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Abstract
Aggregating preferences under incomplete or con-
strained feedback is a fundamental problem in
social choice and related domains. While prior
work has established strong impossibility results
for pairwise comparisons, this paper extends the
inquiry to improvement feedback, where vot-
ers express incremental adjustments rather than
complete preferences. We provide a complete
characterization of the positional scoring rules
that can be computed given improvement feed-
back. Interestingly, while plurality is learnable un-
der improvement feedback—unlike with pairwise
feedback—strong impossibility results persist for
many other positional scoring rules. Furthermore,
we show that improvement feedback, unlike pair-
wise feedback, does not suffice for the computa-
tion of any Condorcet-consistent rule. We comple-
ment our theoretical findings with experimental
results, providing further insights into the prac-
tical implications of improvement feedback for
preference aggregation.

1. Introduction
Classical social choice theory assumes that voters provide
complete rankings of all candidates, which are then aggre-
gated by a voting rule to select a winner (Brandt et al., 2016).
However, this assumption becomes impractical in many real-
world scenarios involving a large number of candidates, as
voters may be unable or unwilling to rank all of them. For
example, in deliberation platforms like Polis (Small et al.,
2021), users provide pairwise comparisons over a limited
subset of opinions rather than full rankings. Similarly, in Re-
inforcement Learning from Human Feedback (RLHF)—a
methodology widely used to fine-tune large language mod-
els (LLMs)—feedback often takes the form of comparison
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queries between pairs of outputs (Ouyang et al., 2022; Chris-
tiano et al., 2017).

Despite their widespread use, pairwise or t-wise compar-
isons—rankings of t candidates—face fundamental limita-
tions. Recent work by Halpern et al. (2024) shows that, even
under ideal conditions where the preferences of the popula-
tion over every t-wise query are fully known (i.e., for every
ranking of t candidates, the proportion of the population
that agrees with it is known), the winner under common vot-
ing rules cannot be determined. For example, the plurality
winner cannot be reliably identified, and even randomized
algorithms fail to perform better than random guessing.

Motivated by these limitations, we explore an alternative
type of feedback known as improvement feedback. Unlike
elicitation methods based on rankings or pairwise compar-
isons, improvement feedback enables agents to iteratively
refine an initial suggestion. For instance, in RLHF applica-
tions, improvement feedback could involve a user modifying
a draft generated by an LLM to better align with their pref-
erences (Schick et al., 2023; Jin et al., 2023). Similarly, in
robotics, users might iteratively adjust a robot’s trajectory
or behavior to achieve their desired outcome (Bajcsy et al.,
2018; Yang et al., 2024).

This form of feedback aligns naturally with the framework
of preference-based reinforcement learning (PbRL), which
infers preferences from relative judgments rather than ex-
plicit reward signals. While PbRL typically relies on pair-
wise comparisons (e.g., preferring trajectory A over B),
improvement feedback can be interpreted as the case where
the preferred option is an improved version of the original.
This connection is particularly salient in coactive learning
frameworks (Shivaswamy & Joachims, 2015; Tucker et al.,
2024), where users typically refine queried options through
targeted adjustments rather than identifying the optimal can-
didate outright-—often because they may not even know
what the optimal choice is.

A simple observation is that improvement feedback offers
a promising pathway to address some challenges posed
by t-wise comparisons. For example, unlike pairwise
feedback—which struggles to compute the plurality win-
ner—improvement feedback enables users to iteratively re-
fine a suggested candidate. As users provide targeted adjust-
ments, they gradually reveal their top preferences, ultimately
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enabling the identification of the plurality winner through
this iterative process. This raises the following questions:

Can other voting rules be computed using im-
provement feedback? For which voting rules is
improvement feedback more effective than pair-
wise comparisons, and vice versa?

1.1. Our Contribution

We model improvement feedback as a process in which,
when a user or agent is queried with a candidate ranked
at position i in their preference order or ranking, they re-
turn, with some probability, a candidate ranked at position
j, where j < i. The likelihood of returning the candidate at
position j decreases as the distance i−j increases, reflecting
the agent’s tendency to provide localized improvements. To
formalize this, we introduce the concept of t-improvement
feedback, where a user refines a queried option by selecting
a better candidate from the t-above neighborhood of the
queried candidate in their preference ranking—i.e., a candi-
date within the t positions above the queried candidate. The
t-improvement feedback distribution specifies the probabili-
ties of selecting a candidate from this neighborhood. The
parameter t defines the size of this neighborhood, capturing
how much better the returned candidate can be relative to
the queried one. In practice, t is typically much smaller than
the total number of candidates, m, reflecting the limited
cognitive and practical effort users are willing to expend.

Our goal is to investigate whether winners under various
voting rules can be identified using t-improvement feedback
queries over the underlying preferences of the agents, which
are unknown to the algorithm. We consider an idealized
setting, similar to (Halpern et al., 2024), where the algorithm
has access to the full statistical distribution of feedback
responses. Specifically, with a sufficiently large number of
t-improvement feedback queries, the algorithm knows the
exact probability of receiving candidate b as feedback when
querying candidate a, given the population’s preferences and
the underlying t-improvement feedback distribution. This
idealized assumption strengthens our impossibility results
and models scenarios where such statistical information is
available or can be effectively estimated.

In Section 4, we study the well-known family of positional
scoring rules and provide a complete characterization of
the rules that are learnable under t-improvement feedback
queries, for all practical values of t. We show that beyond
plurality and a specific positional scoring rule uniquely de-
termined by the t-improvement feedback distribution, as
well as any linear combination of the two, no other posi-
tional scoring rule is learnable using t-improvement feed-
back queries for any value of t ≤ m/2 − 2. In fact, we
show that even randomized algorithms cannot reliably iden-
tify the correct winner with a probability greater than 1/m

in this case. As discussed in the introduction, in practical
settings t ≪ m, thus making these findings particularly
relevant. We also extend these negative results for every
t ∈ [m− 1] under the uniform t-improvement distribution,
where when a candidate a is queried, a candidate from its
t-above neighborhood is returned uniformly at random.

In Section 5, we turn our attention to Condorcet-consistent
rules, which select the Condorcet winner whenever one
exists. While pairwise comparisons suffice to identify
the Condorcet winner, we surprisingly show that under t-
improvement feedback, no (randomized) algorithm can de-
termine the Condorcet winner with probability greater than
1/m. This result applies under the uniform t-improvement
feedback model for all values of t and extends to all
t ≤ m/2 − 2 for almost every t-improvement feedback
distribution. We also discuss the one specific exception to
this result in detail.

These theoretical results indicate that while t-improvement
feedback is particularly effective for identifying the plu-
rality winner, it is insufficient for computing many other
widely studied rules in social choice theory, such as Kemeny,
Copeland, or Borda, which, by contrast, can be identified
using pairwise comparison feedback.

Lastly, in Section 6, we compare the two types of feedback
through simulations. Interestingly, contrary to the theo-
retical results, t-improvement feedback queries turn to be
more efficient in some cases for implementing rules—such
as Copeland or Borda—that are learnable from pairwise
comparison feedback but are not implementable by t-
improvement feedback in the theoretical worst case.

1.2. Related Work

Our work contributes to the growing body of research on
decision-making with partial access to votes. Filmus &
Oren (2014) and Oren et al. (2013) studied t-top queries,
where each agent reports their top t-candidates, and inves-
tigated how large t must be to reliably identify the correct
winner under various voting rules. Similarly, Bentert &
Skowron (2020) examined t-wise comparison queries, an-
alyzing which voting rules can be implemented with this
feedback. More recently, Halpern et al. (2024) provided a
complete characterization of positional scoring rules that
can be computed using t-wise comparison feedback.

These works build on foundational results regarding pair-
wise comparisons, which are often represented as (weighted)
tournament graphs. Tournament graphs serve as the pri-
mary input for many well-known voting rules, including
Borda count and several Condorcet-consistent rules, such
as Copeland, Kemeny, and Minimax (Brandt et al., 2016).
Our work builds on and extends the results of Halpern et al.
(2024), which we discuss in greater detail later. To the best
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of our knowledge, no prior work has studied improvement
feedback queries for identifying the correct winner under
different voting rules.

The query complexity of identifying the correct candidate
has also been studied over different queries. For example,
the query complexity of tournament graphs has been studied
in the context of identifying Condorcet winners (Procaccia,
2008). Other works have explored the query complexity
of complete rankings, focusing either on identifying the
winner (Dey & Bhattacharyya, 2015) or recovering the full
ranking (Micha & Shah, 2020) of different voting rules. In
contrast, our work focuses on information-theoretic impos-
sibilities, assuming perfect access to the feedback model
under consideration, and does not analyze the sample com-
plexity of learning voting rules.

Our work is also related to frameworks like coactive learn-
ing (Shivaswamy & Joachims, 2015) and interactive prefer-
ence learning (Tucker et al., 2024), which focus on scenar-
ios where users provide incremental improvements rather
than global rankings. However, these frameworks aim to
minimize regret and learn a good candidate for a single
user through iterative interaction. In contrast, we investi-
gate whether improvement feedback is sufficient to identify
the correct candidate when preferences are heterogeneous
across a population.

2. Model
For k ∈ N, let [k] = {1, 2, . . . , k}. We consider a set M =
{a1, . . . , am} of m candidates. A ranking or preference σ
over the candidates is a bijection σ : [m] → M , where σ(i)
returns the candidate that is the i-th most preferred candidate
in σ and σ−1(a) returns the position of candidate a in σ.
We denote by L(M) the set of all m! possible rankings over
M . We use a ≻σ b to denote that candidate a is ranked
above candidate b under ranking σ.

Let ∆(L(M)) be the set of probability distributions over
L(M). A preference profile corresponds to a distribution
D ∈ ∆(L(M)) which represents the proportion of users
in the population that have each ranking. For example, if
Prσ∼D[σ = a1 ≻ . . . ≻ am] = 1/3 this means that 1/3 of
the population holds the ranking a1 ≻ . . . ≻ am.

Given a permutation over the candidates π : M → M ,
we define π ◦ σ as the ranking obtained by permuting the
candidates in σ according to π. The special case πab swaps
only candidates a and b, such that πab(a) = b, πab(b) = a,
and πab(c) = c for all c ̸= a, b. For preference profiles, we
denote by π ◦D the preference profile induced by sampling
σ ∼ D and outputting π ◦ σ. Lastly, for swapping a and b,
Da↔b = πab ◦D.

Voting Rules. A voting rule is a function f :
∆(L(M)) → M that takes as input a preference profile
and outputs a candidate as the winner. We call the winner of
f the f -winner. In this work, we focus on two main families
of voting rules.

The first family is the family of positional scoring
rules, which are defined using a scoring vector s⃗ =
(s1, s2, . . . , sm) ∈ Rm with si ≥ si+1 for all i ∈ [m − 1]
and s1 > sm. Without loss of generality, we usually assume
sm = 0. The score of a candidate a ∈ M under a positional
scoring rule fs⃗, parametrized by a scoring vector s⃗, given a
preference profile D ∈ ∆(L(M)), is defined as follows:

scs⃗(a,D) =

m∑
i=1

Pr
σ∼D

[σ−1(a) = i] · si.

The rule fs⃗ then returns the candidate with the highest
score as the winner, breaking ties arbitrarily. Some well-
known positional scoring rules are plurality, parametrized
by s⃗plu = (1, 0, . . . , 0); veto, parametrized by s⃗veto =
(1, . . . , 1, 0); and Borda count, parametrized by s⃗Borda =
(m− 1,m− 2, . . . , 0).

