
EmbedKGQA: Improving Multi-hop Question Answering over
Knowledge Graphs using Knowledge Base Embeddings

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

Our work consists of four parts: (1) Reproducing results from Saxena et al. [2020] (2) Adding more experiments by3

replacing the knowledge graph embedding method (3) and exploring the question embedding method using various4

transformer models (4) Verifying the importance of Relation Matching (RM) module. Based on the code shared by5

the authors, we have reproduced the results for the EmbedKGQA method. We have not performed relation matching6

deliberately to validate point-4.7

Methodology8

We have used the code provided by Saxena et al. [2020] with some customization for reproducibility. In addition to9

making the codebase more modular and easy to navigate, we have made changes to incorporate different transformers10

in the question embedding module. Question-Answering models were trained from scratch as no pre-trained models11

were available for our particular dataset. The code for this work is available on GitHub1.12

Results13

We were able to reproduce the Hits@1 to be within ±2.35% of reported value (in most cases). Anomalies were ob-14

served in 3 cases. [1] In MetaQA-KG-Full (3-hop) dataset [2] In WebQSP-KG-50 and [3] WebQSP-KG-Full datasets.15

From our experiments on the QA model, we have found that a recent transformer architecture, SBERT (Reimers and16

Gurevych [2019]) produced better accuracy than the original paper. Replacing RoBERTa (Liu et al. [2019]) with17

SBERT (Reimers and Gurevych [2019]) increased the absolute accuracy by ≈3.4% in half KG case and ≈0.6% in the18

full KG case. (KG: Knowledge Graph, "≈": Approximately)19

What was easy20

As the code was open-sourced, we didn’t have to implement the paper giving us the liberty to customize the codebase21

to focus on the author’s claim validation, perform extended experiments and explore shared as well as new models. In22

addition to this, pretrained KG embedding models were shared which helped in the reproduction experiment.23

What was difficult24

The lack of a comprehensive documentation alongwith missing comments defining functions/classes/attributes etc.,25

made it laborious to review the code and modify it. In addition to large training times for question answering models,26

the knowledge graph embeddings also required a significant amount of computing resources.27

Communication with original authors28

We had a couple of virtual meetings with Apoorv Saxena 2, the primary author of EmbedKGQA.29

1https://github.com/jishnujayakumar/MLRC2020-EmbedKGQA
2https://apoorvumang.github.io

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

https://github.com/jishnujayakumar/MLRC2020-EmbedKGQA
https://apoorvumang.github.io

1 Introduction30

Knowledge is the key to question answering task. Knowledge Graph (KG) is a multi-relational graph consisting of31

entities as nodes and relations among them as typed edges. KGs can accommodate a wide variety of facts, making32

them one of the potential candidates for intelligent decision-making. Question Answering over KG (KGQA) task aims33

to answer natural language queries posed over the KG. Multi-hop KGQA is a trending topic and has gained traction34

from both academia and industry recently. Multi-hop KGQA task involves reasoning over multiple edges of the KG35

to arrive at the correct answer.36

Earlier works on KGs(e.g. Suchanek et al. [2007], Google [2013], Lehmann et al. [2015], Mitchell et al. [2018])37

have some element of sparsity, i.e. they do not capture all the facts available in the real world. Recent research on38

multi-hop KGQA has attempted to reduce this sparsity with the help of relevant external textual resources that are not39

readily available. On the other side, KG embeddings have emerged as an effective tool to overcome the KG sparsity40

by predicting missing links in the KG. Although effective, KG embeddings have not been explored for the multi-hop41

KGQA task. Saxena et al. [2020] fills this gap with the proposed EmbedKGQA method.42

This work intends to reproduce and perform an ablation (removing relation matching module) as well as extended43

study on EmbedKGQA(Saxena et al.[2020]). EmbedKGQA claims to be the first of its kind to use KG embeddings44

for multi-hop KGQA and improves over other state-of-the-art (SOTA) baselines.45

2 Scope of reproducibility46

According to Saxena et al. [2020], using ComplEx (Trouillon et al. [2016]) KG embeddings significantly improves47

