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Abstract001

Scientific figure interpretation is crucial for002
AI scientific assistants built on Large Vision003
Language Models, yet current datasets mainly004
cover restricted scientific domains, and lim-005
ited figure complexity (like charts). We ad-006
dress this gap with a comprehensive dataset007
from peer-reviewed Nature Communications008
articles spanning 72 scientific fields, featuring009
complex visualizations that require graduate-010
level expertise to interpret. Evaluation of 19011
proprietary and open-source models on figure012
captioning and multiple-choice tasks, along-013
side human expert annotation, revealed signifi-014
cant performance gaps. Beyond benchmarking,015
our dataset enables effective large-scale train-016
ing. Fine-tuning Qwen2-VL-2B with our data017
outperformed GPT-4o and human experts in018
multiple-choice tasks, while continuous pre-019
training on interleaved article-figure data en-020
hanced downstream performance in materials021
science. The dataset has been made anony-022
mously available to support further research.1023

1 Introduction024

Recent advancements in Large Vision Language025

Models (LVLMs) (Li et al., 2023; Zhu et al., 2023;026

Liu et al., 2024; Chen et al., 2024c; Bai et al.,027

2023b; Achiam et al., 2023; Team et al., 2023; An-028

thropic, 2024a; Wang et al., 2024a), have demon-029

strated remarkable capabilities in solving problems030

involving visual context. The growing capabilities031

of LVLMs make them promising as AI-driven sci-032

entific assistants capable of solving problems and033

assisting in research in various science domains.034

A critical aspect of this assistance is interpreting035

the figures in research articles, which often con-036

tain rich, compressed, and complex information,037

requiring domain-specific expertise to understand.038

Current LVLM evaluations focus mainly on bar039

charts (Kahou et al., 2017; Masry et al., 2022;040

1The links to data and code are provided in Appendix A.1.1
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Figure 1: Top 20 out of 72 science subjects with most
articles in our dataset MMSCI. The corresponding
numbers of papers and figures (in brackets) are shown.

Roberts et al., 2024; Wang et al., 2024b) and sim- 041

ple figures in limited science domains (Kembhavi 042

et al., 2017; Lu et al., 2022; Yue et al., 2023, 2024; 043

Li et al., 2024; Chen et al., 2024a). Scientific arti- 044

cles, however, contain diverse visualizations, like 045

microscopy images, molecular structures, astro- 046

nomical images, phylogenetic trees, and various 047

specialized plots, requiring graduate-level domain 048

expertise for proper interpretation. 049

To bridge this gap, we introduce MMSCI, a com- 050

prehensive multimodal dataset curated from open- 051

access Nature Communications articles2 under CC 052

BY 4.0 license3. The dataset encompasses 72 scien- 053

tific disciplines, containing 131k articles and 742k 054

figures across diverse visualization types, with dis- 055

cipline distribution shown in Figure 1. To evaluate 056

LVLMs’ understanding of these complex scientific 057

figures requiring graduate-level expertise, we de- 058

veloped benchmark tasks for figure captioning and 059

multiple-choice questions across different settings. 060

Our evaluation revealed wide performance gaps 061

among LVLMs. For multiple-choice questions, 062

many open-source models performed at random- 063

guess levels, though Qwen2-VL-7B (Wang et al., 064

2https://www.nature.com/ncomms/
3https://www.nature.com/ncomms/open-access
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Quantitative Data Visualization Charts (53.5%): 
For charts and graphs displaying quantitative data, such as 
scatter plots, bar graphs, and line charts.

Schematic Diagrams (13.2%): 
Simplified and symbolic representations of systems, processes, 
or structures to explain how something works or is constructed.

Microscopic photographs(14.7%): 
Photographs or images captured using a microscope,
revealing details not visible to the naked eye.

Simulated Images (3.4%): 
Computer-generated images or visualizations 
created to model, predict, or illustrate theoretical 
scenarios, processes, or phenomena.

Geographical and Environmental Maps (1.2%):
Visual representations of geographical areas or 
environmental data, often used for navigation, analysis, or 
to illustrate spatial relationships and patterns in maps.

Macroscopic photographs (5.2%): 
Images or photographs of objects or scenes that are 
visible to the naked eye, often used for visual analysis.

Experimental Results Visualizations (8.8%): 
For images that display results from experimental procedures, 
such as Western blots, PCR results, and gel electrophoresis.

Figure 2: Examples of the heterogeneous types of scientific figures in MMSCI, collected from open-access,
peer-reviewed articles in Nature Communications.

