevsky et al. (2017),
which have 512, 2,048, 2,208 and 256 units of the final layer to probe for concepts respectively.

4.2 EVALUATION OF POST-PREDICTION EXPLANATIONS

Results of False Prediction Explanation: For false prediction explanation, we expect to have
higher scores on the three metrics (CM, DM, SM). Here are three observations from Table 1: (1)
when compared to the results of the baseline method Top_10, both SCC and ICC achieve significant
better results, indicating our core concepts is effective and reasonable; (2) all the best scores (across
CMFP, DMFP and SMTT) are from SCC. This can be explained from the fact that SCC is
normally larger than ICC: if some concepts are not in SCC, then they are most likely to be incorrect.
On the other hand, ICC is more selective, thus it might exclude some (partially) correct concepts;
(3) among the three methods to represent neurons’ learned concepts in Sec. 3.1, the threshold-based
method achieves better results.

Results of True Prediction Explanation: For true prediction explanation, we expect to observe
that CM TP and SM " are larger than CM T-FF and SM T-F' respectively. The bigger the gap
between CM TP and CM T-FP and between SM TP and SM T-FP | the better the results are. As a
whole, all the items in Table 2 are satisfied with our assumption. The best results are from ICC. This
is understandable, since ICC is more selective, thus compared to SCC, they are less likely to involve
noise. We also conduct the same experiments for false and true predictions on Opensurfaces, and
achieve similar results as on ADE20k. The detailed results are shown in Appendix C.

Integrating Concept Filtering: Tables 3 and 4 show the results for false prediction explanation
and true prediction explanation when using concept filtering to simplify the concept sets. For false
prediction, SCC achieves the best performance compared to ICC and Top_10. For true prediction,
once again the results of CM TF and SM T*" are larger than CM T-F7 and SM T-FF respectively. In
addition, results are better than corresponding results without concept filtering in Table 1 and 2.

Model Prediction Explanatipn on Dif- —-oo cC  OMTT  DM'T  SMFT
ferent Models: .We further .lmplement SCC $0.85 89.36 74.46
our method on different architectures to ~ ResNet-50 ICC  53.19 69.15 36.17
verify the generalization. We randomly SCC 78.63 81.32 45.65
select 1000 samples from the ADE20K DensenNet-161 7 55.47 57.54 21.29
data for the experiment by considering AlexNet SCC 76.58 83.26 71.34
the effect of time efficiency. The re- ICC 60.23 68.33 31.57
sults are shown in Table 5. SCC has bet-

ter results than ICC over every model, Table 5: Results of false prediction on different models.

which is similar to the observation over
ResNet-18 from Table 1. For true prediction, all three models achieve significantly better results
which can be found in Appendix D.

4.3 EVALUATION OF COMPOSITIONAL EXPLANATIONS

As KG embedding techniques could have an impact on the number of optimal clusters, as well
as on the interpretability of neurons, we ran some experiments with ResNet-18 over the ADE20k
dataset to evaluate their impact. In particular we evaluated the impact of TransE Bordes et al.
(2013), Dismult Yang et al. (2014), ProjE Shi & Weninger (2017) and TransD Ji et al. (2015)
on the (1) optimal number of clusters, and (2) quality of interpretability, measured using IoU
similarly described as in CEN. The final number of cluster also captures the final number of
core concepts to be considered for explanation, as a cluster is described by a unique concept in
ConceptNet. The knowledge graph used for computing the embeddings is a subset of Concept-
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Net. In particular, we extracted all ADE20k labels as main concepts, as well as direct 1-hop
and 2-hop neighbors of ADE20k labels in ConceptNet. We applied fuzzy matching for 0.1%
of ADE20k labels due to some misalignment between ADE20k labels and ConceptNet concepts.
The IoU gain is measured by capturing the interpretability
improvement from (A) labeling with no clustering strat- Nb. of loU Embeddings
egy to (B) labeling with a k-clustering strategy with (k: Clusters _ Gain (%)

