
Under review as a conference paper at ICLR 2022

SLICED RECURSIVE TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a neat yet effective recursive operation on vision transformers that can
improve parameter utilization without involving additional parameters. This is
achieved by sharing weights across depth of transformer networks. The proposed
method can obtain a substantial gain (∼2%) simply using naı̈ve recursive operation,
requires no special or sophisticated knowledge for designing principles of networks,
and introduces minimum computational overhead to the training procedure. To
reduce the additional computation caused by recursive operation while maintaining
the superior accuracy, we propose an approximating method through multiple sliced
group self-attentions across recursive layers which can reduce the cost consumption
by 10∼30% with minimal performance loss. We call our model Sliced Recursive
Transformer (SReT), which is compatible with a broad range of other designs for
efficient vision transformers. Our best model establishes significant improvement
on ImageNet over state-of-the-art methods while containing fewer parameters1.
The proposed sliced recursive operation allows us to build a transformer with more
than 100 or even 1000 layers effortlessly under a still small size (13∼15M), to
avoid difficulties in optimization when the model size is too large. The flexible
scalability has shown great potential for scaling up and constructing extremely deep
and large dimensionality vision transformers. Code and models will be available.

1 INTRODUCTION

The architectures of transformer have achieved substantively breakthroughs recently in the fields
of natural language processing (NLP) [Vaswani et al., 2017], computer vision (CV) [Dosovitskiy
et al., 2021] and speech [Dong et al., 2018, Wang et al., 2021b]. In the vision area, Dosovitskiy et
al. [Dosovitskiy et al., 2021] introduced the vision transformer (ViT) method that split a raw image
to a patch sequence as input and directly applied transformer model [Vaswani et al., 2017] for the
image classification task. ViT achieved impressive results and has inspired many follow-up works.
However, the benefits of a transformer often come with a large computational cost and it is always of
great challenge to achieve the optimal trade-off between the accuracy and model complexity. In this
work, we are motivated by the following question: How can we improve the parameter utilization of
a vision transformer, i.e., the representation ability without increasing the model size? We observe
recursive operation as shown in Fig. 1 is a simple while effective way to achieve this purpose.
Intrinsically, the classifier requires high-level abstracted features from the neural network to perform
accurate classification, while the extraction of these features often requires multiple layers and deeper
networks. This introduces parameter overhead into the model. Our motivation of this work stems
from an interesting phenomenon of latent representation visualization. We observed that in the deep
vision transformer network, the weights and activations of adjacent layers are similar with no much
difference (a similar phenomenon is also discovered in [Zhou et al., 2021]), which means they can be
reused. The transformer with a fixed stack of distinct layers loses the inductive bias in the recurrent
neural network which inspires us to share those weights in a recursive manner, forming an iterative
or recursive vision transformer. Recursion can help extract stronger features without the need of
increasing the parameters, and further improve the accuracy of the transformer. At the same time, this
weight reuse or sharing scheme also brings the effect of regularization to a certain extent, to avoid the
overfitting and non-convergence issues in training, which will be discussed in the later sections.
Why do we need to introduce recursion into transformers? (i.e., the advantages and draw-
backs) We usually push towards perfection on weight utilization of a network under a bounded range

1Our tiny model (∼5 M) achieves Top-1 80.0% with 384×384 and 77.9% with 224×224 resolutions.

1

Under review as a conference paper at ICLR 2022

N
o

rm + +

N
o

rm

Self-A
tt

B
lo

ck

M
LPP

atch

Em
b

e
d

d
in

gs

N
o

rm + +

N
o

rm

Self-A
tt

B
lo

ck

M
LP

N× Recursive Operation

Transformer Block

Recursive Transformer Block

𝑶𝟏

𝑶𝟏
𝑶𝟐

Figure 1: Atomic Recursive Operation.

Table 1: Results under different numbers N of naı̈ve
recursive operation on ImageNet-1K dataset.
Method Layers #Params (M) Top-1 Acc. (%)
DeiT-Tiny [Touvron et al., 2020] 12 5.7 72.2
+ 1× naı̈ve recursive 24 5.7 74.0
+ 2× naı̈ve recursive 36 5.7 74.1
+ 3× naı̈ve recursive 48 5.7 73.6

of parameters, thus, it can be used practically in the resource-limited circumstances like embedded
devices. Recursion is a straightforward way to compress the feature representation in a cyclic scheme.
The recursive neural networks also allow the branching of connections and structures with hierar-
chies. We found that it is intriguingly crucial for learning better representations on vision data in a
hierarchical manner, as we will introduce later in Fig. 6 of our experiments. Also, even the most
naı̈ve recursive operation still improves the compactness of utilizing parameters without requiring
to modify the transformer block structure [Srinivas et al., 2021, Yuan et al., 2021, Heo et al., 2021,
Wang et al., 2021a, Wu et al., 2021, Liu et al., 2021, Li et al., 2021, Xu et al., 2021], adding more
parameters or involving additional fine-grained information from input [Han et al., 2021], but such
operation will incur more computational cost, that is to say, it sacrifices the executing efficiency for
better parameter representation utilization. To address this shortcoming, in this work we propose
an approximating method for global self-attention through decomposing into multiple sliced group
self-attentions across recursive layers, meanwhile, enjoying similar FLOPs and better representations,
we also apply the spatial pyramid design to reduce the complexity of the network.
Feed-forward Networks, Recurrent Neural Networks and Recursive Neural Networks. To
clarify the definition of proposed recursive operation, we distinct recursive network networks from
feed-forward networks and recurrent neural networks. Feed-forward networks, such as CNNs and
transformers, are directed acyclic graphs (DAG). The information path in the feed-forward processing
is unidirectional, making the feed-forward networks hard to tackle the structured data with long-
span correlations. Recurrent networks (RNNs) are usually developed to process the time-series and
other sequential data. They output predictions based on the current input and past memory, so they
are capable of processing data that contains long-term interdependent compounds like language.
Recursive network is a less frequently used term compared to other two counterparts. Recursive
refers to repeat or reuse a certain piece of a network2. Different from RNNs that repeat the same
block throughout the whole network, recursive neural network selectively repeats critical blocks for
particular purposes. The recursive transformer iteratively refines its representations for all image
patches in the sequence. We found that, through introducing the designed recursive operation into
the feed-forward transformer, we can dramatically enhance the feature representation especially for
structured data without including additional parameters.
The strong experimental results show that integrating the proposed sliced recursive operation in the
transformer strike a competitive trade-off among accuracy, model size and complexity. To the best
of our knowledge, there are barely existing works studying the effectiveness of recursive operation
in vision transformers and proposing the approximation of self-attention method for reducing the
complexity of recursive operation. We have done extensive experiments to derive a set of guidelines
for the new design on vision task, and hope it is useful for future research. Moreover, since our method
does not involve the sophisticated knowledge for modification of transformer block or additional input
information, it is orthogonal and friendly to most of existing vision transformer design approaches.
Our contributions.

• We investigate the possibility of leveraging recursive operation with sliced group self-attention in
the vision transformers, which is a promising direction for establishing efficient transformers and
has not been well-explored before. We conducted the in-depth study on the roles of recursion in
transformers and conclude an effective scheme to use them for better parameter utilization.

• We provide design principles, including the concrete format and comprehensive comparison to
variants of SReT architectures, computational equivalency analysis, modified distillation, etc., in
hope of enlightening future studies in compact transformer design and optimization.

• We verify our method across a variety of scenarios, including vision transformer, all-MLP
architecture of transformer variant, and neural machine translation (NMT) using transformers.
Our model outperforms the state-of-the-art methods by a significant margin with fewer parameters.

2In a broader sense, the recurrent neural network is a type of recursive neural network.