2024a) and MiniCPM-V-2.6 (Yao et al., 2024)065

matched proprietary models like Gemini-1.5-Flash066

(Reid et al., 2024) and Claude-3-Opus (Anthropic,067

2024a). GPT-4o (Achiam et al., 2023) and Claude-068

3.5-Sonnet (Anthropic, 2024b) led significantly.069

Human expert evaluations confirmed top models070

performed comparable to or exceeded domain ex-071

perts, highlighting both task difficulty and these072

models’ potential as scientific assistants. While all073

models struggled with precise figure caption gen-074

eration, especially for nuanced semantics, Claude-075

3.5-Sonnet and GPT-4o still significantly outper-076

formed others.077

Our dataset also serves as a rich training re-078

source with high-quality research content across079

diverse subjects. Converting task-specific data to080

instruction-following formats for fine-tuning sig-081

nificantly improved Qwen2-VL-2B (Wang et al.,082

2024a), achieving top multiple-choice accuracy on083

our benchmark and better performance on other084

datasets, though captioning remained challenging.085

Pre-training on interleaved article text and figures086

also enhanced material generation performance, a087

critical materials science task.088

Our contributions are threefold: (1) Data diver-089

sity, scope and quality: Our dataset comprises high-090

quality, peer-reviewed academic articles spanning091

72 scientific disciplines, featuring diverse figure092

types beyond charts. (2) Challenging benchmark:093

Our evaluation framework includes varied task set-094

tings for comprehensive assessment, with model 095

and human expert performance highlighting the 096

task’s complexity. (3) Rich training resources: We 097

provide valuable resources for model improvement, 098

including task-specific multimodal fine-tuning data 099

and interleaved article-figure data for continuous 100

LVLM pre-training, demonstrating potential for 101

enhancing scientific knowledge comprehension. 102

2 Related Dataset Work 103

Scientific Figure Understanding. Scientific fig- 104

ure interpretation research has evolved consider- 105

ably, but as Table 1 shows, existing datasets pre- 106

dominantly feature simple charts requiring general 107

interpretation skills rather than specialized knowl- 108

edge. Early synthetic datasets (Chen et al., 2020; 109

Kahou et al., 2017; Kafle et al., 2018) focused on 110

basic data visualizations, while later efforts like 111

FigureSeer (Siegel et al., 2016) and SciCap (Yang 112

et al., 2023) extracted figures from computer sci- 113

ence papers on arXiv. SciFiBench (Roberts et al., 114

2024) expanded SciCap with additional tasks, and 115

CharXiv (Wang et al., 2024b) manually selected 116

chart figures from arXiv. Though ArxivQA/Cap 117

(Li et al., 2024) broadened scope to 32 arXiv sub- 118

jects beyond charts, it remains CS/mathematics- 119

centric with limited natural science coverage and 120

uses non-peer-reviewed papers. Our dataset distin- 121

guishes itself through peer-reviewed Nature Com- 122

munications articles spanning 72 subjects, compre- 123
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Table 1: Comparison with prior scientific figure understanding benchmark datasets. *The number of subjects
in each work is taken from the original paper that uses different taxonomies, offering a sense of the relative coverage
across datasets rather than direct quantitative comparison.

Benchmark Dataset Data Source Peer-reviewed # Subjects* Image Type Annotations Training Set

FigureQA (Kahou et al., 2017) Synthetic Data N/A N/A Charts Synthetic ✗

DvQA (Kafle et al., 2018) Synthetic Data N/A N/A Charts Synthetic ✗

SciCap (Yang et al., 2023) CS Arxiv Papers ✗ 1 (CS) Charts Authentic ✗

SciFiBench (Roberts et al., 2024) CS Arxiv Papers ✗ 1 (CS) Charts Authentic ✗

CharXiv (Wang et al., 2024b) Arxiv Papers ✗ 8 Charts Human-picked ✗

ArxivCap/QA (Li et al., 2024) Arxiv Papers ✗ 32 Open Category Authentic/Synthetic ✓

MMSCI (Ours) Nature Communications ✓ 72 Open Category Authentic ✓

Table 2: The key statistics of MMSCI, including the source data and the constructed benchmark test/validation
(dev) set and the data for visual fine-tuning in the training set.

Source dataset Number Benchmark test/dev set Number Training set Number
Total subjects 72 Used articles 1,418/1,414 Used articles 128,561
Total articles 131,393 Figure Captioning 1,218 /1,412 Figure Captioning 725,646
Total figures 742,273 Fig2Cap Matching 1,188/1,297 Fig2Cap Matching 84,328
Avg. caption length 153 SubFig2Cap Matching 1,119/1,214 SubFig2Cap Matching 53,882
Avg. figures per article 5.65 SubCap2Fig Matching 1,114/1,221 SubCap2Fig Matching 107,098
Avg. abstract length 150 Multi-turn conversation 108,843
Avg. article length 7,457 Total samples 1,079,797

