
Model-based Preference Optimization
in Abstractive Summarization without Human Feedback

Anonymous ACL submission

Abstract
In abstractive summarization, the challenge001
of producing concise and accurate summaries002
arises from the vast amount of information con-003
tained in the source document. Consequently,004
although Large Language Models (LLMs) can005
generate fluent text, they often introduce in-006
accuracies by hallucinating content not found007
in the original source. While supervised fine-008
tuning methods that maximize likelihood con-009
tribute to this issue, they do not consistently010
enhance the faithfulness of the summaries.011
Preference-based optimization methods, such012
as Direct Preference Optimization (DPO), can013
further refine the model to align with human014
preferences. However, these methods still heav-015
ily depend on costly human feedback. In this016
work, we introduce a novel and straightforward017
approach called Model-based Preference Op-018
timization (MPO) to fine-tune LLMs for im-019
proved summarization abilities without any hu-020
man feedback. By leveraging the model’s in-021
herent summarization capabilities, we create022
a preference dataset that is fully generated by023
the model using different decoding strategies.024
Our experiments on standard summarization025
datasets and various metrics demonstrate that026
our proposed MPO significantly enhances the027
quality of generated summaries without relying028
on human feedback.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated remarkable capabilities in generating flu-032

ent and plausible text (Wang and Komatsuzaki,033

2021; Touvron et al., 2023a; Jiang et al., 2023).034

However, despite these advancements, LLMs of-035

ten produce summaries that, while plausible, con-036

tain incorrect or contradictory information—a phe-037

nomenon known as hallucination (Maynez et al.,038

2020). The fundamental reason for this issue is039

that LLMs are primarily trained to predict the040

most likely next token based on maximum like-041

lihood, which is the most common objective for042

Figure 1: Summarized results via automated metrics.
Our method MPO, which uses the model-generated sum-
maries for preference optimization, proves to be more
effective than PPO and DPO, both of which use human
preference datasets for optimization. The results are
from using the GPT-J on the TL;DR dataset.

pre-training language models (King et al., 2022). 043

In principle, reinforcement learning based objec- 044

tives can circumvent these failures by choosing an 045

appropriate reward function (Paulus et al., 2017; 046

Tian et al., 2024). Recently, reinforcement learn- 047

ing from human feedback (RLHF) has focused on 048

aligning language models with human preferences, 049

thereby effectively enhancing the models’ summa- 050

rization abilities (Böhm et al., 2019; Pasunuru and 051

Bansal, 2018; Stiennon et al., 2020; Paulus et al., 052

2018; Ramamurthy et al., 2023). 053

While RLHF and other preference-based opti- 054

mization methods (Rafailov et al., 2023) effectively 055

fine-tune models to align with human preferences, 056

human feedback is not always reliable. For exam- 057

ple, even though the quality of text summaries de- 058

pends on various factors, Hosking et al. (2024) 059

demonstrated that human preferences often over- 060

look factuality and consistency, which are crucial 061

in avoiding hallucination. This implies that a sum- 062

mary judged as good by humans is not necessarily 063
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free from hallucination. In other words, preference064