2

Under review as a conference paper at ICLR 2022

2 RELATED WORK

(i) Transformer [Vaswani et al., 2017] was originally designed for natural language processing tasks
and has been the dominant approach [Devlin et al., 2019, Yang et al., 2019, Radford et al., 2019, Brown
et al., 2020, Liu et al., 2019b] in this field. Recently, Vision Transformer (ViT) [Dosovitskiy et al.,
2021] demonstrates that such multi-head self attention blocks can completely replace convolutions
and achieve competitive performance on image classification. While it relied on pre-training on large
amounts of data and transferring to downstream datasets. DeiT [Touvron et al., 2020] explored the
training strategies and various data augmentation on ViT models, to train them on ImageNet-1K
directly. Basically, DeiT can be regarded as a roadmap of ViT backbone + massive data augmentation
+ hyper-parameter tuning + hard distillation with token. After that, many extensions and variants of
ViT models have emerged on image classification task, such as Bottleneck Transformer [Srinivas
et al., 2021], Multimodal Transformer [Hendricks et al., 2021], Tokens-to-Token Transformer [Yuan
et al., 2021], Spatial Pyramid Transformer [Heo et al., 2021, Wang et al., 2021a], Class-Attention
Transformer [Touvron et al., 2021], Transformer in Transformer [Han et al., 2021], Convolution
Transformer [Wu et al., 2021], Shifted Windows Transformer [Liu et al., 2021], Co-Scale Conv-
Attentional Transformer [Xu et al., 2021], etc. (ii) Recursive operation has been explored in
NLP [Liu et al., 2014, Dehghani et al., 2018, Bai et al., 2019a;b; 2020, Lan et al., 2019, Chowdhury
& Caragea, 2021] and vision [Liang & Hu, 2015, Kim et al., 2016, Guo et al., 2019, Liu et al., 2020]
areas. In particular, DEQ [Bai et al., 2019b] proposed to find equilibrium points via root-finding in
the weight-tied feedforward models like transformers and trellis for constant memory. UT [Dehghani
et al., 2018] presented the transformer with recurrent inductive bias of RNNs which is similar to
our SReT format. However, these works ignored the complexity increased by recursive operation in
designing networks. In this paper, we focus on utilizing recursion properly by approximating self-
attention through multiple group self-attentions for building compact and efficient vision transformers.

3 RECURSIVE TRANSFORMER

Vanilla Transformer Block. A basic transformer block F consists of a Multi-head Self Attention
(MHSA), Layer Normalization (LN), Feed-forward Network (FFN), and Residual Connections (RC).
It can be formulated as:

z′` = MHSA (LN (z`−1)) + z`−1; z` = FFN (LN (z′`)) + z′`; i.e., z` = F`−1(z`−1) (1)

where z′` and z`−1 are the intermediate representations. F` indicates the transformer block at `-th
layer. ` ∈ {0, 1, . . . , L} is the layer index and L is the number of hidden layers. The self-attention
module is realized by the inner products with a scaling factor and a softmax operation, which is
written as:

Attention(Q,K, V) = Softmax
(
QK>/

√
dk

)
V (2)

where Q,K, V are query, key and value vectors, respectively. 1/
√
dk is the scaling factor for

normalization. Multi-head self attention further concatenates the parallel attention layers to in-
crease the representation ability: MHSA(Q,K, V) = Concat (head1, . . . ,headh)W

O, where
WO ∈ Rhdv×dmodel . headi = Attention

(
QWQ

i ,KW
K
i , V WV

i

)
are the projections with parameter

matrices WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,WV
i ∈ Rdmodel×dv .

The FFN contains two linear layers with a GELU non-linearity [Hendrycks & Gimpel, 2016] in
between

FFN(x) = (GELU (zW1 + b1))W2 + b2 (3)
where z is the input. W1, b1,W2, b2 are the two linear layers’ weights and biases.

Recursive Operation. In the original recursive module [Sperduti & Starita, 1997] for the language
modality, the shared weights are recursively applied on a structured input which is among the complex
inherent chains, so it is capable of learning deep structured knowledge. Recursive neural networks
are made of architectural data and class, which is majorly proposed for model compositionality on
NLP tasks. Here, we still use the sequence of patch tokens from the images as the inputs following
the ViT model [Dosovitskiy et al., 2021]. And, there are no additional inputs used for feeding into
each recursive loop of recursive block as used on structured data. Take two loops as an example for
building the network, the recursive operation can be simplified as:

z` = F`−1(F`−1(z`−1)) (4)

3

Under review as a conference paper at ICLR 2022

The naı̈ve recursive operation tends to learn a trivial solution like the identity mapping by the
optimizer, since the F`−1’s output and input are identical at the adjacent two depths (layers).

Non-linear Projection Layer (NLL). NLL is placed between two recursive operations to enable the
non-linear transformation between each block’s output and input, and avoid learning trivial status for
these transformer blocks. NLL can be formulated as:

NLL(z`−1) = MLP
(
LN
(
z′`−1

))
+ z′`−1 (5)

where MLP is the multi-layer non-linear projection block as the FFN structure, but having different
mlp ratio for the hidden features. We also use residual connection in it for better representation.

Recursive Transformer. A recursive transformer with two loops in every block can be written as:

z` = NLL2(F`−1(NLL1(F`−1(z`−1)))) (6)

where z`−1 and z` are each recursive block’s input and output. Different from MHSA and FFN that
share parameters across all recursive operations within a block, NLL1 and NLL2 use the non-shared
weights independently regardless of positioning within or outside the recursive blocks.

Recursive All-MLP [Tolstikhin et al., 2021] (an extension). M`−1 is a MLP block, we can
formulate it as:

U∗,i = X∗,i +W2 ∗ GELU (W1 ∗ LN (X)∗,i) , for i = 1 . . . C

Yj,∗ = Uj,∗ +W4 ∗ GELU (W3 ∗ LN (U)j,∗) , for j = 1 . . . S

Yj,∗ =M`−1(M`−1(X∗,i))

(7)

where the first and second lines are token-mixing and channel-mixing from [Tolstikhin et al., 2021].
C is the hidden dimension and S is the number of non-overlapping image patches. NLL is not used
here for simplicity.

Gradients in A Recursive Block. Here, we simply use explicit backpropagation through the exact
operations in the forward pass like Newton’s method since SReT has no constrain to obtain the
equilibrium of input-output in recursions like DEQ [Bai et al., 2019b] and the number of loops can be
small to control the network computation and depth. Our backward pass is more like UT [Dehghani
et al., 2018]. In general, the gradient of the parameters in each recursive block can be formulated as:

∂L
∂WF

=
∂L
∂zN

∂zN

∂WF
+

∂L
∂zN

∂zN

∂zN−1
∂zN−1

∂WF
+ . . . +

∂L
∂zN

∂zN

∂zN−1
. . .

∂z2

∂z1
∂z1

∂WF

=

N∑
i=1

∂L
∂zN

N−1∏
j=i

∂zj+1

∂zj

 ∂zi

∂WF

(8)

where WF is the parameters of recursive transformer block. L is the objective function.

Learnable Residual Connection (LRC) for Recursive Vision Transformers. He et al. [He et al.,
2016] studied various strategies of shortcut connections on CNNs and found that the original residual
design with pre-activation performs best. Here, we found simply adding learnable coefficients on
each branch of residual connection can benefit to the performance of vision transformers following
the similar discovery of literature [Liu et al., 2019a]. Formally, Eq. 1 and Eq. 5 can be reformulated
as:

z′` = α ∗MHSA (LN (z`−1)) + β ∗ z`−1;
z` = γ ∗ FFN (LN (z′`)) + δ ∗ z′`;

(9)

NLL(z`−1) = ζ ∗MLP
(
LN
(
z′`−1

))
+ θ ∗ z′`−1 (10)

where α, β, γ, δ, ζ, θ are the learnable coefficients. They are initialized as 1 and trained with other
model’s parameters simultaneously, no restrictions are added on them during training.
Extremely Deep Transformers. Weight-sharing mechanism allows us to build a transformer with
more than 100 layers still with a small model size. We demonstrate empirically that the proposed
method can significantly improve the optimization when the transformer is scaled up to an exaggerated
number of layers, which also demonstrates that it has the regularization effect during optimization.

4

Under review as a conference paper at ICLR 2022

Permutation

…

Permutation

…

Global self-attention

4 groupsà 4 groups 4 groupsà 2 groups1 group

Recursive Recursive

tokens

Figure 2: Approximating global self-attention via multiple sliced group-attentions with permutation.

4 APPROXIMATING GLOBAL SELF-ATTENTION VIA PERMUTATIONS OF
GROUP/LOCAL SELF-ATTENTIONS

Though recursive operation is adequate to provide better representation using the same number of
parameters, the additional forward loop makes the overhead in training and inference increasing
unnegligibly. To address the extra cost issue from recursive operation while maintaining the accuracy
improvement, we introduce an approximating method through multiple group self-attentions which is
surprisingly effective on the trade-off of accuracy and FLOPs.