Hits@1 for multi-hop KGQA task and it has been proved with the help of the results on MetaQA (Zhang et al. [2018])48

and WebQSP (Yih et al. [2016]) datasets. This reproducibility work tries to test this claim and conducts experiments49

as mentioned in table:{2,3} of the original paper. Section 4.1 contains the corresponding results which support the50

claim with some anomalies.51

3 Methodology52

The authors of the original paper have open-sourced the code along with the data and pre-trained ComplEx KG53

embedding models. We have used the same codebase (commit:5d8fdbd4) and customized it for our purposes. In54

addition to this, we have added a comprehensive documentation to make it more interpretable. Moreover, a command-55

line functionality is also added to easily configure various transformers models in the training workflow.56

3.1 Model descriptions57

As shown in Figure:1, EmbedKGQA has three modules:58

1. KG Embedding Module - This module contains a KG embedding model called ComplEx (Trouillon et al.59

[2016]) to learn embeddings for all entities in the input KG. 4 pretrained models have been shared by the60

author which contains 2 models for MetaQA-KG-{Full, 50} as well as 2 models WebQSP-KG-{Full,50}61

dataset. Details about the dataset are mentioned in section:3.2.62

2. Question Embedding Module: Given a question q, head entity h and set of answer entities A, this module63

learns the question embeddings based on the score function defined by the KG embedding method used in 1.64

3. Answer Selection Module: This module uses the outputs of module:1 and 2 to select the final answer by scor-65

ing the (head entity and question) pair against all possible answers. The strategy is mentioned in section:{4.4,66

4.4.1} of the original paper respectively.67

3.2 Datasets68

There are two datasets used in the original paper. MetaQA (Zhang et al. [2018]) and WebQSP (Yih et al. [2016]). Both69

datasets have two portions. (1) KG data (2) QA data. KG data for both are further divided into two categories. (1)70

Using the full KG (indicated by suffix KG-Full) and (2) Using only 50% of the facts in the respective KGs (indicated71

by suffix KG-50). The details of generating custom KG datasets are discussed here3. Both datasets are taken from72

here4. Statistics for table:{1, 2} have been taken from Saxena et al. [2020]. For generating question embeddings the73

3https://github.com/malllabiisc/EmbedKGQA
4https://drive.google.com/drive/folders/1RlqGBMo45lTmWz9MUPTq-0KcjSd3ujxc (As of 01/2021)

2

https://github.com/malllabiisc/EmbedKGQA/tree/5d8fdbd4be77fdcb2e67a0dc8a7115844606175a
https://github.com/malllabiisc/EmbedKGQA
https://drive.google.com/drive/folders/1RlqGBMo45lTmWz9MUPTq-0KcjSd3ujxc

Figure 1: Overview of EmbedKGQA, the proposed method for Multi-hop KGQA.
Image source: Saxena et al. [2020].

Dataset Train Dev Test
MetaQA 1-hop 96,106 9,992 9.947
MetaQA 2-hop 118,948 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274

WebQSP 2,998 100 1,639

Table 1: QA data statistics for each dataset according to Saxena et al. [2020]

Dataset Triples Entities Relations Experiment-Alias
MetaQA-KG-Full 135k 43k 9 MetaQA_full
WebQSP-KG-Full 5.7 million 1.8 million γ fbwq_full
MetaQA-KG-50 ϕ - - MetaQA_half
WebQSP-KG-50 ψ - - fbwq_half

Table 2: KG data statistics for each dataset. Refer3 for more details.

Experiment-Alias is the name used for the respective datasets in experiments.
γ = Contains all facts that are within 2-hops of any entity mentioned in the questions of WebQSP.