hensive natural science coverage, and rich train-124

ing resources for enhancing scientific figure under-125

standing.126

Multimodal Science Problems. Recent LVLM127

evaluation studies assess simple image comprehen-128

sion rather than complex scientific figure under-129

standing. Existing datasets use straightforward vi-130

suals not requiring expert knowledge. ScienceQA131

(Lu et al., 2022) covers K-12 content. SciBench132

(Wang et al., 2023) spans only three disciplines.133

MMMU (Yue et al., 2023) and MMMU-Pro (Yue134

et al., 2024) have limited natural science coverage135

with image understanding not being their primary136

focus, and MMStar (Chen et al., 2024a) offers par-137

tial scientific scope. Our work uniquely targets138

complex scientific figures requiring graduate-level139

domain expertise across disciplines, with potential140

applications for constructing multimodal science141

problems in future research.142

3 Data Curation143

Source Data Collection. We collected our144

dataset from Nature Communications—comprising145

open-access, peer-reviewed papers across 5 ma-146

jor categories and 72 subjects (top 20 shown in147

Figure1, complete list in Appendix Table 7). We148

gathered article information (title, abstract, main149

body, references) directly from article webpages,150

while figures and captions came from dedicated fig-151

ures pages, avoiding PDF extraction quality issues.152

Mathematical formulas were converted to plain text153

using pylatexenc.4 The peer-reviewed nature of 154

the content ensured high quality, requiring no ad- 155

ditional filtering. Our crawl (up to 2024/04/15) 156

yielded 131,393 articles and 742,273 figures. More 157

statistics are shown in Table 2. 158

Sub-caption Extraction. Many figures in the 159

dataset consist of multiple sub-figures in a single 160

image, with captions that include a main caption 161

and descriptions of each sub-figure (sub-caption), 162

as illustrated in Figure 3. We developed a regular 163

expression matching function to identify sub-figure 164

indices at the beginning of sentences in alphabetical 165

order (a to z), extracting and identifying 514,054 166

sub-captions/figures, which aids in the consecutive 167

construction of our benchmark. 168

Heterogeneous Figure Types. We categorized 169

(sub-)figures in MMSCI into seven major types, 170

focusing on smallest individual components when 171

sub-figures were present. After manual review, 172

we employed GPT-4o to classify images within 173

the benchmark test set (see next section for data 174

splits). Figure 2 shows examples of these types, 175

with detailed statistics in Appendix Section A.1.3. 176

While charts comprise approximately half of the 177

figures like in previous benchmarks, we identified 178

six additional major types that vary significantly 179

across scientific disciplines. 180

4https://github.com/phfaist/pylatexenc
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Fabrication of freestanding single-crystalline PbZrO3 (PZO) membranes. a Schematics of the 
whole fabrication process as depositing PbZrO3/Sr3Al2O6 (SAO) heterostructure on SrTiO3 (STO) 
substrates, releasing PbZrO3 films from the substrates by water etching, and then transferring 
PbZrO3 membranes to other substrates. b Optical images of a 2.5 mm × 2.5 mm PbZrO3 membrane 
transferred to polydimethylsiloxane (PDMS) with good flexibility. c Surface morphology of transferred 
PbZrO3 on platinized silicon substrate scanned by AFM. d X-ray diffraction patterns of as-grown 
SrTiO3/Sr3Al2O6/PbZrO3 heterostructure and freestanding PbZrO3 membranes on the platinized silicon 
substrate. a.u., arbitrary units. e The RSM studies of as-grown SrTiO3/Sr3Al2O6/PbZrO3 heterostructure 
around (103) diffraction. f Top-view TEM image of a freestanding PbZrO3 membrane supported by Cu grid 
with lacey carbon film. g Atomic-resolution HAADF-STEM image of a freestanding PbZrO3 membrane 
from the top view. h Selected-area electron diffraction pattern of freestanding PbZrO3 membrane.

Source: https://www.nature.com/articles/s41467-024-47419-w/figures/1

User: summarize the content in the figure based on the article. Article: {article}
Assistant:

User: which of the following options best describe sub-figure (d)?
A. X-ray diffraction patterns of as-grown SrTiO3 … B. Selected-area electron diffraction pattern …
C. Atomic-resolution HAADF-STEM image of a … D. The RSM studies of as-grown SrTiO3 /Sr3Al2O6 … 
Assistant: A

User: Which of the following subfigure best  matches this description: Optical images of a 2.5 mm ×
2.5 mm PbZrO3 membrane transferred to polydimethylsiloxane (PDMS) with good flexibility ?
A. sub-figure (a) B. sub-figure (b) C. sub-figure (c) D. sub-figure (d) 
E. sub-figure (e) F. sub-figure (f) G. sub-figure (g) H. sub-figure (h) 
Assistant: B

Figure 3: Illustration of the benchmark data in MMSCI. This example is taken from (Guo et al., 2024). The
figure (left) contains multiple sub-figures with a main caption (bold) and color-coded sub-captions corresponding to
each sub-figure. These sub-figures and sub-captions are used to construct tasks for figure captioning (upper right),
sub-figure to sub-caption matching (center right), and sub-caption to sub-figure matching (lower right).