The second family is the family of Condorcet-consistent
rules. A candidate a ∈ M is called the Condorcet win-
ner if they beat every other candidate in pairwise ma-
jority comparisons, i.e., Prσ∼D[a ≻σ b] > 0.5 for all
b ∈ M \ {a}. A Condorcet-consistent voting rule f se-
lects the Condorcet winner whenever one exists. Famous
examples of Condorcet-consistent rules include Copeland’s
Rule, Kemeny’s Rule, the Minimax Rule, Ranked pairs, and
many others (Brandt et al., 2016).

Improvement Feedback Distribution. In the improve-
ment feedback setting, when an agent is queried with a
candidate a ranked at position i in the agent’s preference
ranking σ, the agent returns an improved candidate b ranked
at position j, where j < i. The candidates ranked in posi-
tions j ∈ [max(i− t, 1), i−1] are referred to as the t-above
neighborhood of σ(i), representing the set of candidates that
are strictly preferred but within t positions above the queried
candidate. The only exception occurs when a is the agent’s
first choice (i.e., i = 1), in which case no improvement is
provided, and the agent returns a.

More formally, for a fixed parameter t ≤ m − 1, the t-
improvement feedback distribution defines the probability
of returning a candidate σ(j) when querying σ(i), denoted
as pti,j . The distribution satisfies the following properties:

• pti,j > 0 only if j < i, ensuring that the returned can-
didates are strictly preferred to the queried candidate.
The only exception is pt1,1 = 1, reflecting that no im-
provement is possible when querying the top-ranked
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candidate.

• The probabilities sum to 1 over the candidates in the
t-above neighborhood:

i−1∑
j=max(i−t,1)

pti,j = 1, ∀i > 1.

We pay special attention to the uniform t-improvement feed-
back distribution, where the agent selects an improved can-
didate uniformly at random from the t-above neighborhood:

pti,j =

{
1

min(t,i−1) , if 0 < i− j ≤ t,

0, otherwise.

We also denote P t
i as the cumulative probability that a can-

didate ranked at position i is returned as an improvement
when querying a candidate ranked at any position below i,
i.e.,

P t
i =

min(m,i+t)∑
j=i+1

ptj,i.

Intuitively, P t
i represents the overall likelihood that a can-

didate at position i is selected through the improvement
feedback process, summing over the probabilities of be-
ing reached from any candidate ranked below it. Notably,
P t
m = 0 since there is no candidate ranked below the last

position m that could return it as an improvement.

Improvement Feedback Queries. We consider algo-
rithms that make t-improvement feedback queries over the
preference profile D. For x ∈ M and σ ∈ L(M), we
denote by qtσ(x) the candidate returned when querying x
in σ under t-improvement feedback. Specifically, we as-
sume that an algorithm has access to the exact probability
of observing a ∈ M when querying b ∈ M , denoted by
Prσ∼D[qtσ(b) = a], and given by:

Pr
σ∼D

[qtσ(b) = a] =

m−1∑
i=1

min(m,i+t)∑
j=i+1

ptj,i · Pr
σ∼D

[σ−1(a) = i, σ−1(b) = j].

This expression considers all possible positions of a and
b in the ranking, weighting the feedback probability ptj,i
by the likelihood that a and b occupy these positions un-
der the population distribution D. Additionally, we denote
by Prσ∼D[qt(a) = a] the probability of not returning any
improvement, as a is already ranked first. This probability
reflects the likelihood that a is the top-ranked candidate in

the preference profile. Therefore, as discussed in the in-
troduction, when this information is available, the plurality
winner can be directly determined.

Having direct access to this distribution provides strictly
more information than an approximation based on random
or adjusted queries (where, upon querying a, the algorithm
observes b with some probability). Since our impossibility
results hold even under this idealized setting, they provide
fundamental limits that also apply to real-world scenarios
with finite queries.

t-Indistinguishable Preference Profiles. Two prefer-
ence profiles D1, D2 ∈ ∆(L(M)) are said to be t-
indistinguishable if, for every pair of candidates a, b ∈ M ,
the probability of receiving a as feedback when querying b
is the same under both profiles. Formally,

Pr
σ∼D1

[qtσ(b) = a] = Pr
σ∼D2

[qtσ(b) = a].

Thus, no algorithm with access only to t-improvement feed-
back can distinguish between D1 and D2.

In our results, we will focus on the t-indistinguishability
between a preference profile D and its swapped version
Da↔b. In this case, when the feedback probabilities satisfy

Pr
σ∼D

[qtσ(x) = y] = Pr
σ∼Da↔b

[qtσ(x) = y]

= Pr
σ∼D

[qtσ(πab(x)) = πab(y)],

for all x, y ∈ M , then the profiles are t-indistinguishable.

3. Main t−Indistinguishable Preference
Profiles

We begin by constructing a family of preference profiles,
denoted Di,j,ℓ, which will serve as the foundation for our
impossibility results.

Definition 3.1. Let Di,j,ℓ be a preference profile defined
with respect to two candidates a and b, as follows:

1. With probability p, candidate a is fixed at position i
(where i > 1), and candidate b is fixed at position j
(where j − i > t).

2. With probability 1− p, candidate a is fixed at position
m, and candidate b is fixed at position ℓ, where 1 <
ℓ < m− t.

3. Select a uniformly random ranking τS−ab of all re-
maining candidates (excluding a and b). This ranking
determines their relative order, and they are then as-
signed to the unoccupied positions.
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The proof of the following lemma can be found in Ap-
pendix A

Lemma 3.2. For any m ≥ 4 and any t ∈ [m − 1], the
preference profiles Di,j,ℓ and Da↔b

i,j,ℓ are t-indistinguishable

when p =
P t

ℓ

P t
i −P t

j+P t
ℓ

.

We will also rely on the following technical lemma to es-
tablish our impossibility results. Intuitively, this lemma
suggests that if there exist m distinct preference profiles
that are t-indistinguishable from one another, and each has
a different f -winner under some voting rule f , then no ran-
domized algorithm can identify the correct winner with a
probability greater than 1/m. This result corresponds to
Lemma 4.2 of (Halpern et al., 2024), but we restate and
prove it here for completeness.

Lemma 3.3. Fix any voting rule f and suppose there
is a family of m preference profiles that are all t-
indistinguishable from one another, but each has a distinct
singleton f -winner. Then, for all (possibly randomized)
algorithms A that have access to t-improvement feedback,
there is a preference profile with a unique f -winning can-
didate a, such that A outputs a with probability at most
1/m.

Proof. We denote with {Dc}c∈M the set of m preference
profiles that are all t-indistinguishable and c is the unique
winner in Dc under f . When the algorithm is applied to any
of these preference profiles, it will receive the exact same
feedback, and therefore the output should be the same across
them. Due to the pigeonhole principle, there must be a
candidate a that is returned as the winner with probability at
most 1/m, and hence Da satisfies the desired property.

4. Positional Scoring Rules
In this section, we consider the family of positional scoring
rules and provide a complete characterization of the rules
that are learnable under t-improvement feedback queries.
For general t-improvement feedback distributions, this char-
acterization applies for all t ≤ m/2 − 2, while for the uni-
form t-improvement feedback distribution, it extends to all
t ∈ [m− 1].

In Section 4.1, we show that for any value of t ≤ m/2 − 2,
the only learnable scoring vectors are linear combinations
of s⃗∗t and s⃗plu, where s⃗∗t = (P t

1 , . . . , P
t
m). In fact, we prove

that even randomized algorithms cannot identify the correct
winner for any scoring vector s⃗ outside the span(s⃗∗t , s⃗plu)
with a probability greater than 1/m. In Section 4.2, we
extend these negative results to cover all values of t under
the uniform t-improvement feedback distribution.

For showing our negative results, we start with the fol-
lowing lemma, which establishes the conditions under

which a family of t-indistinguishable profiles, as described
in Lemma 3.3, can be constructed. This lemma closely re-
sembles Lemma 4.1 of Halpern et al. (2024) and its proof
can be found in Appendix B

Lemma 4.1. Fix a scoring vector s⃗. Let D and Da↔b be
two t-indistinguishable preference profiles and let a, b ∈ M
be two candidates such that scs⃗(a,D) ̸= scs⃗(b,D). Then,
there exists a family of preference profiles {Dc}c∈M such
that all profiles are t-indistinguishable from one another,
but each candidate c ∈ M uniquely maximizes scs⃗(c,Dc).

4.1. General t−Improvement Feedback Distribution

Here, we consider general t-improvement feedback distri-
butions. To provide a complete characterization of the scor-
ing rules that are learnable under t-improvement feedback
queries, we first prove the following lemma.

Lemma 4.2. For any m ≥ 6, any t ≤ m/2 − 2, any
pair of candidates a, b ∈ M and any scoring vector
s⃗ ̸∈ span(s⃗plu, s⃗

∗
t ), there exists a preference profile D

such that scs⃗(a,D) ̸= scs⃗(b,D), and D and Da↔b are
t-indistinguishable.

Proof. Consider the preference profile Di,m,i+1 as defined
in Definition 3.1. From Lemma 3.2, we have that for all
i ∈ {2, . . . ,m − t − 2}, Di,m,i+1 and Da↔b

i,m,i+1 are t-
indistinguishable for every t ≤ m− 4, when

p =
P t
i+1

P t
i − P t

m + P t
i+1

=
P t
i+1

P t
i + P t

i+1

.

If it holds that scs⃗(a,Di,m,i+1) ̸= scs⃗(b,Di,m,i+1) for
some i ∈ {2, . . . ,m − t − 2}, then setting D = Di,m,i+1

satisfies the lemma.

Now, suppose that for every i ∈ {2, . . . ,m − t − 2}, we
have

scs⃗(a,Di,m,i+1) = scs⃗(b,Di,m,i+1).

This implies that

p · si = (1− p) · si+1 =⇒ p =
si+1

si + si+1
.

Thus, we have

p =
P t
i+1

P t
i + P t

i+1

=
si+1

si + si+1
=⇒ si+1

P t
i+1

=
si
P t
i

= λ,

(1)

for all i ∈ {2, . . . ,m− t− 2}.

Assuming si/P t
i = λ for all i ∈ {2, . . . ,m − t − 1},

we next consider the preference profile D2,i,2 as defined
in Definition 3.1. From Lemma 3.2, we have that for
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all i ∈ {m − t, . . . ,m − 1}, D2,i,2 and Da↔b
2,i,2 are t-

indistinguishable for every t ≤ m/2 − 2, when

p =
P t
2

2P t
2 − P t

i

.

If it holds that scs⃗(a,D2,i,2) ̸= scs⃗(b,D2,i,2) for some
i ∈ {m− t, . . . ,m− 1}, then setting D = D2,i,2 satisfies
the lemma.

Now, suppose that for every i ∈ {m − t, . . . ,m − 1}, we
have

scs⃗(a,D2,i,2) = scs⃗(b,D2,i,2).

This implies

p · s2 = (1− p) · s2 + p · si =⇒ p =
s2

2s2 − si
.

Thus, we obtain

p =
P t
2

2P t
2 − P t

i

=
s2

2s2 − si
.