ϕ = Contains only 50% of the triples (randomly selected without replacement).
ψ = Contains 50% of the edges sampled randomly from fbwq_full.

question is placed between <s> and </s> tags for all transformers except SentenceTransformer as it takes the input74

sentence in its pure form. The preprocessing used in the original code has been used here. No additional preprocessing75

has been performed from our end.76

3.3 Hyper-Parameters77

Hyper-parameters used to train the models aren’t explicitly shared in the codebase or the paper, hence we decided to78

use the default values provided in the codebase3 to compensate the lack of time. For reproduction, a pretrained model79

shared along with the data was used; ComplEx(Trouillon et al. [2016]) was used as the knowledge graph embedding80

method for all the KG types, i.e., full and half of both datasets types.81

3

Type MetaQA-KG-Full MetaQA-KG-50
1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

Train (t) 350 seconds 380 seconds 380 seconds 280 seconds 330 seconds 320 seconds
Validation (v) 42 seconds 95 seconds 147 seconds 47 seconds 108 seconds 182 seconds

T 10.89 hours 13.19 hours 14.64 hours 9.08 hours 12.16 hours 13.94 hours

Type WebQSP-KG-Full WebQSP-KG-50
Train (t) 280 seconds 300 seconds

Validation (v) 95 seconds 105 seconds
T 10.42 hours 10.92 hours

Table 3: Time for training/validation. Refer section:3.3 for hyper-parameters. (r=1, total_epochs=100)

For table:3, validate_every = The number of train routines before validation for a single epoch
Total runs (r) = Number of times the training has been performed for a particular task

Total train time (GPU hours) excluding early stopping, T = (total_epochs× (t+ v))× r

For the purpose of reproducibility, hyper-parameters for training MetaQA and WebQSP QA models have been taken82

from section:{MetaQA5, WebQuestionsSP6} of the original codebase respectively. For RoBERTa (Liu et al. [2019]),83

a pretrained model ’roberta-base’ has been taken from HuggingFace transformers package (Wolf et al. [2020]). Other84

hyper-parameters are populated by default values in the codebase3.85

3.4 Experimental setup and code86

Experiments have been performed on the NVIDIA DGX-1 server with 8xV100 GPUs, out of which 6 were used in87

this work. The metric used for validating the claims is Hits@1. According to Wang et al. [2019b], Hits@k is the88

proportion of test triples ranking in the top-k results. The code for this work is open-sourced on GitHub1. In addition89

to this, we have shared couple of Docker images7 for easy kick-starting of experiments without the hassle of setting90

up the environment.91

Following trained models are made available in our Docker image7, chosen on the basis of better performance in our92

extended study.93

• TuckER KG embedding model for Meta-QA-{Full, 50}94

• QA models trained using ComplEx as KG embedding model and SBERT mentioned in table:4 as question95

embedding model for WebQSP-KG-{Full, 50}96

3.5 Computational requirements97

This work has been performed on 6 V100-16GB GPUs connected via NVLink. NVLink reduced multi-GPU training98

time by 1/4. The time required for various reproductions are mentioned in table:{5,6}.99

3.6 Extended Experiments100

Apart from reproducing the results mentioned in the original paper, a couple of extended experiments have been101

performed to find answers to the following two questions:102

1. Can recent KG embedding methods like TuckER (Balažević et al. [2019]) give higher accuracy on higher103

levels of hops, i.e., 3-hop scenario to be specific compared to Trouillon et al. [2016] used in the original104

paper?105

5https://github.com/malllabiisc/EmbedKGQA#metaqa
6https://github.com/malllabiisc/EmbedKGQA#webquestionssp
7https://github.com/jishnujayakumar/MLRC2020-EmbedKGQA#helpful-pointers

4

https://github.com/malllabiisc/EmbedKGQA#metaqa
https://github.com/malllabiisc/EmbedKGQA#webquestionssp
https://github.com/jishnujayakumar/MLRC2020-EmbedKGQA#helpful-pointers

Transformer Pretrained-Model
RoBERTa roberta-base

XLNet xlnet-base-cased
ALBERT albert-base-v2

SentenceTransformer (SBERT) sentence-transformers/bert-base-nli-mean-tokens
Longformer allenai/longformer-base-4096

