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Abstract

Biological foundation models hold significant promise for deciphering complex
biological functions. However, evaluating their performance on functional tasks
remains challenging due to the lack of standardized benchmarks encompassing
diverse sequences and functions. Existing functional annotations are often scarce,
biased, and susceptible to train-test leakage, hindering robust evaluation. Further-
more, biological functions manifest at multiple scales, from individual residues to
large genomic segments. To address these limitations, we introduce the Diverse
Genomic Embedding Benchmark (DGEB), inspired by natural language embed-
ding benchmarks. DGEB comprises six embedding tasks across 18 expert curated
datasets, spanning sequences from all domains of life and encompassing both nu-
cleic acid and amino acid modalities. Notably, four datasets enable direct com-
parison between models trained on different modalities. Benchmarking protein
and genomic language models (pLMs and gLMs) on DGEB reveals performance
saturation with model scaling on numerous tasks, especially on those with under-
represented sequences (e.g. Archaea). This highlights the limitations of existing
modeling objectives and training data distributions for capturing diverse biological
functions. DGEB is available as an open-source package with a public leaderboard
at https://github.com/TattaBio/DGEB.

1 Introduction
Biological sequences encode complex molecular, evolutionary and biophysical information that gov-
ern biological function. Deep learning models have been proposed as promising methods for extract-
ing biologically relevant functional information from sequence data. The promise of ”biological
foundation models” enabling functional interpretation of sequences has resulted in many modeling
efforts in protein (Rives et al., 2021; Madani et al., 2023; Elnaggar et al., 2022) and genomic (Dalla-
Torre et al., 2023; Hwang et al., 2024; Nguyen et al., 2024) sequence modalities. While the field has
seen major advances in AI-enabled structure prediction of protein sequences (Jumper et al., 2021;
Baek et al., 2021), validated successes for AI-enabled function prediction remain limited (Li et al.,
2024). Slow progress in function prediction of sequences can be attributed to the following main
challenges:

1. Unlike for structural prediction tasks, objective measurements of function do not ex-
ist. Structure prediction tasks benefit from objective evaluation metrics based on quantifi-
able atomic distances (Mariani et al., 2013). However, biological function is inherently
multifaceted and context-dependent, making direct quantitative assessment difficult.

2. Functional labels are sparse, biased, and prone to leakage. Labels are heavily biased
towards model organisms (e.g. Human), therefore performance on species-specific evalu-
ation tasks are not guaranteed to transfer to other organisms. Furthermore, functional an-
notations in databases are rarely standardized in format, necessitating careful curation (e.g.
unification of synonymous text labels requires expert knowledge). Critically, all biological
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sequences are related through evolution. Without carefully designed parameters, train-test
leakage can frequently occur, resulting in unreliable evaluation results (Fang, 2023).

3. Biological function takes place across diverse scales. Single nucleotide polymorphisms
can have phenotypic effects, while entire segments of genomes can be coordinated to carry
out singular functions (e.g. biosynthetic gene clusters). These challenges innate to biologi-
cal data have led to the lack of diverse benchmarks, resulting in independent evaluations of
models on biased sets of ”in-house” tasks, preventing comprehensive and objective model
comparisons.

The Diverse Genomic Embedding Benchmark (DGEB) is inspired by text embedding evaluation
benchmarks that have advanced the field of natural language modeling. DGEB aims to span diverse
types of downstream embedding tasks, scopes of function, and taxonomic lineages. DGEB consists
of 18 datasets covering 117 phyla across all three domains of life (Bacteria, Archaea and Eukarya).
Similar to Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2023), DGEB evalu-
ates embeddings using six different embedding tasks: Classification, BiGene mining, Evolutionary
Distance Similarity (EDS), Pair classification, Clustering, and Retrieval.

We provide DGEB as an open source software, facilitating the evaluation of custom models, and
enabling the addition and revision of datasets. Biological labels for function are limited and rely
on careful curation by domain experts. DGEB provides a much-needed infrastructure for allow-
ing experts to contribute new benchmarks and revise datasets upon acquisition of new knowledge.
Community driven efforts to collect and standardize diverse datasets will move the emerging inter-
disciplinary field of Machine Learning and Biology forward.

Figure 1: Phylogenetic tree of all phyla represented in DGEB. One representative 16S/18S se-
quence for each phylum represented in any DGEB dataset was obtained from SILVA (Quast et al.,
2013), where available. Phylogeny was estimated using iQ-TREE 2. Widths of tree branches corre-
spond to how well a given phylum is represented across multiple datasets.

2 Related Works
2.1 Natural language embedding benchmarks
Embedding benchmarks (e.g. SentEval (Conneau & Kiela, 2018); BEIR (Thakur et al., 2021);
MTEB (Muennighoff et al., 2023)) in natural language processing (NLP) aim to evaluate how the
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structure of word/sentence representations match the geometric structure of their semantics. For
natural language, tasks are typically either zero-shot or few-shot; examples of such tasks range from
distance-based matching of translated texts to classifying tweets based on the labeled sentiment.
NLP benchmarks highlight the need for holistic evaluation of models through a diverse set of tasks,
as model performance can vary significantly across tasks and datasets.

