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ABSTRACT

Neural networks have shown tremendous potential for reconstructing high-
resolution images in inverse problems. The non-convex and opaque nature of
neural networks, however, hinders their utility in sensitive applications such as
medical imaging. To cope with this challenge, this paper advocates a convex du-
ality framework that makes a two-layer fully-convolutional ReLU denoising net-
work amenable to convex optimization. The convex dual network not only offers
the optimum training with convex solvers, but also facilitates interpreting train-
ing and prediction. In particular, it implies training neural networks with weight
decay regularization induces path sparsity while the prediction is piecewise linear
filtering. A range of experiments with MNIST and fastMRI datasets confirm the
efficacy of the dual network optimization problem.

1 INTRODUCTION

In the age of AI, image reconstruction has witnessed a paradigm shift that impacts several appli-
cations ranging from natural image super-resolution to medical imaging. Compared with the tradi-
tional iterative algorithms, AI has delivered significant improvements in speed and image quality,
making learned reconstruction based on neural networks widely adopted in clinical scanners and
personal devices. The non-convex and opaque nature of deep neural networks however raises se-
rious concerns about the authenticity of the predicted pixels in domains as sensitive as medical
imaging. It is thus crucial to understand what the trained neural networks represent, and interpret
their reconstruction per pixel for unseen images.

Reconstruction is typically cast as an inverse problem, where neural networks are used in different
ways to create effective priors; see e.g., (Ongie et al., 2020; Mardani et al., 2018b) and references
therein. An important class of methods are denoising networks, which given natural data corrupted
by some noisy process Y , aim to regress the ground-truth, noise-free data X∗ (Gondara, 2016;
Vincent et al., 2010). These networks are generally learned in a supervised fashion, such that a
mapping f : Y → X is learned from inputs {yi}ni=1 to outputs {x∗i}ni=1, and then can be used in
the inference phase on new samples ŷ to generate the prediction x̂∗ = f(ŷ).

The scope of supervised denoising networks is so general that it can cover more structured
inverse problems appearing, for example, in compressed sensing. In this case one can easily form
a poor (linear) estimate of the ground-truth image that is noisy and then reconstruct via end-to-end
denoising networks (Mardani et al., 2018b; Mousavi et al., 2015). This method has been proven
quite effective on tasks such as medical image reconstruction (Mardani et al., 2018b;a; Sandino
et al., 2020; Hammernik et al., 2018), and significantly outperforms sparsity-inducing convex
denoising methods, such as total-variation (TV) and wavelet regularization (Candès et al., 2006;
Lustig et al., 2008; Donoho, 2006) in terms of both quality and speed.

Despite their encouraging results and growing use in clinical settings (Sandino et al., 2020; Ham-
mernik et al., 2018; Mousavi et al., 2015), little work has explored the interpretation of supervised
training of over-parameterized neural networks for inverse problems. Whereas robustness guaran-
tees exist for inverse problems with minimization of convex sparsity-inducing objectives (Oymak
& Hassibi, 2016; Chandrasekaran et al., 2012), there exist no such guarantees for predictions of
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non-convex denoising neural networks based on supervised training. While the forward pass of
a network has been interpreted as a layered basis pursuit from sparse dictionary learning, this
approach lacks an understanding of the optimization perspective of such networks, neglecting the
solutions to which these networks actually converge (Papyan et al., 2017). In fact, it has been
demonstrated empirically that deep neural networks for image reconstruction can be unstable; i.e.,
small perturbations in the input can cause severe artifacts in the reconstruction, which can mask
relevant structural features, which are important for medical image interpretation (Antun et al.,
2020).

The main challenge in explaining these effects emanates from the non-linear and non-convex
structure of deep neural networks that are heuristically optimized via first-order stochastic gradient
descent (SGD) based solvers such as Adam (Kingma & Ba, 2014). As a result, it is hard to
interpret the inference phase, and the training samples can alter the predictions for unseen images.
In other applications, Neural Tangent Kernels (NTK) have become popular to understand the
behavior of neural networks (Jacot et al., 2018). They however strongly rely on the oversimplifying
infinite-width assumption for the network that is not practical, and as pointed out by prior work
(Arora et al., 2019), they cannot explain the success of neural networks in practice. To cope with
these challenges, we present a convex-duality framework for two-layer finite-width denoising
networks with fully convolutional (conv.) layers with ReLU activation and the representation
shared among all output pixels. In essence, inspired by the analysis by Pilanci & Ergen (2020),
the zero-duality gap offers a convex bi-dual formulation for the original non-convex objective, that
demands only polynomial variable count.

The benefits of the convex dual are three-fold. First, with the convex dual, one can leverage off-
the-shelf convex solvers to guarantee convergence to the global optimum in polynomial time and
provides robustness guarantees for reconstruction. Second, it provides an interpretation of the train-
ing with weight decay regularization as implicit regularization with path-sparsity, a form of capacity
control of neural networks (Neyshabur et al., 2015). Third, the convex dual interprets CNN-based
denoising as first dividing the input image patches into clusters, based on their latent representation,
and then linear filtering is applied for patches in the same cluster. A range of experiments are per-
formed with MNIST and fastMRI reconstruction that confirm the zero-duality gap, interpretability,
and practicality of the convex formulation.

All in all, the main contributions of this paper are summarized as follows:

• We, for the first time, formulate a convex program with polynomial complexity for neural
image reconstruction, which is provably identical to a two-layer fully-conv. ReLU network.

• We provide novel interpretations of the training objective with weight decay as path-
sparsity regularization, and prediction as patch-based clustering and linear filtering.