4 Benchmarks181

We developed two benchmark tasks with varying182

settings to comprehensively test models’ under-183

standing of scientific figures and content (Figure 3).184

MMSCICAP: Scientific Figure Captioning.185

Scientific figure captioning in MMSCI presents186

distinct challenges beyond natural image caption-187

ing, requiring graduate-level domain expertise and188

article context understanding. These captions av-189

erage 153 words, substantially longer than those190

in natural image datasets and ArxivCap (Li et al.,191

2024), creating a particularly demanding bench-192

mark. We evaluate captioning under three settings:193

(1) Figure-only captioning, where models gen-194

erate captions solely from figures; (2) Abstract-195

grounded captioning, providing both figures and196

paper abstracts as context; and (3) full article con-197

text evaluation, limited to long-context proprietary198

models due to length constraints (detailed in Ap-199

pendix A.2.2).200

For evaluation, we use both traditional met-201

rics (BLEU (Papineni et al., 2002), ROUGE (Lin,202

2004), METEOR (Banerjee and Lavie, 2005),203

BERTScore (Zhang et al., 2019), CIDEr (Vedantam204

et al., 2015)) and two LLM-based metrics tailored205

for scientific captions: modified FACTSCORE (Min206

et al., 2023) and G-EVAL (Liu et al., 2023b). Our207

FACTSCORE variant breaks generated captions208

into atomic units, evaluates support from ground-209

truth captions on a 0-1 scale, and applies a brevity210

penalty for concise captions:211

f(y) =
1

|Ay|
∑
a∈Ay

ϕ(a, C) · exp(min(1− γ

Ay
, 0)).212

We set γ to 10 in our evaluation. This metric fo- 213

cuses on precision rather than recall. G-EVAL rates 214

overall quality on a 1-5 scale by comparing with 215

reference captions. 216

MMSCIQA: Figure Caption Matching. We 217

evaluate models’ figure comprehension abilities us- 218

ing multiple-choice questions across three settings: 219

(1) Figure-to-Caption (Fig2Cap): Models select 220

the correct main caption from four options, with 221

distractors from other figures in the same article, 222

testing holistic figure understanding. (2) Subfigure- 223

to-Subcaption (SubFig2Cap): Given a sub-figure, 224

models identify its corresponding sub-caption from 225

four choices within the same figure, evaluating 226

component-specific interpretation. (3) Subcaption- 227

to-Subfigure (SubCap2Fig): Given a sub-caption, 228

models select its matching sub-figure from all sub- 229

figures within the same figure, testing text-to-visual 230

association abilities. 231

Data Split. We allocated 1% of articles from 232

each subject to both test and validation sets, yield- 233

ing 1,418 test and 1,414 validation articles (5-50 234

articles per subject). Test samples were derived 235

from unique articles to prevent content overlap. 236

For caption tasks, we required a minimum length 237

of 50 words. Each task setting comprised around 238

1,200 samples, balancing coverage and evaluation 239

costs. 240

5 Training Resources 241

Our dataset consists of rich articles and figure data, 242

which we explore as training resources to enhance 243

models’ capabilities in comprehending scientific 244

figures and content. 245
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Table 3: Performance on scientific figure captioning. B2, RL, M, BS, CD, FS, and GE denote BLEU-2, ROUGE-L,
METEOR, BERTScore, CIDEr, FActScore, and G-Eval, respectively. *LLM-based evaluation results, using GPT-4o,
are reported on a randomly selected subset of 200 samples. Best results are bolded, with second-best underlined.

Model Image-only Captioning Abstract-grounded Captioning

B2 RL M BS CD FS* GE* B2 RL M BS CD FS* GE*

Open-source Models
Kosmos2 4.94 11.69 14.53 77.51 0.97 0.87 1.12 2.90 11.81 19.54 79.09 1.62 3.99 1.39
LLaVA1.5-7B 3.15 12.56 11.80 79.93 0.17 3.89 1.08 3.70 13.97 14.54 81.20 0.76 9.07 2.02
LLaVA1.6-Mistral-7B 2.8 10.97 20.45 79.53 0.08 5.17 1.23 3.90 12.70 21.49 80.84 0.48 7.67 1.47
Qwen-VL-7B-Chat 10.02 14.78 15.34 81.95 1.43 3.06 1.28 8.80 15.55 16.02 81.87 2.78 9.14 1.64
InternVL2-2B 1.69 9.60 17.74 78.89 0.03 5.99 1.76 2.27 11.74 18.45 80.88 0.96 10.38 2.17
InternVL2-8B 2.50 11.39 21.07 79.41 0.00 8.01 2.63 3.74 12.30 22.66 80.57 0.02 9.98 3.00
InternVL2-26B 4.18 13.26 24.21 81.02 0.19 12.43 3.01 5.21 14.92 23.19 80.27 2.30 12.31 3.20
IDEFICS2-8B 6.18 9.40 6.51 80.30 0.21 2.56 1.40 6.96 10.81 8.06 80.30 0.65 5.17 1.96
IDEFICS3-8B-Llama3 1.85 10.11 19.09 78.65 0.00 7.26 1.71 2.33 11.28 20.61 79.42 0.15 7.71 1.98
MiniCPM-V-2.6 4.75 14.57 24.84 81.19 1.42 11.15 2.96 6.11 15.36 25.09 82.68 3.27 12.93 2.95
Llama3.2-11B-Vision 2.68 12.98 21.21 78.89 0.08 8.27 2.46 2.60 11.24 22.63 79.63 0.00 9.55 2.18
Qwen2-VL-7B 3.60 12.96 23.88 80.06 0.00 10.03 3.39 4.73 14.45 26.00 81.21 0.19 10.36 3.45
Qwen2-VL-2B 3.45 12.74 21.39 80.03 0.38 9.94 2.31 5.68 14.47 21.77 81.23 1.43 11.88 2.64
Qwen2-VL-2BMMSCI 16.42 19.77 19.74 83.56 3.26 11.72 2.91 17.69 20.70 21.44 83.78 5.66 13.57 3.18