optimization with human feedback does not guaran-065

tee improved faithfulness. Moreover, the use of hu-066

man preference faces challenges related to the col-067

lection of human-annotated data. Although RLHF068

does not require massive amounts of data to en-069

hance performance, sourcing high-quality human070

preference data remains an expensive process (Min071

et al., 2023).072

To address these challenges, prior works have073

aimed to conduct preference optimization without074

relying on human preferences (Paulus et al., 2018;075

Tian et al., 2024; Wei et al., 2024; Roit et al., 2023).076

Such methods often require external metrics or077

complex filtering processes to establish preference078

pairs. For instance, Paulus et al. (2018) utilized lex-079

ical overlap (ROUGE) to assess salience and an en-080

tailment score to evaluate factual consistency. Sim-081

ilarly, Tian et al. (2024) employed FactScore (Min082

et al., 2023) to gauge reward signals between gen-083

erated summaries. However, as stated by Good-084

hart’s Law—‘When a measure becomes a target,085

it ceases to be a good measure’—relying exces-086

sively on these imperfect metrics carries the risk087

of overfitting to the metrics alone (Strathern, 1997;088

Ramamurthy et al., 2023).089

In response, we propose Model-based Prefer-090

ence Optimization (MPO), a novel and straightfor-091

ward approach that leverages the model’s inherent092

summarization capabilities without relying on any093

human feedback or external metrics. This method094

generates faithful summaries by aligning prefer-095

ences between responses generated using different096

decoding strategies. In particular, we utilize (1) a097

deterministic decoding strategy (e.g., beam search098

decoding) to generate chosen samples and (2) a099

stochastic decoding strategy (e.g., temperature sam-100

pling) to generate rejected samples. Therefore, our101

approach does not require any external knowledge102

or metrics to construct preference pairs.103

In previous studies, deterministic decoding104

strategies have been shown to produce results105

that are less surprising and more aligned with the106

source, whereas stochastic decoding introduces ran-107

domness and is more prone to hallucinations (Yang108

et al., 2018; Welleck et al., 2020a; Holtzman et al.,109

2020). Specifically, Wan et al. (2023) presented em-110

pirical evidence indicating that beam search yields111

the most faithful summaries, while the randomness112

introduced by sampling reduces faithfulness. Based113

on these findings, we align our model’s preference114

toward summaries generated via beam search rather115

than those naively sampled. As illustrated in Figure 116

1, our approach outperforms models trained with 117

standard supervised fine-tuning (SFT) or those op- 118

timized with human preferences (e.g., PPO, DPO) 119

in terms of faithfulness and relevance to the source 120

text. 121

Our main contribution is Model-based Prefer- 122

ence Optimization (MPO), a simple and straight- 123

forward approach for fine-tuning language models 124

to improve abstractive summarization without re- 125

lying on any human feedback or external metrics. 126

Our experimental results demonstrate that MPO 127

achieves superior overall performance compared 128

to models optimized with human preferences, and 129

it exhibits generalizability across various language 130

models and datasets. 131

2 Preliminaries 132

2.1 Problem Setup 133

Let V denote the vocabulary for both input and 134

output. We represent the input document as x ∈ X 135

and the output summary as y = ⟨y0, . . . , yT ⟩ ∈ Y . 136

The sequence y consists of T +1 elements, starting 137

with the beginning-of-sequence token y0 and ends 138

with the end-of-sequence token yT . 139

A language model (LM) is an auto-regressive 140

model of a sequence distribution P (y |x), where 141

each conditional probability is parameterized by 142

a neural network pθ. We assume that the model 143

computes the probability of the entire generated 144

text y using a common left-to-right decomposition. 145

Thus, the distribution can be expressed as a product 146

of conditional probabilities: 147

P (y|x) =
T∏
t=1

pθ(yt|y<t,x). 148

2.2 LM for Summarization 149

Given an input document x, the optimal summary 150

y from the set of valid strings Y is obtained using 151

a scoring function: 152

y∗ = argmax
y∈Y

pθ(y|x). 153

However, finding the optimal summary is not 154

tractable. Therefore, the scoring function for the 155

optimal string y varies according to decoding strate- 156

gies to approximate the best possible output. There 157

are two types of decoding strategies: stochastic and 158

deterministic. 159
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Figure 2: Model-based Preference Optimization. Our method follows a two-step process: 1) Supervised Fine-
Tuning (SFT): we fine-tune a pre-trained model (i.e., LLM) on a given dataset. 2) Model-based Preference Opti-
mization (MPO): we build a preference dataset using different decoding strategies. In this step, the chosen samples
are derived from deterministic decoding results, while the rejected samples utilize results generated by stochastic
decoding.

Stochastic Decoding The simplest approach in160

decoding strategies is to sample directly from the161

probabilities predicted by the model. This method162

involves sampling from the conditional probability163

distribution at each step, represented as:164

ytemp ∼ P (yt|x,y<t).165

However, this method exhibits high variance. To166

adjust for this variance, the temperature of the soft-167

max function can be modified:168

P (yt|x,y<t) = softmax

(
pθ(yt|x,y<t)

τ

)
,169

where τ is the temperature parameter. Increasing τ170

causesthe model’s conditional probability distribu-171

tion to approach a uniform distribution, which can172

lead to the generation of random tokens that are173

irrelevant to the source documents. Consequently,174

this increases the risk of the model producing hal-175

lucinations. For this reason, we classify samples176

generated through stochastic decoding as rejected177

samples in our preference dataset.178

Deterministic Decoding The other strategies179

are deterministic decoding algorithms. The most180

straightforward algorithm, called greedy decoding,181

simply selects the most probable token at each182

step (Welleck et al., 2020a). This can be expressed183

as:184

ygreedy = argmax
y∈V

log pθ(yt|y<t,x).185

In contrast to greedy decoding, beam search de-186

coding considers the top-k samples for token gen-187

eration. At each time step t, it tracks the k most188

likely sequence hypotheses, where k is the beam189

size. This can be represented as:190

ybeam = argmax
y∈V

L∑
t=1

log pθ(yt|y<t,x),191

where L is the length of the final candidate se- 192

quence. These deterministic decoding strategies 193

tend to produce tokens that are more closely related 194

to the source document, resulting in more faithful 195

summaries than those generated by stochastic de- 196

coding strategies. Therefore, we align our model’s 197

preference toward summaries generated via the de- 198

terministic decoding strategies and define them as 199

chosen samples in our preference dataset. 200

3 Proposed Method 201

In this section, we detail our process for encourag- 202

ing faithfulness in abstractive summarization. We 203

follow the typical pipelines of preference optimiza- 204

tion (Rafailov et al., 2023; Ziegler et al., 2020; Sti- 205

ennon et al., 2020; Ouyang et al., 2022). However, 206

by leveraging the differences between determinis- 207

tic and stochastic decoding strategies, our pipeline 208

does not require any external knowledge (e.g., eval- 209

uation metrics) or human feedback. This pipeline 210

is depicted in Figure 2. 211

3.1 Superveised Fine-Tuning (SFT) 212

For the summarization task, we first fine-tune a pre- 213

trained language model using supervised learning 214

on training data (i.e., ground truth data), denoted as 215

Dtrain = {(x,yref)}. Based on this supervised fine- 216

tuning (SFT) approach, the model is trained to gen- 217

erate a single-sentence summary from a source doc- 218

ument. In this work, we utilize existing SFT models 219

with minimal modifications or apply SFT to pre- 220

trained language models using QLoRA (Dettmers 221

et al., 2023). 222

3.2 Preference Optimization 223

For preference optimization, we employ Di- 224

rect Preference Optimization (DPO, Rafailov 225

et al., 2023). DPO simplifies the process by elim- 226

inating the need for an explicit reward function, 227
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making it preferable to RL-based algorithms, which228