From Equation (1), we know that s2
P t

2
= λ. Then by com-

bining Equation (1) and the above equality, we get that
si
P t

i
= λ for all i ∈ {2, . . . ,m − 1}. This means that, un-

less si
P t

i
= λ for all i ∈ {2, . . . ,m − 1}, which implies

that s⃗ ∈ span(s⃗plu, s⃗
∗
t ), there exists a preference profile

D satisfying the conditions of the lemma and the lemma
follows.

Next, we show that if s⃗ ∈ span(s⃗∗t , s⃗plu), then the scores of
all the candidates under s⃗ can be computed with access to
t-improvement feedback queries. The proof of the following
lemma can be found in Appendix C

Lemma 4.3. For any t ∈ [m − 1] and any s⃗ ∈
span(s⃗plu, s⃗

∗
t ), given a ∈ M and D ∈ ∆(L(M)), it is pos-

sible to calculate scs⃗(a,D) with t-improvement feedback
queries.

Now, we are ready to prove the following theorem.

Theorem 4.4. For any m ≥ 6, any t ≤ m/2 − 2, and any
scoring vector s⃗:

1. If s⃗ ∈ span(s⃗∗t , s⃗plu), then using t-improvement feed-
back queries, the candidate that maximizes the score
under s⃗ for any input profile D can be found.

2. If s⃗ ̸∈ span(s⃗∗t , s⃗plu), then no randomized algorithm
with access to t-improvement feedback queries can
output the candidate with the maximum score under s⃗
for any input profile D with probability greater than
1/m.

Proof. The first part of the lemma immediately follows
from Lemma 4.3.

For the second part, since in Lemma 4.2 we show the
existence of a preference profile D that is indistinguish-
able from Da↔b and has the desired properties, we can
apply Lemma 4.1 for constructing a family of preference
profiles that are t-indistinguishable and each of them has a
different candidate as a winner under a scoring rule not in
span(s⃗∗t , s⃗plu). Then, by applying Lemma 3.3, the theorem
follows.

An interesting observation arises when t = 1. In this case,
P t
i = 1 for all i ∈ [m − 1], since each candidate ranked

at position i can only be returned as an improvement of a
candidate ranked at position i + 1, and when a candidate
at position i + 1 is queried, the agent always returns the
candidate at position i with probability 1. As a result, the
scoring vector s⃗∗t = (1, . . . , 1, 0), which corresponds to the
veto scoring rule. Therefore, when t = 1, we can learn all
rules within the span of plurality and veto. However, for
larger values of t, the veto scoring rule is no longer learnable
under t-improvement feedback queries.

4.2. Uniform t−Improvement Feedback Distribution

Here, we turn our attention to the uniform t-improvement
feedback distribution. In this setting, we extend Lemma 4.2
to cover all values of t. To derive this result, we intro-
duce an additional set of preference profiles, distinct from
those in Definition 3.1, and carefully analyze the resulting
cases. The proof of the following lemma can be found in
Appendix D

Lemma 4.5. Under uniform t-improvement feedback distri-
bution, for any t ∈ [m−1], any pair of candidates a, b ∈ M
and any scoring vector s⃗ ̸∈ span(s⃗plu, s⃗

∗
t ), there exists a

preference profile D such that scs⃗(a,D) ̸= scs⃗(b,D), and
D and Da↔b are t-indistinguishable.

From the above lemma, we immediately derive the follow-
ing theorem in a manner similar to Theorem 4.4.

Theorem 4.6. Under uniform t-improvement feedback dis-
tribution, for any m ≥ 6, any t ∈ [m− 1], and any scoring
vector s⃗:

1. If s⃗ ∈ span(s⃗∗t , s⃗plu), then using t-improvement feed-
back queries, the candidate that maximizes the score
under s⃗ for any input profile D can be found.

2. If s⃗ ̸∈ span(s⃗∗t , s⃗plu), then no randomized algorithm
with access to t-improvement feedback queries can
output the candidate with the maximum score under s⃗
for any input profile D with probability greater than
1/m.
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5. Condorcet Consistent Rules
In the previous section, we showed that t-improvement feed-
back queries do not help us overcome the impossibility
results associated with positional scoring rules and pair-
wise comparison queries, except for plurality and a specific
positional scoring rule determined by the t-improvement
feedback distribution. In this section, we extend these nega-
tive results to the family of Condorcet-consistent rules.

In Section 5.1, we demonstrate that for every t ∈ [m−1], no
algorithm can reliably identify the Condorcet winner using
uniform t-improvement feedback queries. In fact, even
randomized algorithms cannot identify the correct candidate
with a probability greater than 1/m. In Section 5.2, we
extend this negative result to any t-improvement feedback
distributions for t ≤ m/2 − 2, with only one exception,
which we discuss in detail. These results contrast sharply
with pairwise comparison queries, which are sufficient for
identifying the Condorcet winner whenever one exists.

As in the case of positional scoring rules, to establish
these negative results, we start with the following lemma,
which establishes the conditions under which a set of m
t-indistinguishable profiles, as described in Lemma 3.3, can
be constructed. Again, this lemma builds upon Lemma 4.1
of Halpern et al. (2024), employing the same method for
constructing the set of distinct preference profiles. However,
the condition that the initial preference profile must satisfy
and the arguments used in the proof are significantly dif-
ferent. The proof of the following lemma can be found in
Appendix E

Lemma 5.1. Suppose there exist a, b ∈ M and a preference
profile D such that D and Da↔b are t-indistinguishable,
and it holds that∑

x∈M\{a}

Pr
σ∼D

[a ≻σ x] ̸=
∑

x∈M\{b}

Pr
σ∼D

[b ≻σ x].

Then, there exists a family of preference profiles {Dc}c∈M

such that all preference profiles in the family are t-
indistinguishable from one another, and each preference
profile Dc has c as the Condorcet winner.

5.1. Uniform t−Improvement Feedback Distribution

In the following lemma, we claim that there is a preference
profile that satisfies the conditions of Lemma 5.1, when
the algorithm has access to uniform t-improvement feed-
back queries, for t ∈ [m − 1]. The proof is deferred to
Appendix F.

Lemma 5.2. For any m ≥ 13 and any t ∈ [m − 1], and
pair of candidates a, b ∈ M , there is a preference profile D

such that∑
x∈M\{a}

Pr
σ∼D

[a ≻σ x] ̸=
∑

x∈M\{b}

Pr
σ∼D

[b ≻σ x],

and D and Da↔b are t-indistinguishable under the uniform
t-improvement feedback distribution.

Since in Lemma 5.2 we show the existence of a preference
profile D that is indistinguishable from Da↔b and has the
desired properties, we can apply Lemma 5.1 for constructing
a family of preference profiles that are t-indistinguishable
from one another and each of them has a different candidate
as the Condorcet winner. Then, by applying Lemma 3.3 we
get the following theorem.

Theorem 5.3. For m ≥ 13 and any t ∈ [m−1], no random-
ized algorithm A that has access to uniform t-improvement
feedback queries outputs the unique Condorcet winner with
probability more than 1/m.

5.2. General t−Improvement Feedback Distribution

Now, we extend the negative results to every t-improvement
feedback distribution when t ≤ m/2 − 2, with the exception
of the special case where P t

i/P t
i+1 = (m − i)/(m − i − 1) for

all i ∈ {2, . . . ,m − 1}. In Appendix H, we discuss in de-
tail why this result cannot be applied in this case. We also
show that for t ≤ m− 4, no deterministic rule can identify
the Condorcet winner under any t-improvement feedback
queries. Thus, while the negative result does not extend to
randomized algorithms for this specific t-improvement feed-
back distribution, it still holds for deterministic algorithms
across all distributions and all values of t ≤ m− 4.

To show the desired result, we use the following lemma,
which is proved in Appendix G.

Lemma 5.4. Unless P t
i/P t

i+1 = (m − i)/(m − i − 1) for all
i ∈ {2, . . . ,m− 2}, then for any m ≥ 6 and t ≤ m/2 − 2,
and pair of candidates a, b ∈ M , there is a preference
profile D such that∑

x∈M\{a}

Pr
σ∼D

[a ≻σ x] ̸=
∑

x∈M\{b}

Pr
σ∼D

[b ≻σ x],

and D and Da↔b are t-indistinguishable.

As before, by combining Lemma 5.4, Lemma 5.1
and Lemma 3.3, we get the following theorem.

Theorem 5.5. For m ≥ 6 and t ≤ m/2 − 2, unless the
t-improvement feedback distribution satisfies P t

i/P t
i+1 =

(m − i)/(m − i − 1) for all i ∈ {2, . . . ,m − 1}, no random-
ized algorithm A with access to t-improvement feedback
queries can identify the unique Condorcet winner with a
probability exceeding 1/m.
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6. Experiments
In the previous sections, we show that improvement feed-
back queries are not sufficient in the worst case to iden-
tify the winner under most positional scoring rules and
any Condorcet-consistent rule. In this section, we empiri-
cally evaluate the effectiveness of t-improvement feedback
queries compared to pairwise comparison queries over one
positional scoring rule, namely Borda count, and one Con-
dorcet consistent rule, namely Copeland’s rule. Copeland’s
rule calculates the number of candidates each candidate de-
feats in pairwise comparisons and returns the candidate with
the most wins. For both rules, access to the weighted ma-
jority graph suffices to determine the winner. In this graph,
each candidate is represented as a node, and a directed edge
(a, b) is weighted by the margin by which candidate a de-
feats candidate b in a head-to-head comparison.

We evaluate the performance of the feedback mechanisms
under three different distributions of rankings. The first is
the impartial culture (IC), where every ranking in L(M) is
equally likely to appear, providing a uniform distribution
over rankings. The second distribution is derived from the
Mallows model, which is parameterized by a central ranking
σ∗ and a noise parameter ϕ ∈ [0, 1]. The probability of a
ranking σ is proportional to ϕd(σ,σ∗), where d(σ, σ∗) is the
Kendall tau distance between σ and σ∗. As ϕ approaches 0,
the distribution concentrates most of the probability mass on
σ∗, while as ϕ approaches 1, the distribution converges to
the impartial culture. In our experiments, we set ϕ = 1/3.

The third distribution is the Plackett-Luce (PL) model,
which generates rankings through a sequential selection
process where each candidate a ∈ M is assigned a utility
ua > 0. The probability of selecting a candidate at any step
is proportional to its utility. For our experiments, we assign
utilities uniformly at random from the interval [0, 1].

We consider three different t-improvement feedback dis-
tributions: (1) Uniform distribution: each candidate in the
t-above neighborhood of the queried candidate is returned
with equal probability, (2) Linear decay distribution: the
probability of returning a candidate in the t-above neighbor-
hood decreases linearly with the distance from the queried
candidate and (3) Exponential decay distribution: the prob-
ability of returning a candidate in the t-above neighborhood
decreases exponentially with the distance from the queried
candidate.

We construct an estimate of the weighted majority graph
using the two types of feedback by making one random
query per user. Specifically, for the t-improvement feedback
queries, upon randomly querying a candidate a, if the agent
returns an alternative b from a’s t-above neighborhood, we
update our pairwise comparison estimates by adding the
pair (b, a). If the agent returns the queried candidate a (indi-

cating that it is their top choice), we update our estimates by
adding all pairs (a, c) for each c ∈ M \ {a}. For pairwise
comparison queries, we randomly sample a pair of candi-
dates (a, b) and ask the agent to compare them, directly
updating based on the comparison outcome.