Proprietary Models
Gemini-1.5-Flash 4.84 15.49 26.82 81.10 0.08 8.18 3.70 5.24 16.03 28.71 81.80 0.00 10.14 4.08
Gemini-1.5-Pro 5.40 16.38 27.06 81.13 0.19 14.59 3.79 5.30 16.89 28.91 81.93 0.00 13.76 4.08
Claude-3.5-Sonnet 5.01 15.54 26.32 81.76 0.65 9.39 3.53 5.94 16.65 27.52 81.76 0.46 12.11 4.04
GPT-4V 4.97 14.86 26.62 81.75 0.37 14.17 3.69 5.24 15.65 27.62 82.37 0.20 19.52 4.13
GPT-4o 4.93 15.59 27.02 81.11 0.27 13.20 4.01 5.57 16.36 28.37 81.84 0.36 18.87 4.22

Task-specific Multimodal Training Data. We246

developed a comprehensive multimodal training247

dataset pairing single-turn examples (multiple-248

choice and abstract-grounded captioning) with249

multi-turn chat discussing the figure content.250

Specifically, we transformed captions into multi-251

turn question-answer pairs using diverse templates,252

where each turn discusses the content within a253

panel sub-figure. This ensure quality by deriving254

all responses from original article content. This255

leads to more than 1M training instances. Fine-256

tuning Qwen2-VL-2B (Wang et al., 2024a) for one257

epoch produced Qwen2-VL-2BMMSCI.258

Interleaved Data for Pre-training. MMSCI in-259

cludes full article content and figures, naturally260

forming interleaved text and image data suitable261

for pre-training LVLMs (Lin et al., 2023). We dis-262

cuss the usage of this interleaved data in Section 7.263

6 Benchmark Evaluation Results264

Evaluated Models. We evaluated a wide range of265

LVLMs spanning proprietary models (Gemini-1.5-266

Flash/Pro (Reid et al., 2024), Claude-3-Opus (An-267

thropic, 2024a), Claude-3.5-Sonnet (Anthropic,268

2024b), GPT-4V/4o (Achiam et al., 2023)), and269

open-source (Kosmos-2 (Peng et al., 2023), Qwen-270

VL-7B-Chat (Bai et al., 2023a), Qwen2-VL-271

2B/7B (Wang et al., 2024a), LLaVA1.5/NeXT (Liu272

et al., 2024, 2023a), IDEFICS2/3 (Laurençon et al.,273

2024b,a), InternVL2 series (Chen et al., 2024b), 274

and Llama3.2-11B-Vision (Team, 2024)). Specific 275

model versions are detailed in Appendix A.2.1. 276

Scientific Figure Captioning Results. Table 3 277

shows that abstract grounding consistently im- 278

proves caption quality across all models by pro- 279

viding essential context. On overlap-based metrics, 280

our fine-tuned model achieves high scores, likely 281

from learning the concise caption style during train- 282

ing. On LLM-based metrics, proprietary models 283

significantly outperform open-source counterparts, 284

particularly on G-EVAL (overall caption similarity). 285

While our fine-tuned model performs comparably 286

with proprietary models on FACTSCORE (precision 287

in component description), it still falls short of sat- 288

isfactory performance, highlighting the significant 289

model capabilities required for precise scientific 290

figure description. 291

Multi-choice Question Results. Table 5 292

presents multi-choice results across three settings. 293

In the most challenging Figure-to-Caption (Set- 294

ting I) task which requires models to identify 295

correct summaries of multi-panel figures (Fig- 296

ure 7, Appendix), our fine-tuned model outper- 297

formed the strongest proprietary model by nearly 298

10%. For SubFig2Cap (Setting II) and SubCap2Fig 299

(Setting III), proprietary models significantly out- 300

performed most open-source models, suggesting 301

limitations in identifying nuanced figure content 302
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Table 4: Model performance on MathVista (Lu et al., 2023) and TextbookQA (Kembhavi et al., 2017).

Model MathVista TextbookQA
GPS MWP VQA FQA TQA All Diagram Non-Diagram

Qwen2-VL-2B 17.73 25.00 68.48 59.48 57.01 44.07 25.40 24.44
Qwen2-VL-2BMMSCI 32.02 50.00 62.64 56.52 61.68 49.07 29.54 25.11

Table 5: Accuracies (%) on multiple-choice questions.
Setting I, II, and III denote Fig2Cap, SubFig2Cap, and
SubCap2Fig, respectively.

Model I II III Avg.