• We present extensive experiments for MNIST and fastMRI reconstruction that our convex
dual coincides with the non-convex neural network, and interpret the learned dual networks.

2 RELATED WORK

This paper is at the intersection of two lines of work, namely, convex neural networks, and deep
learning for inverse problems. Convex neural networks were introduced in (Bach, 2017; Bengio
et al., 2006), and later in (Pilanci & Ergen, 2020; Ergen & Pilanci, 2020a;b).

The most relevant to our work are (Pilanci & Ergen, 2020; Ergen & Pilanci, 2020b) which put forth
a convex duality framework for two-layer ReLU networks with a single output. It presents a convex
alternative in a higher dimensional space for the non-convex and finite-dimensional neural network.
It is however restricted to scalar-output networks, and considers either fully-connected networks
(Pilanci & Ergen, 2020), or, CNNs with average pooling (Ergen & Pilanci, 2020b). Our work
however focuses on fully convolutional denoising with an output dimension as large as the number
of image pixels, where these pixels share the same hidden representation. This is indeed quite
different from the setting considered in (Pilanci & Ergen, 2020) and demands a different treatment.
It could also be useful to mention that there are works in (Amos et al., 2017; Chen et al., 2019) that
customize the network architecture for convex inference, but they still require non-convex training.
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In recent years, deep learning has been widely deployed in inverse problems to either learn effective
priors for iterative algorithms (Bora et al., 2017; Heckel & Hand, 2018), or to directly learn the inver-
sion map using feed-forward networks (Jin et al., 2017; Zhang et al., 2017). In the former paradigm,
either an input latent code, or, the parameters of a deep decoder network are optimized to generate
a clean output image. A few attempts have been made to analyze such networks to explain their
success (Yokota et al., 2019; Tachella et al., 2020; Jagatap & Hegde, 2019). Our work, in contrast,
belongs to the latter group, which is of utmost interest in real-time applications, and thus widely
adopted in medical image reconstruction. Compressed sensing (CS) MRI has been a successful fit,
where knowing the forward acquisition model, one forms an initial linear estimate, and trains a non-
linear CNNs to de-alias the input (Mardani et al., 2018a). Further, unrolled architectures inspired
by convex optimization have been developed for robust de-aliasing (Sun et al., 2016; Mardani et al.,
2018b; Hammernik et al., 2018; Sandino et al., 2020; Diamond et al., 2017). Past work however
are all based on non-convex training of network filters, and interpretability is not their focus. Note
that stability of iterative neural reconstructions has also been recently analyzed in Li et al. (2020);
Mukherjee et al. (2020).

3 PRELIMINARIES AND PROBLEM STATEMENT

Consider the problem of denoising, i.e. reconstructing clean signals from ones which have been
corrupted by noise. In particular, we are given a dataset of 2D 1 images X∗ ∈ RN×h×w, along
with their corrupted counterparts Y = X∗ + E, where noise E has entries drawn from some
probability distribution, such as N (0, σ2) in the case of i.i.d. Gaussian noise. This is a fundamental
problem, with a wide range of applications including medical imaging, image restoration, and
image encryption problems (Jiang et al., 2018; Dong et al., 2018; Lan et al., 2019).

To solve the denoising problem, we deploy a two-layer CNN, where the first layer has an
arbitrary kernel size k and appropriately chosen padding, followed by an element-wise ReLU
operation denoted by (·)+. The second and final layer of the network performs a conv. by a 1 × 1
kernel to generate the predictions of the network. The predictions generated by this neural network
with m first-layer conv. filters {uj}mj=1 and second-layer conv. filters {vj}mj=1 can be expressed as

f(Y ) =

m∑
j=1

(Y ~ uj)+ ~ vj (1)

where ~ represents the 2D conv. operation.

3.1 TRAINING

We then seek to minimize the squared loss of the predictions of the network, along with an `2-norm
penalty (weight decay) on the network weights, to obtain the training problem

p∗ = min
uj∈Rk×k

vj∈R

1

2
‖
m∑
j=1

(Y ~ uj)+ ~ vj −X∗‖2F +
β

2

m∑
j=1

(
‖uj‖2F + |vj |2

)
(2)

The network’s output can also be understood in terms of matrix-vector products, when the input
is appropriately expressed in terms of patch matrices {Yp ∈ Rk2}Nhwp=1 , where each patch matrix
corresponds to a patch of the image upon which a convolutional kernel will operate upon. Then,
we can form the two-dimensional matrix input to the network as Y ′ = [Y1,Y2, · · · ,YNhw]

> ∈
RNhw×k2 , and attempt to regress labels X ′∗ ∈ RNhw, which is a flattened vector of the clean
images X∗. An equivalent form of the two-layer CNN training problem is thus given by

p∗ = min
uj∈Rk2

vj∈R

1

2
‖
m∑
j=1

(Y ′uj)+vj −X ′∗‖22 +
β

2

m∑
j=1

(
‖uj‖22 + |vj |2

)
(3)

In this form, the neural network training problem is equivalent to a 2-layer fully connected scalar-
output ReLU network with Nhw samples of dimension k2, which has previously been theoretically
analyzed (Pilanci & Ergen, 2020). We also note that for a fixed kernel-size k, the patch data matrix
Y ′ has a fixed rank, since the rank of Y ′ cannot exceed the number of columns k2.