incur significant computational costs by training229

multiple language models and sampling from the230

policy.231

Given a dataset of preference pairs D =232

{(xi,y
w
i ,y

l
i)}Ni=1, where xi represents source doc-233

uments, yw
i are chosen responses, and yl

i are re-234

jected responses, the probability of observing a235

preference pair is modeled using the Bradley-Terry236

model (Bradley and Terry, 1952):237

p(yw ≻ yl) = σ(r(x,yw)− r(x,yl)),238

where σ is the sigmoid function, and r(·, ·) is a239

reward function.240

Rafailov et al. (2023) demonstrated that models241

directly learn this policy from collected data with-242

out modeling the reward function. In other words,243

the 2-stage policy can be simplified into 1-stage244

policy. DPO loss can be expressed as:245

LDPO(πθ;πref) =

− E(x,yw,yl)∼D

[
log σ

(
β log

πθ(y
w | x)

πref(yw | x)

− β log
πθ(y

l | x)
πref(yl | x)

)]
,

246

where πref is the SFT model and β is a coefficient247

that controls the trade-off between reward and di-248

vergence. By optimizing this objective, the model249

aligns with the reward function while remaining250

close to the pre-trained reference model, thus mini-251

mizing over-optimization (Tian et al., 2024).252

3.3 Constructing Preferences Pairs without253

Human Feedback254

By exploiting the differences between determin-255

istic and stochastic strategies, we construct a256

dataset of preference pairs, denoted as Dvalid =257

{(x,yw
beam,y

l
temp)}. This strategy is based on the258

observation that deterministic decoding typically259

produces more factual summaries (Wan et al.,260

2023). This significant difference in output quality261

suggests that summaries generated through beam262

search decoding can be used as chosen samples,263

while those from temperature sampling can be des-264

ignated as rejected samples. We then conduct pref-265

erence optimization with this generated data to re-266

fine the language model, ensuring it avoids gener-267

ating hallucinated or irrelevant text.268

4 Experiments 269

4.1 Experimental Setup 270

Dataset We used the TL;DR dataset and the eX- 271

treme Summarization (XSUM) dataset (Cachola 272

et al., 2020; Narayan et al., 2018). The TL;DR 273

dataset is constructed by Reddit posts and their cor- 274

responding TL;DR summaries, while the XSUM 275

dataset consists of BBC articles and their single- 276

sentence summaries. Both datasets are widely used 277

for abstractive summarization tasks. 278

Models To verify the generalizability of our 279

method, we utilized GPT-J (6B) (Wang and Ko- 280

matsuzaki, 2021), Mistral-7B (Jiang et al., 2023) 281

and LLaMA2-7B (Touvron et al., 2023b) for 282

TL;DR dataset and Mistral-7B and LLaMA2-7B 283

for XSUM dataset. For GPT-J model, we used a 284

checkpoint from Huggingface1, that was already 285

fully fine-tuned on the train dataset. For LLaMA2- 286

7B and Mistral-7B models, we performed Super- 287

vised Fine-Tuning (SFT) on each training dataset 288

using QLoRA, and then merged the adapter into the 289

models for further preference optimization experi- 290

ments. We limited our experiments to 7B models 291

due to the constraints of our experimental environ- 292

ment. 293

Evaluation Metrics We adopt the evaluation pro- 294

tocol proposed by Chae et al. (2024). They catego- 295

rized the evaluation into three key divisions: Faith- 296

fulness, Relevance (with the source), and Similarity 297

(with the target). For Faithfulness, we used Align- 298

Score (Zha et al., 2023) and FactCC (Kryscinski 299

et al., 2020). To measure Relevance, we employed 300

BARTScore (Yuan et al., 2021) and BS-FACT. 301

Lastly, to evaluate Similarity, we used ROUGE- 302

L. It is important to note that ROUGE-L compares 303

the generated summary with the target summary 304

rather than the source text, which is not our primary 305

concern. 306

Implementation Details For the SFT training, 307

we utilized QLoRA with a batch size of 2 and a 308

learning rate of 1e-4, training for one epoch in train- 309

ing split. After training, the SFT-trained QLoRA 310

was merged with the pre-trained model. For prefer- 311

ence optimization, we set the DPO hyperparameter 312

β to 0.5. The learning rate was set to 1e-4 with a 313

batch size of 4, and training was also conducted for 314

one epoch in the validation split. During summary 315

1CarperAI/openai_summarize_tldr_sft
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Dataset
(Model) Method Response

Ratio
Faithfulness Relevance Similarity

AlignScore (↑) FactCC (↑) BARTScore (↑) BS-FACT (↑) ROUGE-L (↑)

TL;DR
(GPT-J)

with ground-truth data

SFT 81.2% (99.4%) 89.21 (83.54) 64.18 (53.48) -1.25 (-1.63) 91.53 (90.30) 26.74 (26.01)
SFT++ 93.8% (99.7%) 87.29 (82.30) 61.50 (57.05) -1.37 (-1.63) 91.06 (90.11) 27.47 (26.53)
with human feedback (preference dataset)

PPO 100.0% (100.0%) 83.10 (75.88) 54.40 (47.52) -1.35 (-1.80) 91.32 (89.78) 23.55 (23.28)
DPO 98.3 (99.8%) 88.12 (82.55) 61.70 (54.09) -1.33 (-1.65) 91.27 (90.22) 27.24 (26.28)
without human feedback