Open-source Models
Kosmos2 23.99 23.95 24.33 24.09
LLaVA1.5-7B 32.74 24.31 22.80 26.75
LLaVA1.6-Mistral-7B 34.76 20.38 24.15 26.60
Qwen-VL-7B-Chat 39.56 19.93 27.83 29.23
InternVL2-2B 42.76 33.07 38.42 38.18
InternVL2-8B 52.78 49.60 40.13 47.62
InternVL2-26B 50.59 57.82 71.63 59.81
IDEFICES2-8B 48.65 25.83 21.10 32.21
IDEFICES3-8B-Llama3 50.42 28.43 29.98 36.57
MiniCPM-V-2.6 53.20 58.27 61.67 57.61
Llama3.2-11B-Vision 54.97 45.04 71.18 57.00
Qwen2-VL-7B 66.16 73.10 79.80 72.87
Qwen2-VL-2B 60.61 37.62 55.12 51.30
Qwen2-VL-2BMMSCI 78.62 83.02 83.57 81.67

Proprietary Models
Gemini-1.5-Flash 54.77 77.84 64.41 65.24
Gemini-1.5-Pro 62.79 81.41 77.16 73.52
Claude-3-Opus 52.19 53.17 60.23 55.13
Claude-3.5-Sonnet 68.77 85.34 87.16 80.18
GPT-4V 60.43 75.07 76.12 70.45
GPT-4o 67.42 87.40 84.65 79.57

Random Guess 25.86 24.63 20.62 23.24
PhD Experts 64.18 71.64 72.72 69.51

within figures. While some open-source models303

performed at random-chance levels (LLaVA1.5,304

LLaVA1.6, Qwen-VL-7B-Chat), others demon-305

strated strong competitiveness (MiniCPM-V-2.6,306

Llama3.2-11B-Vision, Qwen2-VL-7B). Despite307

Claude-3.5-Sonnet and GPT-4V leading among308

proprietary models, our fine-tuned Qwen2-VL-309

7BMMSCI achieved the highest overall performance.310

PhD Expert Evaluations. To establish human311

performance baselines and validate question qual-312

ity, we recruited PhD experts through the Pro-313

lific platform5. We organized our dataset into 10314

major scientific categories aligned with Prolific’s315

specialization areas: Material Science, Chem-316

istry, Physics, Biochemistry, Environment, Cli-317

mate Sciences, Earth Sciences, Biological Sciences,318

Biomedical Sciences, and Health/Medicine. For319

each category, we selected 75 questions (25 per set-320

ting) and recruited three evaluators who hold Phd321

degrees in that domain, totaling 30 experts. These322

5https://www.prolific.com/

specialists provided two assessments: (1) Ques- 323

tion Quality Assessment: rating clarity and effec- 324

tiveness at testing domain knowledge on a 5-point 325

scale; and (2) Human Expert Performance: an- 326

swering questions with a one-minute time limit to 327

establish a performance baseline. The experts gave 328

an average quality score of 4.01 (4.09 Fig2Cap, 329

4.03 SubFig2Cap, 3.91 SubCap2Fig), where 4 indi- 330

cates questions are clear, answerable, and require 331

adequate scientific understanding, validating our 332

benchmark’s quality. Notably, as shown in Table 5, 333

our fine-tuned model and leading proprietary mod- 334

els surpassed PhD-expert performance, likely re- 335

flecting models’ ability to rapidly process dense 336

scientific information across domains. This high- 337

lights both the task’s complexity and LVLMs’ po- 338

tential as efficient cross-domain scientific assistants. 339

Detailed human evaluation procedures appear in 340

Appendix A.2.3. 341

Performance on Other Datasets. We evaluated 342

our fine-tuned model on other multimodal datasets, 343

specifically MathVista (Lu et al., 2023), which fo- 344

cuses on mathematical reasoning in visual con- 345

texts. MathVista comprises five task types: ge- 346

ometry problem solving (GPS), math word prob- 347

lems (MWP), visual question answering (VQA), 348

figure question answering (FQA), and textbook 349

question answering (TQA). While VQA primar- 350

ily involves mathematical reasoning with natural 351

and synthetic images less related to scientific con- 352

tent, TQA most closely aligns with our focus, fea- 353

turing diagrams and questions from six grader’s 354

textbook. As shown in Table 4, our model’s per- 355

formance improved after training on our dataset, 356

with notable gains in GPS (geometry reasoning) 357

and TQA (scientific diagrams). Given TQA’s lim- 358

ited size within MathVista, we also evaluated on 359

the complete TextbookQA (Kembhavi et al., 2017) 360

test set, demonstrating improvements on both di- 361

agram and non-diagram problems. Notably, Text- 362

bookQA targets sixth-grade content, different from 363

our graduate-level scientific figures. 364

6

https://www.prolific.com/


Table 6: Evaluation of unconditional material generation covering validity, coverage and property distribution, and
stability checks. Performance reported over 10,000 samples.

Method Validity Check Coverage Property Distribution Metastable Stable
Structural↑ Composition↑ Recall↑ Precision↑ wdist (ρ)↓ wdist (Nel)↓ M3GNet ↑ DFT† ↑

Previous non-language baselines
CDVAE 1.000 0.867 0.992 0.995 0.688 1.432 22.1% 1.2%
LM-CH 0.848 0.836 0.993 0.979 0.864 0.132 N/A N/A
LM-AC 0.958 0.889 0.996 0.986 0.696 0.092 N/A N/A