Approximating Global Self-Attention in SReT. As shown in Fig. 2, a regular self-attention layer
can be decoupled through multiple group self-attentions in a recursion manner with similar or even
smaller computational cost. In general, the number of groups in different recursion can be the same
or different depending on the requirements of FLOPs and accuracy trade-off. Such strategy will not
change the number of parameters while more groups can enjoy lower FLOPs but slightly inferior
performance. We empirically verified that the decoupling scheme can achieve similar performance
with significantly fewer FLOPs if using proper splitting of self-attention in a tolerable scope.

Computational Equivalency Analysis. In this subsection we analyze the global (i.e., original) and
sliced group self-attentions and compare with different values of groups in a vision transformer.
Interesting observations on FLOPs and accuracy, i.e., representation ability are discussed:
Theorem 1. (Equivalency of global self-attention and group self-attention with recursive oper-
ation on FLOPs.) Let {N`,G`} ∈ R1, when N` = G`, FLOPs(1 V-SA) = FLOPs(N`× Recursive
with G`× G-SAs). The complexity C of regular and group self-attentions can be calculated as: (For
simplicity, here we assume #groups and vector dimensions in each recursive operation are the same.)

CG-SA =
N`

G`
× CV-SA (11)

where N` is the number of recursive operation and G` is the number of group self-attentions in layer `,
i.e., `-th recursive block. V-SA and G-SA represent the vanilla and group self-attentions, respectively.
The proof is provided in Appendix A. The insight provided by Theorem 1 is at the core of our
method to control the complexity and its various benefits on better representations. Importantly, the
computation of self-attention through the “slice” paralleling is equal to the vanilla self-attention.
We can observe that when N` = G`, CV-SA ≈ CG-SA

3 and if N`<G`, CG-SA<CV-SA, we can use this
property to reduce the FLOPs in designing transformers.
Empirical observation: When FLOPs(recursive +G-SA)≈FLOPs(V-SA), Acc.(recursive + G-SAs)
> Acc.(V-SA).

Table 2: Representation ability with global and group self-attentions.
Method #Params (M) #FLOPs (B) Top-1 Acc. (%)
Baseline (PiT [Heo et al., 2021]) 4.9 0.7 73.0
SReT (global self-attention w/o loop) 4.0 0.7 73.6
SReT (group self-attentions w/ N loops) 4.0 0.7 74.0

We employ the ex-tiny model to evaluate the performance of global self-attention and sliced group
self-attention with recursive operation. As shown in Table 2, we empirically verify that, with the

3In practice, the FLOPs of the two forms are not identical as self-attention module includes extra operations
like softmax, multiplication with scale and attention values, which will be multiples by the recursive operation.

5

Under review as a conference paper at ICLR 2022

similar computation, group self-attention with recursive operation can obtain better accuracy than
vanilla self-attention. More comparisons are given in our experimental section.

5 EXPERIMENTS AND ANALYSIS

In this section, we first empirically verify our proposed network on the image classification task
with self-attention [Vaswani et al., 2017] and all-MLP [Tolstikhin et al., 2021] based architectures,
respectively. We also conduct detailed ablation studies to explore the optimal hyper-parameters of
our proposed approach. Then, we extend it to the neural machine translation (NMT) task to further
verify the generalization ability of the proposed approach. Finally, we visualize the evolution of
learned coefficients in LRC and intermediate activation maps to better understand the behaviors and
properties of our proposed model.

5.1 DATASETS AND EXPERIMENTAL SETTINGS

(i) ImageNet-1K [Deng et al., 2009]: ImageNet-1K is a standard image classification dataset, which
contains 1K classes with a total number of 1.2 million training images and 50K validation images.
Our models are train on this dataset solely without additional images; (ii) IWSLT’14 German to
English (IWSLT14 De-En) dataset [IWS, a]: It contains about 160K sentence pairs as the training
set. We train and evaluate the models following the protocol [IWS, b]; (iii) WMT’14 English to
German (WMT14 En-De) dataset [WMT]: The WMT’14 training data consists of 4.5M sentences
pairs (116M English words, 110M German words). We use the same setup as [Luong et al., 2015].

Settings: On ImageNet-1K, we mainly follow the training settings of DeiT [Touvron et al., 2020]
for fair comparisons. Our backbone network is a spatial pyramid [Heo et al., 2021] architecture. On
WMT14 En-De and IWSLT14 De-En, we use adam optimizer and set the initial lr to be 5e-4 and
inverse sqrt scheduler. We use weight decay of 1e-4, dropout of 0.3 and label smoothing of 0.1.

Soft distillation strategy. On vision transformer, DeiT [Touvron et al., 2020] proposed to distill
tokens together with hard predictions from the teacher. They stated that using one-hot label with hard
distillation can achieve the best accuracy. This seems counterintuitive since soft labels can provide
more subtle differences and fine-grained information of the input. In this work, through a proper
distillation scheme, our soft label based distillation framework (one-hot label is not used) consistently
obtained better performance than DeiT4. Our loss is a soft version of cross-entropy between teacher
and student’s outputs as used in [Romero et al., 2014, Bagherinezhad et al., 2018, Shen et al., 2021]:

LCE(SW) = − 1
N

N∑
i=1

PTW(z) logPSW(z), where PTW and PSW are the outputs of teacher and

student, respectively. More details can be referred to our Appendix E.

5.2 NAÏVE RECURSIVE ON TRANSFORMERT Block NLL

NLL

NLL

(a) Inner loop

Recursive

T Block

NLL

(b) Outer loop

Recursive

T Block NLL

NLL

NLL

(a) Internal loop

Recursive

T Block

NLL

(b) External loop

Recursive

Figure 3: Recursive designs.

In this section, we examine the effectiveness of proposed recursive
operation on ViT model using DeiT training strategies. We verify
the following two fashions of recursive operation.
Internal and external loops. As illustrated in Fig. 3, there are
two possible recursive designs on transformer networks. One is the
internal loop that repeats every block separately. Another one is the
external loop that cyclically executed all blocks together. Although
external loop design can force the model being more compact as
it shares parameters across all blocks, we found such structure
is inflexible with limited representation ability. We conducted a
comparison with 12 layers of basic transformers with 2× recursive
operation and the results are: external 67.0% (3.2M) vs. internal 67.6% (3.0M) & 70.3% (3.9M). In
the following experiments, we use the internal recursive design as our default setting.

4We observed a minor issue of soft distillation implementation in DeiT (https://github.com/
facebookresearch/deit/blob/main/losses.py#L56). Basically, it is unnecessary of using loga-
rithm for teacher’s output (logits) according to the formulation of KL-divergence or cross-entropy. Adding log
on both teacher and student’s logits will make results of KL to be extremely small and intrinsically negligible.
We argue that soft labels can provide fine-grained information for distillation, and consistently achieved better
results using soft labels in a proper way than one-hot label + hard distillation, as shown in Sec. 5.3.

6

https://github.com/facebookresearch/deit/blob/main/losses.py##L56
https://github.com/facebookresearch/deit/blob/main/losses.py##L56

Under review as a conference paper at ICLR 2022

(1) (2) (3)
Figure 4: A comprehensive ablation study on different design factors.

5.3 ABLATION STUDIES

Table 3: Effectiveness of various designs on ImageNet-1K
val set. Please refer to Sec. 5.3 and Appendix E for more
details. In this ablation study, the backbone is SReT-TL
model using spatial pyramid architecture.