2.2 Biological sequence and language models
Biological sequence language models are unsupervised models trained on biological sequence data
such as proteins or genomic segments. Protein language models (pLMs) have been shown to encode
features for protein structure prediction (Lin et al., 2023), enzyme function prediction (Yu et al.,
2023) and remote homology search (Liu et al., 2024). More recently, genomic language models
(gLMs) have been evaluated on classification of various genomic motifs (e.g. regulatory elements,
chromatin features, splicing) (Dalla-Torre et al., 2023) and mutation fitness prediction (Nguyen
et al., 2024).

2.3 Biological function benchmarks
Existing benchmarks rely mainly on two types of evaluation to measure biological function:

1. Fitness prediction of mutations using large-scale datasets collected from deep muta-
tional scanning (DMS) data. DMS (Fowler & Fields, 2014) uses large-scale mutagenesis
and high-throughput sequencing to model fitness landscapes of various mutations (e.g. sub-
stitutions and indels) in a single protein. ProteinGym (Notin et al., 2023) leverages diverse
DMS datasets to evaluate a model’s ability to predict fitness scores of mutants in either
zero-shot or supervised regimes. While fitness prediction serves as a meaningful proxy for
evaluating model understanding of genotype to phenotype relationships at the residue-level
for a single protein, this metric cannot be used to determine how well a model can abstract
evolutionary and functional relationships between non-homologous proteins.

2. Classification of proteins on their biophysical properties. For example, PEER (Xu et al.,
2022) benchmarks protein models on various general biophysical properties, such as flu-
orescence, localization and solubility. While these are important properties, they are too
coarse in scope to evaluate whether a model has learned biologically meaningful functional
information.

3 The DGEB Benchmark

Figure 2: Overview of tasks and datasets in DGEB. Nucleic acid (NA) and amino acid (AA)
modality specific datasets are marked in purple and green respectively, and datasets that support
both modalities are marked with both colors.

3.1 Design choices
DGEB is built on the desiderata previously outlined by NLP benchmarks, in particular, MTEB.
While biological sequences and their functional labels are fundamentally different from natural lan-
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guage, these design choices allow for a scalable and flexible framework that can be expanded and
optimized as the field matures.

a) Diversity: We aim to cover sequences derived from phylogenetically diverse lineages of
biology (Fig. 1). Existing functional benchmarks largely consist of human or E.coli K-
12 sequences. Data imbalance in biology is a critical problem when training biological
sequence language models (Ding & Steinhardt, 2024) and prevents the models from learn-
ing features transferable to underrepresented sequences. Benchmarks that only utilize se-
quences from highly overrepresented sequences in the training set perpetuate this problem
of data imbalance, hindering the progress towards AI-enabled characterization, discovery
and design of diverse biological sequences.

b) Simplicity: DGEB provides a simple API that can be used with any custom model that
encodes biological sequences into vectors.

c) Extensibility: Given the complexity of biological function, no single dataset can fully
capture its diversity, and existing functional annotations must be continuously refined and
expanded. DGEB supports simple extension of tasks and datasets. New or revised datasets
can be uploaded to the HuggingFace Hub and new evaluation tasks can easily be added
through GitHub pull requests.

d) Reproducibility: We version both the software and the datasets and include versioning in
the results, making the benchmark results fully reproducible.

3.2 Tasks and Evaluation
DGEB consists of 18 datasets that are evaluated using one of the six task types (Fig. 2). The tasks
and their evaluation schemes are described below:

BiGene Mining BiGene Mining is inspired by Bitext Mining tasks in NLP, where the tasks typ-
ically consist of matching translated sentences between two languages using cosine similarity. For
BiGene Mining, we curated functionally analogous sequences found in two phylogenetically distant
taxa (e.g. Bacteria and Archaea) or interacting paralog pairs in sets of orthologous sequences. For
each gene in the first set, the best match in the second set is found using the cosine similarity. F1
serves as the primary metric for BacArch BiGene Mining, while recall@50 is used as the primary
metric for ModAC paralog BiGene Mining due to the difficulty of the task; accuracy and precision
are also reported.

Evolutionary Distance Similarity (EDS) This task evaluates how accurately models learn evolu-
tionary relationships between sequences. We compute the correlation between pairwise embedding
distances and their phylogenetic distances (sum of branch lengths connecting the two leaves of the
calculated phylogenetic tree). Larger phylogenetic distance represents more evolutionary time since
divergence. Pearson correlations are calculated and the top correlation score across three distance
metrics (cosine, euclidean, and manhattan) is reported as the primary metric.

Classification Classification tasks measure the model’s ability to map from embeddings to discrete
functional classes with few-shot supervision. For multiclass single-label classification, a logistic
regression classifier is trained with up to 1000 iterations. For multiclass multi-label classification, a
k-nearest neighbor (kNN) classifier is trained. Test performance on the test set is measured using F1
as the main metric; accuracy and average precision scores are also reported.