1The results contained here are general to all types of conv., but we refer to the 2D case for simplicity.
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3.2 RELU HYPER-PLANE ARRANGEMENTS

To fully understand the convex formulation of the neural network proposed in (2), we must provide
notation for understanding the hyper-plane arrangements of the network. We consider the set of
diagonal matrices

D := {Diag(1Y ′u≥0) : ‖u‖2 ≤ 1}
This set, which depends on Y ′, stores the set of activation patterns corresponding to the ReLU non-
linearity, where a value of 1 indicates that the neuron is active, while 0 indicates that the neuron is
inactive. In particular, we can enumerate the set of sign patterns as D = {Di}`i=1, where ` depends
on Y ′ and is bounded by

` ≤ 2r
(e(Nhw − 1)

r

)r
for r := rank(Y ′) (Pilanci & Ergen, 2020). Thus, ` is polynomial in Nhw for matrices with a
fixed rank r, which occurs for convolutions with a fixed kernel size k. Using these sign patterns, we
can completely characterize the range space of the first layer after the ReLU:

{(Y ′u)+ : ‖u‖2 ≤ 1} = {DiY
′u : ‖u‖2 ≤ 1, (2Di − I)Y ′u ≥ 0, i ∈ [`]}

With this notation established, we are ready to present our main theoretical result.

4 CONVEX DUALITY

Theorem 1. There exists an m∗ ≤ Nhw such that if the number of conv. filters m ≥ m∗ + 1, the
two-layer conv. network with ReLU activation (2) has a strong dual. This dual is a finite-dimensional
convex program, given by

p∗ = d∗ := min
(2Di−I)Y ′wi≥0
(2Di−I)Y ′zi≥0

1

2
‖
∑̀
i=1

DiY
′(wi − zi)−X ′∗‖22 + β

∑̀
i=1

(
‖wi‖2 + ‖zi‖2

)
(4)

where ` refers to the number of sign patterns associated with Y ′. Furthermore, given a set of optimal
dual weights (w∗i , z

∗
i )`i=1, we can reconstruct the optimal primal weights as follows

(u∗i ,v
∗
i ) =

(
w∗i√
‖w∗i ‖2

,
√
‖w∗i ‖2) w∗i 6= 0

(
z∗i√
‖z∗i ‖2

,
√
‖z∗i ‖2) z∗i 6= 0

(5)

It is useful to recognize that the convex program has 2`Nhw constraints and 2`k2 variables, which
can be solved in polynomial time with respect to N , h and w using standard convex optimiz-
ers. For instance, using interior point solvers, in the worst case, the operation count is less than
O
(
k12(Nhw/k2)3k

2)
. Note also that our theoretical result contrasts with fully-connected networks

analyzed in (Pilanci & Ergen, 2020), that demand exponential complexity in the dimension.

Our result can easily be extended to residual networks with skip connections as stated next.
Corollary 1.1. Consider a residual two-layer network given by

fres(Y ) = Y +

m∑
j=1

(Y ~ uj)+ ~ vj (6)

We can also pose the convex dual network (4) in a similar fashion, where now we simply regress
upon the residual labels X∗ − Y .

4.1 IMPLICIT REGULARIZATION

In this section, we discuss the implicit regularization induced by the weight decay in the primal
model (3). In particular, each dual variable wi or zi represents a path from the input to the output,
since the the product of corresponding primal weights is given by

u∗i v
∗
i =

{
w∗i w∗i 6= 0

z∗i z∗i 6= 0
(7)
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(a) Primal Network (b) Dual Network

Figure 1: Primal and dual network interpretation. In the primal network, m refers to the number of
conv. filters, while in the dual network ` refers to the number of sign patterns.

Thus, the sparsity-inducing group-lasso penalty on the dual weights wi and zi induces sparsity in
the paths of the primal model. In particular, a penalty is ascribed to ‖wi‖2 + ‖zi‖2, which in terms
of primal weights corresponds to a penalty on |vi|‖ui‖2. This sort of penalty has been explored
previously in (Neyshabur et al., 2015), and refers to the path-based regularizer from their work.

4.2 INTERPRETABLE RECONSTRUCTION

The convex dual model (4) allows us to understand how an output pixel is predicted from a particular
patch. Note that in this formulation, each input patch is regressed upon the center pixel of the output.
In particular, for an input patch y′p, the prediction of the network corresponding to the p-th output
pixel is given by

f(y′p) =
∑̀
i=1

d
(p)
i y′>p (wi − zi) (8)

where d(p)i ∈ {0, 1} refers to the p-th diagonal element of Di. Thus, for an individual patch y′p,
the network can be interpreted as first selecting relevant sets of linear filters for that individual
patch, and then taking a sum of the inner product of the patch with those filters–a piece-wise linear
filtering operation. Thus, once it is identified which filters are active for a particular patch, the
network’s predictions are given as linear. This interpretation of the dual network contrasts with the
opaque understanding of the primal network, in which due to the non-linear ReLU operation it is
unclear how to interpret its predictions, as shown in Fig. 1.

Furthermore, because of the group-lasso penalty (Yuan & Lin, 2006) on wi and zi in the
dual objective, these weights are sparse. Thus, for particular patch y′p, only a few sign patterns

d
(p)
i influence its prediction. Therefore, different patches are implicitly clustered by the network

according to the linear weights wi − zi which are active for their predictions. A forward pass of
the network can thus be considered as first a clustering operation, followed by a linear filtering
operation for each individual cluster. As the neural network becomes deeper, we expect that this
clustering becomes hierarchical–at each layer, the clusters become more complex, and capture more
contextual information from surrounding patches.