Nb. of Cluster) using Embeddings. The IoU gain is de- 168 +26.30 TransE
A . 6 166 +26.09 TransE

fined as (B — 4)/a. Table 6 captures the main results®. As 167
. . . . +26.05 TransE
described in this table, 168 is the best number of cluster 169 +26.00 TransE
for ADE20k using ResNet-18 with TransE embeddings. 165 +25.77 TransE
In other words, reducing the number of classes to 168 170 +25.36 TransE
has the advantage of exposing more interpretable units in 171 +25.33 TransE
ResNet-18 for ADE20k, and therefore we reduce the num- 181 +25.36 TransD
ber of core concepts from 512 to 168. TransE is the best 180 +25.28 TransD
performing embeddings strategy, with a best at 26.3% im- 182 +25.15 TransD
provement using 168 clusters compared with no clustering 179 +25.03 TransD
146 +25.01 Distmult

strategy i.e., 512 neurons in the context of ResNet-18.

Table 6: Embeddings Techniques vs. Inter-

We also conduct a set of ablation studies on compositional o :
pretability Gain.

explanations to verify the effectiveness of our MinMax-
based NetDissect which is provided in Appendix F.

4.4 EVALUATION OF MODEL MANIPULATION 50

Results of Neuron Identifying on ADE20K and Opensurfaces: :.,
Figure 2 shows the model performance when we disable the positive -
neurons or negative neurons. We have the following three observa- =
tions: (1) when negative (resp. positive) neurons are disabled, the  »|—
model performance is improved (resp. decreases), proving that the
CC facilitates identifying important neurons during decision-making
of the model; (2) model accuracy tends to decrease as the number  Figure 2: Neuron contribution
of inhibitory positive neurons increases; (3) compared to SCC, ICC  on ADE20k.

can better identify both the positive and negative neurons. As shown

in Figure 3, we can also see that the model performance decreases when we disable the positive
neurons. Note that the accuracy on ADE20k decreases more, indicating that more positive neurons
could be detected on ADE20k.

3 6 9 12 15 18

When inhibiting negative neurons, the model performance is im- >
proved on both ADE20k and Opensurfaces. The results on Open-
surfaces do not show as much growth as the results on ADE20k.
This is probably because Opensurfaces mainly focuses on annotating
the surface property, such as material, which makes the core concept "
of different scenes with limited differentiation. For example, con- .
cepts painted, wood will be core concepts for most scenes, such as
living_room, family_room, office and staircase. From the overall ex-
perimental results, with the help of core concepts, our method can
effectively identify the positive and negative neurons, and then aug-
ment the model performance.

Figure 3: Neuron contribution
on Opensurface.

Results of Re-training using CC: From Figure 2 and 3, we can see that the performance change
of disabling negative neurons is not as large as disabling positive neurons on both datasets. This is
reasonable, since the model we explain is trained with its parameters fixed and it is difficult to correct
false predictions by only removing some negative neurons. However, the result improvements on
different datasets still indicate that our method is effective to retrieve negative neurons.

To address this challenge, we re-train the initial models with the help of CC, and the results are
shown in Figure 4. In Figure 2 and 3, the experiments are based on the model ResNet18, and the
results have improved about 1.3% by removing the negative neurons. However, in Figure 4, the
corresponding performance of ResNet18 has improved 3.27%. On the other models, the results by

8Complete results: in the material zip file provided.
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lamp ) mirror ) (_footbhoard )

ICC of bedroom: wall, bed, floor, table, lamp, ceiling, painting, windowpane, headboard, pillow, curtain, cushion, shade, drawer, door,
column, leg, mirror, armchair, knob, carpet, cabinet, footboard, handle, base, wardrobe

(a) ICC and the relations for bedroom. (b) Concept generated by ACE.

Figure 5: Concepts of the scene bedroom by our proposed ICC (left) and ACE (right).

adding ICC are all improved. Compared to SCC, utilizing the ICC for re-training model is more
effective. We also conduct case studies in Appendix G.

The above two parts mainly focus on manipulating the CNN model ™ wice
behavior with the help of CC, such as identifying the useful neurons
and re-training from scratch. In the following part, we further ver-
ify the effectiveness of metrics CM, SM and DM on with-prediction
explanation. The implementation details are shown in Appendix H.