Using the estimated weighted majority graph, we compute
the Borda and Copeland winners—both derived from the
same graph. We then evaluate the true score of each selected
winner under the full preference profile and divide it by
the true score of the actual winner, i.e., the candidate who
would have been selected using complete information. This
approximation ratio is averaged over 500 trials, and we
report both the mean and standard deviation.

For all the experiments, we set the number of candidates
m = 20 and vary the number of agents from 50 to 1000 in
increments of 50. Here, we illustrate the results for the uni-
form improvement feedback distribution, and in Appendix I,
we surprisingly show that all three improvement feedback
distributions behave identically. We also set t = 5, and
in Appendix I, we show that the results are quantitatively
similar for different values of t. For each experiment, we
iterate over 500 iterations1.

In Figure 1, we plot the average approximation ratio along
with standard deviations. We notice that under the IC model,
the two types of feedback—t-improvement feedback queries
and pairwise comparison queries—behave identically. We
believe this is because rankings in IC are sampled uniformly
at random, meaning there is no underlying structure or con-
sistent patterns for either feedback mechanism to exploit.
On the other hand, under the PL model, pairwise compari-
son queries provide a better approximation to the optimal
score than t-improvement feedback queries, while under the
Mallows model, the opposite is true. A positive explana-
tion for these phenomena lies in the differences in how the
models generate rankings. In the Mallows model, as the pa-
rameter ϕ decreases, the rankings converge more closely to
the underlying ranking, making it more likely that the Borda
and Copeland winners coincide with the plurality winner.
Since t-improvement feedback is highly effective at identi-
fying the top alternative—each time we query candidate a
and receive a as a response (indicating it is the top choice)
we directly increase a’s score relative to all other candi-
dates—it excels in this setting. On the other hand, under
the PL model, utilities for candidates are drawn uniformly
at random, which implies that the relative probabilities of
candidates being ranked higher or lower can exhibit more
variance compared to the Mallows model, especially when
the PL parameters are widely spread out. As a result, the
probability that two candidates are frequently ranked close

1The code for the experimental part can be found
in https://github.com/VasilisVar00/Computing-Voting-Rules-with-
Improvement-Feedback
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(a) Borda - IC (b) Borda - PL Model (c) Borda - Mallows Model

(d) Copeland - IC (e) Copeland - PL Model (f) Copeland - Mallows Model

Figure 1: Approximation ratio of the optimal Borda score (top) and the optimal Copeland score (bottom) for different
numbers of agents and various underlying ranking distributions, with t = 5 under the uniform improvement feedback
distribution.

to each other (or even swapped in rank) is higher under
the PL model. This increased variance in relative rankings
benefits pairwise comparison queries because they directly
compare the probabilities of individual pairs and can more
effectively distinguish small differences in candidates’ util-
ities. In summary, it seems that the effectiveness of each
type of feedback is inherently tied to the structure of the
underlying preference profile.

7. Discussion
Our work examines fundamental limitations in inferring
collective decisions from restricted forms of feedback, a set-
ting that frequently arises in real-world applications where
full preference information is costly or impractical to elicit.
Understanding which social choice rules exhibit robustness
under such informational constraints is critical for the prin-
cipled design of aggregation mechanisms that are both im-
plementable and representative.

An immediate question that is left open is whether our
negative results extend to all values of t under general t-
improvement feedback distributions. Additionally, it would
be interesting to explore how the results change when agents
are characterized by different t values, reflecting varying
levels of effort in providing feedback. Another promising
direction involves hybrid feedback mechanisms that com-

bine t-improvement feedback with other methods, such as
pairwise comparisons or partial rankings, potentially over-
coming the limitations highlighted in our work by leveraging
the complementary strengths of different feedback types.

While our negative results hold under the assumption that
voters report their preferences truthfully and introducing
strategic behavior would weaken these impossibility results,
understanding strategic behavior in this setting is an inter-
esting future direction as well.

Impact Statement
This paper aims to advance the theoretical foundations of
decision-making through iterative feedback mechanisms,
with potential applications in Machine Learning, AI align-
ment, and democratic decision-making systems. Our find-
ings are primarily theoretical, focusing on understanding
the limitations and capabilities of feedback-based prefer-
ence aggregation under various voting rules. As such, the
immediate societal consequences of this work are limited to
contexts where human feedback is used to guide large-scale
automated systems.

One potential societal risk tied to our work stems from the
misapplication of the theoretical results. The core of our
paper demonstrates that certain feedback mechanisms fail to
reliably learn voting outcomes in the worst case, even when
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provided with ideal data access. If misunderstood or im-
properly communicated, these findings could inadvertently
justify the dismissal of valuable feedback mechanisms or
discourage the adoption of participatory decision-making
systems in settings where iterative input from users could
still provide meaningful outcomes.
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A. Proof of Lemma 3.2
Proof. Let a, b be the candidates of the statement.

Since j − i > t and ℓ < m − t, a, b are more than t positions apart in both rankings. Therefore, it holds
that Prσ∼Di,j,ℓ

[qtσ(a) = b] = Prσ∼Di,j,ℓ
[qtσ(b) = a] = 0. Moreover, since i > 1 and ℓ > 1, it holds that

Prσ∼Di,j,ℓ
[qtσ(a) = a] = Prσ∼Di,j,ℓ

[qtσ(b) = b] = 0.

Furthermore, for every x ∈ S−ab, the following holds:

Prσ∼Di,j,ℓ
[qtσ(a) = x] = p ·

i−1∑
k=max(i−t,1)

Pr[τS−ab(k) = x] · Prσ∼Di,j,ℓ
[qtσ(a) = x | τS−ab(k) = x]

+ (1− p) ·
m−2∑

k=m−t−1

Pr[τS−ab(k) = x] · Prσ∼Di,j,ℓ
[qtσ(a) = x | τS−ab(k) = x]

= p · 1

m− 2
·

i−1∑
k=max(i−t,1)

Prσ∼Di,j,ℓ
[qtσ(a) = x | τS−ab(k) = x]

+ (1− p) · 1

m− 2
·

m−2∑
k=m−t−1

Prσ∼Di,j,ℓ
[qtσ(a) = x | τS−ab(k) = x]

= p · 1

m− 2
·

i−1∑
k=max(i−t,1)

pti,k

+ (1− p) · 1

m− 2
·

m−2∑
k=m−t−1

ptm,k+1

= p · 1

m− 2
+ (1− p) · 1

m− 2
=

1

m− 2
,

where the second equality holds because τS−ab is chosen uniformly at random, and the second last equality holds because
the sum of probabilities of returning a candidate ranked above the queried candidate, over all valid positions within the
t-above neighborhood, equals 1.

Similarly,
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Prσ∼Di,j,ℓ
[qtσ(b) = x] = p ·

j−2∑
k=max(j−t,1)−1

Pr[τS−ab(k) = x] · Prσ∼Di,j,ℓ
[qtσ(b) = x | τS−ab(k) = x]

+ (1− p) ·
ℓ−1∑

k=max(ℓ−t,1)

Pr[τS−ab(k) = x] · Prσ∼Di,j,ℓ
[qtσ(b) = x | τS−ab(k) = x]

= p · 1

m− 2
·

j−2∑
k=max(j−t,1)−1

Prσ∼Di,j,ℓ
[qtσ(b) = x | τS−ab(k) = x]

+ (1− p) · 1

m− 2
·

ℓ−1∑
k=max(ℓ−t,1)

Prσ∼Di,j,ℓ
[qtσ(b) = x | τS−ab(k) = x]

= p · 1

m− 2
·

j−2∑
k=max(j−t,1)−1

ptj,k+1

+ (1− p) · 1

m− 2
·

ℓ−1∑
k=max(ℓ−t,1)

ptℓ,k

= p · 1

m− 2
+ (1− p) · 1

m− 2
=

1

m− 2
.

Next, we prove that for p =
P t

ℓ

P t
i −P t

j+P t
ℓ

, and every x ∈ S−ab, it holds that Prσ∼Di,j,ℓ
[qtσ(x) = a] = Prσ∼Di,j,ℓ

[qtσ(x) = b].
Note that

Prσ∼Di,j,ℓ
[qtσ(x) = a] = p ·

i+t−1∑
k=i

Pr[τS−ab(k) = x] · Prσ∼Di,j,ℓ
[qtσ(x) = a | τS−ab(k) = x]

= p · 1

m− 2
·
i+t−1∑
k=i

Prσ∼Di,j,ℓ
[qtσ(x) = a | τS−ab(k) = x]

= p · 1

m− 2
·
i+t−1∑
k=i

ptk+1,i

=
p

m− 2
· P t

i

where the last equality is by definition of P t
i .
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Similarly,

Prσ∼Di,j,ℓ
[qtσ(x) = b] = p ·

j+t−2∑
k=j−1

Pr[τS−ab(k) = x]Prσ∼Di,j,ℓ
[qtσ(x) = b | τS−ab(k) = x]

+ (1− p) ·
ℓ+t−1∑
k=ℓ

Pr[τS−ab(k) = x] · Prσ∼Di,j,ℓ
[qtσ(x) = b | τS−ab(k) = x]

=
p

m− 2
·
j+t−2∑
k=j−1

Prσ∼Di,j,ℓ
[qtσ(x) = b | τS−ab(k) = x]

+
1− p

m− 2
·
ℓ+t−1∑
k=ℓ

Prσ∼Di,j,ℓ
[qtσ(x) = b | τS−ab(k) = x]

=
p

m− 2
·
j+t−2∑
k=j−1

ptk+2,j +
1− p

m− 2
·
ℓ+t−1∑
k=ℓ

ptk+1,ℓ

=
p

m− 2
· P t

j +
1− p

m− 2
· P t

ℓ .

Observe that we can make the two probabilities above equal by setting p =
P t

ℓ

P t
i −P t

j+P t
ℓ

. Lastly, for any x, y ∈ S−ab it holds

that Prσ∼Di,j,ℓ
[qtσ(x) = y] = Prσ∼Da↔b

i,j,ℓ
[qtσ(x) = y], since the two preference profiles differ only with respect to a, b.

From all the above, we get that Di,j,ℓ and Da↔b
i,j,ℓ are t-indistinguishable by setting p as stated in the lemma.

B. Proof of Lemma 4.1
Proof. Given D, where, without loss of generality, scs⃗(a,D) > scs⃗(b,D), we construct a family of preference profiles
{Dc}c∈M in the same way as in Lemma 4.1 of Halpern et al. (2024). Briefly, we sample a permutation π over the candidates
uniformly at random. If π(b) = c, we sample a ranking from π ◦Da↔b; otherwise, if π(b) ̸= c, we sample a ranking from
π ◦D. When scs⃗(a,D) > scs⃗(b,D), Halpern et al. (2024) show in Lemma 4.1 that c is the unique score maximizer in Dc.

It remains to show that {Dc}c∈M are t-indistinguishable from one another. Note that if D and Da↔b are t-indistinguishable,
then π ◦D and π ◦Da↔b are also t-indistinguishable for all π. Consequently, for every Dc and Dc′ and for all x, y ∈ M ,
we have:

Pr
σ∼Dc

[qtσ(x) = y] =
∑

π∈L(M):π(b) ̸=c

Pr
σ∼π◦D

[qtσ(x) = y] · 1

m!
+

∑
π∈L(M):π(b)=c

Pr
σ∼π◦Da↔b

[qtσ(x) = y] · 1

m!

=
1

m!