4.3 DEEP NETWORKS

While the result of Theorem 1 holds only for two-layer fully conv. networks, these networks are
essential for interpreting the implicit regularization and reconstruction of deeper neural networks.
For one, these two-layer networks can be greedily trained to build a successively richer representa-
tion of the input. This allows for increased field of view for the piecewise linear filters to operate
upon, along with allowing for more complex clustering of input patches. This approach is not
dissimilar to the end-to-end denoising networks described by Mardani et al. (2018b), though it is
more interpretable due to the simplicity of the convex dual of each successive trained layer.

This layer-wise training has been found to be successful in a variety of contexts. Greedily
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pre-training denoising autoencoders layer-wise has been shown to improve classification perfor-
mance in deep networks (Vincent et al., 2010). Greedy layer-wise supervised training has also
been shown to perform competitively with much deeper end-to-end trained networks on image
classification tasks (Belilovsky et al., 2019; Nøkland & Eidnes, 2019). Although analyzing the
behavior of end-to-end trained deep networks is outside the scope of this work, we expect that
end-to-end models are similar to networks trained greedily layerwise, which can fully be interpreted
with our convex dual model.

5 EXPERIMENTS

5.1 MNIST DENOISING

Dataset. We use a subset of the MNIST handwritten digits (LeCun et al., 1998). In particular, for
training, we select 600 gray-scale 28× 28 images, pixel-wise normalized by the mean and standard
deviation over the entire dataset. The full test dataset of 10,000 images is used for evaluation.

Training. We seek to solve the task of denoising the images from the MNIST dataset. In particular,
we add i.i.d. noise from the distribution N (0, σ2) for various noise levels, σ ∈ {0.25, 0.5, 0.75}.
The resulting noisy images, Y , are the inputs to our network, and we attempt to learn the clean
images X∗. We train both the primal network (2) and the dual network (4) using Adam (Kingma
& Ba, 2014). For the primal network, we use 512 filters, whereas for the dual network, we ran-
domly sample 8,000 sign patterns Di as an approximation to the full set of sign patterns `. Further
experimental details can be found in the appendix.

Zero duality gap. We find that for this denoising problem, there is no gap between the primal
and dual objective values across all values of σ tested, verifying the theoretical result of Theorem
1, as demonstrated in Fig. 2. This is irrespective of the sign-pattern approximation, wherein we
select only 8,000 sign patterns for the dual network, rather than enumerating the entire set of `
patterns. The illustrations of reconstructed images in Fig.3 also makes it clear that the primal and
dual reconstructions are of similar quality.

(a) Train loss (b) Test loss

Figure 2: Train and test curves for MNIST denoising problem, for various noise levels σ.

(a) σ = 0.25 (b) σ = 0.75

Figure 3: Test examples from MNIST denoising problem for two values of σ from primal (top) and
dual (bottom) networks. From left to right, images are: (a) noisy network input, (b) ground truth,
(c) network output.
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Interpretable reconstruction. Further, we can interpret what these networks have learned using
our knowledge of the dual network. In particular, we can visualize both the sparsity of the learned
filters, and the network’s clustering of input patches. Because of the piece-wise linear nature of
the dual network, we can visualize the dual filters wi or zi as linear filters for the selected sign
patterns. Thus, the frequency response of these filters explains the filtering behavior of the end-to-
end network, where depending on the input patch, different filters are activated. We visualize this
frequency response of the dual weights wi in Fig. 4, where we randomly select 600 representative
filters of size 28× 28. We note that because of the path sparsity induced by the group-Lasso penalty
on the dual weights, some of these dual filters are essentially null filters.

Figure 4: Visualization of the frequency response for the learned dual filters {wi} for denoising
MNIST. Representative filters (600) are randomly selected for visualization when σ = 0.5.

The clustering of input patches can be detected via the set of sign patterns d(p)i which correspond
to non-zero filters for each output pixel p. Each output pixel p can thus be represented by a binary
vector d(p) ∈ {0, 1}`. We thus feed the trained network clean test images and interpret how they
are clustered, using k-means clustering with k = 12 to interpret the similarity among these binary
vectors for each output pixel of an image. Visualizations of these clusters can be found in Fig. 5(a).

We can also use this clustering interpretation for deeper networks, even those trained end-to-
end. We consider a four-layer architecture, which consists of two unrolled iterations of the
two-layer architecture from the previous experiment, trained end-to-end. We can perform the same
k-means clustering on the implicit representation obtained from each unrolled iteration, using the
interpretation from the dual network. This result is demonstrated in Fig. 5(b), where we find that
the clustering is more complex in the second iteration than the first, as expected. We note that
while this network was trained end-to-end, the clusters from the first iteration are nearly identical to
those of the single unrolled iteration, indicating that the early layers of end-to-end trained deeper
denoising networks learn similar clusters to those of two-layer denoising networks.

5.2 MRI RECONSTRUCTION

MRI acquisition. In multi-coil MRI, the forward problem for each patient admits yi = ΩFSix +
ei, i = 1, · · · , nc where F is the 2D discrete Fourier transform, {Si}nc

i=1 are the sensitivity maps of
the receiver coils, and Ω is the undersampling mask that indexes the sampled Fourier coefficients.

Dataset. To assess the effectiveness of our method, we use the fastMRI dataset (Zbontar et al.,
2018), a benchmark dataset for evaluating deep-learning based MRI reconstruction methods. We
use a subset of the multi-coil knee measurements of the fastMRI training set that consists of 49
patients (1,741 slices) for training, and 10 patients (370 slices) for testing, where each slice is of
size 80× 80. We select Ω by generating Poisson-disc sampling masks using undersampling factors
R = 2, 4, 8 with a calibration region of 16 × 16 using the SigPy python package (Ong & Lustig,
2019). Sensitivity maps Si are estimated using JSENSE (Ying & Sheng, 2007a).