Pair Classification Pair classification tasks evaluate model understanding of functional relation-
ships between pairs of sequences. Inputs are pairs of sequences, where labels are binary variables
denoting the existence of some particular functional relationship between the pair. Sequences are
embedded and the distances between the pairs are calculated cosine similarity, dot product, eu-
clidean distance and manhattan distance. The best binary threshold accuracy, average precision, F1,
precision, and recall are calculated. The primary metric is the average precision score calculated
using cosine similarity.

Clustering Clustering tasks evaluate zero-shot separability of embeddings over discrete classes.
Inputs are sets of sequences with labels, and a mini-batch k-means model is trained on their embed-
dings. The primary metric is v-measure (Rosenberg & Hirschberg, 2007).
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Retrieval Retrieval tasks evaluate how well a query embedding can retrieve functionally analo-
gous sequences. Dataset consists of a corpus and queries, where the objective is to rank the embed-
dings in the corpus by cosine similarity to each query sequence. Correct retrieval is determined by
matching functional labels. An example of a retrieval task is retrieving a bacterial homolog given an
archaeal query sequence. nDCG@k, MRR@k, MAP@k, precision@k and recall@k are calculated
for k=5, 10, 50. MAP@5 is used as the primary metric.

3.3 Datasets
Datasets are divided into three categories: single-element, inter-element, and multi-element, where
an element refers to a protein/gene or noncoding RNA. Each element can be represented in amino
acid and/or nucleotide sequence modalities. Some datasets support multiple sequence modalities
(AA and NA), allowing direct comparison between protein and genomic language models. Statis-
tics for each dataset are found in Appendix B. All datasets are dereplicated at sequence identity
thresholds of 70% using CD-hit (Huang et al., 2010), to remove sampling biases. For tasks requir-
ing train and test splits, datasets are split with a maximum sequence identity of 10%. For tasks
requiring multiple classes, we conduct class-balanced random sampling. Detailed preprocessing
steps are found in Appendix A.

Single Element Datasets (SE) For SE datasets, each genomic element (protein/gene, noncoding
RNA) is individually embedded, with an associated label. SE datasets in DGEB include:

• RNA Clustering: rRNA, sRNA, and tRNA features predicted using RFam (Kalvari et al.,
2021) genomes across diverse taxa. We cluster the sequence embeddings and assess how
well they match the RNA class assignments.

• MopB Clustering: The dimethyl sulfoxide reductase (or MopB) family is a functionally
diverse set of enzymes found across Bacteria and Archaea. Sequences are sampled from
Wells et al. (2023), where the sequence’s catalytic functions are assigned using phyloge-
netic analysis. We assess how well the embeddings cluster with their catalytic function.

• EC Classification: Enzyme commission (EC) numbers are assigned to protein sequences.
For each EC class, one sequence is randomly selected for testing, and four sequences from
the corresponding class that have less than 10% sequence identity to each other and test
sequence are selected for training.

• Convergent Evolution Classification: Examples of convergent evolution in proteins include
enzymes that have different evolutionary history but have converged in the enzymatic re-
action that they confer. We identify such convergent enzymes by curating a set of enzymes
that have no sequence similarity to any of the other sequences in the train set with the same
EC designation.

• Archaeal Retrieval: Given the corpus of bacterial protein sequences in SWISS-PROT
(Bairoch & Apweiler, 2000), where the label is the corresponding text annotation, we
query archaeal sequences with string match annotations in the bacterial corpus. We retrieve
k nearest neighbors in bacterial corpus embedding space and look for matching labels to
calculate the metrics@k.

• Eukaryotic Retrieval: Given the corpus of bacterial protein sequences in SWISS-PROT, we
query eukaryotic sequences with string match annotations in the bacterial corpus. Metrics
are calculated as above.

Inter-element datasets (IE) Understanding biological function relies on understanding the evolu-
tionary and functional relationships between sequences. For IE datasets, a label is assigned for each
pair of genomic embeddings. IE datasets include:

• BacArch BiGene: Similar to matching translated sentences between two languages, we
curated functionally analogous pairs of sequences in a bacterial genome (Escherichia coli
K-12) and an archaeal genome (Sulfolobus acidocaldarius DSM 639 ASM1228v1).

• ModAC Paralogy BiGene: Identifying interacting paralogs from orthologs is a challenging
task. ModA and ModC are interacting subunits of an ABC transporter. This dataset consists
of pairs of ModA and ModC that are paralogous (found in the same genome). The goal
is to correctly find the ModC paralog for each ModA given a set of orthologous ModC
sequences (found in different genomes).
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• E.coli Operonic Pair Classification: Given a pair of adjacent proteins, the label is assigned
based on whether they belong to the same transcription unit in Escherichia coli K-12 substr.
MG165.

• Vibrio Operonic Pair Classification: Same as E.coli Operonic Pair Classification except
with Vibrio cholerae O1 biovar El Tor str. N16961.

• Cyano Operonic Pair Classification: Same as Ecoli Operonic Pair Classification except
with Synechococcus elongatus PCC 7942.