Results of Re-training using PE: The results are shown in Table 7,
and ResNet18 is the fundamental model. The results are improved
for SCC and ICC on both datasets. ICC-based SVM on ADE20K
achieves the best performance with 67.11, and outperforms the ba-
sic ResNetl8 by a large margin of 14.15, which amouts to 26.7%

gy e

ResNetl8  ResNet50 DenseNet161 MobileNet v2

Figure 4: The results of model
re-training using CC.

improvement.

Method Acc. (%)
4.5 EVALUATION OF CORE CONCEPTS etho ADE20K  Opensurfaces
Analysis of SCC and ICC: SCC describes the sce- Sl\z,ij[bgtég) 2222 g?ég
nario more comprehensively while keeping a higher SVM (ICC) 67.11 32.27
level of coverage. ICC mainly focuses on higher pre-
cision. These characteristics can be reflected in the Table 7: Results of PE.

following three aspects: (1) the concept count of SCC

is often larger than ICC; (2) SCC has better results on the false prediction explanation as shown in
Table 1; (3) when identifying positive (negative) neurons to change the model performance, we need
more scene-specific concepts, and thus ICC achieves better results as shown in Figures 2 and 3.

Compare to Visual Concept-based Explanation: We compare the identifier core concepts to ACE
Ghorbani et al. (2019) on ADE20k. The results are shown in Figure 5. We have the following
three observations: (1) many concepts generated by ACE are still difficult for human to understand;
(2) the concepts in Figure 5(b) are independent of each other, and the image of the scene cannot
be identified from only a limited number of concepts; (3) in contrast, ICC can be used to facilitate
identifying scene, as shown in Figure 5(a). More detailed cases on SCC are given in Appendix B.

5 CONCLUSION AND OUTLOOK

In this study, we investigated knowledge-aware explanation of neural network predictions on image
scenes. We proposed two types of core concepts (i.e., SCC and ICC) based on KGs to help identify
scenes, assisting prediction explanation and further augmenting model performance. Extensive ex-
periments demonstrate that our methods can make a better explanation with visual concepts, which
enables human beings to better understand the predictions. Our experimental results also verify that
inhibiting the positive and negative neurons identified with SCC and ICC can manipulate the model
behavior, and that PE based retraining leads to significant performance improvements.
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A EXAMPLES OF CORE CONCEPTS

The core concepts are shown in Table 8. SCC is based on the whole concepts in the scene, whenever
a concept has relation with the scene in the ConceptNet, it is considered as a core concept, which
will inevitably introduce redundant concepts. For example, coat and streetcar are not important
concepts to scene library. In contrast to SCC, ICC considers the relations between the concept and
the scene while computing the importance of the concept to the scene, so the core concepts in ICC
are more concentrated. For example, in scene library, the concept count of ICC is 17 less than the
SCC.

Scene CC | Count Core Concepts
wall, book, windowpane, light, desk, armchair, ceiling, lamp,
sce 27 fluorescent, counter, poster, cabinet, apron, top, exhibitor, chair,
library table, screen, grill, coat, paper, floor, stairs, streetcar, spotlight,
stairway, bookcase
wall, floor, bookcase, book, ceiling, windowpane, light, chair,
ICC 10

table, desk
SCC 10 tree, grass, path, plant, signboard, water, gate, wall, earth, person
1CC 7 path, grass, tree, plant, earth, sky, bush

forest_path

Table 8: Core concepts of the scene library and forest_path.

B LiIST OF CASE ON SCC

In this section, we compare our scoping concept definition (SCC) and the concept-based explanation
ACE as shown in Figure 6. We can obtain the same conclusion as that of ICC in Section 4.2 that
the SCC based method improves the comprehensive description of the scene by integrating the KG,
which in turn helps to identify the scene.

C MODEL PREDICTION EXPLANATION ON OPENSURFACES

Table 9 shows the results of false prediction, we can see that it achieves the similar performance as
on ADE20k. On the other hand, SCC once again achieves the best performance.