Preferred-FT 66.8% (99.6%) 89.90 (82.04) 76.58 (64.48) -1.39 (-1.73) 91.24 (90.09) 24.38 (24.39)
MPO (Ours) 99.9% (99.9%) 91.61 (86.82) 72.10 (59.39) -1.10 (-1.41) 92.20 (91.20) 26.10 (26.49)

Table 1: Results of the GPT-J model on the TL;DR dataset. We compared our Model-based Preference Optimiza-
tion (MPO) with two main baselines: supervised fine-tuning and human preference. All main results are based on
a beam search decoding strategy, while the results in parentheses are based on a greedy decoding strategy. MPO
showed overall better performance in terms of faithfulness and source relevance compared to other baselines. The
SFT model is a fine-tuned model on the training split and the SFT++ model is the SFT model further fine-tuned
on the validation split. PPO and DPO are SFT models optimized on human-preference datasets. Preferred-FT is a
model fine-tuned only on the chosen samples of MPO.

generation, the maximum number of generated to-316

kens was limited to 50. For beam search decoding,317

we used beam size of 6. For temperature sampling,318

we employed temperatures of 5.0 for GPT-J, and319

1.0 for Mistral-7B and LLaMA2-7B.320

Baselines We compared our method with two321

main baselines: supervised fine-tuning and hu-322

man preference. First, we compared our approach323

against models fine-tuned using either human-324

annotated summaries or summaries generated325

through deterministic decoding. Second, we com-326

pared our method with PPO and DPO models327

trained on human preference pairs to demonstrate328

that the contrast between beam search decoding329

and random sampling is more effective than human-330

annotated preferences in terms of faithfulness.331

SFT is a fine-tuned model on the train split of332

each dataset. SFT++ is a model further trained on a333

validation split from the SFT model. Preferred-FT334

is fine-tuned to maximize likelihood only on the335

chosen samples (i.e., ybeam). PPO and DPO are336

optimized from SFT models on human preference337

dataset provided by Stiennon et al. (2020). For PPO,338

we used a Huggingface checkpoint2, already opti-339

mized with the provided human preference dataset.340

For DPO, we optimized in the same way as MPO341

but with the human preference dataset.342

4.2 Comparison with Fine-Tuned Models343

In Table 1, MPO consistently outperforms fine-344

tuned baselines (i.e., SFT, SFT++, Preferred-FT).345

SFT++ and Preferred-FT did not significantly im-346

2CarperAI/openai_summarize_tldr_ppo

Dataset Model Method AlignScore (↑) BARTScore (↑) ROUGE-L (↑)
T

L
;D

R Mistral
SFT 87.85 (82.74) -1.48 (-1.81) 25.32 (25.02)
MPO 92.12 (89.39) -1.25 (-1.37) 24.85 (25.01)

LLaMA2
SFT 84.92 (77.68) -1.65 (-2.05) 24.31 (23.33)
MPO 85.33 (78.03) -1.64 (-2.03) 24.16 (23.29)

X
SU

M Mistral
SFT 66.31 (60.00) -1.96 (-1.97) 30.65 (31.16)
MPO 68.58 (64.57) -1.85 (-1.90) 31.11 (31.35)

LLaMA2
SFT 65.80 (57.57) -1.80 (-2.06) 30.36 (27.76)
MPO 67.31 (60.48) -1.81 (-2.02) 30.32 (28.36)

Table 2: Comparison of MPO with SFT. MPO demon-
strates generally robust results across various language
models (Mistral and LLaMA2) on both the TL;DR and
XSUM datasets. The results are based on a beam search
decoding strategy, while the results in parentheses are
based on a greedy decoding strategy.

prove over SFT. However, MPO shows a substan- 347

tial increase of up to 3.28 in AlignScore, 7.92 348

in FactCC, 0.22 in BARTScore, and 0.9 in BS- 349

FACT over SFT. These results suggest that our 350

approach is more effective at mitigating halluci- 351

nations than simply fine-tuning with either gold 352

summaries or summaries generated through deter- 353

ministic decoding. In Table 2, MPO demonstrates 354

robust and generally applicable results across var- 355

ious language models (Mistral-7B, LLaMA2-7B) 356

on both the TL;DR and XSUM datasets. 357

4.3 Comparison with Human Preference 358

Optimized Models 359

In Table 1 and 3, we compared MPO with human 360

preference optimized models (e.g., PPO, DPO). 361

From the perspective of automatic metrics in Table 362

1, MPO shows overall better results compared to 363

the human preference optimized models. As noted 364

in Hosking et al. (2024), utilizing a human pref- 365

erence dataset can underestimate the faithfulness 366
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GPT-3.5 SFT (vs. MPO) DPO (vs. MPO)
Greedy Beam Greedy Beam

# of compared samples 6061 5376 5962 5332
MPO win rate (%) 51.30 59.36 50.27 47.30

Table 3: Comparing GPT-3.5 win rates on TL;DR
summarization samples. Samples from different meth-
ods are compared only if they are not exactly the same.