GPT-4o with Few-shot Prompting
GPT-4o 5-shot 0.799 0.898 0.280 0.961 5.421 1.017 1.50% -
GPT-4o 10-shot 0.787 0.820 0.654 0.963 3.976 0.917 4.72% 0.09%
Gruver et al. (2024): LLaMA2 with Task-specific Fine-Tuning
LLaMA2-7B 0.967 0.933 0.923 0.950 3.609 1.044 33.6% 2.1%
LLaMA2-13B 0.958 0.923 0.884 0.983 2.086 0.092 34.3% 4.9%
LLaMA2-70B 0.997 0.949 0.860 0.988 0.842 0.433 50.1% 5.3%

Ours: LLaMA2 with Continuous Pre-Training on MMSCI plus Task-specific Fine-Tuning
LLaMA2-7BMMSCI 0.993 0.979 0.916 0.996 1.675 0.353 64.5% 8.2%

†Fraction of structures that are first predicted by M3GNet to have EM3GNet
hull < 0.1 eV/atom, and then verified with DFT to have EDFT

hull < 0.0 eV/atom.

Material Generation Prompt
Below is a description of a bulk material. The chemical formula is TbGdAl6. 
The band gap is 0.0. The spacegroup number is 187. Generate a 
description of the lengths and angles of the lattice vectors and then the 
element type and coordinates for each atom within the lattice:
6.3 6.3 4.6
90 90 120
Tb
0.65 0.43 0.78
Gd
…

Figure 4: The prompt for generating crystal structure.

7 A Case Study in Material Sciences365

Material science as the subject with the most arti-366

cles and figures in our dataset, is an important and367

highly interdisciplinary field that requires knowl-368

edge from various subjects. Given its signifi-369

cance, we conducted a case study to explore how370

our dataset could enhance material science knowl-371

edge. Previous research has investigated the ap-372

plication of language models to material science373

tasks (Walker et al., 2021; Rubungo et al., 2023;374

Miret and Krishnan, 2024). A recent study (Gru-375

ver et al., 2024) demonstrated promising results376

using LLaMA2 (Touvron et al., 2023) for mate-377

rial generation by representing crystal structures378

as text strings and training the model to generate379

these structures. However, LLaMA2’s scientific380

knowledge may be insufficient for fully understand-381

ing material generation principles. To address this382

limitation, we explored continuous pre-training of383

LLaMA2 using our interleaved scientific article384

and figure dataset, aiming to improve the model’s385

performance on stable material generation tasks.386

Visual Pre-Training on MMSCI. We continu-387

ously pre-trained the LLaMA2-7B model on our388

collected interleaved article text and figure images, 389

using data within materials science as well as other 390

eight related subjects in the same Physical Science 391

category. To achieve that, we leverage LLaVA’s 392

architecture (Liu et al., 2024), equipping LLaMA2 393

with a pre-trained CLIP ViT-L/14-336 (Radford 394

et al., 2021) as the visual encoder and a 2-layer 395

MLP as the projector. During training, we initially 396

kept the LLM frozen and used data from general 397

domains provided by (Liu et al., 2024) to initial- 398

ize the projector. We then trained the model on 399

the interleaved text and image data from general 400

domains in MMC4 (Zhu et al., 2024) to further 401

develop its image perception abilities, followed 402

by our collected interleaved articles and figures in 403

MMSCI to infuse scientific knowledge. In this 404

stage, we tuned both the LLM and the projector, 405

for one epoch. For the resulting multimodal model, 406

we use its LLM part, named LLaMA2-7BMMSCI, 407

for the subsequent material generation. 408

Fine-tuning for Materials Generation. Given 409

the LLM, we further fine-tune it for the material 410

generation task as in (Gruver et al., 2024). Specifi- 411

cally, periodic materials are characterized by a unit 412

cell that repeats infinitely in all three dimensions. 413

Each unit cell is specified by its side lengths (l1, 414

l2, l3) and angles (θ1, θ2, θ3). Within this lattice 415

structure, there are N atoms, each identified by an 416

element symbol, ei, and a set of 3D coordinates 417

(xi, yi, zi). The structure of a bulk material C can 418

be represented by: 419

C = (l1, l2, l3, θ1, θ2, θ3, 420

e1, x1, y1, z1, . . . , eN , xN , yN , zN ). (1) 421
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Structure Composition
Validity

0.92

0.96

1.00
0.993

0.979

0.985

0.974
0.971

0.935

0.993

0.932

0.979

0.935

MMSci+MMC4 (Vis+Text)
MMC4+MMSci (Text)
MMC4 (Vis+Text)

MMSci (Vis+Text)
No Additional Data

Figure 5: Ablation studies on the influence of different
pre-training data over LLaMA2-7B.