∑
π∈L(M)

Pr
σ∼π◦D

[qtσ(x) = y]

=
∑

π∈L(M):π(b) ̸=c′

Pr
σ∼π◦D

[qtσ(x) = y] · 1

m!
+

∑
π∈L(M):π(b)=c′

Pr
σ∼π◦Da↔b

[qtσ(x) = y] · 1

m!

= Pr
σ∼Dc′

[qtσ(x) = y],

where the first and third equalities follow because π is chosen uniformly at random from L(M) and the second and fourth
equalities follow from the fact that π ◦D and π ◦Da↔b are t-indistinguishable, and the lemma follows.
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C. Proof of Lemma 4.3
Proof. First, we note that scsplu(a,D) = Prσ∼D[σ−1(a) = 1] = Prσ∼D[qt(a) = a], where the second equality is derived
from the fact that when a is the top choice of an agent the agent just returns this candidate. Since the algorithm knows
Prσ∼D[qt(a) = a], the plurality score of candidate a is computable.

Second, note that ∑
b∈M\{a}

Pr
σ∼D

[qtσ(b) = a] =

=
∑

b∈M\{a}

m∑
i=1

min(m,i+t)∑
j=i+1

ptj,i · Pr
σ∼D

[σ−1(a) = i, σ−1(b) = j]

=

m∑
i=1

min(m,i+t)∑
j=i+1

∑
b∈M\{a}

ptj,i · Pr
σ∼D

[σ−1(a) = i, σ−1(b) = j]

=

m∑
i=1

min(m,i+t)∑
j=i+1

∑
b∈M\{a}

ptj,i · Pr
σ∼D

[σ−1(a) = i | σ−1(b) = j] · Pr
σ∼D

[σ−1(b) = j]

=

m∑
i=1

min(m,i+t)∑
j=i+1

ptj,i · Pr
σ∼D

[σ−1(a) = i]

=

m∑
i=1

P t
i · Pr

σ∼D
[σ−1(a) = i] = scs⃗∗t (a,D).

where the first equality follows from the definition of Prσ∼D[qtσ(b) = a], the second equality follows by rearranging the
summations, the second last equality follows from the definition of P t

i and the last equality follows from the definition of s⃗∗t .
Since the algorithm knows the quantity Prσ∼D[qtσ(b) = a] for all a, b ∈ M , it can learn scs⃗∗t (a,D) for every a ∈ M .

The lemma follows by noticing that for each s⃗ = λ1 · s⃗plu + λ2 · s⃗∗t , from linearity of expectation we have that scs⃗(a,D) =
λ1 · scs⃗plu(a,D) + λ2 · scs⃗∗t (a,D) for any λ1 and λ2.

Proof. Let a, b be any two candidates and s⃗ = (s1, . . . , sm) be any positional scoring rule.

We will first define an additional family of preference profiles, denoted D̂i, which will be used to prove impossibility results
for the uniform t-improvement distribution.

Lemma C.1. Let D̂i be preference profiles that are defined with respect to two candidates a and b, as follows:

1. With probability p, candidate a is fixed at position i, and candidate b is fixed at position i+ 1, where max(2,m− t) ≤
i < m− 1.

2. With probability 1− p, candidate a is fixed at position m, and candidate b is fixed at position m− 1.

3. Select a uniformly random ranking τS−ab over the set of all remaining candidates (excluding a and b). This ranking
determines the relative order of the remaining candidates, which are then placed in the positions not occupied by a or
b.

For any t ∈ [m − 1], in the uniform t-improvement feedback distribution, the preference profiles D̂i and D̂a↔b
i are

t-indistinguishable, when p = min(i,t)
t+min(i,t) .

Proof. Let a, b be the candidates of the statement.

Firstly, we need to show that Prσ∼D̂i
[qtσ(a) = b] = Prσ∼D̂i

[qtσ(b) = a]. Under the uniform t-improvement feedback
distribution, with probability p, candidate a appears immediately above candidate b in the ranking. In this case, candidate b
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returns candidate a with uniform probability over the t-above neighborhood positions, which is 1
min(i,t) . Similarly, with

probability 1 − p, candidate b appears immediately above candidate a in the ranking. In this case, candidate a returns
candidate b over the t-above neighborhood positions, which is 1

t . By construction of D̂i, these two probabilities are equal
for the choice of p = min(i, t)/(t + min(i, t)).

Now, notice that when querying a candidate x ∈ S−ab, the agent can return a or b only if x is ranked at some j > i+1 when
a is at position i and b at position i+ 1. Since i ≥ max(2,m− t), under the uniform t-improvement feedback distribution,
querying any candidate x ∈ S−ab ranked at position j > i+ 1 results in the agent returning a or b with equal probability,
which is 1/min(j − 1, t). Hence, Prσ∼D̂i

[qtσ(x) = a] = Prσ∼D̂i
[qtσ(x) = b].

Moreover,

Prσ∼D̂i
[qtσ(b) = x] = p ·

i−1∑
k=i−min(i,t)+1

Pr[τS−ab(k) = x] · Prσ∼D̂i
[qtσ(b) = x | τS−ab(k) = x]

+ (1− p) ·
m−2∑

k=m−t−1

Pr[τS−ab(k) = x] · Prσ∼D̂i
[qtσ(b) = x | τS−ab(k) = x]

= p · 1

m− 2
·

i−1∑
k=i−min(i,t)+1

Prσ∼D̂i
[qtσ(b) = x | τS−ab(k) = x]

+ (1− p) · 1

m− 2
·

m−2∑
k=m−t−1

Prσ∼D̂i
[qtσ(b) = x | τS−ab(k) = x]

= p · 1

m− 2
·

i−1∑
k=i−min(i,t)+1

pti+1,k + (1− p) · 1

m− 2
·

m−2∑
k=m−t−1

ptm−1,k

= p · 1

m− 2
· min(i, t)− 1

min(i, t)
+ (1− p) · 1

m− 2

where the second equality holds because τS−ab is chosen uniformly at random and the last equality holds since each agent
returns every candidate in the t-above neighborhood with the same probability.

Similarly,

Prσ∼D̂i
[qtσ(a) = x] = p ·

i−1∑
k=i−min(i−1,t)

Pr[τS−ab(k) = x] · Prσ∼D̂i
[qtσ(a) = x | τS−ab(k) = x]

+ (1− p) ·
m−2∑

k=m−t

Pr[τS−ab(k) = x] · Prσ∼D̂i
[qtσ(a) = x | τS−ab(k) = x]

= p · 1

m− 2
·

i−1∑
k=i−min(i−1,t)

Prσ∼D̂i
[qtσ(a) = x | τS−ab(k) = x]

+ (1− p) · 1

m− 2
·

m−2∑
k=m−t

Prσ∼D̂i
[qtσ(a) = x | τS−ab(k) = x]

= p · 1

m− 2
·

i−1∑
k=i−min(i−1,t)

pti,k + (1− p) · 1

m− 2
·

m−2∑
k=m−t

ptm,k

= p · 1

m− 2
+ (1− p) · 1

m− 2
· t− 1

t
.
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Therefore, we have Prσ∼D̂i
[qtσ(a) = x] = Prσ∼D̂i

[qtσ(b) = x], for the choice of p = min(i, t)/(t + min(i, t)).

Lastly, for any x, y ∈ S−ab it holds that Prσ∼D̂i
[qtσ(x) = y] = Prσ∼D̂a↔b

i
[qtσ(x) = y], since the two preference profiles

differ only with respect to a, b. From all the above, we get that D̂i and D̂a↔b
i are t-indistinguishable by setting p as stated in

the lemma.

We will continue with the following three lemmas.

D. Proof of Lemma 4.5
Proof. Consider the preference profile Di,m,i+1 as stated in Definition 3.1. From Lemma 3.2, we get that for every

i ∈ {2, . . . ,m− t−2}, Di,m,i+1 and Da↔b
i,m,i+1 are t-indistinguishable for every value of t ≤ m−4, if p =

P t
i+1

P t
i −P t

m+P t
i+1

=

P t
i+1

P t
i +P t

i+1
. If it holds that scs⃗(a,Di,m,i+1) > scs⃗(b,Di,m,i+1), for some i ∈ {2, . . . ,m − t − 2}, then by setting D =

Di,m,i+1, the statement of the lemma is satisfied. Now, suppose that for every i ∈ {2, . . . ,m − t − 2}, it holds that
scs⃗(a,Di,m,i+1) = scs(b,Di,m,i+1). This means that

p · si = (1− p) · si+1 =⇒ p =
si+1

si + si+1
.

Therefore, we get

p =
P t
i+1

P t
i + P t

i+1

=
si+1

si + si+1
=⇒ si+1

P t
i+1

=
si
P t
i

= λ

and as a result: si/P t
i = λ for all i ∈ {2, . . . ,m− t− 1} and the lemma follows.

Lemma D.1. If si/P t
i = µ does not hold for all i ∈ {max(2,m− t), . . . ,m− 1} for some µ, then there exists a preference

profile D such that scs⃗(a,D) > scs⃗(b,D), and D and Da↔b are t-indistinguishable, for every t ∈ [m− 1]. .

Proof. Consider the preference profile D̂i as stated in Lemma C.1. From Lemma C.1, we get that for every i ∈ {max(2,m−
t), . . . ,m− 2}, D̂i and D̂a↔b

i are t-indistinguishable for every value of t, if p = min(i,t)
t+min(i,t) . Under uniform t-improvement

feedback distribution, we know that P t
m−1 = 1

t and P t
i −P t

i+1 = 1
min(i,t) , for all i ∈ {max(2,m− t), · · · ,m−2}. Hence,

we have
P t
m−1

P t
i − P t

i+1 + P t
m−1

=
1/t

1/t + 1/min(i, t)
=

min(i, t)

t+min(i, t)
= p.

If for some i ∈ {max(2,m − t), . . . ,m − 2}, scs⃗, (a, D̂i) > scs⃗(b, D̂i), then by setting D = D̂i, the statement of the
lemma is satisfied. Now, suppose that for every i ∈ {max(2,m − t), . . . ,m − 2}, scs⃗(a,Di,m,i+1) = scs⃗(b,Di,m,i+1).
This means that

p · si = p · si+1 + (1− p) · sm−1 =⇒ p =
sm−1

si − si+1 + sm−1
.

Therefore, we get

p =
P t
m−1

P t
i − P t

i+1 + P t
m−1

=
sm−1

si − si+1 + sm−1
=⇒ si − si+1

sm−1
=

P t
i − P t

i+1

P t
m−1

.

Now, observe that, substituting i = m−2 in the above, we get sm−2−sm−1

sm−1
=

P t
m−2−P t

m−1

P t
m−1

which implies that sm−2

P t
m−2

= sm−1

P t
m−1

.

By induction on i, we get for all i ∈ {max(2,m− t), . . . ,m− 1}, that µ = si
P t

i
and the lemma follows.

Lemma D.2. If si/P t
i = λ for all i ∈ {2, . . . ,m−t−1} for some λ and si/P

t
i = µ for all i ∈ {max(2,m−t), . . . ,m−1}

for some µ, and µ ̸= λ, then there exists a preference profile D such that scs⃗(a,D) > scs⃗(b,D), and D and Da↔b are
t-indistinguishable.
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Proof. First, we note that when t = m − 1 or t = m − 2, from the hypothesis of the lemma we directly get that
st2/P

t
2 = . . . = stm−1/P

t
m−1 = µ. Therefore for these two cases the lemma directly follows. Next, we focus on the case

where t ≤ m− 3.