For the true prediction explanation, as shown in Table 10, we can also obtain the same observations
as on ADE20k. The results on different datasets prove that our method is effective and can be applied
to different datasets.

Neurons’ learned concepts: whole layer (%)

CM FP DM P SM P
SCC 73.69 84.09 64.03
ICC 35.66 53.57 3391
Neurons’ learned concepts: highest IoU (%)
SCC 67.63 40.03 66.61
ICC 35.26 34.41 34.75

Neurons’ learned concepts: threshold (%)

SCC 74.51 41.51 73.23
ICC 36.06 37.18 34.29

Table 9: Results of false prediction explanation on Opensurfaces. The table contains three blocks: top block,
middle block, and bottom block. And each block is the results of two CC definitions on three different metrics.
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Scene: Library

SCC of library: wall, book, windowpane, light, desk, armchair, ceiling, lamp, fluorescent, counter, poster, cabinet, apron, top,
exhibitor, chair, table, screen, grill, coat, paper, floor, stairs, streetcar, spotlight, stairway, bookcase

Scene: Mountain

SCC of mountain: sky, earth, bush, building, fog bank, mountain, cloud, plant, car, lake, water, signboard, railing, slope, land,
stairway, pole

(a) SCC and the relations. (b) Concept generated by ACE.

Figure 6: Concepts of scene bedroom by our proposed SCC (left) and ACE (right).

Neurons’ learned concepts: whole layer

Consistency Metrics | Similarity Metrics
CMTP OMF_TP SMTP SMF_TP
SCC 0.10 0.10 0.07 0.07
ICC 0.31 0.30 0.11 0.10
Neurons’ learned concepts: highest loU
Nee 0.08 0.08 0.08 0.07
ICC 0.23 0.21 0.21 0.19
Neurons’ learned concepts: threshold
SCC 0.10 0.10 0.10 0.10
ICC 0.32 0.30 0.28 0.27

Table 10: Results of true prediction explanation on Opensurfaces.

D TRUE PREDICTION EXPLANATION ON DIFFERENT MODELS

Table 11 shows the results of true prediction explanation on different models. The results of ICC
achieve better performance compared to the results of SCC, which further prove that ICC can reduce
redundant concepts.
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Models CcC %(])\?[S}itencéﬂl\;it,ﬂfcz—s’ ;]E[n }Eritygl\ﬂd;ﬁrfi
ReNetS0 | joc | osa | 0s0 | 037 | 035
DesenNet-161 ?gg 8; 8;(1) 8(1)2 8(1)2
MeNet |icc | o036 | 034 | 028 | 02

Table 11: Results of true prediction explanation on different models.

In the end, combining the results of false prediction explanation can prove that it is reasonable to
define different core concepts.

E GROUPING DISTRIBUTION

Table 12 shows the grouping results, we test top k from 1 to 5. As the top k gets larger, the number
of group get smaller. In top 5, there are only 10 groups, and each group has an average of 454.7
neurons and 410.8 concepts. Since we have 512 neurons at most, we only test up to the top 5.

Top K | Group Count | Avg Neuron | Avg Concepts
1 255 1 23
2 87 23.1 314
3 37 209.9 199.9
4 20 384.5 340.9
5 10 454.7 410.8

Table 12: Neuron grouping on the whole neurons. Avg Neuron and Avg Concepts are the average neurons and
concepts for each group respectively.

IoU Score (%)

Methods Lenl Len2 Len3 Len4

CEN (w/o color)  5.81 7.51 8.48 8.87

CEN (wlocolor, ) o9 556 616 6.50
w/o scene)

1 5.53 7.07 7.83 8.24

Grouping 2 5.63 7.21 8.06 8.43

Top K 3 5.69 7.37 8.41 8.76

(w/o color) 4 5.77 7.48 8.46 8.82

5 5.74 7.42 8.43 8.80

Grouping 1 3.24 4.74 5.40 5.78

Top K 2 3.78 4.98 5.69 6.55

(wlo color 3 4.27 5.65 6.54 6.72

w/o scenej 4 438 5.66 6.59 6.74

5 4.39 5.63 6.53 6.65

Table 13: Results of Compositional Explanations.