Table 4: Pretrained models from HuggingFace transformers package (Wolf et al. [2020])

2. Can other transformer architectures like ALBERT (Lan et al. [2019]), XLNet (Yang et al. [2019]), Long-106

former (Beltagy et al. [2020]) and SBERT (Reimers and Gurevych [2019]) improve the results on WebQSP107

(Yih et al. [2016])?108

Details of hyper-parameters used for these experiments are available in our GitHub repository1. Various transformer109

models used for experiment-2 are mentioned in table:4.110

4 Results111

We report results for reproducibility as well as our extended experiments. The results of reproduction have a mixed112

nature while the ones for our extended experiments show positive signs to support claim-1, 2. Detailed discussion113

about the results can be found in section:5. For all tables in this report, bold values indicate better performance.114

4.1 Results reproducing original paper115

We perform two experiments based on the two datasets introduced in section:3.2. These experiments provide vital116

information about the results mentioned in table:{2,5} of the original paper. The results of the two are reported in117

table:{5, 6} respectively. From the results of table:5 in Saxena et al. [2020] and table:6 in this report, it is evident118

that relation matching(RM) is an important component in multi-hop KGQA when the given KG is considerably large,119

i.e. {MetaQA, WebQSP} KG-Full; Definitely, WebQSP-KG-50 also shows improvement in presence of RM but the120

performance significantly improves when applied to KG-Full setting. The author of Saxena et al. [2020] had also121

expressed the same opinion in one of the virtual meetings.122

4.2 Results beyond the original paper123

We have conducted two additional experiments from our end to find an answer to claim:{1,2}. The results in table:{7,8}124

support claim-1 but with a caveat. On the other hand, values in table:9 improve upon the results reported by the125

original paper creating a new SOTA baseline. Additional experiments ingest custom hyper-parameters mentioned in126

our codebase in absence of the original hyper-parameters. None of these experiments include the RM module.127

5 Discussion128

The reproducibility results from table:{5,6} corroborate the claims mentioned in section:2 to some extent. The repro-129

duced version is within ±2.4 range (positive value indicates better performance and vice-versa) except for MetaQA-130

KG-Full dataset’s 3-hop and WebQSP-KG-Full scenario which has a significant drop of 22.5% and 18.5% respectively.131

The absence of RM module has been reported and discussed here8,9,10. For a given question, the RM module uses it’s132

context to extract useful information from the available edges present in the KG. This information is further plugged133

into the answer selection module to select more relevant answers. Thus, relation matching is a vital component in134

multi-hop question answering, especially in KG-Full setting where more number of the edges are present w.r.t. KG-50135

setting or any smaller KG w.r.t. the KG-Full setting. Results from table:{5,6} corroborates the previous statement.136

Moreover, MetaQA-KG-50 3-hop outperforms the original model by a margin of +0.9% without using RM which is137

an interesting observation. Apart from one reported anomaly, the reproduced results are pretty close to the original138

8https://github.com/malllabiisc/EmbedKGQA/issues/1
9https://github.com/malllabiisc/EmbedKGQA/issues/51

10https://github.com/malllabiisc/EmbedKGQA/issues/56

5

https://github.com/malllabiisc/EmbedKGQA/issues/1
https://github.com/malllabiisc/EmbedKGQA/issues/51
https://github.com/malllabiisc/EmbedKGQA/issues/56

Model RM MetaQA-KG-Full MetaQA-KG-50
1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

EmbedKGQA 4 97.5 98.8 94.8 83.9 91.8 70.3
EmbedKGQA (Reproduced) 8 95.4 96.4 72.3 83.2 91.6 71.2

∆ - −2.1 −2.4 −22.5 −0.7 −0.2 0.9

Table 5: Hits@1 results for original and reproduced experiments using MetaQA-KG-{Full, 50} datasets. ∆ = (Repro-
duced Hits@1 without RM) - (Original Hits@1 with RM)

.
Model RM WebQSP-KG-Full WebQSP-KG-50

EmbedKGQA 4 66.6 53.2
EmbedKGQA 8 48.1 47.4

EmbedKGQA (Reproduced) 8 54.9 41.3

∆original - 18.5 5.8
∆ - 6.8 -6.1

Table 6: Hits@1 results for original and reproduced experiments using WebQSP-KG-{Full, 50} datasets.
∆=(Reproduced Hits@1 without RM) - (Original Hits@1 without RM), ∆original = (Original Hits@1 with RM) -
(Original Hits@1 without RM).