Here we consider the following preference profile, denoted by D:

1. With probability p, candidate a is fixed at position 2, and candidate b is fixed at position m.

2. With probability (1 − p)/2, candidate a is fixed at position 1, and candidate b is fixed at position m− 1.

3. With probability (1 − p)/2, candidate a is fixed at position m, and candidate b is fixed at position 1.

4. Select a uniformly random ranking τS−ab over the set of all remaining candidates (excluding a and b). This ranking
determines the relative order of the remaining candidates, which are then placed in the positions not occupied by a or b.

First, we will show that D and Da↔b are t-indistinguishable. Since in all the cases a, b are more than m−3 positions apart, it
holds that Prσ∼D[qtσ(b) = a] = Prσ∼D[qtσ(a) = b] = 0. Furthermore, Prσ∼D[qtσ(b) = b] = Prσ∼D[qtσ(a) = a] = 1−p

2 .
Next we note that for any x ∈ S−ab, it holds that

Prσ∼D[qtσ(a) = x] = p · Pr[τS−ab(1) = x] · Prσ∼D[qtσ(a) = x | τS−ab(1) = x]

+
(1− p)

2
·

m−2∑
k=m−t−1

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(a) = x | τS−ab(k) = x]

= p · 1

m− 2
· Prσ∼D[qtσ(a) = x | τS−ab(1) = x]

+
(1− p)

2
· 1

m− 2

m−2∑
k=m−t−1

Prσ∼D[qtσ(a) = x | τS−ab(k) = x]

= p · pt2,1 ·
1

m− 2
+

(1− p)

2
· 1

m− 2
·

m−2∑
k=m−t−1

ptm,k+1

= p · 1

m− 2
+

(1− p)

2(m− 2)
=

p+ 1

2(m− 2)

where the second equality comes from the fact that τS−ab is picked uniformly at random and the third equality by the fact
that each agent returns a candidate from the t-above neighborhood.

Similarly, for any x ∈ S−ab, it holds that

Prσ∼D[qtσ(b) = x] = p ·
m−2∑

k=m−t−1

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(b) = x | τS−ab(k) = x]

+
(1− p)

2
·

m−3∑
k=m−t−2

Pr[τS−ab(k) = x] · Prσ∼DPr[qtσ(b) = x | τS−ab(k) = x]

= p · 1

m− 2
·

m−2∑
k=m−t−1

Prσ∼D[qtσ(b) = x | τS−ab(k) = x]

+
(1− p)

2
· 1

m− 2

m−3∑
k=m−t−2

Prσ∼D[qtσ(b) = x | τS−ab(k) = x]

= p · 1

m− 2
·

m−2∑
k=m−t−1

ptm,k+1 +
(1− p)

2
· 1

m− 2

m−3∑
k=m−t−2

ptm−1,k+1

= p · 1

m− 2
+

(1− p)

2(m− 2)
=

p+ 1

2(m− 2)
.
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Therefore, we have that Prσ∼D[qtσ(a) = x] = Prσ∼D[qtσ(b) = x] for all x ∈ S−ab. Next, we see that

Prσ∼D[qtσ(x) = a] = p ·
t+1∑
k=2

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(x) = a | τS−ab(k) = x]

+
1− p

2
·

t∑
k=1

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(x) = a | τS−ab(k) = x]

= p · 1

m− 2
·
t+1∑
k=2

·Prσ∼D[qtσ(x) = a | τS−ab(k) = x]

+
1− p

2
· 1

m− 2
·

t∑
k=1

·Prσ∼D[qtσ(x) = a | τS−ab(k) = x]

= p · 1

m− 2

t+1∑
k=2

ptk+1,2 +
1− p

2
· 1

m− 2
·

t∑
k=1

ptk+1,1

= p · 1

m− 2
· P t

2 +
1− p

2
· 1

m− 2
P t
1

where the second equality comes from the fact that τS−ab is picked uniformly at random and the last equality by definition
of P t

i . Similarly,

Prσ∼D[qtσ(x) = b] =
1− p

2
·

t∑
k=1

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(x) = b | τS−ab(k) = x]

+
1− p

2
· Pr[τS−ab(m− 2) = x] · Prσ∼D[qtσ(x) = b | τS−ab(m− 2) = x]

=
1− p

2
· 1

m− 2
·

t∑
k=1

Prσ∼D[qtσ(x) = b | τS−ab(k) = x]

+
1− p

2
· 1

m− 2
Prσ∼D[qtσ(x) = b | τS−ab(m− 2) = x]

=
1− p

2
· 1

m− 2

t∑
k=1

ptk+1,1 +
1− p

2
· 1

m− 2
· ptm,m−1

=
1− p

2
· 1

m− 2
· P t

1 +
1− p

2
· 1

m− 2
P t
m−1

Therefore, we get Prσ∼D[qtσ(x) = a] = Prσ∼D[qtσ(x) = b] when p = P t
m−1/(2P t

2 + P t
m−1) and then D and Da↔b become

t-indistinguishable.

If it holds that scs⃗(a,D) ̸= scs⃗(b,D), then the statement of the lemma is satisfied. Now, suppose that scs⃗(a,D) = scs⃗(b,D).
This means that

p · s2 +
1− p

2
· s1 =

1− p

2
· s1 +

1− p

2
· sm−1 =⇒ p =

sm−1

2 · s2 + sm−1
=

P t
m−1

2 · P t
2 + P t

m−1

.

For t ≤ m− 4 we know that s2/P t
2 = λ and sm−1/P t

m−1 = µ. Then from the above equality we get µ = λ. For t = m− 3
we know that s3/P t

3 = . . . = sm−1/P t
m−1 = µ and the above implies that s2/P t

2 = s3/P t
3 = . . . = sm−1/P t

m−1 = µ, and the
lemma follows.

From the above lemma we get that, unless si
P t

i
= λ for all i ∈ {2, . . . ,m− 1}, which implies that s⃗ ∈ span(s⃗plu, s⃗

∗
t ), there
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exists a preference profile D satisfying the conditions of the lemma and the lemma follows.

E. Proof of Lemma 5.1
Proof. We use the same construction as in Lemma 4.1 by Halpern et al. (2024), which we briefly restate here for completeness.
For each c ∈ M we define Dc as following: we pick a permutation π uniformly at random. If π(b) = c then we sample a
ranking σ ∼ π ◦Da↔b. If π(b) ̸= c then we sample a ranking σ ∼ π ◦D. We need to show that the two following statements
are true: (1) Prσ∼Dc [c ≻σ x] > Prσ∼Dc [x ≻σ c], for all x ∈ M \ {c} and (2) {Dc}c∈M consists of m t-indistinguishable
preference profiles. Firstly, we turn our attention to (1).

Fix any x ∈ M \ {c}. First note that,∑
z∈{c,x}

Pr
σ∼Dc

[c ≻σ x | π(b) = z] · Pr[π(b) = z]

=
1

m
·
(
Prσ∼D[a ≻σ πab(π−1(x)) | π(b) = z] + Prσ∼D[π−1(c) ≻σ b | π(b) = z]

)
=

1

m

( ∑
y∈S−ab

Prσ∼D[a ≻σ y | π−1(x) = y, π(b) = z] · Pr[π−1(x) = y | π(b) = z]

+ Prσ∼D[a ≻σ b | π−1(x) = a, π(b) = z] · Pr[π−1(x) = a | π(b) = z]

+
∑

y∈S−ab

Prσ∼D[y ≻σ b | π−1(c) = y, π(b) = z] · Pr[π−1(c) = y | π(b) = z]

+ Prσ∼D[a ≻σ b | π−1(c) = a, π(b) = z] · Pr[π−1(c) = a | π(b) = z]

)

=
1

m · (m− 1)

 ∑
x∈M\{a}

Prσ∼D[a ≻σ x] +
∑

x∈M\{b}

Prσ∼D[x ≻σ b]


=

1

m · (m− 1)

 ∑
x∈M\{a}

Prσ∼D[a ≻σ x] +
∑

x∈M\{b}

(1− Prσ∼D[b ≻σ x])

 , (2)

where the second equality holds, since π is a permutation selected uniformly at random and conditioned on π(b) = c,
Dc = π ◦Da↔b and conditioned on π(b) = x, Dc = π ◦D. The second last equality holds again from the fact that π is a
permutation selected uniformly at random and that D is independent of π.

By the same reasoning we can also argue that,∑
z∈{c,x}

Pr
σ∼Dc

[x ≻σ c | π(b) = z] · Pr[π(b) = z]

=
1

m · (m− 1)

 ∑
x∈M\{a}

Prσ∼D[x ≻σ a] +
∑

x∈M\{b}

Prσ∼D[b ≻σ x]


=

1

m · (m− 1)

 ∑
x∈M\{a}

(1− Prσ∼D[a ≻σ x]) +
∑

x∈M\{b}

Prσ∼D[b ≻σ x]

 . (3)

By combining Equation (2) and Equation (3), and the fact that
∑

x∈M\{a} Prσ∼D[a ≻σ x] >
∑

x∈M\{b} Prσ∼D[b ≻σ x],
we conclude that∑

z∈{c,x}

Pr
σ∼Dc

[c ≻σ x | π(b) = z] · Pr[π(b) = z] >
∑

z∈{c,x}

Pr
σ∼Dc

[x ≻σ c | π(b) = z] · Pr[π(b) = z]. (4)
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Next, note that∑
z∈M\{c,x}

Prσ∼Dc [c ≻σ x | π(b) = z] · Pr[π(b) = z]

=
∑

z∈M\{c,x}

Prσ∼D[π−1(c) ≻σ π−1(x) | π(b) = z] · 1

m

=
1

m
·

( ∑
y,y′∈M\{a}

Prσ∼D[y ≻σ y′ | π−1(c) = y, π−1(x) = y′, π(b) = z]

· Pr[π−1(c) = y, π−1(x) = y′ | π(b) = z]

+
∑

y∈M\{a}

Prσ∼D[y ≻σ a | π−1(c) = y, π−1(x) = a, π(b) = z] · Pr[π−1(c) = y, π−1(x) = a | π(b) = z]

+
∑

y∈M\{a}

Prσ∼D[a ≻σ y | π−1(c) = a, π−1(x) = y, π(b) = z] · Pr[π−1(c) = a, π−1(x) = y | π(b) = z]

)

=
1

m(m− 1)(m− 2)
·

( ∑
y,y′∈M\{a}

Prσ∼D[y ≻σ y′] +
∑

y∈M\{a}

Prσ∼D[y ≻σ a] +
∑

y∈M\{a}

Prσ∼D[a ≻σ y]

)
(5)

where the second equality holds, since π is a permutation selected uniformly at random and conditioned on π(b) ̸∈ {c, x},
Dc = π ◦D. The last equality holds again from the fact π is a permutation selected uniformly at random and that D is
independent of π.

By the exact same reasoning, we get that∑
z∈M\{c,x}

Prσ∼Dc [x ≻σ c | π(b) = z] · Pr[π(b) = z]

=
1

m(m− 1)(m− 2)
·

 ∑
y,y′∈M\{a}

Prσ∼D[y ≻σ y′] +
∑

y∈M\{a}

Prσ∼D[a ≻σ y] +
∑

y∈M\{a}

Prσ∼D[y ≻σ a]

 .