#Params (M) Top-1 (%)
Baseline 5.7 72.2
Recursive + NLL 5.0 74.7
Recursive + NLL - Class Token 5.0 75.0
Recursive + NLL + Stem 5.0 76.0
Recursive + NLL + LRC 5.0 75.2
Recursive (Full components) 5.0 76.8

GT+Hard Distill [Touvron et al., 2020] 5.0 77.5
Soft Distill (Ours) 5.0 77.9

The overview of our ablation studies is
shown in Table 3. The first group is the
baseline and different structures, which
are pointed by the used factors. We also
verify the following designs.
Architecture configuration. As in Ta-
ble 4, SReT-T is our tiny model which
has mlp ratio=3.6 in FFN and 4.0 for
SReT-TL. More details about architec-
tures will be given in our Appendix G.
To examine the effectiveness of recur-
sive operation, we conduct different
loops of naı̈ve recursive on DeiT-T. The
results are shown in Fig. 4 (1), we can

see 2× is slightly better than 1× and they have close accuracy, while the 1× is much faster for
executing. We use it in our following experiments.
NLL configuration. NLL is an important factor since the weights in it are not shared. To find an
optimal trade-off between model compactness and accuracy, we explore the NLL ratios in Fig. 4
(2, 3). Generally, a larger NLL ratio can achieve better performance but the model size increases
accordingly. We use 1.0 in our SReT-T and SReT-TL, and 2.0 in our SReT-S.
Different Permutation Designs and Groups Numbers. We explore the different permutation
designs and the principle of choosing group numbers for better accuracy-FLOPs trade-off. We
propose to insert permutation and inverse permutation layers to preserve the input information after
the sliced group self-attention operation. The formulation of this module together with recursions
and the result analysis are given in our Appendix C.
Distillation. To examine the effectiveness of our proposed soft distillation method, we conduct the
comparison of one-hot label + hard distillation and soft distillation only. The backbone network
is SReT-T, all hyper-parameters are the same except the loss functions. The accuracy curves are
shown in Fig. 10 (1) of Appendix. Our result 77.7% is significantly better than the baseline 77.1%.
Mixed-depth training. The spin-off benefit of recursive transformer is the feasibility of mixed-depth
training, which basically is an explicit deep supervision fashion as the shallow branch can receive
stronger supervision since it closes to the final loss layer, meanwhile, the weights are shared with the
deep branch. We provide a demonstration, comparison and landscape visualization in Appendix B.

5.4 COMPARISON WITH STATE-OF-THE-ART APPROACHES

A summary of our main results is shown in Table 4, our SReT-ExT is better than PiT-T by 1.0%
with 18.4%↓ parameters. SReT-T also outperforms DeiT-T by 3.8% with 15.8%↓ parameters and
15.4%↓ FLOPs. Distillation can help improve by 1.6% and fine-tuning on large resolution further
boosts to 79.6%. Moreover, our SReT-S is consistently better than state-of-the-art Swin-T, T2T, etc.,
on accuracy, model size and FLOPs, which demonstrates the great potential of our architectures.

5.5 ALL-MLP ARCHITECTURE

MLP-Mixer [Tolstikhin et al., 2021] (Baseline), MLP-Mixer + Recursive and MLP-Mixer + Recur-
sive + LRC: Mixer is a recently proposed design that is based entirely on multi-layer perceptrons
(MLPs). We apply our recursive operation and LRC on MLP-Mixer to verify the generalizability of
them. Results are shown in Fig. 7 (1), our method is consistently better than the baseline using the
same training protocol.

7

Under review as a conference paper at ICLR 2022

Table 4: Comparison of the Top-1 accuracy on ImageNet-1K with state-of-the-art methods. > denotes
that the model is trained without the proposed group self-attention approximation.

Method Resolution #Params (M) #FLOPs (B) Top-1 (%)
DeiT-T [Touvron et al., 2020] 224 5.7 1.3 72.2
PiT-T [Heo et al., 2021] 224 4.9 0.7 73.0
SReT-ExT (Ours) 224 4.0 0.7 74.0
DeiT-T [Touvron et al., 2020] 224 5.7 1.3 72.2
SReT->T (Ours) 224 4.8↓15.8% 1.4 76.1
SReT-T (Ours) 224 4.8 1.1↓21.4% 76.0
DeiT-TDistill [Touvron et al., 2020] 224 5.7 1.3 74.5
SReT->TDistill (Ours) 224 4.8 1.4 77.7
SReT-TDistill (Ours) 224 4.8 1.1↓21.4% 77.6
SReT->TDistill&384↑ (Ours) 384 4.9 6.4 79.7
SReT-TDistill&384↑ (Ours) 384 4.9 4.3↓32.8% 79.6

DeiT-T [Touvron et al., 2020] 224 5.7 1.3 72.2
AutoFormer-Tiny [Chen et al., 2021] 224 5.7 1.3 74.7
CoaT-Lite Tiny [Xu et al., 2021] 224 5.7 1.6 76.6
SReT->TL (Ours) 224 5.0↓12.3% 1.4 76.8
SReT-TL (Ours) 224 5.0 1.2↓14.3% 76.7
SReT->TLDistill (Ours) 224 5.0 1.4 77.9
SReT-TLDistill (Ours) 224 5.0 1.2 77.7
SReT->TLDistill&384↑ (Ours) 384 5.1 6.6 80.0
SReT-TLDistill&384↑ (Ours) 384 5.1 4.4↓33.3% 79.8

ViT-B/16 [Dosovitskiy et al., 2021] 384 86.0 55.4 77.9
DeiT-S [Touvron et al., 2020] 224 22.1 4.6 79.8
PVT-S [Wang et al., 2021a] 224 24.5 3.8 79.8
PiT-S [Heo et al., 2021] 224 23.5 2.9 80.9
T2T-ViTt-14 [Yuan et al., 2021] 224 21.5 5.2 80.7
TNT-S [Han et al., 2021] 224 23.8 5.2 81.3
Swin-T [Liu et al., 2021] 224 29.0 4.5 81.3
SReT->S (Ours) 224 20.9↓27.9% 4.7 81.6
SReT-S (Ours) 224 20.9 4.2↓10.6% 81.5
PiT-SDistill [Heo et al., 2021] 224 23.5 2.9 81.9
DeiT-SDistill [Touvron et al., 2020] 224 22.1 4.6 81.2
T2T-ViTt-14Distill [Yuan et al., 2021] 224 21.5 5.2 81.7
SReT->SDistill (Ours) 224 20.9 4.7 82.7
SReT-SDistill (Ours) 224 20.9 4.2↓10.6% 82.6
SReT->SDistill&384↑ (Ours) 384 21.0 18.5 83.8
SReT->SDistill&512↑ (Ours) 512 21.3 42.8 84.3

Figure 5: Comparison of BLEU, training loss and val loss on WMT14 En-De and IWSLT14 De-En
(in Appendix Fig. 13) datasets. The red dashed box indicates that LRC makes training more stable.

5.6 NEURAL MACHINE TRANSLATION

In this section, we compare the BLEU scores [Papineni et al., 2002] of vanilla transformer [Vaswani
et al., 2017] and ours on the WMT14 En-De and IWSLT’14 De-En datasets using fairseq
toolkit [FAIR]. IWSLT’14 De-En is relatively small so the improvement is not as significant as
on WMT14 En-De. The results are shown in Fig. 5, we can see without the LRC, our model can
converge faster, but the final accuracy is still inferior to using LRC. Also, LRC makes the training
process more stable as shown in the red dashed box.

5.7 ANALYSIS AND UNDERSTANDING

Here, we provide two visualizations to better understand our trained model.
Evolution of LRC coefficients. As shown in Fig. 7 (2), we plot the evolution of learned coefficients
in the first block. We can see that the coefficients on the identity mapping (α, γ, ζ) first go up and
then down as the training goes on. This phenomenon indicates that, at the beginning of our model

8

Under review as a conference paper at ICLR 2022

28×28 (R1) 28×28 (R2) 14×14 (R2) 7×7 (R2)
(2) SReT-Tiny (Ours)

(1) DeiT-Tiny14×14 14×14 14×14
Input

Shallow Deep

Figure 6: Illustration of activation distributions on shallow, middle and deep layers of DeiT-Tiny and
our SReT-T networks. The input image is in the upper left corner of the first subfigure. Under each
subfigure, 14× 14, 28× 28, 7× 7 are the resolutions of feature maps. “R1&2” indicates the location
of a number of recursive operations in each block. Interestingly, we observe that properties in the two
models are fairly different. For DeiT, the information is from poor to rich along with the depth, while
in our model, it is with hierarchies. Shallow layers focus on details and deep layers contain more
semantics. Recursive operation also promotes the hierarchies. Zoom in for better view.