aspect.367

On the other hand, as shown in Table 3, the MPO368

did not exhibit a dominant performance compared369

to others in the win rate evaluation based on GPT-370

3.5. For details on the win rate prompts, refer to Ap-371

pendix A.1. This discrepancy arises because sum-372

mary evaluation involves various factors (Hosking373

et al., 2024; Yuan et al., 2021). While MPO ex-374

cels in faithfulness and source relevance, it may375

fall short in aspects like fluency (refer to Table376

4). Additionally, human preference optimized mod-377

els were trained on significantly more data pairs378

than MPO, utilizing multiple pairs per source text,379

whereas MPO is optimized on only one pair per380

source.381

4.4 Comparison with Decoding Strategies382

Table 5 shows the results of applying MPO models383

to various decoding strategies using the LLaMA2-384

7B model. Despite not being specifically opti-385

mized for various decoding strategies (i.e., Nucleus386

(Holtzman et al., 2020), ITI (Li et al., 2023), DoLa387

(Chuang et al., 2023)), MPO models are generally388

applicable to all decoding strategies and consis-389

tently produces enhanced summarization results390

compared to the standard SFT model in terms of391

faithfulness and relevance.392

5 Analysis393

5.1 Other Combinations for Preference Pairs394

Decoding strategies primarily include two meth-395

ods: deterministic decoding and stochastic decod-396

ing. Our method uses summaries from determinis-397

tic decoding as chosen responses and summaries398

from stochastic decoding as rejected responses. To399

justify this choice, we explored different combi-400

nations of chosen and rejected responses, and the401

accuracy is summarized in Table 6.402

Deterministic decoding preference pairs To403

test whether improving the quality of rejected re-404

sponses would enhance the model’s summarization405

performance, we used beam search decoding for406

Method Text

Source TITLE: [19/f] What does this guy [20/m]
actually want from me? POST: . . . became
really good friends, . . . We then somehow
from kissing gently . . . basically said he
likes me but nothing can happen because
I’m not his type... I JUST DON’T KNOW
WHAT THE BOY WANTS FROM ME.

SFT ive been friends with a guy for a while,
then we kissed, then we didn’t, then we
did again, then we didn’t, then we did
again.

DPO I don’t know what the boy wants from me,
and I don’t know what I want from the
boy.

MPO
(Ours)

Became really good friends with a guy,
then we kissed, then he said he likes me
but I’m not his type. What does he want
from me?

Table 4: Example summaries of MPO model and hu-
man preference optimized model. Inconsistent words
are highlighted in red. The summary generated by the
MPO model is clearly superior to those by SFT and
DPO (w/ human pref.) models in terms of faithfulness
and source relevance.

Decoding
Strategy

Method AlignScore (↑) BARTScore (↑) ROUGE-L (↑)

Greedy
SFT 77.68 -2.05 23.33
MPO 78.03 -2.03 23.29

Nucleus
SFT 76.25 -2.11 22.82
MPO 76.99 -2.09 22.79

ITI
SFT 76.95 -1.88 23.15
MPO 77.15 -1.87 23.23

DoLa
SFT 82.47 -1.76 24.61
MPO 82.57 -1.75 24.55

Beam
SFT 84.92 -1.65 24.31
MPO 85.33 -1.64 24.16

Table 5: Results of applying various decoding strate-
gies. MPO aligns well with different decoding strate-
gies. When combined with faithfulness-aware decoding
strategies (i.e., ITI, DoLA), it can lead to further im-
provements. The results are from using the LLaMA2-7B
on the TL;DR dataset.

the chosen responses and greedy decoding for the 407

rejected responses. However, this approach signif- 408

icantly reduced accuracy (see row 3 in Table 6). 409

Generated sample can be found in Appendix A.2. 410

One reason we identified is that the summaries gen- 411

erated by beam search decoding and greedy decod- 412

ing are too similar, causing confusion for the model. 413

Specifically, the similarity between the summaries 414

produced by the two methods, shown in row 1 of 415

Table 7, is indicated by very high ROUGE scores. 416
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Combination AlignScore (↑) BARTScore (↑) ROUGE-L (↑)

SFT 89.21 -1.25 26.74

(yw
beam,y

l
greedy) 51.96 -4.63 0.87

(yw
temp5,y

l
beam) 87.59 -1.36 27.24

(yw
greedy,y

l
temp5) 90.57 -1.20 26.87

(yw
beam,y

l
temp5) 91.61 -1.10 26.10

Table 6: MPO with different combinations of prefer-
ence pairs. The result show that using a deterministic de-
coding strategy pair significantly inhibit summarization
ability. For pairs combining deterministic and stochas-
tic decoding, setting beam search as the chosen and
temperature-based sampling as the rejected maximizes
the language model’s summarization performance. The
results are from using the GPT-J on the TL;DR dataset.

Pairs ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑)

yw
beam vs. yl

greedy 47.38 35.06 43.24

yw
greedy vs. yl

temp5 12.93 0.49 9.00

yw
beam vs. yl

temp5 10.56 0.41 7.40

Table 7: ROUGE score comparison. Deterministic
decoding generated summaries exhibit high similarity,
whereas there is low similarity between summaries gen-
erated by deterministic decoding and those generated
by stochastic decoding.

This suggests that using overly similar summaries417

as chosen and rejected responses in preference opti-418

mization can have adverse effects (Pal et al., 2024).419

Stochastic decoding as chosen responses To420

test whether the model’s summarization perfor-421

mance improves whenever there is a clear distinc-422

tion between chosen and rejected samples, we used423

sampling-based stochastic decoding for the chosen424

samples and beam search decoding for the rejected425

samples. As a result, while this approach did not426

cause the degeneration seen in cases where the sim-427

ilarity between samples was very high (refer to428

Table 8 in Appendix A.2), it led to lower faithful-429

ness compared to the original SFT model (see Table430

6). This indicates that if the chosen samples have431

lower source-alignment compared to the rejected432

samples, preference optimization can degrade the433

model’s existing summarization capabilities.434

5.2 Faithfulness-Abstractiveness Tradeoff435

from Iterative Training436

Recent studies by Pang et al. (2024) and Chen et al.437

(2024) have demonstrated that iteratively construct-438

ing the preference dataset using the trained model439

from the previous iteration improves dataset qual-440

ity. Building on these works, our approach extends441

Preference Optimization to Iterative Preference Op-442

timization.443

Figure 3: Analysis for each training iteration. The
average abstractiveness of summaries generated for the
TL;DR test set across training iterations, measured by
the MINT score, with dotted lines indicating variance.
The average extractiveness is measured by extractive
fragment coverage.