Training. The multi-coil complex data are first undersampled, then reduced to a single-coil complex
image using the SENSE model (Ying & Sheng, 2007b). The input of the networks are the real and

7



Published as a conference paper at ICLR 2021

(a) (b)

Figure 5: Visualization of k-means clustering for latent representations of trained MNIST denoising
network when σ = 0.75 and k = 12. (a) one unrolled iteration, (b) two unrolled iterations trained
end to end; top row is the output of the first iteration, and bottom is the output of the second iteration.

imaginary components of this complex-valued Zero-Filled (ZF) image, where we wish to recover
the fully-sampled ground-truth image. The real and imaginary components of each image are treated
as separate examples during training. For the primal network, we use 1,024 filters, whereas for the
dual network, we randomly sample 5,000 sign patterns.

Zero duality gap. We observe zero duality gap for CS-MRI, verifying Theorem 1. For different R,
both the train and test loss of the primal and dual networks converge to the same optimal value, as
depicted in Fig. 6. Furthermore, we show a representative axial slice from a random test patient in
Fig. 7 reconstructed by the dual and primal networks, both achieving the same PSNR.

(a) Train loss (b) Test loss

Figure 6: Train and test curves for MRI reconstruction under various undersampling rates R.

6 CONCLUSIONS

This paper puts forth a convex duality framework for CNN-based denoising networks. Focusing on
a two-layer CNN network with ReLU activation, a convex dual program is formulated that offers
optimal training using convex solvers, and gains more interpretability. It reveals that the weight
decay regularization of CNNs induces path sparsity regularization for training, while the predic-
tion is piece-wise linear filtering. The utility of the convex formulation for deeper networks is also
discussed using greedy unrolling. There are other important next directions to pursue. One such di-
rection pertains to stability analysis of the convex neural network for denoising, and more extensive
evaluations with pathological medical images to highlight the crucial role of convexity for robust-
ness. Another such direction would be further exploration into fast and scalable solvers for the dual
problem.
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(a) Primal Network (b) Dual Network

Figure 7: Representative test knee MRI slice reconstructed via dual and primal network for under-
sampling R = 2, 4. From left to right: ground truth, output, and noisy ZF input.
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A APPENDIX

B ADDITIONAL EXPERIMENTAL DETAILS

All experiments were run using the Pytorch deep learning library (Paszke et al., 2019). All primal
networks are initialized using Kaiming uniform initialization (He et al., 2015). The losses presented
are the sample and dimension-averaged, meaning that they differ by a constant factor of Nhw from
the formulas presented in (2) and (4). All networks were trained with an Adam optimizer, with
β1 = 0.9, β2 = 0.999, and ε = 10−8. All networks had ReLU activation and had a final layer
consisting of a 1×1 convolution kernel with stride 1 and no padding. For all dual networks, in order
to enforce the feasibility constraints of (4), we penalize the constraint violation via hinge loss.

B.1 ADDITIONAL EXPERIMENT: ROBUSTNESS FOR MNIST DENOISING

While for i.i.d. zero-mean Gaussian noise, training the primal and dual networks coincide, this
may not necessarily be the case for all noise distributions. Depending on the distribution of
noise, the loss landscape for the non-convex primal optimization problem may have more or fewer
valleys–even if SGD does not get stuck in the an exact local minimum, it may converge extremely
slowly, mimicking the effect of being stuck in a local minimum. In contrast, because the dual
problem is convex, solving the dual problem is guaranteed to converge to the global minimum.

To see this effect, we compare the effect of denoising with i.i.d. zero-mean Gaussian noise,
σ = 0.75, with that of i.i.d. exponentially distributed noise, with λ = 1.15. The exponential
distribution has a higher noise variance, and also a heavier tailed distribution, and thus is more
difficult for the non-convex problem to solve. For both cases, we employ 25 primal filters, and 8,000
sign patterns. The results of these experiments are shown in Figs 8 and 9. As we can see, for the
Gaussian noise distribution, the primal and dual objective values coincide, but for the exponential
noise distribution, the dual program performs better, suggesting the primal problem is stuck in a
local minimum or valley. This suggests that when the data distribution is heavy-tailed, the convex
dual network may be more robust to train than the non-convex primal network, due to a lack of
local minima.

We train both the primal and the dual network in a distributed fashion on a NVIDIA GeForce GTX
1080 Ti GPU and NVIDIA Titan X GPU. For both cases, we use a kernel size of 3 × 3 with a
unity stride and padding for the first layer. For the primal network, we train with a learning rate
of µ = 10−1, whereas for the dual network we use a learning rate of µ = 10−3. We use a batch
size of 25 for all cases. For the weight-decay parameter we use a value of β = 10−5, which is not
sample-averaged.
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(a) Train loss (b) Test loss

Figure 8: Train and test curves for Gaussian-distributed noise with σ = 0.75. The primal and dual
optimization problems perform similarly well.

(a) Train loss (b) Test loss

Figure 9: Train and test curves for exponentially distributed noise with λ = 1.15. The primal fails
to learn as well as the dual.

B.2 MNIST DENOISING

We train both the primal and the dual network in a distributed fashion on a NVIDIA GeForce GTX
1080 Ti GPU and NVIDIA Titan X GPU. For both cases, we use a kernel size of 3 × 3 with a
unity stride and padding for the first layer. For the primal network, we train with a learning rate
of µ = 10−3, whereas for the dual network we use a learning rate of µ = 10−5. We use a batch
size of 25 for all cases. For the weight-decay parameter we use a value of β = 10−5, which is not
sample-averaged, and which is sufficiently large so as to prevent overfitting on the training set, as
demonstrated in Fig. 2, which indicates that test performance is similar to training performance.