F USING MINMAX-BASED NETDISSECT
We also conduct a set of ablation studies on compositional explanations to verify the effectiveness
of our MinMax-based NetDissect.

Table 13 reports our results. For each formula length, different neurons only calculate the corre-
sponding concept set, with the following three steps: (S1) For each concept (with IoU score larger
than the threshold T), we rank and get the neuron scores based on the number of images that each
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neuron can predict the concept. (S2) For each concept, we select the top k neurons (regard as
a concept-neuron pair). The neurons are divided into different groups by combining the concept-
neuron pairs if they have the same neurons. (S3) For each neuron, we select the concepts that belong
to the corresponding groups to calculate the logic expression.

The original ADE20k dataset has pixel-level annotations on scene, object, part, and color for each
image. Since our goal is to explain model prediction of each image and the concepts are mainly
about the part and object in the scene for per image, when explaining the model prediction we focus
on explaining the concept corresponding to the neuron rather than the scene. On the other hand,
there are 11 colors in total and each image has 9.92 colors on average. So color as a common
concept, and our analysis does not consider the effect of color. As shown in Table 13, our grouping
results (Grouping Top K (w/o scene, w/o color)) are significantly better than the baseline on IoU
score, especially in the grouping top 4 with 0.24 improvements on formula length 4.

For a fair comparison, we also display our grouping results by adding the scene (Grouping Top K
(w/o color)) in Table 13. Our grouping top 4 achieves comparable performance to the baseline.

Method >20% 10-20% 5-10% <5%
Len 1 0.2 5.27 2344  71.09
Len 2 0.2 10.16 3398 55.66

CEN ' [en3 050 1211 4023 47.07
Lend 078 1368 4395 416
Lenl 039 781 4043 5137
Len2 059 125 4785 39.06
Top 4

Len3  0.78 15.04 4824 3594
Len4 098 14.84 4746  36.72

Table 14: The distribution of IoU score for different formula lengths. Four columns represent different IoU
score ranges.

In addition, we share the distribution of IoU score on different formula lengths in Table 14. From
the results, we can see that in interval <5%, the percentage of our method is smaller than the CEN.
However, for the other four intervals, the percentage of our method is larger than the CEN in terms
of all four formula lengths, confirming once again that our method can effectively improve the
compositional explanations of neurons.

Target Scene: street Predicted Scene: crosswalk
count Intersection count Intersection
sidewalk, hand, taillight,

leg, car, windowpane,
bag, road, building,

traffic light, bag, person,
SCC 9 taillight, leg, windowpane, 10
car, road, license plate

traffic light
sidewalk, windowpane, sidewalk, person, road,
ICC 8 car, road, building, sky, 6 building, crosswalk,
person, traffic light traffic light

Table 15: Case Study. The Intersection operation in the table means the intersection between the neurons’
learned concepts (method of threshold) and CC of target scene (predicted scene).

G CASE STUDY

As shown in Table 15, the intersection count of SCC for predicted scene crosswalk is larger than the
count of target scene street, indicating the neurons are closer to the predicted scene. On the other
hand, For ICC, although the intersection count of crosswalk is smaller than the street, it has the key
concepts crosswalk and traffic light which are the CC of scene crosswalk. In addition, compare to
SCC, ICC can identify more key concepts to the scene while reducing redundant concepts.

As conclusion, for the current scene street, the model predicts to crosswalk is explainable and rea-
sonable.
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H IMPLEMENTATION DETAILS

Implementation details of our proposed models are as follows. In all experiments, we evaluate our
method on four popular CNN models with different network architectures, i.e. ResNet-18, ResNet-
50, DensenNet-161 and AlexNet. For a fair comparison with other baselines, all the models are
trained on the dataset Places365’, and test on the whole datasets ADE20K and Opensurfaces. In
last two parts of Sec. 3.5, we re-train the CNN models on ADE20K and Opensurfaces. During the
re-training phase, we split the data to train, dev and test by 80%, 10% and 10% for each scene. In
Figure 4 and Table 7, we report model performance on the new test set.

"http://places2.csail. mit.edu/models_places365/
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