For table:{5, 6}, KG-Embedding-Model=ComplEx. RM=Relation Matching, 4= inclusion, 8= exclusion. The
original values for EmbedKGQA are taken from Saxena et al. [2020]. Underline indicates anomaly due to the

absence of RM module.

KG-Model MetaQA-KG-Full
1-hop 2-hop 3-hop

Hits@1 Hits@5 Hits@10 Hits@1 Hits@5 Hits@10 Hits@1 Hits@5 Hits@10
ComplEx 95.39 99.83 99.97 96.46 99.02 99.27 72.33 93.27 95.66
TuckER 95.51 99.81 99.97 93.13 98.7 99.28 73.81 93.6 96.09

∆ 0.12 -0.02 0 -3.33 -0.32 0.01 1.48 0.33 0.43

Table 7: Comparison of ComplEx with TuckER based on Hits@k results for MetaQA-KG-Full dataset. k ∈ {1, 5, 10}.

KG-Model MetaQA-KG-50
1-hop 2-hop 3-hop

Hits@1 Hits@5 Hits@10 Hits@1 Hits@5 Hits@10 Hits@1 Hits@5 Hits@10
ComplEx 83.24 89.83 91.22 91.63 97.08 98.04 71.2 90.77 93.72
TuckER 83 89.36 90.41 86.07 94.66 96.4 71.96 91.16 93.94

∆ -0.24 -0.47 -0.81 -5.56 -2.42 -1.64 0.76 0.39 0.22

Table 8: Comparison of ComplEx with TuckER based on Hits@k results for MetaQA-KG-50 dataset. k ∈ {1, 5, 10}.

For table:{7, 8}, ∆= (TuckER Hits@k) - (ComplEx Hits@k).

6

Question-Embedding-Method WebQSP-KG-Full WebQSP-KG-50
Hits@1 Hits@5 Hits@10 Hits@1 Hits@5 Hits@10

RoBERTa (Liu et al. [2019]) 54.96 67.62 71.97 41.27 51.14 54.19
XLNet (Yang et al. [2019] 51.98 64.44 69.11 39.33 49.25 52.04
ALBERT (Lan et al. [2019]) 47.31 59.83 63.98 31.15 42.31 45.68
Longformer (Beltagy et al. [2020]) 54.9 66.77 70.47 41.92 51.98 54.83
SBERT (Reimers and Gurevych [2019] 55.55 68.98 72.74 44.65 53.86 56.13

∆ 0.59 1.36 0.77 3.38 2.72 1.94

Table 9: Hits@k results for recent transformer models by Wolf et al. [2020] used for generating question embeddings.
KG-Embedding-Method=ComplEx, ∆= (SBERT_Hits@k - RoBERTa_Hits@k), k ∈ {1, 5, 10}

results in case of MetaQA dataset. Default set of hyper-parameters mentioned in the original codebase(Refer section:139

3.3) were used in the reproducibility study. The anomaly in WebQSP-KG-Full,i.e. 18.5% drop bolsters the importance140

of RM in KG-Full setting. The reproduced results for WebQSP-KG-50 are within ±7% range. The use of different141

hyper-parameters can be one of the possible answers to this variation. This value is significant but not w.r.t. WebQSP-142

KG-Full’s drop of 18.5% which again strengthens the importance of RM in KG-Full setting. As mentioned in 4.1, RM143

is highly useful when the KG is considerably large.144

From table:{7, 8}, it is clear that TuckER (Balažević et al. [2019]) performs better than ComplEx (Trouillon et al.145