For this experiment, We employed beam search 444

decoding outputs from the previous iteration as 445

chosen data for subsequent training phases, while 446

summaries generated by random sampling outputs 447

from the SFT model were used as rejected data. 448

We dynamically adjusted the difficulty of the tasks 449

by decreasing the temperature settings—5.0, 3.0, 450

1.0—for each iteration to adapt to the continuous 451

enhancements in model performance. 452

We observed a notable trend where the model in- 453

creasingly produced more extractive summaries, 454

often directly incorporating sentences from the 455

source documents. This trend can be attributed to 456

the slightly extractive nature of the summaries gen- 457

erated by the SFT model using beam search decod- 458

ing, which were used as the chosen samples (Lad- 459

hak et al., 2022). Conversely, the rejected samples, 460

generated through temperature-scaled sampling, 461

suppressed the creativity of summaries. Conse- 462

quently, as shown in Figure 3, the model’s faithful- 463

ness improved with increased extractiveness over 464

successive iterations3. 465

Qualitative study In Appendix A.2, Table 9 pro- 466

vides an example of summaries generated by the 467

SFT model and by the MPO model at different 468

iterations in response to a given prompt. As the 469

iterations progress, the summaries tend to become 470

more extractive for the document. Notably, the sum- 471

mary generated in the third iteration is quite similar 472

to the title. 473

3To quantitatively assess the abstractiveness and extrac-
tiveness, we utilized the MINT (Metric for lexical indepen-
dence of generated text) (Dreyer et al., 2023) and extractive
fragment coverage (Grusky et al., 2018), respectively.
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5.3 Encoder-Decoder Model474