B.3 ABLATION STUDY FOR THE NUMBER OF SIGN PATTERNS

For the MNIST denoising problem, we also considered the effect of changing the number of
randomly sampled sign patterns to approximate the solution to the dual problem. The experimental
setting of this ablation study is identical to the one of Section 5.1, namely, a primal network with
512 conv. filters, and additive i.i.d zero-mean Gaussian noise with variance σ2. For the noise
standard deviations of σ = 0.5 and σ = 0.1, we compare the test and training loss found by the
primal network with that of the approximated dual network with a varied number of subsampled
sign patterns.

Figures 10 summarizes our results. In particular, with higher amounts of noise, a larger
number of sign patterns are required to be sampled in order to approximate the primal problem.
With σ = 0.5, the dual problem requires approximately 4000 sign patterns to achieve zero duality
gap, while with σ = 0.1, the dual problem requires only 125 sign patterns.
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(a) Train loss, σ = 0.5 (b) Test loss, σ = 0.5

(c) Train loss, σ = 0.1 (d) Test loss, σ = 0.1

Figure 10: MNIST denoising with additive Gaussian noise and σ ∈ {0.5, 0.1}. Ablation study for
the number of sampled sign patterns for the dual problem, compared to the primal problem with 512
filters.

B.4 MRI RECONSTRUCTION

The fastMRI dataset has data acquired with nc = 15 receiver coils. We train both the primal and the
dual network on a single NVIDIA GeForce GTX 1080 Ti GPU with a batch size of 2. As our primal
network architecture, we use a two-layer CNN with the first layer kernel size 7× 7, unity stride and
a padding of 3 with a skip connection. For the training of the primal and dual networks, networks
are trained for 25 epochs. A learning rate of µ = 10−3 is used for the primal network, and a learning
rate of µ = 5× 10−7 is used for the dual network with a weight-decay parameter of β = 10−5.

B.5 LEARNED CONVOLUTIONAL FILTERS FOR MRI RECONSTRUCTION

Similar to the visualized dual filters for MNIST reconstruction, we can also visualize the frequency
response of the learned dual filters for the MRI reconstruction network, which we observe in Figure
11. We see that these filters select for a variety of frequencies, but are quite different visually from
those for MNIST reconstruction.

C PROOF OF THEOREM 1

We note that, as mentioned in the main paper, (2) is equivalent to (3). Thus, to prove the theorem, it
is sufficient to show that (3) is equivalent to (4). This proof follows directly from Theorem 1 from
Pilanci & Ergen (2020).

Before delving into the details, the roadmap of the proof can be sketched as follows:
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Figure 11: Visualization of the frequency response for the learned dual filters {wi} for MRI recon-
struction. Representative filters (250) of size 80 × 80 are randomly selected for visualization when
R = 4.

1. Re-scale the original primal problem (3) to an equivalent form with `1-regularization on
the final layer weights

2. Use Lagrangian duality to eliminate the final layer weights and introduce a new dual vari-
able to obtain an intractable, yet equivalent convex program.

3. Use Slater’s condition to form the strong dual problem, which is a semi-infinite convex
program.

4. Use the ReLU sign patterns {Di}`i=1 to finitely parameterize this semi-infinite program,
and then form the bi-dual to obtain the finite, convex, strong dual.

We begin by noting that (3) is equivalent to the following optimization problem:

p∗ = min
‖uj‖2≤1
vj∈R

1

2
‖
m∑
j=1

(Y ′uj)+vj −X ′∗‖22 + β

m∑
j=1

|vj | (9)

This is because, without changing the predictions of the network, we can re-scale uj by some scalar
γj > 0, granted that we also scale vj by its reciprocal 1/γj . Then, we can simply minimize the
regularization term over γj , noting that

min
γj
‖γjuj‖22 + |vj/γj |2 = 2‖uj‖2|vj | (10)

From this we then obtain the equivalent convex program

p∗ = min
uj∈Rk2

vj∈R

min
γj∈R

1

2
‖
m∑
j=1

(Y ′uj)+vj −X ′∗‖22 + β

m∑
j=1

‖γjuj‖22 + |vj/γj |2 (11)

= min
uj∈Rk2

vj∈R

min
γj∈R

1

2
‖
m∑
j=1

(Y ′uj)+vj −X ′∗‖22 + β

m∑
j=1

‖uj‖2|vj | (12)

Then, we can simply restrict ‖uj‖2 ≤ 1 to obtain (9), noting that this does not change the optimal
objective value. Then, from (9), we can form the equivalent problem via Langrangian duality. In
particular, we can first re-parameterize the problem as

p∗ = min
‖uj‖2≤1

min
vj ,r

1

2
‖r‖22 + β

m∑
j=1

|vj | s.t. r =

m∑
j=1

(Y ′uj)+vj −X ′∗ (13)

And then introduce the Lagrangian variable z

p∗ = min
‖uj‖2≤1

min
vj ,r

max
z

1

2
‖r‖22 + β

m∑
j=1

|vj |+ z>r + z>X ′∗ − z>
m∑
j=1

(Y ′uj)+vj (14)
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Now, note that by Sion’s minimax theorem, we can switch the inner maximum and minimum without
changing the objective value, since the objective is convex in vj , r and affine in z, and obtain

p∗ = min
‖uj‖2≤1

max
z

min
vj ,r

1

2
‖r‖22 + β

m∑
j=1

|vj |+ z>r + z>X ′∗ − z>
m∑
j=1

(Y ′uj)+vj (15)