(1) Recursive MLP-Mixer (2) Evolution of coefficients

Figure 7: (1) ImageNet-1k results on All-MLP Architecture. (2) Evolution of coefficients.

training the identify mapping plays a major role. After ∼50 epochs of training, the main branch is
becoming more and more important. When training is complete, in FFN and NLL, main branches
exceed the residual connection while on MHSA it is the opposite. This phenomenon can inspire us to
design a more reasonable residual connection in transformers.
Learned response maps. We visualize the activation maps of DeiT-Tiny and our SReT-T models
at shallow and deep layers. As shown in Fig. 6, DeiT is a network with uniform resolution of feature
maps (14×14). While, our spatial pyramid structure has different sizes of feature maps along with the
depth of network, i.e., the resolution of feature maps decreases as the depth increases. In each group,
we visualize 64 channels in those layers. More interesting observations are introduced in Appendix J.

6 CONCLUSION

It is worthwhile considering how to improve the efficiency of parameter utilization for a vision trans-
former with minimum overhead. In this work, we have summarized and explained several behaviors
observed while training such networks. We focused on building an efficient vision transformer with a
compact model size through the recursive operation, and the proposed approximation method allows
us to train with a more efficient manner in recursive transformers. We emphasize that such training
scheme has not been explored yet in previous literature of this field. We attributed the superior perfor-
mance of recursive transformer to its ability of intensifying the representation quality of intermediate
features. More than solely verifying our method on the vision task, we performed comprehensive
experiments to demonstrate the effectiveness on the Neural Machine Translation (NMT), showing the
generalization ability for different modalities and architectures, such as MLP-Mixer.

9

Under review as a conference paper at ICLR 2022

REFERENCES

https://workshop2014.iwslt.org/downloads/proceeding.pdf. a. 6

https://github.com/pytorch/fairseq/blob/master/examples/
translation/README.md. b. 6

https://www.statmt.org/wmt14/translation-task.html. 6

Hessam Bagherinezhad, Maxwell Horton, Mohammad Rastegari, and Ali Farhadi. Label refinery:
Improving imagenet classification through label progression. arXiv preprint arXiv:1805.02641,
2018. 6, 18

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Trellis networks for sequence modeling. In ICLR,
2019a. 3

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Proceedings of the
International Conference on Neural Information Processing Systems, 2019b. 3, 4

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. In Proceedings
of the International Conference on Neural Information Processing Systems, 2020. 3

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020. 3

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2021. 8

Jishnu Ray Chowdhury and Cornelia Caragea. Modeling hierarchical structures with continuous
recursive neural networks. In Proceedings of the 38th International Conference on Machine
Learning, pp. 1975–1988, 2021. 3

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2018. 3, 4

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009. 6

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4171–4186, 2019. 3

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5884–5888, 2018. 1

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. 1, 3, 8

FAIR. https://github.com/pytorch/fairseq. 8, 19

Qiushan Guo, Zhipeng Yu, Yichao Wu, Ding Liang, Haoyu Qin, and Junjie Yan. Dynamic recursive
neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5147–5156, 2019. 3

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. arXiv preprint arXiv:2103.00112, 2021. 2, 3, 8

10

https://workshop2014.iwslt.org/downloads/proceeding.pdf
https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md
https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md
https://www.statmt.org/wmt14/translation-task.html
https://github.com/pytorch/fairseq

Under review as a conference paper at ICLR 2022

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep
convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine
intelligence, 37(9):1904–1916, 2015. 18

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645, 2016. 4

Lisa Anne Hendricks, John Mellor, Rosalia Schneider, Jean-Baptiste Alayrac, and Aida Nematzadeh.
Decoupling the role of data, attention, and losses in multimodal transformers. arXiv preprint
arXiv:2102.00529, 2021. 3

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016. 3

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh.
Rethinking spatial dimensions of vision transformers. arXiv preprint arXiv:2103.16302, 2021. 2,
3, 5, 6, 8, 18

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. 18

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional network for
image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1637–1645, 2016. 3

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019. 3

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for
recognizing natural scene categories. In 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 2, pp. 2169–2178, 2006. 18

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-supervised
nets. In Artificial intelligence and statistics, pp. 562–570. PMLR, 2015. 16

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 6391–6401, 2018. 16

Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc Van Gool. Localvit: Bringing locality to
vision transformers. arXiv preprint arXiv:2104.05707, 2021. 2

Ming Liang and Xiaolin Hu. Recurrent convolutional neural network for object recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3367–3375,
2015. 3

Fenglin Liu, Meng Gao, Yuanxin Liu, and Kai Lei. Self-adaptive scaling for learnable residual
structure. In Proceedings of the 23rd Conference on Computational Natural Language Learning
(CoNLL), 2019a. 4

Shujie Liu, Nan Yang, Mu Li, and Ming Zhou. A recursive recurrent neural network for statistical ma-
chine translation. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1491–1500, 2014. 3

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b. 3

Yudong Liu, Yongtao Wang, Siwei Wang, TingTing Liang, Qijie Zhao, Zhi Tang, and Haibin Ling.
Cbnet: A novel composite backbone network architecture for object detection. In Proceedings of
the AAAI conference on artificial intelligence, volume 34, pp. 11653–11660, 2020. 3

11

Under review as a conference paper at ICLR 2022

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030, 2021. 2, 3, 8

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1412–1421, 2015. 6

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, 2002. 8

Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, and Quoc V Le. Meta pseudo labels. arXiv
preprint arXiv:2003.10580, 2020. 18

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 3

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10428–10436, 2020. 18

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014. 6, 18

Zhiqiang Shen and Marios Savvides. Meal v2: Boosting vanilla resnet-50 to 80%+ top-1 accuracy on
imagenet without tricks. In NeurIPS Workshop, 2020. 18

Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and Xiangyang Xue. Dsod:
Learning deeply supervised object detectors from scratch. In Proceedings of the IEEE international
conference on computer vision, pp. 1919–1927, 2017. 18

Zhiqiang Shen, Zechun Liu, Dejia Xu, Zitian Chen, Kwang-Ting Cheng, and Marios Savvides. Is label
smoothing truly incompatible with knowledge distillation: An empirical study. In International
Conference on Learning Representations, 2021. 6, 18

Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification of
structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997. 3

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck transformers for visual recognition. arXiv preprint arXiv:2101.11605, 2021. 2, 3

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy.
Mlp-mixer: An all-mlp architecture for vision. arXiv preprint arXiv:2105.01601, 2021. 4, 6, 7, 20

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877, 2020. 2, 3, 6, 7, 8, 18, 23

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. arXiv preprint arXiv:2103.17239, 2021. 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017. 1, 3, 6, 8, 19

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. arXiv preprint arXiv:2102.12122, 2021a. 2, 3, 8

Yongqiang Wang, Yangyang Shi, Frank Zhang, Chunyang Wu, Julian Chan, Ching-Feng Yeh, and
Alex Xiao. Transformer in action: a comparative study of transformer-based acoustic models for
large scale speech recognition applications. In ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 6778–6782. IEEE, 2021b. 1

12

Under review as a conference paper at ICLR 2022

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808, 2021. 2, 3

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10687–10698, 2020. 18

Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-scale conv-attentional image transformers.
arXiv preprint arXiv:2104.06399, 2021. 2, 3, 8

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in Neural
Information Processing Systems, 2019. 3

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi Feng, and
Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv
preprint arXiv:2101.11986, 2021. 2, 3, 8

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou, and
Jiashi Feng. Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.
1

13

Under review as a conference paper at ICLR 2022

APPENDIX

In this appendix, we provide details omitted in the main text, including:

• Section A: Proof for equivalency of global self-attention and sliced group self-attention with
recursive operation on FLOPs. (Sec. 4 “Approximating Global Self-Attention via Permutation of
Group/Local Self-Attentions” of the main paper.)

• Section B: A demonstration and landscape visualization of DeiT-108 and our SReT-108
mixed-depth models. (Sec. 3 “Recursive Transformer (Extremely Deep Transformers)” of the
main paper.)

• Section C: More ablation results on different permutation designs and groups numbers when
approximating global self-attention on ImageNet-1K . (Sec. 5.3 “Ablation Studies” of the main
paper.)

• Section D: Pseudocode for implementing sliced group self-attention. (Sec. 4 “Approximating Global
Self-Attention via Permutation of Group/Local Self-Attentions” of the main paper.)

• Section E: Implementation details of training on ImageNet-1K. (Sec. 5.1 “Datasets and Experimental
Settings” of the main paper.)