To verify the generalizability of our method across475

different model architectures, we evaluated our476

approach using an encoder-decoder model, such477

as BART (Lewis et al., 2019). As shown in Ap-478

pendix A.3, MPO outperforms SFT in terms of479

AlignScore, improving from 61.86 to 66.42. Fur-480

thermore, we compared MPO with another decod-481

ing strategy baseline, Faithfulness-aware Looka-482

head (Wan et al., 2023), which has shown effective-483

ness in encoder-decoder models. Interestingly, by484

using the summary from Faithfulness-aware Looka-485

head as the chosen samples instead of the beam486

search summaries (i.e., MPO*), MPO* increased487

the AlignScore by 2.43 over MPO. This indicates488

that utilizing better decoding strategies in MPO can489

further enhance the summarization performance.490

6 Related Work491

In the realm of auto-regressive language models,492

there are two primary approaches aimed to enhance493

the model’s summarization capabilities: adjusting494

the learning algorithm or refining the decoding495

strategy (Welleck et al., 2020b). The former in-496

volves updating the model’s parameters through497

a learning objective, while the latter entails im-498

proving the decoding algorithm during generation499

while maintaining the existing pre-trained param-500

eters frozen. In this paper, we will review two ap-501

proaches in abstractive summarization aimed at502

alleviating hallucination.503

Faithfulness-aware Decoding Strategies Sev-504

eral methods have been proposed to rectify halluci-505

nations during generation. Inference-time interven-506

tion (ITI) shifts activations along truth-correlated507

directions (Li et al., 2023), repeating the same inter-508

vention auto-regressively until the entire answer is509

generated. Decoding by contrasting layers (DoLa)510

uses an early-exit strategy by contrasting the differ-511

ences in logits obtained from projecting the later512

layers versus earlier layers (Chuang et al., 2023).513

Lastly, Wan et al. (2023) extend the idea of looka-514

head (Lu et al., 2022) to improve faithfulness in515

abstractive summarization, showing that the de-516

terministic decoding strategy outperforms nucleus517

sampling (Holtzman et al., 2020) in terms of faith-518

fulness. However, it is important to note that decod-519

ing strategies do not change the underlying model.520

Faithfulness-aware Learning Algorithms To521

mitigate hallucinations, naively fine-tuning with522

faithfulness-aware objectives might seem straight- 523

forward. FactPegasus (Wan and Bansal, 2022) em- 524

ploys a tailored pre-training setup with contrastive 525

learning to generate more faithful summaries. It 526

modifies sentence selection by combining ROUGE 527

and FactCC (Kryscinski et al., 2020). However, 528

this method risks overfitting to the metrics used, 529

potentially degrading overall summarization per- 530

formance (Chae et al., 2024). 531

As an alternative, RL-based objectives can be 532

utilized to enhance faithfulness (Böhm et al., 2019; 533

Roit et al., 2023; Paulus et al., 2018). RL provides 534

a natural path for optimizing non-differentiable ob- 535

jectives in LM-based generation. Ramamurthy et al. 536

(2023) show that RL techniques generally align 537

language models to human preferences better than 538

supervised methods. On the other hand, Direct Pref- 539

erence Optimization (DPO)(Rafailov et al., 2023) 540

simplifies the process by eliminating the need for 541

an explicit reward function of RL-based algorithms. 542

Leveraging DPO, Tian et al. (2024) have suggested 543

optimizing language models for factuality in long- 544

form text generation using FactScore (Min et al., 545

2023). 546

In this paper, we train the underlying model to 547

provide summaries faithful to source documents, 548

based on findings from research on decoding strate- 549

gies. Our approach does not require external met- 550

rics or human feedback during the optimization pro- 551

cess. Furthermore, the model trained on our frame- 552

work is versatile enough to integrate enhanced de- 553

coding techniques, thereby more effectively reduc- 554

ing hallucinations. 555

7 Conclusion 556

This study introduces Model-based Preference Op- 557

timization (MPO), a novel approach to improve the 558

faithfulness and quality of abstractive summaries 559

generated by Large Language Models (LLMs). Un- 560

like traditional methods that rely heavily on costly 561

human feedback, MPO leverages the model’s in- 562

herent summarization capabilities to create a pref- 563

erence dataset using different decoding strategies. 564

Our extensive experiments demonstrate that MPO 565

significantly enhances the summarization perfor- 566

mance, providing an efficient and scalable solution 567

to address the challenges of hallucination in LLM- 568

generated summaries. 569
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Limitation570

In our experiments, we employed QLoRA to main-571

tain the performance of the SFT model, but this572

method may have imposed limitations on poten-573

tial performance improvements. The lack of com-574

parative experiments to substantiate the effective-575

ness of QLoRA leaves some uncertainty regarding576

its impact. Due to computational cost constraints,577

it is also unclear whether similar results can be578

achieved with larger language models, raising ques-579

tions about the scalability of our approach.580

During iterative training, we observed a trend581

where the model increasingly adopted an extrac-582

tive approach, often replicating sentences from the583

input documents directly in the summaries. This584

trend poses a challenge to our goal of producing585

more faithful abstractive summaries.586

Ethical Concerns587

We propose MPO, which leverages the outputs of588

a language model as a dataset for preference opti-589

mization, relying extensively on the outputs from590

the SFT model. Previous researches (Sheng et al.591

(2019), Nangia et al. (2020)) has shown that self-592

supervised language models, which are trained on593

unlabeled web-scale datasets, can unintentionally594

learn and perpetuate social and ethical biases, in-595

cluding racism and sexism. If such biases are in-596

herent within the data, our proposed self-feedback597

framework may unintentionally reinforce them. We598

used the TL;DR dataset for training, derived from599

Reddit posts, which may contain unmoderated and600

biased expressions. The presence of offensive con-601

tent in this dataset risks influencing the model’s602

outputs, potentially perpetuating these biases in fur-603

ther training within MPO. Moreover, as MPO pro-604

gresses and the model increasingly favors extrac-605

tive summarization, it may struggle to effectively606

paraphrase and filter out offensive expressions.607
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A Appendix907

A.1 GPT-3.5 Judgment Prompts908

We use GPT-3.5-turbo to evaluate win rates using909

prompts proposed in Rafailov et al. (2023). The or-910

der of summaries or responses is randomly chosen911

for each evaluation. The prompt examples we used912

can be seen in Figure 4.913

Figure 4: Summarization win rate prompt.