Now, we compute the minimum over r to obtain

p∗ = min
‖uj‖2≤1

max
z

min
vj
−1

2
‖z‖22 + β

m∑
j=1

|vj |+ z>X ′∗ − z>
m∑
j=1

(Y ′uj)+vj (16)

and then compute the minimum over vj to obtain

p∗ = min
‖uj‖2≤1

max
|z>(Y ′uj)+|≤β

−1

2
‖z −X ′∗‖22 +

1

2
‖X ′∗‖22 (17)

We note that this semi-infinite program (17) is convex. As long as β > 0, this problem is strictly
feasible (simply set z = 0), hence by Slater’s condition strong duality holds, and therefore we can
form the dual problem

p∗ = d∗ := max
|z>(Y ′u)+|≤β ∀‖u‖2≤1

−1

2
‖z −X ′∗‖22 +

1

2
‖X ′∗‖22 (18)

Now, this dual problem can be finitely parameterized using the sign patterns {Di}`i=1 using the
pointwise maximum of the constraint. We thus have

d∗ := max
z
−1

2
‖z −X ′∗‖22 +

1

2
‖X ′∗‖22

s.t. max
i∈[`]
‖u‖2≤1

(2Di−I)Y ′u≥0

|z>DiY
′u| ≤ β (19)

We can split this absolute value constraint into two constraints, and maximize in closed form over u
by introducing Lagrangian variables αi, α′i:

d∗ := max
z

αi≥0
α′i≥0

−1

2
‖z −X ′∗‖22 +

1

2
‖X ′∗‖22

s.t. ‖Y ′>(2Di − I)αi + Y ′>Diz‖ ≤ β ∀i ∈ [`]

‖Y ′>(2Di − I)α′i − Y ′>Diz‖ ≤ β ∀i ∈ [`]

(20)

We then form the Lagrangian

d∗ := max
z

αi≥0
α′i≥0

min
λ≥0,λ′≥0

−1

2
‖z −X ′∗‖22 +

1

2
‖X ′∗‖22

+
∑̀
i=1

λi

(
β − ‖Y ′>(2Di − I)αi + Y ′>Diz‖2

)
+
∑̀
i=1

λ′i

(
β − ‖Y ′>(2Di − I)α′i − Y ′>Diz‖2

)
(21)

Noting by Sion’s minimax theorem that strong duality holds, we can take the strong dual of the
Lagrangian and not change the objective value. Flipping max and min, and maximizing with respect
to z,αi, and α′i yields

d∗ := min
λ≥0
λ′≥0
‖wi‖2≤1
‖zi‖2≤1

(2Di−I)Y ′wi≥0
(2Di−I)Y ′zi≥0

1

2
‖
(∑̀
i=1

λiDiY
′wi − λ′iDiY

′zi

)
−X ′∗‖22 + β

∑̀
i=1

λi + λ′i (22)
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We lastly note that we can perform a change of variables wi := λiwi and zi := λ′izi, and then
minimize over λi and λ′i to obtain the final convex, finite-dimensional strong dual.

d∗ := min
(2Di−I)Y ′wi≥0
(2Di−I)Y ′zi≥0

1

2
‖
∑̀
i=1

DiY
′(wi − zi)−X ′∗‖22 + β

∑̀
i=1

‖wi‖2 + ‖zi‖2 (23)

Thus, we have that strong duality holds, i.e. p∗ = d∗. By theory in semi-infinite programming,
we know that m∗ + 1 of the total ` filters (wi, zi) are non-zero at optimum where m∗ ≤ Nhw
(Shapiro, 2009; Pilanci & Ergen, 2020).

Furthermore, we can use the relationship in (5) to also verify this result. In particular, note
that in the general weak duality setting, we must have that d∗ ≤ p∗. Now, suppose we have
optimal weights {(u∗i ,v∗i )}`i=1 for the solution to the dual problem 4 obtaining objective value
d∗. Then, using the relationship in (5), we can re-form the primal weights to (3), repeated here for
convenience:

(u∗i ,v
∗
i ) =

(
w∗i√
‖w∗i ‖2

,
√
‖w∗i ‖2) w∗i 6= 0

(
z∗i√
‖z∗i ‖2

,
√
‖z∗i ‖2) z∗i 6= 0

(24)

Now, substituting these into the primal objective, we have

p∗ = min
uj∈Rk2

vj∈R

1

2
‖
m∑
j=1

(Y ′uj)+vj −X ′∗‖22 +
β

2

m∑
j=1

(
‖uj‖22 + |vj |2

)
(25)

≤ 1

2
‖
∑̀
i=1

(Y ′u∗i )+vi −X ′∗‖22 +
β

2

∑̀
i=1

(
‖ui‖22 + |vi|2

)
(26)

=
1

2
‖
∑̀
i=1

DiY
′(wi − zi)−X ′∗‖22 +

β

2

∑̀
i=1,w∗i 6=0

(
‖ w∗i√
‖w∗i ‖2

‖22 + |
√
‖w∗i ‖2|

2
)

(27)

+
β

2

∑̀
i=1,z∗i 6=0

(
‖ z∗i√
‖z∗i ‖2

‖22 + |
√
‖z∗i ‖2|

2
)

(28)

=
1

2
‖
∑̀
i=1

DiY
′(w∗i − z∗i )−X ′∗‖22 + β

∑̀
i=1

‖w∗i ‖2 + ‖z∗i ‖2 (29)

= d∗ (30)

Thus, p∗ ≤ d∗. This combined with the weak duality result d∗ ≤ p∗ yields that d∗ = p∗, as desired.