• Section F: Hyper-parameters setting for training language models on WMT14 En-De and IWSLT14
De-En datasets. (Sec. 5.1 “Datasets and Experimental Settings” and Sec. 5.6 “Neural Machine
Translation” of the main paper.)

• Section G: Details of our SReT-T, SReT-TL, SReT-S and SReT-B architectures. (Sec. 3
“Recursive Transformer” and Sec. 5.3. “Ablation Studies” of the main paper.)

• Section H: Details of All-MLP structure. (Sec. 5.5 “All-MLP Architecture” of the main paper.)

• Section I: Ablation study on different LRC designs. (Sec. 3 “Recursive Transformer” and Sec. 5.7
“Analysis and Understanding” of the main paper.)

• Section J: Observations of Response Maps. (Sec. 5.7 “Analysis and Understanding” of the main
paper.)

• Section K: More evolution visualization of LRC coefficients on ImageNet-1K dataset. (Sec. 5.7
“Analysis and Understanding” of the main paper.)

• Section L: Evolution visualization of LRC coefficients in language model on WMT14 En-De dataset.
(Sec. 5.6 “Neural Machine Translation” and Sec. 5.7 “Analysis and Understanding” of the main
paper.)

• Section M: More ablation results on directly expanding the depth of baseline DeiT model on
ImageNet-1K dataset. (Sec. 5.7 “Analysis and Understanding” of the main paper.)

A FLOPS ANALYSIS

One of the core benefits of our SReT is to control the complexity of a recursive network. We analyze
the FLOPs of global (i.e., original) and sliced group self-attentions and compare with different
circumstances of groups in a vision transformer. In this section, we provide a proof to Theorem 1
which we restate below.

Theorem 1. (Equivalency of global self-attention and group self-attention with recursive oper-
ation on FLOPs.) Let {N`,G`} ∈ R1, when N` = G`, FLOPs(1 V-SA) = FLOPs(N`× Recursive
with G`× G-SAs). The complexity of regular and group self-attentions can be calculated as: (For
simplicity, here we assume #groups and vector dimensions in each recursive operation are the same.)

CG-SA =
N`

G`
× CV-SA (12)

where N` is the number of recursive operation and G` is the number of group self-attentions in layer `,
i.e., `-th recursive block. V-SA and G-SA represent the vanilla and group self-attentions, respectively.

14

Under review as a conference paper at ICLR 2022

Proof. (Theorem 1) The complexity C of regular self-attention can be calculated as:

CV-SA = O(L2
` × D`) (13)

where L` is the sequence length and D` is the dimensionality of the latent representations.

The complexity of simple recursive operation without group will be:

Crecursive = O(N` × L2
` × D`) (14)

where N` is the number of recursive operation.

The complexity of sliced group self-attentions with a recursive block can be calculated as:

CG-SA = O(
N∑̀
i

(gi` × (
L`

gi
`

)2 × di
`))

= O(
N∑̀
i

(
L2
`

gi`
× di

`))

(15)

where gi` ∈ {G`}, di` ∈ {D`}, i = 1, . . . ,N`.

Consider the condition of #groups gi
` and vector dimension di

` in each recursive operation are the
same. The complexity of group self-attentions can be re-formulated as:

CG-SA = O(N` ×
L2
`

G`
× D`) =

N`

G`
× CV-SA (16)

where G` is the number of group self-attentions. When N` = G`, CV-SA = CG-SA and if N`<G`,
CG-SA<CV-SA.

B LANDSCAPE VISUALIZATIONS OF BASELINE DEIT AND OUR
MIXED-DEPTH SRET MODELS

T Block T Block T Block

Recursive

NLL

NLL

NLL

(a) Transformer (b) Re-Transformer (c) Re-Transformer w/ NLL

Recursive

T Block NLL

NLL

NLL

(d) Re-Transformer w/ Mixed-depth

Recursive

Share params

!"# = % ∗ '(%)

depth=3

depth=6

Share params

Figure 8: Illustration of recursive transformer with different designs. “NLL” indicates the non-linear
projection layer within each recursive loop.

Explicit Mixed-depth Training. The recursive neural network enables to train the model in a mixed-
depth scheme. As shown in Fig 8 (d), the left branch is the subnetwork containing recursive blocks,
while the right are the blocks without sharing the weights on depth, but their weights are re-used with
the left branch. In this structure, the two branches take the inputs from the same stem block of image
patches embedding. Mixed-depth training offers significant computational speedup by performing
operations parallelly and prevents under-optimizing when the network is extremely deep.

Benefits of Mixed-depth Training. The spin-off benefit of recursive transformer is the feasibility of
mixed-depth training, which basically is an explicit deep supervision fashion as the shallow branch
can receive stronger supervision since it closes to the final loss layer, meanwhile, the weights are
shared with the deep branch. The benefits of deep supervision have previously been demonstrated

15

Under review as a conference paper at ICLR 2022

in deeply-supervised nets [Lee et al., 2015], which utilized classifiers attached to every hidden
layer, enforcing the intermediate weights to learn discriminative features. Our proposed structure
performs deep supervision in a new scheme: a single classifier on top of the network provides direct
supervision to two branches (deep and shallow networks) with shared weights. We verify this design
by constructing an extremely deep DeiT and our model with 108 layers. As shown in Fig. 10 (2, 3),
we visualize the curves of accuracy and validation loss during training. Our model converges much
faster than DeiT-108 and also achieves slightly better accuracy, while our model size is only one-third
of DeiT-108.

Inspired by [Li et al., 2018], we visualize the landscape of baseline DeiT-108 and our SReT-108
& SReT-108 mixed-depth models to examine and analyze the difficulty of optimization on
these two architectures. The results are illustrated in Fig. 9, we can observe that DeiT-108 is more
chaotic and hard for optimization with numerous local minimum than our mixed-depth network. This
observation verifies the advantage of our proposed network structure for better optimization.

(1) DeiT-108 (3) SReT w/ Mixed-depth-108 (Ours)(2) SReT-108 (Ours)

Figure 9: The actual optimization landscape from DeiT-108, our SReT-108 and SReT-108
mixed-depth models.

(2)(1) (3)
Figure 10: A comprehensive ablation study on different design factors.

C ABLATION RESULTS ON DIFFERENT PERMUTATION DESIGNS AND GROUPS
NUMBERS

In this section, we explore the different permutation designs and the principle of choosing group
numbers for better accuracy-FLOPs trade-off. We propose to insert an inverse permutation layer to
preserve the input information after the sliced group self-attention operation. The formulation of this
operation is shown in Fig. 11 and the ablation results for this design is given in Table 5 of the first
group. In the table, “P” represents the permutation layer, “I” represents the inverse permutation layer
and “L” indicates that we did not involve permutation and inverse permutation in the last stage when
number of groups equals 1, we use SReT-TL as the base structure in this group of results. In the
Groups column of the table, we applied two loops of recursion in each recursive block according to
the ablation study in our main text. In each pair of the square brackets, the values denote the number
of groups for each recursion, and each pair of square brackets represents one stage of blocks in the
spatial pyramid based backbone network. We use [8,2][4,1][1,1] as our final SReT structure design
since it has the best accuracy and computational cost trade-off.

D PSEUDOCODE FOR SLICED GROUP SELF-ATTENTION

The pseudocode for implementation of our sliced group self-attention is shown in Algorithm 1.

16

Under review as a conference paper at ICLR 2022

Permutation

…

1 2 3 4 5 6 7 8 9

6 23 1 7 9 48 5

6 23 1 7 9 48 5

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Inverse permutation

Recursive

Figure 11: Different permu. designs.