(6)

From Equation (5) and Equation (6), we get∑
z∈M\{c,x}

Prσ∼Dc [c ≻σ x | π(b) = z] · Pr[π(b) = z] =
∑

z∈M\{c,x}

Prσ∼Dc [x ≻σ c | π(b) = z] · Pr[π(b) = z]. (7)

Lastly, by combining Equation (4) and Equation (7), we get Prσ∼Dc [c ≻σ x] > Prσ∼Dc [x ≻σ c] as desired.

As for (2), we already have shown in Lemma 4.1 that the family of {Dc}c∈M consists of preference profiles that are all
t-indistinguishable from one another. Hence, the lemma follows.

F. Proof of Lemma 5.2
Proof. We will distinguish into the following cases:

Case I: 2 < t < m−3. Let D3,m,2 be the preference profile defined in Lemma 3.2. Since 2 < t < m−3, for p =
P t

2

P t
2+P t

3
,

the preference profiles D3,m,2 and Da↔b
3,m,2 are t-indistinguishable.

Under D3,m,2, we have Prσ∼D3,m,2 [a ≻σ b] = p and Prσ∼D3,m,2 [b ≻σ a] = 1− p. Additionally, for each x ∈ S−ab,
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we have that Prσ∼D3,m,2
[a ≻σ x] = p · m−4

m−2 , since with probability p, a appears at position 3, followed by b at position m,
and the remaining m− 2 candidates are uniformly distributed across the remaining positions and with probability (1− p),
a appears at the last position. Similarly, we have Prσ∼D3,m,2 [b ≻σ x] = (1 − p) · m−3

m−2 , since with probability (1 − p),
b appears at position 2, followed by a at position m, and the remaining candidates are distributed uniformly, and with
probability p, b appears last.

Thus, we have that∑
x∈M\{a}

Pr
σ∼D

[a ≻σ x] =
∑

x∈S−ab

Pr
σ∼D

[a ≻σ x] + Pr
σ∼D

[a ≻σ b] =
∑

x∈S−ab

m− 4

m− 2
· p+ p = (m− 3) · p,

and similarly, for b, we have:

∑
x∈M\{a}

Pr
σ∼D

[b ≻σ x] =
∑

x∈S−ab

Pr
σ∼D

[b ≻σ x] + Pr
σ∼D

[b ≻σ a] =
∑

x∈S−ab

m− 3

m− 2
· (1− p) + (1− p) = (m− 2) · (1− p).

Next, we show that

p =
P t
2

P t
2 + P t

3

=
P t
2

2P t
2 − 1

2 + 1
t

>
m− 2

2m− 5
,

where the inequality follows from the fact that, under the uniform t-improvement feedback distribution, for t > 1, we have
that P t

3 = P t
2 − 1

2 + 1
t . Then, this implies that

∑
x∈M\{a} Prσ∼D[a ≻σ x] >

∑
x∈M\{a} Prσ∼D[b ≻σ x], as desired.

To ensure that p > m−2
2m−5 , we need:

P t
2

2P t
2 − 1

2 + 1
t

>
m− 2

2m− 5

=⇒ 2m · P t
2 − 5P t

2 > (m− 2)(2P t
2 − 1/2 + 1/t)

=⇒ 2m · P t
2 − 5P t

2 > 2m · P t
2 − m/2 + m/t − 4P t

2 + 1− 2/t

=⇒ P t
2 <

m

2
− m

t
− 1 +

2

t
= (m− 2)(

1

2
− 1

t
)

Under the uniform t-improvement feedback distribution, we have:

P t
2 =

1

2
+

1

3
+ · · ·+ 1

t− 1
+

2

t
= Ht−1 − 1 +

2

t
,

where Hk is the k-th harmonic number. Using the inequality Hk ≤ ln(k) + 1, we get:

P t
2 ≤ ln(t− 1) +

2

t
.

Since, P t
2 ≤ ln(t− 1) + 2

t , it suffices to prove that: ln(t− 1) + 2
t < (m− 2)( 12 − 1

t ) or ln(t− 1) + m
t < m−2

2 .

We prove that for any value of m ≥ 13 and 3 ≤ t < m− 3, this is true, as follows:

We have that ln(t− 1)+ m
t < ln(t)+ m

t . Let f(t) = ln(t)+ m
t . Then f ′(t) = 1/t−m/t2. Hence, f ′(m) = 0 and for every

0 < t < m, f ′(t) < 0. Therefore, f is monotone decreasing in (0,m]. As a result, f(t) < f(3) = ln(3) + m/3. Now we
need to find m such that ln(3) + m

3 < m−2
2 , or m > 6 · ln(3) + 6, or m ≥ 13. This concludes the proof of the case.
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Case II: t ∈ {1, 2}. We define the preference profile D as following:

1. With probability p, candidate a is fixed at position 2, and candidate b is fixed at position 5.

2. With probability 1− p, candidate a is fixed at position 6, and candidate b is fixed at position 3.

3. Select a uniformly random ranking τS−ab over the set of all remaining candidates (excluding a and b). This ranking
determines the relative order of the remaining candidates, which are then placed in the positions not occupied by a or b.

First, we show that D and Da↔b are t-indistinguishable. Note that since t ≤ 2, we get that Prσ∼D[qtσ(a) = b] =
Prσ∼D[qtσ(b) = a] = 0, since a, b are more than t positions apart. Furthermore, for each x ∈ S−ab, we have:

Prσ∼D[qtσ(a) = x]

= p · Pr[τS−ab(1) = x] · Prσ∼D[qtσ(a) = x | τS−ab(1) = x]

+ (1− p) ·
4∑

k=5−t

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(a) = x | τS−ab(k) = x]

= p · 1

m− 2
· Prσ∼D[qtσ(a) = x | τS−ab(1) = x] +

1− p

m− 2
·

4∑
k=5−t

Prσ∼D[qtσ(a) = x | τS−ab(k) = x]

= p · 1

m− 2
· pt2,1 +

1− p

m− 2
·

4∑
k=5−t

pt6,k+1

=
p

m− 2
+

1− p

m− 2
=

1

m− 2
,

where the first equality is because τS−ab is sampled uniformly at random and the last equality is since each agent returns a
candidate in the t-above neighborhood of the suggested candidate.

Similarly,

Prσ∼D[qtσ(b) = x]

= p ·
3∑

k=4−t

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(b) = x | τS−ab(k) = x]

+ (1− p) ·
2∑

k=3−t

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(b) = x | τS−ab(k) = x]

=
p

m− 2
·

3∑
k=4−t

Prσ∼D[qtσ(b) = x | τS−ab(k) = x] +
1− p

m− 2
·

2∑
k=3−t

Prσ∼D[qtσ(b) = x | τS−ab(k) = x]

=
p

m− 2
·

3∑
k=4−t

pt5,k+1 +
1− p

m− 2
·

2∑
k=3−t

pt3,k

=
p

m− 2
+

1− p

m− 2
=

1

m− 2
.

22



Computing Voting Rules with Improvement Feedback

Furthermore,

Prσ∼D[qtσ(x) = a]

= p ·
1+t∑
k=2

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(x) = a | τS−ab(k) = x]

+ (1− p) ·
min(m,4+t)∑

k=5

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(x) = a | τS−ab(k) = x]

=
p

m− 2

1+t∑
k=2

Prσ∼D[qtσ(x) = a | τS−ab(k) = x] +
1− p

m− 2

min(m,4+t)∑
k=5

Prσ∼D[qtσ(x) = a | τS−ab(k) = x]

=
1

m− 2
·
(
p · P t

2 + (1− p) · P t
6

)
,

where the last equality is by definition of P t
2 and the second to last is from the fact that τS−ab is picked uniformly at random.

Similarly,

Prσ∼D[qtσ(x) = b] = p ·
min(3+t,m)∑

k=4

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(x) = b | τS−ab(k) = x]

+ (1− p) ·
2+t∑
k=3

Pr[τS−ab(k) = x] · Prσ∼D[qtσ(x) = b | τS−ab(k) = x]

=
p

m− 2

min(3+t,m)∑
k=4

Prσ∼D[qtσ(x) = b | τS−ab(k) = x]

+
1− p

m− 2

2+t∑
k=3

Prσ∼D[qtσ(x) = b | τS−ab(k) = x]

=
1

m− 2
·
(
p · P t

5 + (1− p) · P t
3

)
.

For getting Prσ∼D[qtσ(x) = a] = Prσ∼D[qtσ(x) = b], we need to prove that there exists a value of p such that: p · P t
2 +

(1− p) · P t
6 = (1− p) · P t

3 + p · P t
5 .

Observe that for t = 1 and any m ≥ 7 and for t = 2 and any m ≥ 8 it holds that: P t
2 = P t

3 = P t
5 = P t

6 , for any value
of p. If m = 7 and t = 2, then P t

2 = P t
3 = P t

5 = 1 and P t
6 = 1/2 and the above holds for p = 1. Now, we focus on the

case of m = 6. In this case, if t = 1, P t
2 = P t

3 = P t
5 = 1 and P t

6 = 0, and the above is satisfied for p = 1. If t = 2, then
P t
2 = P t

3 = 1, P t
5 = 1/2 and P t

6 = 0, and the above is satisfied for p = 2
3 . Thus, D and Da↔b are t-indistinguishable.

We have shown above that in any case, there is a value of p > 1/2 such that Prσ∼D[qtσ(x) = a] = Prσ∼D[qtσ(x) = b].
This immediately implies that, Prσ∼D[a ≻σ b] = p > Prσ∼D[b ≻σ a] = 1 − p. Furthermore, for x ∈ S−ab it holds
that Prσ∼D[a ≻σ x] = m−3

m−2 · p+ m−6
m−2 · (1− p) and Prσ∼D[b ≻σ x] = m−5

m−2 · p+ m−4
m−2 · (1− p). This is because with

probability p, candidate a is at position 2 and b is at position 5, so a candidate x below a is sampled uniformly at random for
the remaining m− 3 positions. Similarly, with probability 1− p, candidate a is at position 6, so a candidate x that is ranked
below x, is sampled uniformly at random from the remaining m− 6 positions. Similarly, with probability p, candidate b is
at position 5, so x is sampled uniformly at random for the remaining m− 5 positions. Furthermore, with probability 1− p,
candidate b is at position 3, with a at position 6, so x is sampled uniformly at random for the remaining m− 4 positions.
Now, for the final step of the proof, we need the following inequality to be true:
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∑
x∈S−ab

Prσ∼D[a ≻σ x] >
∑

x∈S−ab

Prσ∼D[b ≻σ x]

=⇒
∑

x∈S−ab

m− 3

m− 2
· p+ m− 6

m− 2
· (1− p) >

∑
x∈S−ab

m− 5

m− 2
· p+ m− 4

m− 2
· (1− p)

=⇒ (m− 3) · p+ (m− 6) · (1− p) > (m− 5) · p+ (m− 4) · (1− p)

=⇒ 2 · p > 2 · (1− p)

=⇒ p > 1/2

As we have already shown, in any case, p > 1/2. This combined with the fact that Prσ∼D[a ≻σ b] > Prσ∼D[b ≻σ a],
yields

∑
x∈M\{a} Prσ∼D[a ≻σ x] >

∑
x∈M\{b} Prσ∼D[b ≻σ x], which concludes the proof of the case.