A.2 Example Cases914

Table 8 shows examples of summaries with dif-915

ferent combinations of preference pairs. Table 9916

shows examples summaries from iterative prefer-917

ence optimization.918

A.3 Encoder-Decoder Model919

We conducted experiments with the BART-Large920

model fine-tuned on the XSUM dataset (SFT). In921

Table 10, we demonstrate that our approach can922

also be applied to encoder-decoder models. More-923

over, the results of MPO* demonstrate that using924

faithfulness-aware decoding instead of beam search925

as the chosen response can yield further improve-926

ments compared to MPO.927

A.4 License Information of The Assets Used928

in This Work929

Datasets We report known license information930

of the assets used in this work. The following931

datasets used in this paper are under the MIT Li-932

cense: XSUM (Narayan et al., 2018). The following933

datasets used in this paper are under the CC BY934

4.0 License: TL;DR (Cachola et al., 2020).935

Models We report known license information of936

the assets used in this work. The following datasets937

used in this paper are under the Apache 2.0 License:938

GPT-J (Wang and Komatsuzaki, 2021), Mistral-939

7B (Jiang et al., 2023), BART (Lewis et al., 2019).940

The following datasets used in this paper are under941

the Llama2 License: LLaMA2-7B (Touvron et al.,942

2023b)943

Source code We use the implementation of exist- 944

ing baseline methods for reporting their results in 945

this paper. The source code utilized in this paper is 946

subject to the MIT License: MINT (Dreyer et al., 947

2023), ITI (Li et al., 2023), AlignScore (Zha et al., 948

2023), DoLa (Chuang et al., 2023), DCPMI (Chae 949

et al., 2024) The following source code utilized 950

in this paper is subject to the BSD 3-Clause 951

License: FactCC (Kryscinski et al., 2020) The 952

following source code utilized in this paper is 953

subject to the CC-BY-NC-4.0 License: Looka- 954

head (Wan et al., 2023) The following source code 955

utilized in this paper is subject to the Apache 956

2.0 License: BARTScore (Yuan et al., 2021), 957

trl/examples/research_projects/stack_llama_2 (von 958

Werra et al., 2020) 959

A.5 Statistics for Data 960

We utilized two abstractive summarization datasets, 961

TL;DR and XSUM. The TL;DR dataset is con- 962

structed by Reddit posts and their corresponding 963

summaries, with 117k samples in the train split, 964

6.45k in the validation split, and 6.55k in the test 965

split. The XSUM dataset consists of BBC articles 966

and their corresponding summaries, totaling 204k 967

samples in the train split, 11.3k in the validation 968

split, and 11.3k in the test split. Both datasets are 969

in English. 970

The train splits from each dataset were used dur- 971

ing the SFT phase, the validation splits during the 972

preference optimization phase, and the test splits 973

during the evaluation phase. 974

A.6 Analysis on Error Bars 975

All experiments were evaluated in single run, fixing 976

the seed at 42. Additionally, all summary genera- 977

tions were conducted in the order of the provided 978

test dataset. 979

A.7 Reproducibility 980

We conducted our experiments using computing 981

clusters equipped with NVIDIA RTX 6000 (GPU 982

memory: 48GB) and NVIDIA RTX 3090 GPUs 983

(GPU memory: 24 GB), allocating a single GPU 984

for each experiment. 985

Based on NVIDIA RTX 6000, model preference 986

optimization typically required an average of 1 hour 987

and 30 minutes. When generating summaries, us- 988

ing GPT-J (6B) with beam search decoding took 989

approximately 20 hours, and with greedy decoding, 990

about 5 hours and 30 minutes. Using Mistral-7B 991
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and LLaMA-7B models with beam search decod-992

ing took around 5 hours, while with greedy decod-993

ing, it took about 1 hour and 30 minutes.994

A.8 Parameters for Package995

For evaluating summaries, we loaded ROUGE and996

BERTScore from the evaluate package (version:997

0.4.1).998

14



Method Text

Source SUBREDDIT: r/relationships TITLE: Is she [21] playing hard to get or uninterested in
me?[22/M]POST: Hey guys first post here. So I’ll try to make this quick, I’ve been out of
the dating scene for a few years now and need advice with a girl i currently like. Her and I met
in class and have been talking for not too long a month or so. We have tons in common I have
gotten her number and we text every now and then (more on that later.) But I have really I’ve
made the most progress in the past week. So everything explained further takes place in a span
of a week. I’ve hung out with her a few times. The times we have hung out have been good we
seem to hit it off. She’s kinda touchy and takes lots of pictures of us (bff on sc if that means
anything.) She said things like I’m special for getting to see her act in her goofy way. She even
made and brought me a sandwich for when we were studying together. But ever since then she
seems less interested in me and we do not text as often. Which is weird cuz that was to me at
least the time we hit it off the most. Before We had been texting all day but now barely at all and
remember this is all in a span of less than a week. Most recently we were supposed to hangout
but she said she forgot (which is a big red flag I know) but we did reschedule for another specific
day. So is she uninterested? Playing hard to get? Or other? TL;DR:

MPO (yw
beam,y

l
greedy) \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd

\ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd \ufffd

MPO (yw
beam,y

l
temp5) Girl I like seems less interested in me after we hit it off for a week. Is she uninterested? Playing

hard to get? Or other?

MPO (yw
temp5,y

l
beam) ive been talking to a girl for less than a month and we seem to hit it off but now she seems less

interested.

Table 8: Example of summaries with different combinations of preference pairs. In the case of (yw
beam,y

l
greedy),

the quality of the generated summaries significantly deteriorated. When there is a clear distinction between preferred
data and rejected data, as observed in the two models below, the generated summaries remain similar even if the
preferred and rejected data are swapped.

Method Text

Source SUBREDDIT: r/AskReddit TITLE: Any doctors or med students lurking? What is the process
to become a doctor like? POST: I would like to become an anesthesiologist one day. I have
thought about this a lot and would like to hear what it’s like from some insiders. I am really not
the type who can sit behind a desk all day. I’m prepared to sit at desks for studying, but I can’t
do it for 30+ years. I don’t want to wear a suit and tie. I like to be up running around. Nothing
else really interests me aside from extreme sports. I want to put my work in now and come out
making a high salary. I don’t want to climb the rungs of a corporate ladder. I’ve had friends with
dads in construction, working 80+ hours a week. My dad as an engineer and programmer worked
80+ hours a week for years and his salary still isn’t as high as an anesthesiologists (it’s great for
an engineer). I really just want to become an anesthesiologist.TL;DR:

SFT I want to become an anesthesiologist. I’m not sure if I’m going about it the right way.

MPO (iteration 1) I want to become an anesthesiologist. I want to know what it’s like from an insider. What is the
process like?

MPO (iteration 2) I want to become an anesthesiologist. I want to know what it’s like from an insider. What is the
process to become a doctor like?

MPO (iteration 3) Any doctors or med students lurking? What is the process to become a doctor like? I want
to become an anesthesiologist one day.

Table 9: Example summaries for iterative preference optimization. As the iterations progress, an increase in the
extractiveness of the summaries is observed, with summaries increasingly incorporating sentences directly from the
source. Sentences in bold indicate exact matches to the source text.

Dataset Method AlignScore (↑) BARTScore(↑) ROUGE-L(↑)

XSUM

SFT 61.86 -1.80 36.42
MPO (yw

beam,y
l
temp) 66.42 -1.80 35.78

Lookahead (Wan et al., 2023) 67.78 -1.76 34.3

MPO* (yw
Lookahead,y

l
temp) 68.85 -1.73 34.93

Table 10: Results of Experiments for the Encoder-Decoder Model.
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