• FeFeHydrogenase Phylogeny: Fe-Fe hydrogenases are complex enzymes that carry out im-
portant metabolic functions across diverse organisms. They carry out divergent and specific
functions including H2 production, H2 sensing, H2 uptake, and CO2 reduction. Identifying
the specific function of these hydrogenases often requires constructing a phylogenetic tree
that reconstructs the evolutionary history of the catalytic, or large, subunit. This dataset
includes the phylogenetic distances (sum of tree branches connecting the leaves) calculated
for all pairs of Fe-Fe hydrogenase sequences.

• RpoB Bacterial Phylogeny: RpoB is a ribosomal protein conserved across bacteria and ar-
chaea. They are essential single-copy genes and not frequently horizontally transferred, and
therefore are often used as phylogenetic marker genes. The RpoB gene is also significantly
longer than the Fe-Fe hydrogenase gene making this phylogeny distinctly different from
the Fe-Fe hydrogenase phylogeny. We sample bacterial RpoB sequences utilized as mark-
ers in the GTDB (Parks et al., 2022) database, and calculate the tree to assign phylogenetic
distances between pairs of RpoB sequences.

• RpoB Archaeal Phylogeny: Same as RpoB Bacterial Phylogeny but with archaeal genomes
in GTDB.

• Bacterial 16S Phylogeny: 16S rRNA genes encode ribosomal RNA and are universal across
Bacteria and Archaea. 16S rRNA is often used as a taxonomic marker gene because it rarely
undergoes horizontal gene transfer and has both conserved and variable regions. Bacterial
16S rRNA sequences were downloaded from the SILVA database (Quast et al., 2013) and
phylogenetic distances were calculated for each pair of sequences.

• Archaeal 16S Phylogeny: Same as Bacterial 16S Phylogeny but with archaeal sequences
from SILVA.

• Eukaryotic 18S Phylogeny: Same as Bacterial 16S Phylogeny but with 18S rRNA (eukary-
otic homolog of 16S rRNA) from SILVA.

Multi-element datasets (ME) Many biological functions are carried out by multiple genomic
elements in conjunction. DGEB supports multi-element datasets, where a label is assigned to a larger
genomic sequence containing more than one genes, and whereby a single embedding is calculated
either by mean-pooling across genes, or segments of genome with predefined window size. DGEB
currently supports one multi-element dataset:

• MIBiG Classification: Minimum Information about a Biosynthetic Gene cluster (MIBiG)
(Terlouw et al., 2023) is a database of biosynthetic gene clusters where a genomic segment
consisting of multiple genes synthesize various classes of natural products (e.g. Polyke-
tides, NRPS, etc). A single genomic segment can synthesize molecules that belong to
multiple classes, making this a multi-label, multi-class classification task. Train and test
sets are split at 80/20 using stratified random sampling.

4 Results
4.1 Models
We focus on evaluating self-supervised models pretrained on either amino acid (AA) or nucleic acid
(NA) sequences. These are ”foundation models” that are not fine-tuned for specific tasks, and we
evaluate how well the pre-trained embeddings capture various aspects of biological function. For
AA models, we evaluate the ESM2 (Lin et al., 2023) series, ESM3 (Hayes et al., 2024) open model,
the ProGen2 (Madani et al., 2023) series, and the ProtTrans (Elnaggar et al., 2022) models. For NA
models, we evaluate the Nucleotide Transformer (NT) (Dalla-Torre et al., 2023) series and the Evo
(Nguyen et al., 2024) models. Notably, we include both masked language models (MLM) and causal
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Figure 3: Performance per task with model scaling for ESM2, ProGen2, and NT series. Primary
metric from the best scoring layer (between mid, and last) is reported for each task. Tasks where
performance scales with model size for the majority of the model types are marked with a blue
background. Other models plotted for reference are ProtTrans (prot t5 xl uniref50), Evo
(evo-1-8k-base), and ESM3 (esm3 sm open v1).

language models (CLM) in our evaluation for both data modalities. Model information is found in
Appendix C.

4.2 Analysis
4.2.1 Layer Performance
For all tasks, we test performances of mid- and last hidden layers in the model. For many of the
tasks, the mid layer representation outperforms last layer representations (Fig. 3). This behavior has
been noted in previous studies in both NLP (Rogers et al., 2020) and pLMs (Valeriani et al., 2023),
where different layers specialize in learning distinct semantic information. For instance, mid-layer
representations for ESM2 models perform better than last layer for enzyme function classification
tasks (EC Classification, Convergent Enzyme Classification) and retrieval tasks, while phylogenetic
distances are better reflected in last-layer representations (RpoB phylogenies) (Appendix D). These
patterns appear specific to model type. To flexibly account for this behavior, DGEB calculates model
performance for both mid and last layer and reports the best score between the two.

4.2.2 Scaling with model size
We observe scaling with model size increase for most AA tasks, except for MIBiG classification
task, RpoB archaeal phylogeny, and operonic pair tasks (Fig. 3). In general, pLMs perform poorly
for predicting functions of elements that span multiple genes (e.g. biosynthetic gene clusters, oper-
ons). Additionally, while we observe improved performance with model scaling for bacterial RpoB
phylogeny task, we observe no scaling in performance for archaeal RpoB phylogeny task. This
may be attributed to limitations in learning due to the significant bias against archaeal sequences in
training data. Interestingly, we observe little to no evidence of improvement in performance with in-
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creasing model size for NA tasks (Fig. 3 and 4). We also test performance scaling with pre-training
floating point operations (FLOPs) when the information is reported or can be derived (Appendix C).
We observe scaling patterns with increasing training FLOPs (Appendix E and F) similar to those
observed with increasing model size. Full results can be found in Appendix G.