Table 5: More ablation results on different group designs.
Groups Net Layers #Params (M) #FLOPs (B) Top-1 (%)

[8,8][4,4][1,1] P 20 4.99 1.08 75.41
[8,8][4,4][1,1] P+I 20 4.99 1.08 75.94
[8,8][4,4][1,1] P+I-L 20 4.99 1.08 76.06

[1,1][1,1][1,1] SReT->T 20 4.76 1.38 76.07
[8,8][4,4][1,1] SReT-T 20 4.76 1.03 75.73

[16,2][4,2][1,1] SReT-T 20 4.76 1.01 75.79
[8,2][4,1][1,1] SReT-T 20 4.76 1.12 75.97

[1,1][1,1][1,1] SReT->TL 20 4.99 1.43 76.78
[8,8][4,4][1,1] SReT-TL 20 4.99 1.08 76.06
[8,4][4,2][1,1] SReT-TL 20 4.99 1.14 76.16
[8,2][4,1][1,1] SReT-TL 20 4.99 1.18 76.65
[8,1][4,1][1,1] SReT-TL 20 4.99 1.25 76.72

[16,1][14,1][1,1] SReT-TL 20 4.99 1.24 76.56
[49,1][28,1][1,1] SReT-TL 20 4.99 1.23 76.30

Algorithm 1 PyTorch-like Code for Sliced Group Self-attention with 2× Recursive Loops.

num_groups1 and num_groups2: numbers of groups in different recursions
recursion: recursive indicator

class SG_Attention(nn.Module):
def __init__(self, dim, num_groups1=8, num_groups2=4, num_heads=8, qkv_bias=False,

qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
numbers of groups in different recursions
self.num_groups1 = num_groups1
self.num_groups2 = num_groups2
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5

self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)

def forward(self, x, recursion):
B, N, C = x.shape
if recursion == False:

num_groups = self.num_groups1
else:

num_groups = self.num_groups2
we will not do permutation and inverse permutation if #group=1
if num_groups != 1:

idx = torch.randperm(N)
perform permutation
x = x[:,idx,:]
prepare for inverse permutation
inverse = torch.argsort(idx)

qkv = self.qkv(x).reshape(B, num_groups, N // num_groups, 3, self.num_heads, C // self
.num_heads).permute(3, 0, 1, 4, 2, 5)

q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)

attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)

x = (attn @ v).transpose(2, 3).reshape(B, num_groups, N // num_groups, C)
x = x.permute(0, 3, 1, 2).reshape(B, C, N).transpose(1, 2)
if recursion == True and num_groups != 1:

perform inverse permutation
x = x[:,inverse,:]

x = self.proj(x)
x = self.proj_drop(x)
return x

...

E TRAINING DETAILS ON IMAGENET-1K

On ImageNet-1K, we conduct experimetns on three training schemes: (1) conventional training with
one-hot labels; (2) distillation with soft labels from a pre-trained teacher; (3) finetuning from ditilled
parameters with higher resolution. Our training settings and hyper-parameters mainly follow the

17

Under review as a conference paper at ICLR 2022

Table 6: Details of conventional training.

Method DeiT SReT
Epoch 300 300
Batch size 1024 512
Optimizer AdamW AdamW
Learning rate 0.001 0.0005
Weight decay 0.05 0.05
Warmup epochs 5 5
Label smoothing 0.1 0.1

Table 7: Details of soft distillation training.

Method DeiT SReT
Label one-hot+hard distillation soft distillation
Epoch 300 300
Batch size 1024 512
Optimizer AdamW AdamW
Learning rate 0.001 0.0005

Table 8: Details of higher-resolution finetuning.

Method DeiT SReT
Resolution 384 384
Weight decay 1e-8 0.0
Learning rate 5e-6 5e-6

designs of DeiT [Touvron et al., 2020]. A detailed introduction of these settings is shown in Table 6, 7
and 8 with an item-by-item comparison.

Conventional Training with One-hot Label from Scratch. As shown in Table 6, we use a batch-
size of 512 for training our models and the learning rate is reduced to 5e-4 accordingly.

Distillation Strategy. Knowledge distillation [Hinton et al., 2015] is a popular way to boost the
performance of a student network. Recently, many promising results [Pham et al., 2020, Shen &
Savvides, 2020, Xie et al., 2020] have been achieved using this technique. On vision transformer,
DeiT [Touvron et al., 2020] proposed to distill tokens together with hard predictions from the teacher,
and it claimed that using one-hot label with hard distillation can achieve the best accuracy. This seems
counterintuitive since soft labels can provide more subtle differences and fine-grained information
of the input. In this work, through a proper distillation scheme, our soft label based distillation
framework (one-hot label is not used) consistently obtained better performance than DeiT. Our loss is
a soft version of cross-entropy between teacher and student’s outputs as used in [Romero et al., 2014,
Bagherinezhad et al., 2018, Shen et al., 2021]:

LCE(SW) = − 1

N

N∑
i=1

PTW(z) logPSW(z) (17)

where PTW and PSW are the outputs of teacher and student, respectively.

Distillation from Scratch. As shown in Table 7, we use soft predictions solely from RegNetY-
16GF Radosavovic et al. [2020] as a teacher instead of one-hot label + hard distillation proposed
in Touvron et al. [2020]. The ablation study on this point is provided in Fig. 10 (1) with SReT-T.

Spatial Pyramid (SP) Design. Pyramids [Lazebnik et al., 2006, He et al., 2015] are an effective
design in conventional vision tasks. The resolution of the shallow stage in a network is usually large,
SP can help to redistribute the computation from shallow to deep stages of a network according
to their representation ability. Here, we follow the construction principles [Heo et al., 2021] but
replacing the first patch embedding layer with a Stem block (i.e., a stack of three 3×3 convolution
layers with stride = 2) following [Shen et al., 2017].

Global Average Pooling

Fully-connected

…

class token

distillation token

class loss

distill loss

M
HSA
FFN

M
HSA
FFN

Figure 12: Our modifications by removing
class token and distillation token.

Other Small Modifications. Consider the unique
properties of vision modality comparing to the lan-
guage, we further apply some minor modifications on
our network design, some of them have been proven
useful on CNNs in vision domain, including: (i) We
remove the class token and replace with a global aver-
age pooling (GAP) on the last output together with a
fully-connected layer; (ii) We also remove the distilla-
tion token if the training process involves KD, which
means we use the same feature embedding for both
the ground-truth labels in standard training, and dis-
tillation with soft labels from the teacher. (iii) When
fine-tuning from low resolution (224×224) to high res-
olution (384×384) [Touvron et al., 2020], following the perspective of [Shen & Savvides, 2020] that
to increase the capacity of a model, we do not apply weight decay (set it as 0) during fine-tuning.

18

Under review as a conference paper at ICLR 2022

Generally, the above modifications can slightly save parameters, boost the performance and signif-
icantly improve the simplicity of the whole framework. The illustration of these modifications is
shown in Fig. 12.

(1) WMT14 De-En

(2) IWSLT14 De-En
Figure 13: Comparison of BLEU, training loss and val loss on WMT14 En-De (top) and IWSLT14
De-En datasets (bottom). The red dashed box indicates that LRC makes training more stable.

F HYPER-PARAMETER SETTINGS OF LANGUAGE MODELS

We test our proposed method on two public language datasets: IWSLT14 De-En and WMT14 En-De
translation tasks. We describe experimental settings in detail in Table 9.

Network Configurations. We use the Transformer [Vaswani et al., 2017] implemented in
Fairseq [FAIR] that shares the decoder input and output embedding as the basic NMT model.

Table 9: Training details of our language models. The architectures we used are in Fairseq [FAIR].

Method IWSLT14 De-En WMT14 En-De
arch transformer iwslt de en transformer wmt en de
share decoder input output embed True True
optimizer Adam Adam
adam-betas (0.9, 0.98) (0.9, 0.98)
clip-norm 0.0 0.0
learning rate 5e-4 5e-4
lr scheduler inverse sqrt inverse sqrt
warmup updates 4K 4K
dropout 0.3 0.3
weight decay 0.0001 0.0001
criterion label smoothed cross entropy label smoothed cross entropy
label smoothing 0.1 0.1
max tokens 4096 4096

G DETAILS OF OUR SRET ARCHITECTURES

The details of our SReT-T, SReT-TL, SReT-S and SReT-B architectures are shown in Table 10.
In each recursive transformer block [[.] × A] × B, A is the number of blocks with self-contained
(non-shared) parameters, B is the number of recursive operations for each block. For C × FFN and
D × NLL, C and D are the dimensions (ratios) of hidden features between the two fully-connected
layers.

19

Under review as a conference paper at ICLR 2022

Table 10: SReT architectures (Input size is 3×224× 224, sliced group is not included for simplicity.)