D PROOF OF COROLLARY 1

In this circumstance, we simply need to re-substitute the same objective as (4), with our new labels
as X ′∗ − Yu, where Yu ∈ RNhw is a flattened vector of the input image. Then, we simply have the
problem given by

d∗ = min
(2Di−I)Y ′wi≥0
(2Di−I)Y ′zi≥0

‖
P∑
i=1

DiY
′(wi − zi)− (X ′∗ − Yu)‖22 + β

P∑
i=1

(
‖wi‖2 + ‖zi‖2

)
(31)

Thus, the general form of the convex dual formulation still holds with a simple residual network.
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E EXTENSION TO GENERAL CONVEX LOSS FUNCTIONS

The results of Theorem 1 and Corollary 1 can be extended to any arbitrary convex loss function
L(X̂,X∗). In particular, consider the non-convex primal training problem

p∗ := min
uj∈Rk2

vj∈R

L
( m∑
j=1

(Y ′uj)+vj ,X
′
∗

)
+
β

2

m∑
j=1

(
‖uj‖22 + |vj |2

)
(32)

for m ≥ m∗ as defined previously. Then, this problem has a convex strong bi-dual, given by

p∗ = d∗ := min
(2Di−I)Y ′wi≥0
(2Di−I)Y ′zi≥0

L
(∑̀
i=1

DiY
′(wi − zi),X

′
∗

)
+ β

∑̀
i=1

(
‖wi‖2 + ‖zi‖2

)
(33)

The proof for this strong dual is almost identical to that in Appendix C. In particular, we first define
the Fenchel conjugate function

L∗(z) = max
r

r>z − L(z,X ′∗) (34)

Now, note that we can re-write (32) in re-scaled form as in (9):

p∗ = min
‖uj‖2≤1
vj∈R

L
( m∑
j=1

(Y ′uj)+vj ,X
′
∗

)
+ β

m∑
j=1

|vj | (35)

The strong dual of (35) is then given by

p∗ = d∗ := max
z
−L∗(z) s.t. |z>(Y ′u)+| ≤ β ∀‖u‖2 ≤ 1 (36)

using standard Fenchel duality (Boyd et al., 2004). We can further re-write the constraint set in
terms of sign patterns as done in the proof in Appendix C. Then, we can follow the same steps from
the proof of Theorem 1, noting that by Fenchel–Moreau Theorem, L∗∗ = L (Borwein & Lewis,
2010). Thus, we obtain the convex-bi dual

p∗ = d∗ := min
(2Di−I)Y ′wi≥0
(2Di−I)Y ′zi≥0

L
(∑̀
i=1

DiY
′(wi − zi),X

′
∗

)
+ β

∑̀
i=1

(
‖wi‖2 + ‖zi‖2

)
(37)

as desired.

F FAILURE OF STRAIGHTFORWARD DUALITY ANALYSIS FOR OBTAINING A
TRACTABLE CONVEX DUAL

In this section, we discuss how straightforward duality analysis will fail to generate a tractactable
convex dual formulation of the two-layer ReLU-activation fully-conv. network training problem. In
particular, we will follow an alternative proof to that in Appendix C, omitting the re-scaling step,
and demonstrate that the dual becomes intractable.

We begin with (3)

p∗ = min
uj∈Rk2

vj∈R

1

2
‖
m∑
j=1

(Y ′uj)+vj −X ′∗‖22 +
β

2

m∑
j=1

(
‖uj‖22 + |vj |2

)
(38)

We can re-parameterize the problem as

p∗ = min
uj∈Rk2

vj∈R

min
r

1

2
‖r‖22 +

β

2

m∑
j=1

(
‖uj‖22 + |vj |2

)
s.t. r =

m∑
j=1

(Y ′uj)+vj −X ′∗ (39)
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And then introduce the Lagrangian variable z

p∗ = min
uj∈Rk2

vj∈R

min
r

max
z

1

2
‖r‖22+

β

2

m∑
j=1

(
‖uj‖22+ |vj |2

)
+z>r+z>X ′∗−z>

m∑
j=1

(Y ′uj)+vj (40)

Now, we can use Sion’s minimax theorem to exchange the maximum over z and the minimums over
r and vj .

p∗ = min
uj

max
z

min
r,vj

1

2
‖r‖22 +

β

2

m∑
j=1

(
‖uj‖22 + |vj |2

)
+ z>r + z>X ′∗ − z>

m∑
j=1

(Y ′uj)+vj (41)

Minimizing over r, we obtain

p∗ = min
uj

max
z

min
vj
−1

2
‖z‖22 +

β

2

m∑
j=1

(
‖uj‖22 + |vj |2

)
+ z>X ′∗ − z>

m∑
j=1

(Y ′uj)+vj (42)

Now, minimizing over vj , we obtain the optimality condition that v∗j = 1
βz
>(Y ′uj)+ ∀j. Re-

substituting this, we obtain the problem

p∗ = min
uj

max
z
−1

2
‖z −X ′∗‖22 +

1

2
‖X ′∗‖22 +

β

2

m∑
j=1

‖uj‖22 +
β − 2

2β

m∑
j=1

(
z>(Y ′uj)+

)2
(43)

This problem is not convex, hence strong duality does not hold (we cannot switch max and min
without changing the objective), and we cannot maximize over z in closed form since the optimiality
condition for z is given as

z −X ′∗ =
β − 2

β

m∑
j=1

(
z>(Y ′uj)+

)
(Y ′uj)+

Thus, standard duality approaches fail to find a tractable dual to the neural network training problem
(3). In particular, the re-scaling step (9) and the introduction of sign patterns (19) are detrimental to
render our analysis tractable.
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