Figure 4: Average performance across all AA and NA tasks for models benchmarked in this
study. Marker size corresponds to embedding dimension and variants of same models (e.g. evo-1-
8k-base, and evo-1-131k-base) are distinguished with text labels.

4.2.3 Direct comparison of amino acid and nucleic acid models
While both AA and NA sequences can be used to represent coding sequences, little work has been
conducted on directly comparing the quality of NA-based model representations against AA-based
model representations on the same task and data. DGEB includes four datasets that support both
modalities as input for a given coding region of the sequence. For all such tasks, we find that NA
sequence derived representations perform poorly in capturing biological function and evolutionary
relationships of coding sequences (Fig. 5). This suggests that AA sequences are a more compute
efficient input modality for learning functional information of coding sequences.

5 Conclusion
We developed DGEB to assess how well learned embeddings of biological sequences capture various
aspects of biological function. Our expert-curated datasets feature diverse sequences spanning all
three domains and major phyla in the tree of life. We benchmarked 19 models that are trained on
either AA or NA sequences. Our results demonstrate that there is no single model that performs
well across all tasks. Importantly, there are many tasks where performance does not scale with
model size for existing models, particularly in tasks that feature poorly represented sequences (e.g.
Archaeal genes), or tasks that assess functions that require large context lengths (e.g. biosynthetic
gene cluster product class classification, operon prediction). For many tasks, there is large headroom
for improvement (e.g. ModAC paralogy matching, convergent enzyme classification). DGEB also
supports direct comparison of models trained on AA and NA data modalities, and our results show
that NA models are yet to learn important aspects of biological function. We open-source DGEB to
facilitate community-driven dataset addition and revision. We hope that DGEB and the leaderboard
allow transparent comparison of biological foundation models and drive the field forward.

6 Ethics Statement
This study aims to advance open science by developing a open-source, reproducible benchmark for
genomics. All sequences and labels are curated from public repositories. As the data originates from
environmental samples, no personally identifiable information is associated with the datasets.
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Figure 5: Comparison of AA and NA model representations on tasks that support both modal-
ities. Marker color corresponds to the model type and the size corresponds to the model size.
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Weber, and Marnix H Medema. MIBiG 3.0: a community-driven effort to annotate experimentally
validated biosynthetic gene clusters. Nucleic Acids Res., 51(D1):D603–D610, January 2023.

12
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Appendix A Methods
ModAC Paralogy BiGene Mining ModA and ModC sequence pairs were identified in Ovchin-
nikov et al. (2014) and downloaded from https://gremlin.bakerlab.org/cplx.php?
uni_a=2ONK_A&uni_b=2ONK_C. Original sequences queried using the UniProt IDs were used
for the dataset. Sequences were dereplicated at 70% sequence identity using CD-HIT (Huang et al.,
2010) and only pairs where both sequences were in the dereplicated set were included in the dataset.

BacArch BiGene Dataset RefSeq annotations were obtained for E. coli str. K-12 substr. MG1655
(GCF 000005845.2) and Sulfolobus acidocaldarius (GCF 000012285.1). Orthologous genes were
identified through manual inspection. Genes with exactly matching annotations were identified
first and added to the dataset; numerous genes with nearly identical, but not exactly matching, an-
notations, were also added to the dataset. Finally, genes without highly similar annotations but
with matching function indicated through other databases such as UniRef, were identified through
manual inspection. Some unannotated genes in Sulfolobus were identified as orthologs to E. coli
sequences through a combination of genome context information, matching HMM domains, and
high structural similarity identified through a Foldseek (van Kempen et al., 2024) search between
the predicted structure of Sulfolobus sequences against the structures available for E. coli MG1655;
for Sulfolobus genes with ambiguous RefSeq annotations, at least two such clues (matching UniRef
annotations, genome context clues, matching HMM annotations, and Foldseek structural similarity)
were required to assign an orthologous pair. Genes where multiple homologs existed in both E. coli
and Sulfolobus genomes were deliberately excluded.

EC Classification Datasets Sequences with an assigned EC number were downloaded from
UniProtKB (Breuza et al., 2016) on May 16th 2024. Only ”reviewed” sequences, non-fragments and
sequences with a single EC designation were included. Sequences were first dereplicated at 70%
sequence identity using CD-HIT and further clustered at 10% sequence identity (--min-seq-id
0.1) using mmseqs cluster (Steinegger & Söding, 2017) with coverage threshold of 30% (-c 0.3)
and minimum alignment length of 50 bp (--min-aln-len 50). Only EC classes with greater
than five sequences after dereplication and clustering were kept. Five sequences were chosen ran-
domly for each EC class, where one sequence was added to the test set and the remaining four were
added to the train set.