Layers Output Size SReT-T SReT-TL

Stem
Conv-BN-ReLU 32×112×112 3×3 conv, stride 2 3×3 conv, stride 2
Conv-BN-ReLU 64×56×56 3×3 conv, stride 2 3×3 conv, stride 2
Conv-BN-ReLU 64×28×28 3×3 conv, stride 2 3×3 conv, stride 2

Recursive T Block
(1)

64×28×28
[[

64-dim MHSA
3.6×FFN/1.0×NLL

]
× 2
]
× 2

[[
64-dim MHSA

4.0×FFN/1.0×NLL

]
× 2
]
× 2

Conv-Pooling Layer (1) 128×14×14 3×3 conv, stride 2, group 64 3×3 conv, stride 2, group 64
Recursive T Block

(2)
128×14×14

[[
128-dim MHSA

3.6×FFN/1.0×NLL

]
× 5
]
× 2

[[
128-dim MHSA

4.0×FFN/1.0×NLL

]
× 5
]
× 2

Conv-Pooling Layer (2) 256×7×7 3×3 conv, stride 2, group 128 3×3 conv, stride 2, group 128
Recursive T Block

(3)
256×7×7

[[
256-dim MHSA

3.6×FFN/1.0×NLL

]
× 3
]
× 2

[[
256-dim MHSA

4.0×FFN/1.0×NLL

]
× 3
]
× 2

Global Average Pooling 256×1×1 AdaptiveAvgPool AdaptiveAvgPool
Linear Layer 1000
#Params (M) 4.8 M 5.0 M
Accuracy (%) 76.1 76.8

Distilled Accuracy (%) 77.7 77.9
Finetuning Accuracy ↑384 (%) 79.7 80.0

Layers Output Size SReT-S Output Size SReT-B

Stem
Conv-BN-ReLU 63×112×112 3×3 conv, stride 2 96×112×112 3×3 conv, stride 2
Conv-BN-ReLU 126×56×56 3×3 conv, stride 2 168×56×56 3×3 conv, stride 2
Conv-BN-ReLU 126×28×28 3×3 conv, stride 2 336×28×28 3×3 conv, stride 2

Recursive T Block
(1)

126×28×28
[[

126-dim MHSA
3.0×FFN/2.0×NLL

]
× 2
]
× 2 336×28×28

[[
336-dim MHSA

3.0×FFN/2.0×NLL

]
× 2
]
× 2

Conv-Pooling Layer (1) 252×14×14 3×3 conv, stride 2, group 126 672×14×14 3×3 conv, stride 2, group 336
Recursive T Block

(2)
252×14×14

[[
252-dim MHSA

3.0×FFN/2.0×NLL

]
× 5
]
× 2 672×14×14

[[
672-dim MHSA

3.0×FFN/2.0×NLL

]
× 5
]
× 2

Conv-Pooling Layer (2) 504×7×7 3×3 conv, stride 2, group 252 1344×7×7 3×3 conv, stride 2, group 672
Recursive T Block

(3)
504×7×7

[[
504-dim MHSA

3.0×FFN/2.0×NLL

]
× 3
]
× 2 1344×7×7

[[
1344-dim MHSA

3.0×FFN/2.0×NLL

]
× 3
]
× 2

Global Average Pooling 504×1×1 AdaptiveAvgPool 1344×1×1 AdaptiveAvgPool
Linear Layer 1000
#Params (M) 20.9 M 71.2 M
Accuracy (%) 81.6 82.7

Distilled Accuracy (%) 82.7 83.7
Finetuning Accuracy ↑384 (%) 83.8 84.8

H ALL-MLP STRUCTURE

We use B/16 in Mixer architectures [Tolstikhin et al., 2021] as our backbone network. In particular, it
contains 12 layers, the patch resolution is 16× 16, the hidden size C is 768, the sequence length S is
196, the MLP dimension DC and DS are 3072 and 384, respectively.

I ABLATION STUDY ON DIFFERENT LRC DESIGNS

In this section, we verify the effectiveness of different LRC designs as shown in Fig. 14, including:
(1) learnable coefficients on identity mapping branch; (2) learnable coefficients on the main self-
attention/MLP branch; (3) our used design in the main text, i.e., including learnable coefficients on
both branches.

The quantitative results of different LRC designs are shown in Table 11, we can observe that strategy
(1) is slightly better than (2), while, (3) can achieve consistent improvement over (1) and (2) and it is
applied in our main text. We further visualize more evolution visualizations on various layers/depths
of our SReT-TL architecture. The results are shown in Fig. 15 and the analysis is provided in Sec. K.

J OBSERVATIONS OF RESPONSE MAPS

We have a few interesting observations on these visualizations of Fig. 6: (1) In the uniform size of
transformer DeiT, information in the shallow layers are basically vague, blurry and lacks details,
while the high-level layers contain stronger semantic information and are more aligned for the input.

20

Under review as a conference paper at ICLR 2022

addition

"

L-Norm

Self-Att

Drop-path

×learnable #

addition

L-Norm

MLP

×learnable %

Drop-path

addition

"

L-Norm

Self-Att

Drop-path

×learnable # × learnable $

addition

L-Norm

MLP

×learnable % × learnable &

Drop-path

addition

"

L-Norm

Self-Att

Drop-path

× learnable $

addition

L-Norm

MLP

× learnable &

Drop-path

(1) (2) (3)

Figure 14: Ablation study on different LRC designs.

Table 11: Ablation study on different LRC designs.

Method #Params (M) Top-1 Acc. (%)
Baseline (SReT-TL w/o LRC) 5.0 74.7
on x branch (1) 5.0 75.0
on f branch (2) 5.0 74.9
on both (3) 5.0 75.2

However, our model has a completely different behavior: first, in the same block but different
recursive operation, we can observe that the features are hierarchical (Fig. 6 (2)). Taken as a whole,
shallow layers can capture more details like edges, shapes and contours and deep layers focus on
the high-level semantic information, which is similar to CNNs. We emphasize such hierarchical
representation enabled by recursive and spatial pyramid is critical for vision modality like images.

K MORE EVOLUTION VISUALIZATION OF LRC COEFFICIENTS ON IMAGENET
DATASET

The visualizations of coefficients evolution at different recursive blocks and layers are shown in
Fig. 14. Intriguingly, we can observe in the deep layers of recursive blocks, α tends to be one
stably during the whole training. Other coefficients on the identity mapping (γ and ζ) are holding
fixed values that are also close to one during the training. This phenomenon indicates that the
identity mapping branch tends to pass the original signal with small scaling. Moreover, it seems the
contributions of the two branches have a particular proportion for the particular depth of layers.

L EVOLUTION VISUALIZATION OF LRC COEFFICIENTS ON LANGUAGE
MODEL

The visualization of coefficients evolution on the language model is shown in Fig. 7. Different from
the evolution in vision transformer models, the coefficients in language model are much stable during
training with small variance. Also, they are symmetrical with value one.

21

Under review as a conference paper at ICLR 2022

Layer_1 Layer_2Recursive 1

Layer_3 Layer_4Recursive 2

Layer_17 Layer_18Recursive 9

Layer_19 Layer_20
Recursive 10

Figure 15: Evolution of coefficients at different recursive blocks and layers.

1 21 41 61 81
Epoch

0.5

1.0

1.5

Va
lu

e

Evolution of coefficients in LRC

Figure 16: Evolution of coefficients on language of WMT14 En-De dataset.

22

Under review as a conference paper at ICLR 2022

Table 12: More ablation results on directly expanding depth of baseline DeiT model. * the total
number layers of our network is 20 (recursive transformer blocks) + 10 (NLL) + 3 (image patch
embeddings). Permutation and inverse permutation layers are not included.

Method Layers #Params (M) Top-1 Acc. (%)
DeiT-Tiny Touvron et al. [2020] 12 5.7 72.2
+ extend depth 24 11.55 77.35
+ extend depth 36 16.39 77.18
+ extend depth 48 21.73 75.89
Ours (SReT-S) 33* 20.90 81.56

M MORE ABLATION RESULTS ON DIRECTLY ENLARGING DEPTH OF
BASELINE DEIT MODEL

In this section, we provide the results by directly expanding the depth of baseline DeiT model, as
shown in Table 12. We can see deeper naı̈ve DeiT could not bring additional gain on performance
since the deeper and heavier network is usually more difficult to learn meaningful and diverse
intermediate features, while our recursive operation through sharing/reusing parameters is an effective
way to enlarge the depth of a transformer, meanwhile, obtaining extra improvement.

23