[2016] for the 3-hop scenario for both MetaQA-KG datasets, i.e., Full and 50. Though these results strengthen claim-146

1, a more comprehensive set of tests may lead to a concrete conclusion. (e.g., experiments employing a broader set of147

hyper-parameters).148

According to table:9, in all the cases, SBERT (Reimers and Gurevych [2019]) outperforms RoBERTa (Liu et al. [2019])149

used in the original paper creating a new SOTA benchmark which supports claim-2.150

There were some experiments which didn’t work out due to the lack of time. E.g. Using RelationalTucker3 (Wang151

et al. [2019a]) and SimplE (Kazemi and Poole [2018]) to test claim-1. Furthermore, hyper-parameter search couldn’t152

be done due to the same reason hence we had to pick the default ones mentioned in the codebase. All these create a153

room for further experiments and improvements.154

5.1 What was easy155

The paper was straightforward to understand. The open-sourced codebase helped us get kick-started.156

5.2 What was difficult157

The structure of the codebase made it difficult to navigate it. Since the code relied upon different techniques for the two158

datasets, the development of one function that trains different kinds of KG embeddings and another function that trains159

different kinds of QA models for both datasets was difficult. MetaQA uses LSTM/GRU (Hochreiter and Schmidhuber160

[1997] / Chung et al. [2014] while WebQSP uses RoBERTa (Liu et al. [2019]) to perform the same task of generating161

question embeddings. Also, training KG embeddings for MetaQA yields files in the form of NumPy (Harris et al.162

[2020]) files while WebQSP uses LibKGE (Broscheit et al. [2020]) for the same purpose which produces LibKGE163

specific KG embedding(KGE) models. Reproduction and the extensive study was a bit hard in the beginning as KGE164

and question embedding methodology varied for both datasets. After having a couple of virtual meetings with the165

author and code review, it became easier to conduct the planned experiments. The unavailability of hyper-parameters166

used to train each module increased the experiment cycle by multi-fold.167

5.3 Communication with original authors168

We had a couple of virtual meetings with the primary author of Saxena et al. [2020]. Though it was daunting to169

understand the codebase due to the reasons mentioned in section:5.2 with the help and support of the author, it became170

easier to navigate the codebase.171

7

5.4 Future Scope172

We think that there is a wide range of empirical analysis and experimentation that can be performed for multi-hop QA173

task, out of which we are sharing a few here:174

1. KG embedding compression (Sachan [2020])175

2. Using recent transformer models like Performer (Choromanski et al. [2020]), Reformer (Kitaev et al. [2020])176

etc. for generating question embeddings.177

3. Using low-dimensional hyperbolic KG embeddings (Chami et al. [2020]) in KG embedding module along178

with hyperbolic word embeddings (Dhingra et al. [2018]) for question embedding module.179

4. A new approach for sentence embedding, SBERT-WK (Wang and Kuo [2020]) instead of SBERT (Reimers180

and Gurevych [2019]) can be tried out.181

References182

Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factorization for knowledge graph comple-183

tion. arXiv preprint arXiv:1901.09590, 2019.184

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer, 2020.185

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz, and Rainer Gemulla. Libkge-a knowledge graph186

embedding library for reproducible research. In Proceedings of the 2020 Conference on Empirical Methods in187

Natural Language Processing: System Demonstrations, pages 165–174, 2020.188

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-dimensional hyperbolic189

knowledge graph embeddings. In Proceedings of the 58th Annual Meeting of the Association for Computational190

Linguistics, pages 6901–6914, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/191

2020.acl-main.617. URL https://www.aclweb.org/anthology/2020.acl-main.617.192

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter193

Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, and Adrian Weller. Re-194

thinking attention with performers, 2020.195

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent196

neural networks on sequence modeling, 2014.197

Bhuwan Dhingra, Christopher Shallue, Mohammad Norouzi, Andrew Dai, and George Dahl. Embedding text in198

hyperbolic spaces. In Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Pro-199

cessing (TextGraphs-12), pages 59–69, New Orleans, Louisiana, USA, June 2018. Association for Computational200