Convergent Enzymes Classification Dataset Raw sequences and EC labels were downloaded
from UniProtKB and dereplicated at 70% sequence identity as described above in section ”EC Clas-
sification.” Sequences were BLASTed against every other sequence with the same EC number des-
ignation in the dereplicated set. Only one example per EC class with at least five examples in the
same EC class without a significant BLASTP match (alignment length <10 and percent identity
<0.1) were kept for testing. Five sequences in the corresponding EC class that have no significant
BLASTP match to the test sequence were randomly chosen for training.

MIBiG Classification Dataset Sequences and labels (secondary metabolite classes) were down-
loaded from the MIBiG server version 3.1 (https://mibig.secondarymetabolites.
org/). Secondary metabolite class ”Other” was removed from the dataset. For the AA dataset,
protein sequences were extracted from the MIBiG genbank files and embedded in chunks of maxi-
mum sequence length set by --max seq len (determined by the model, e.g., 1024 for ESM2) and
subsequently mean-pooled across the example. For the NA dataset, DNA sequences were extracted
from the MIBiG genbank files, embedded in chunks of sequence length set by --max seq len
(e.g. 8,192 for evo-1-8k-base, 65,536 for evo-1-131k-base as sequence length 131,072
did not fit into a single H100 GPU with batch size 1) and subsequently mean-pooled to yield a sin-
gle embedding per example. Examples were split into train and test sets using 80/20 ratio random
sampling with stratification on the first class label.

MopB Clustering Dataset Labeled MopB family sequences were obtained from sequences used
to construct Figure 1 in Wells et al. (2023). Sequences were first dereplicated at 70% identity using
CD-HIT. Functional groups with fewer than 60 representatives were excluded from the dataset, and
functional groups with greater than 100 representatives were randomly down-sampled to only in-
clude 100 representatives. Selected sequences were aligned with FAMSA (Deorowicz et al., 2016).
Alignments were trimmed with trimAL (Capella-Gutiérrez et al., 2009) v1.4.rev15 with the param-
eter -gt 0.1 to remove columns consisting of ≥ 90% gaps. Phylogenetic trees were estimated
using iQ-TREE 2 (Minh et al., 2020) with the following parameters: -bb 1000 -m GTR+G4+F.
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E.coli RNA Clustering RNA sequences in the E. coli str. K-12 substr. MG1655 genome (Gen-
Bank ID GCF 000005845.2) were identified by running the RFAM (Kalvari et al., 2021) family of
models using the Infernal (Nawrocki, 2014) software suite. RNA groups with more than one iden-
tified representative included sRNAs, tRNAs, and rRNAs, and each sequence was classified using
these three labels. In order to remove length bias in each RNA class (e.g. rRNAs are significantly
longer than sRNAs), each sequence longer than 100bp was replaced by a random subsequence of
length 100bp.

RpoB Phylogenies RpoB sequences were obtained from the GTDB database (release 09-RS220).
Bacterial RpoB sequences were identified using the TIGRFAM model TIGR02013 (rpoB bac); Ar-
chaeal RpoB sequences were identified using the TIGRFAM model TIGR03670 (rpoB arc) using
methods described previously (Parks et al., 2018). Sequences were then dereplicated at 70% iden-
tity using CD-HIT. Sequences from phyla with fewer than 10 representatives in the GTDB were
excluded. For all other phyla, 10 representative sequences were chosen; where 10 or more classes
were present in each phylum, one sequence each was chosen for each of 10 random classes within
the phylum in order to diversify sampled sequences, otherwise the 10 representative sequences for
that phylum were chosen randomly. Nucleotide coding sequences for each chosen protein sequence
were then obtained and used to construct separate phylogenies. Four phylogenies were constructed
in total: Bacterial amino acid, Archaeal amino acid, Bacterial nucleotide, and Archaeal nucleotide.
All alignments were performed using FAMSA. All alignments were trimmed using trimAL with
parameters described above. Amino acid phylogenies were estimated using iQ-TREE 2 with the
following parameters: -bb 1000 -m LG+G4+F. Nucleotide phylogenies were estimated using
iQ-TREE 2 with the following parameters: -bb 1000 -m GTR+G4+F.

FeFeHydrogenase Phylogeny FeFe hydrogenase catalytic subunit sequences were obtained from
HydDB (Søndergaard et al., 2016) and dereplicated at 70% ID using CD-HIT. The remaining se-
quences were then aligned using FAMSA. Alignments were trimmed using trimAL with parameters
as described above. Amino acid phylogenies were then estimated using iQ-TREE 2 with the follow-
ing parameters: -bb 1000 -m LF+G4+F.

16S/18S rRNA phylogenies 16S/18S sequences were obtained from SILVA release 138 2 and
dereplicated at 70% identity using CD-HIT. Sequences were then aligned with FAMSA and trimmed
using trimAL with parameters as described above. Phylogenies were estimated using iQ-TREE
with the following parameters: -m GTR+G4+F+I -bb 1000 with the addition of the +I model
parameter to accommodate the presence of invariant sites in the alignment. The phylogeny in Fig.
1 was obtained by sampling one 16S or 18S rRNA sequence from each phylum designated and
constructed using the procedure described above.