Case III: t ∈ {m − 1,m − 2,m − 3}. Let i = max(2,m − t). We set preference profile D = D̂i, where D̂i is the
preference profile from Lemma C.1. Hence for p = i

t+i < 1/2, which holds for t ≥ m − 3 and m > 6, D and Da↔b

are t-indistinguishable. Observe that Prσ∼D[b ≻σ a] = 1 − p and Prσ∼D[a ≻σ b] = p. Moreover, for each x ∈ S−ab,
Prσ∼D[a ≻σ x] = p · m−i−1

m−2 , as, with probability p, a appears at position i, b appears at position i+ 1, and then all the
remaining candidates occupy the remaining m− i− 1 positions uniformly at random. Furthermore, with probability 1− p,
candidate a appears at position m. Similarly, Prσ∼D[b ≻σ x] = p · m−i−1

m−2 . Thus, we get that

∑
x∈M\{a}

Prσ∼D[a ≻σ x] =
∑

x∈S−ab

Prσ∼D[a ≻σ x] + Prσ∼D[a ≻σ b] =
∑

x∈S−ab

m− i− 1

m− 2
· p+ p,

and ∑
x∈M\{b}

Prσ∼D[b ≻σ x] =
∑

x∈S−ab

Prσ∼D[b ≻σ x] + Prσ∼D[b ≻σ a] =
∑

x∈M\{a,b}

m− i− 1

m− 2
· p+ 1− p.

Now, since p < 1/2, it follows that
∑

x∈M\{a} Prσ∼D[b ≻σ x] >
∑

x∈M\{b} Prσ∼D[a ≻σ x] and this concludes the proof
of the case.

G. Proof of Lemma 5.4
Proof. We start by considering the preference profile Di,m,i+1 from Definition 3.1 for any i ∈ {2, . . . ,m − t − 2}.
From Lemma 3.2, we get that Di,m,i+1 and Da↔b

i,m,i+1 are t-indistinguishable when p = P t
i+1/(P t

i + P t
i+1). Now notice that

∑
x∈M\{a}

Prσ∼Di,m,i+1
[a ≻σ x] =

∑
x∈M\{b,a}

m−2∑
r=i

Pr[τS−ab(r) = x] · p+ Prσ∼Di,m,i+1
[a ≻σ b]

=
∑

x∈M\{b,a}

m− 2− i+ 1

m− 2
· p+ p = (m− i) · p,
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and

∑
x∈M\{b}

Prσ∼Di,m,i+1
[b ≻σ x] =

∑
x∈M\{b,a}

m−2∑
r=i+1

Pr[τS−ab(r) = x] · (1− p) + Prσ∼Di,m,i+1
[b ≻σ a]

=
∑

x∈M\{b,a}

m− 2− (i+ 1) + 1

m− 2
· (1− p) + (1− p) = (m− i− 1) · p.

If for some i ∈ {2, . . . ,m − t − 2}, we have that (m − i) · p ̸= (m − i − 1) · (1 − p), since Di,m,i+1 and Da↔b
i,m,i+1 are

t-indistinguishable, by utilizing Lemma 5.1, we can construct a family of preference profiles {Dc}c∈M with m distinct
Condorcet winners that are t-indistinguishable. Then, by applying Lemma 3.3, we get the desired result.

Now suppose that (m− i) · p = (m− i− 1) · (1− p) for all i ∈ {2, . . . ,m− t− 2}. Then, since p = P t
i+1/(P t

i + P t
i+1), we

conclude that

P t
i

P t
i+1

=
m− i

m− i− 1
, ∀i = {2, . . . ,m− t− 2} (8)

Next, we consider the preference profile D2,m−i,i+2 for any i ∈ {1, . . . , t+ 1}. Since t ≤ m/2 − 2, , from Lemma 3.2, we
get that D2,m−i,i+2 and Da↔b

2,m−i,i+2 are t-indistinguishable when p = P t
i+2/(P t

2 − P t
m−i + P t

i+2). Next, we see that

∑
x∈M\{a}

Prσ∼D2,m−i,i+2
[a ≻σ x] =

∑
x∈M\{b,a}

m−2∑
r=2

Pr[τS−ab(r) = x] · p+ Prσ∼D2,m−i,i+2
[a ≻σ b]

=
∑

x∈M\{b,a}

m− 2− 2 + 1

m− 2
· p+ p = (m− 2) · p,

and ∑
x∈M\{b}

Prσ∼D2,m−i,i+2 [b ≻σ x]

=
∑

x∈M\{b,a}

m−2∑
r=m−i−1

Pr[τS−ab(r) = x] · p

+
∑

x∈M\{b,a}

m−2∑
r=i+2

Pr[τS−ab(r) = x] · (1− p) + Prσ∼D2,m−i,i+2 [b ≻σ a]

=
∑

x∈M\{b,a}

m− 2− (m− i− 1) + 1

m− 2
· p+

∑
x∈M\{b,a}

m− 2− (i+ 2) + 1

m− 2
· (1− p) + (1− p)

= i · p+ (m− i− 2) · (1− p).

As before, if for some i ∈ {1, . . . , t+ 1}, we have that (m− 2) · p ̸= i · p+ (m− i− 2) · (1− p), by utilizing Lemma 5.1,
we can construct a family of preference profiles {Dc}c∈M with m distinct Condorcet winners that are t-indistinguishable
and by applying Lemma 3.3, we get the desired result.

Now suppose that (m− 2) · p = i · p+ (m− i− 2) · (1− p) for all i ∈ {1, . . . , t+ 1}. This means that p = 1/2, and since
p = P t

i+2/(P t
2 − P t

m−i + P t
i+2), we get that P t

m−i = P t
2 − Pi+2. Since t ≤ m/2− 2 and P t

i/P t
i+1 = (m − i)/(m − i − 1) for all
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i ∈ {2, . . . ,m− t− 2}, we conclude that

P t
m−i = P t

2 − m− (i+ 2)

m− 2
P t
2 =

i

m− 2
P t
2 , ∀i ∈ {1, . . . , t+ 1} (9)

Then, from Equation (8) and Equation (9), we get that the only case that we cannot construct two profiles with the desired
property is when P t

i/P t
i+1 = (m − i)/(m − i − 1) for all i ∈ {2, . . . ,m− 2}, and this concludes the lemma.

H. Condorcet winner and Deterministic Algorithms
First, we discuss in detail why the negative result of randomized rules cannot be extended in the case where P t

i/P t
i+1 =

(m − i)/(m − i − 1) for all i ∈ {2, . . . ,m− 2}.

It is well-known that the Borda score of a candidate c ∈ M is given by
∑

x∈M\{c} Prσ∼D[c ≻σ x] (Brandt et al., 2016). A
candidate c is the Condorcet winner if Prσ∼D[c ≻σ x] > Prσ∼D[x ≻σ c] for all x ∈ M \ {c}. This implies that when c is
a Condorcet winner, then Prσ∼D[c ≻σ x] > 1/2 for all x ∈ M \ {c}, and therefore, the Borda score of c must be strictly
greater than m−1

2 .

Now, assume for contradiction that we have a set of m preference profiles {Dc}c∈M that are t-indistinguishable from
one another, and suppose c is the Condorcet winner in Dc. This means the score of c in Dc must be strictly greater than
m−1
2 . When s⃗∗t = (P t

1 , P
t
2 , . . . , P

t
m) where P t

i/P t
i+1 = (m − i)/(m − i − 1) for all i ∈ {2, . . . ,m − 2}, then we have that

s⃗Borda ∈ span(s⃗plu, s⃗
∗
t ). Therefore, from Theorem 4.4 we get that we can learn the Borda score of all the candidates. With

similar arguments, as in the proof of Lemma 4.3, we can get that

scs⃗Borda
(a,D) =

m∑
i=1

P t
i · Pr

σ∼D
[σ−1(a) = i] + (m− 1− P t

1) · Pr
σ∼D

[σ−1(a) = 1]

=
∑

b∈M\{a}

Pr
σ∼D

[qtσ(b) = a] + (m− 1− P t
1) · Pr

σ∼D
[qtσ(a) = a].

From the definition of indistinguishability, we have that Prσ∼Dc [qtσ(b) = a] = Prσ∼Dc′ [qtσ(b) = a] for any a, b, c, c′ ∈ M
and therefore from the above equality, we get that that each candidate c must have the same Borda score across all m
preference profiles. Consequently, in any preference profile, the total sum of scores for all candidates would be strictly larger
than m · m−1

2 . However, this is a contradiction because the sum of Borda scores of all candidates in any preference profile is
exactly equal to m · m−1

2 . Therefore, such a family of preference profiles cannot exist for this case.

Next, we show that for t ≤ m − 4, no deterministic rule can identify the Condorcet winner under any t-improvement
feedback queries.

Theorem H.1. For any m ≥ 6 and any t ≤ m− 4, no algorithm with access to t-improvement feedback queries can identify
the unique Condorcet winner.

Proof. Consider the following preference profile D:

• With probability 1
3 , we select D2,m,3 from Definition 3.1.

• With probability 1
3 , we have a ≻ b ≻ τS−ab , where τS−ab is a uniformly random ranking over all remaining candidates.

• With probability 1
3 , we have b ≻ a ≻ τS−ab , where τS−ab is a uniformly random ranking over all remaining candidates.

Since t ≤ m− 4, by Lemma 3.2 and the construction of D, we have that D and Da↔b are t-indistinguishable when p =
P t

3

P t
2+P t

3
in the construction of D2,m,3. Note that for each x ∈ S−ab, we have Prσ∼D[a ≻σ x] > 2

3 and Prσ∼D[b ≻σ x] > 2
3 .
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(a) Borda - IC (b) Borda - PL Model (c) Borda - Mallows Model

(d) Copeland - IC (e) Copeland - PL Model (f) Copeland - Mallows Model

Figure 2: Different t-improvement feedback distributions

If p ̸= 1
2 , then Prσ∼D[a ≻σ b] ̸= Prσ∼D[b ≻σ a], implying that one of a or b is the Condorcet winner. However, since D

and Da↔b are t-indistinguishable, no deterministic algorithm can always output the Condorcet winner.

On the other hand, if p = 1
2 , we have Prσ∼D[a ≻σ b] = Prσ∼D[b ≻σ a]. However, Prσ∼D[a ≻σ x] > Prσ∼D[b ≻σ x] for

all x ∈ S−ab, because, in D2,m,3, with probability 1/2 · 1/3 = 1/6, a appears in the second position and b in the last position,
while with probability also 1/6, b appears in the third position and a again in the last position, with all other candidates
arranged uniformly at random. Hence there is one position (namely, position 3) where x can be below a but not b. In this
case, by utilizing Lemma 5.1 and Lemma 3.3, we can show that even a randomized algorithm cannot find the Condorcet
winner with probability greater than 1/m. Therefore, no deterministic rule can always find the Condorcet winner, and the
theorem follows.

I. More Experiments
In Figure 2, we present the approximation ratio of the Borda and Copeland scores across the three different ranking distribu-
tions and under the three different t-improvement feedback distributions. We observe that in all cases, the approximation
ratio is similar.

In Figure 3, we illustrate the approximation ratio of the Borda and Copeland scores across the three different ranking
distributions for varying values of t and n = 500. Once again, we observe that the results do not significantly change for
different values of t. However, in some cases, we observe that the approximation ratio improves as t increases.

For our experiments, we used the Python package pref-voting.
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(a) Borda - IC (b) Borda - PL Model (c) Borda - Mallows Model

(d) Copeland - IC (e) Copeland - PL Model (f) Copeland - Mallows Model

Figure 3: Varying values of t
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