Linguistics. doi: 10.18653/v1/W18-1708. URL https://www.aclweb.org/anthology/W18-1708.201

Google. Freebase data dumps. https://developers.google.com/freebase/data, 2013.202

Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric203

Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van204

Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-205

Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.206

Oliphant. Array programming with NumPy. Nature, 585:357362, 2020. doi: 10.1038/s41586-020-2649-2.207

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.208

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs, 2018.209

Nikita Kitaev, ukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer, 2020.210

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite211

bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942, 2019.212

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N Mendes, Sebastian Hellmann,213

Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al. Dbpedia–a large-scale, multilingual knowledge base214

extracted from wikipedia. Semantic web, 6(2):167–195, 2015.215

8

https://www.aclweb.org/anthology/2020.acl-main.617
https://www.aclweb.org/anthology/W18-1708
https://developers.google.com/freebase/data

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-216

moyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019.217

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,218

J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles,219

R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling. Never-ending learning. Commun.220

ACM, 61(5):103115, April 2018. ISSN 0001-0782. doi: 10.1145/3191513. URL https://doi.org/10.1145/221

3191513.222

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In Proceedings223

of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational224

Linguistics, 11 2019. URL https://arxiv.org/abs/1908.10084.225

Mrinmaya Sachan. Knowledge graph embedding compression. In Proceedings of the 58th Annual Meeting of the226

Association for Computational Linguistics, pages 2681–2691, 2020.227

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering over knowledge228

graphs using knowledge base embeddings. In Proceedings of the 58th Annual Meeting of the Association for229

Computational Linguistics, pages 4498–4507, Online, July 2020. Association for Computational Linguistics. doi:230

10.18653/v1/2020.acl-main.412. URL https://www.aclweb.org/anthology/2020.acl-main.412.231

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic knowledge. In Proceedings232

of the 16th International Conference on World Wide Web, WWW ’07, page 697706, New York, NY, USA, 2007.233

Association for Computing Machinery. ISBN 9781595936547. doi: 10.1145/1242572.1242667. URL https:234

//doi.org/10.1145/1242572.1242667.235

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex embeddings236

for simple link prediction. In Proceedings of the 33rd International Conference on International Conference on237

Machine Learning - Volume 48, ICML’16, page 20712080. JMLR.org, 2016.238

B. Wang and C. . J. Kuo. SBERT-WK: A sentence embedding method by dissecting BERT-based word models.239

IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:2146–2157, 2020.240

Yanjie Wang, Samuel Broscheit, and Rainer Gemulla. A relational tucker decomposition for multi-relational link241

prediction, 2019a.242

Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, Samuel Broscheit, and Christian Meilicke. On evaluating embedding243

models for knowledge base completion, 2019b.244

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim245

Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite,246

Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.247

Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on248

Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.249

Association for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.250

6.251

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized252

autoregressive pretraining for language understanding. In Advances in neural information processing systems, pages253

5753–5763, 2019.254

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh. The value of semantic parse labeling255

for knowledge base question answering. In Proceedings of the 54th Annual Meeting of the Association for Computa-256

tional Linguistics (Volume 2: Short Papers), pages 201–206, Berlin, Germany, August 2016. Association for Com-257

putational Linguistics. doi: 10.18653/v1/P16-2033. URL https://www.aclweb.org/anthology/P16-2033.258

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and Le Song. Variational reasoning for question259

answering with knowledge graph. In AAAI, 2018.260

9

https://doi.org/10.1145/3191513
https://doi.org/10.1145/3191513
https://doi.org/10.1145/3191513
https://arxiv.org/abs/1908.10084
https://www.aclweb.org/anthology/2020.acl-main.412
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/P16-2033

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	Hyper-Parameters
	Experimental setup and code
	Computational requirements
	Extended Experiments

	Results
	Results reproducing original paper
	Results beyond the original paper

	Discussion
	What was easy
	What was difficult
	Communication with original authors
	Future Scope