Operonic Pairs For transcription units information and the corresponding protein sequences were
extracted from the BioCyc server (https://biocyc.org/) (Karp et al., 2019) for genomes
Escherichia coli K-12 substr. MG165 Vibrio cholerae O1 biovar El Tor str. N16961, Synechococcus
elongatus PCC 7942. For a given consecutive gene pair, a label was assigned (1 or 0) depending on
whether or not they are found in the same transcription unit.

Retrieval Protein sequences and protein name annotations were downloaded from UniProtKB
on June 16 2024. Only reviewed sequences and non fragments were kept for further process-
ing. First, the sequences were partitioned into three domain (bacterial, archaeal or eukaryotic)
sets using the UniProt taxonomic designation. Second, all proteins with ”UPF” or ”Uncharac-
terized protein” in the text labels were removed. Third, the sequence were dereplicated at 50%
sequence identity with CD-HIT with additional parameters -c 0.5, -n 2. Finally, overlapping
text annotations between bacterial and archaeal, or bacterial and eukaryotic sequence sets were
identified, and only sequences that map to the overlapping text annotations were kept. For the
Arch retrieval dataset, bacterial sequences were used as corpus with archaeal sequences as query.
For the Euk retrieval dataset, bacterial sequences were used as corpus with eukaryotic sequences
as query. Relevance scores for each corpus-query sequence pair were calculated using fuzzy string
matching (https://github.com/seatgeek/thefuzz): for fuzz ratio >90 between two
text annotations relevance score of 1 was assigned, otherwise, score of 0 was assigned.

A.1 Model Inference
For all tasks except MIBiG classification task, sequences were truncated to the model’s maximum
sequence length (predetermined by the model) using the flag --max seq len. For the MIBiG
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classification task, sequences were chunked by the model’s maximum sequence length as described
above.
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Appendix B Dataset Statistics
Overview of DGEB dataset statistics. For datasets that support both modalities (amino acids (AA) and nucleic acids
(NA)), the values in parenthesis refer to the statistics for NA datasets.

Dataset Type Categ. # Phyla
# Label
classes

# Train

Avg.
train
seq

length

# Test
Avg.

test seq
length

Modalities

BacArch BiGene Mining IE 2 2 - - 265 663 AA
ModAC Paralogy BiGene Mining IE 36 2 - - 1492 707 AA

FeFe Hydrogenase EDS IE 26 - - - 429 569 AA

RpoB Bac EDS IE 56 - - - 360
(360)

1305
(3927)

AA,
NA

RpoB Arch EDS IE 13 - - - 170
(170)

831
(2491)

AA,
NA

16S Bac EDS IE 31 - - - 545 1686 NA
16S Arch EDS IE 10 - - - 96 1423 NA
18S Euk EDS IE 20 - - - 751 2117 NA

Ecoli Operon Pair Classification IE 1 2 - - 4315 310 AA
Vibrio Operon Pair Classification IE 1 2 - - 2574 335 AA
Cyano Operon Pair Classification IE 1 2 - - 2611 305 AA

EC Classification SE 38 128 512
(512)

541
(1901)

128
(128)

640
(1622)

AA,
NA

Convergent Enzymes Classification SE 51 400 2000 415 400 433 AA

MIBIG Classification ME 15 6 29992
(1763)

647
(41178)

7213
(441)

638
(38206)

AA,
NA

MopB Clustering SE 46 13 - - 1300 817 AA
Ecoli RNA Clustering SE 1 3 - - 161 83 NA

Arch Retrieval SE 52 - 9229 344 2343 332 AA
Euk Retrieval SE 44 - 3202 353 311 367 AA
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Appendix C Model Information and Statistics
Models evaluated with DGEB are detailed with the number of parameters, number of hidden layers, and embedding dimensions. Pretraining FLOPs are estimated in (Chen et al.,
2024) or from the model’s original papers when available. FLOP values with an asterisk are estimated using the formula C = 6ND from (Kaplan et al., 2020), where C is the total
pretraining flops, N is the model size, and D is the number of pretraining tokens.

Model type Model Name Modeling Objective Training Data Num Params Num Layers Emb. Dim. Modality Pretrain FLOPs

ESM2 esm2 t6 8M UR50D MLM UniRef50/D 8M 6 320 AA 4.8E+19*
ESM2 esm2 t12 35M UR50D MLM UniRef50/D 35M 12 480 AA 2.1E+20*
ESM2 esm2 t30 150M UR50D MLM UniRef50/D 150M 30 640 AA 1.1E+21
ESM2 esm2 t33 650M UR50D MLM UniRef50/D 650M 33 1280 AA 4.4E+21
ESM2 esm2 t36 3B UR50D MLM UniRef5/0D 3B 36 2560 AA 1.9E+22

ESM3 esm3 sm open v1 MLM UniRef, MGnify; JGI (Hayes et al. 2024) 1.4B 48 1536 AA 6.72E+20

ProGen progen2-small CLM UniProtKB 150M 12 1024 AA 1.8E+20
ProGen progen2-medium CLM UniProtKB 765M 27 1536 AA 8.9E+20
ProGen progen2-large CLM UniProtKB 2.7B 32 2560 AA 3.4E+21
ProGen progen2-xlarge CLM UniProtKB 6.4B 32 4096 AA 1.4E+22

ProTrans prot t5 xl uniref50 MLM UniRef50 1.2B 24 1024 AA -
ProTrans prot t5 xl bfd MLM BFD (Steinegger and Söding 2018) 1.2B 24 1024 AA 1.7E+22

NT nt-v2-50m-multi-species MLM Multispecies (NCBI) (Dalla-Torre et al. 2023) 55M 12 512 NA 9.0E+19*
NT nt-v2-100m-multi-species MLM Multispecies (NCBI) 98M 22 512 NA 1.76E+20*
NT nt-v2-250m-multi-species MLM Multispecies (NCBI) 235M 24 768 NA 1.13E+21*
NT nt-v2-500m-multi-species MLM Multispecies (NCBI) 498M 29 1024 NA 2.69E+21*
NT nt-2.5b-multi-species MLM Multispecies (NCBI) 2.5B 32 2560 NA 4.5E+21*

Evo evo-1-8k-base CLM OpenGenome (Nguyen et al. 2024) 6.5B 32 4096 NA -
Evo evo-1-131k-base CLM OpenGenome 6.5B 32 4096 NA 2e+22
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Appendix D Comparison of mid layer and last layer performance for ESM2 series
models.
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Appendix E Per-task performance scaling with pre-training FLOPs.
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Appendix F Aggregated DGEB score relative to pre-training FLOPs.
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Appendix G Model performance per task

AA models NA models
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BiGene Mining ModAC Paralog BiGene 0.049 0.054 0.145 0.174 0.131 0.199 0.184 0.365 0.336 0.436 0.275 0.273 n/a n/a n/a n/a n/a n/a n/a
BacArch BiGene 0.457 0.647 0.778 0.808 0.797 0.794 0.579 0.728 0.575 0.770 0.799 0.782 n/a n/a n/a n/a n/a n/a n/a

Classification
EC Classification 0.437 0.554 0.611 0.637 0.680 0.581 0.437 0.500 0.497 0.549 0.629 0.565 0.070 0.086 0.110 0.095 0.131 0.012 0.016
MIBIG Classification 0.656 0.654 0.722 0.665 0.713 0.636 0.661 0.699 0.682 0.700 0.692 0.665 0.447 0.503 0.506 0.500 0.499 0.426 0.446
Convergent Enzymes Classification 0.116 0.201 0.246 0.257 0.265 0.225 0.095 0.149 0.153 0.148 0.243 0.227 n/a n/a n/a n/a n/a n/a n/a

Clustering MopB Clustering 0.654 0.784 0.843 0.872 0.902 0.745 0.785 0.879 0.848 0.908 0.872 0.828 n/a n/a n/a n/a n/a n/a n/a
E. coli RNA Clustering n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.200 0.143 0.227 0.231 0.190 0.660 0.681

EDS

FeFeHydrogenase Phylogeny 0.393 0.562 0.614 0.717 0.792 0.738 0.711 0.759 0.811 0.839 0.707 0.624 n/a n/a n/a n/a n/a n/a n/a
16S Bacterial Phylogeny n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.368 0.340 0.291 0.299 0.311 0.073 0.073
16S Archaeal Phylogeny n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.135 0.028 0.157 0.110 0.013 -0.005 0.019
18S Eukaryotic Phylogeny n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.338 0.336 0.334 0.306 0.303 0.223 0.161
RpoB Archaeal Phylogeny 0.375 0.372 0.373 0.318 0.293 0.241 0.419 0.509 0.501 0.501 0.339 0.356 0.150 0.187 0.214 0.279 0.184 0.146 0.152
RpoB Bacterial Phylogeny 0.191 0.186 0.242 0.286 0.259 0.210 0.375 0.397 0.441 0.477 0.288 0.273 0.100 0.216 0.123 0.107 0.138 0.090 0.070

Pair Classification
E. coli Operonic Pair 0.533 0.557 0.575 0.573 0.561 0.577 0.565 0.592 0.594 0.566 0.618 0.626 n/a n/a n/a n/a n/a n/a n/a
Cyano Operonic Pair 0.353 0.352 0.373 0.373 0.358 0.390 0.335 0.373 0.367 0.371 0.409 0.407 n/a n/a n/a n/a n/a n/a n/a
Vibrio Operonic Pair 0.453 0.469 0.492 0.483 0.446 0.497 0.470 0.476 0.494 0.494 0.543 0.541 n/a n/a n/a n/a n/a n/a n/a

Retrieval Euk Retrieval 0.215 0.309 0.352 0.359 0.357 0.345 0.291 0.339 0.313 0.344 0.359 0.355 n/a n/a n/a n/a n/a n/a n/a
Arch Retrieval 0.179 0.273 0.305 0.309 0.313 0.289 0.218 0.281 0.270 0.292 0.311 0.306 n/a n/a n/a n/a n/a n/a n/a
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