The prompt for generating these structures is shown422

in Figure 4. The blue part includes conditions such423

as the formula, space group, energy above hull, etc.424

The red part is the generated representation of the425

crystal structure, and the text above is the prompt.426

Following (Xie et al., 2021; Gruver et al., 2024),427

we use the MP-20 dataset (Jain et al., 2013) of428

45,231 stable materials, where successful genera-429

tion should produce at least metastable crystals.430

The training data incorporates both conditional431

generation prompts (single or multiple conditions)432

and infilling prompts for masked crystal structure433

strings. Training is limited to one epoch to maintain434

diversity in generated materials.435

Results. We evaluated unconditional mate-436

rial generation (10,000 structures, temperature437

0.7) (Xie et al., 2021; Gruver et al., 2024) using438

metrics for validity, coverage, property distribution,439

and stability (via M3GNet (Chen and Ong, 2022)440

and DFT (Hafner, 2008)). Table 6 shows GPT-441

4o fails without specific training, while LLaMA2-442

7B achieves superior results after continuous pre-443

training on our interleaved article-figure data plus444

multi-task fine-tuning, demonstrating best perfor-445

mance in compositional validity, coverage preci-446

sion, and the critical metastability and stability met-447

rics. These results highlight our dataset’s effective-448

ness in enhancing scientific knowledge acquisition449

in generative models.450

Ablation Studies. To understand the factors con-451

tributing to LLaMA2-7BMMSCI’s performance, we452

explored different pre-training data configurations:453

using only interleaved data from either MMC4454

(general interleaved data) or MMSCI, using inter-455

leaved data from MMC4 combined with text-only 456

data from MMSCI, and using no additional pre- 457

training data, followed by the same fine-tuning 458

setup. As shown in Figure 5, the text-only and 459

interleaved data from MMSCI achieved the top-2 460

overall performance when combined with MMC4 461

which equips the model to effectively read text and 462

interpret images within scientific articles. Using 463

both articles and figures led to better performance 464

than using text-only data from MMSCI, highlight- 465

ing the importance of understanding both figures 466

and content in scientific literature. In contrast, us- 467

ing only general domain data from MMC4 did not 468

result in improvements, and directly training on 469

MMSCI even slightly decreased performance in 470

structure validity. This is likely because incorporat- 471

ing visual information can confuse the model if it 472

has not been sufficiently pre-trained with general 473

interleaved data. Overall, continuous pre-training 474

on our data shows the potential to infuse scientific 475

knowledge that enhances downstream tasks. 476

8 Conclusion 477

In this work, we present MMSCI, a multidisci- 478

plinary multimodal dataset containing high-quality, 479

peer-reviewed articles and figures across 72 scien- 480

tific disciplines. Using this dataset, we construct 481

a challenging benchmark to evaluate the capabili- 482

ties of LVLMs in understanding scientific figures 483

and content, revealing significant deficiencies. Ad- 484

ditionally, we explore the use of our dataset as 485

a training resource to enhance models’ scientific 486

comprehension. By constructing the task-specific 487

multimodal training data and interleaving text and 488

image data for pre-training, we achieve improve- 489

ments on both our benchmark and the material 490

generation task. Our benchmark primarily focuses 491

on evaluating models’ understanding of scientific 492

figures using figures and captions. The dataset of- 493

fers rich resources that could be leveraged to create 494

additional tasks for assessing scientific knowledge 495

comprehension, which we plan to explore in fu- 496

ture work. Overall, we anticipate that MMSCI 497

will serve as a valuable resource for evaluating and 498

improving the scientific understanding of genera- 499

tive models, thereby advancing the development of 500

AI-based scientific assistants. 501

Limitations 502

Our dataset MMSCI provides a comprehensive 503

multimodal resource across 72 scientific disci- 504

8



plines, serving as both a benchmark and train-505

ing resource. However, our current exploration506

has limitations. Due to resource constraints, we507

were unable to synthesize large-scale, high-quality508

question-answer data using human experts or gener-509

ative models. Instead, our benchmark primarily as-510

sesses scientific figure understanding using original511

figures and captions from the articles, ensuring data512

quality. The task-specific data also demonstrates513

effectiveness in enhancing models’ scientific fig-514

ure comprehension capabilities. Additionally, the515

full article content alongside figures serves as rich516

pre-training data and presents opportunities for gen-517

erating additional synthetic data, including single-518

and multimodal questions evaluating models’ sci-519

entific knowledge. We believe MMSCI will serve520

as a valuable resource for the research community521

and will make all data publicly available.522

References523

2023. AI will transform science - now researchers must524
tame it. Nature, 621(7980):658.525

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal,526
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-527
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-528
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,529
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-530
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, and531
260 others. 2023. Gpt-4 technical report.532

Anthropic. 2024a. The claude 3 model family: Opus,533
Sonnet, Haiku.534

Anthropic. 2024b. Claude 3.5 sonnet.535

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,536
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,537
and Jingren Zhou. 2023a. Qwen-vl: A frontier large538
vision-language model with versatile abilities. arXiv539
preprint arXiv:2308.12966.540

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,541
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,542
and Jingren Zhou. 2023b. Qwen-vl: A versatile543
vision-language model for understanding, localiza-544
tion, text reading, and beyond.545

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An546
automatic metric for mt evaluation with improved cor-547
relation with human judgments. In Proceedings of548
the acl workshop on intrinsic and extrinsic evaluation549
measures for machine translation and/or summariza-550
tion, pages 65–72.551

Charles Chen, Ruiyi Zhang, Eunyee Koh, Sungchul552
Kim, Scott Cohen, and Ryan Rossi. 2020. Figure553
captioning with relation maps for reasoning. In Pro-554
ceedings of the IEEE/CVF Winter Conference on555
Applications of Computer Vision, pages 1537–1545.556

Chi Chen and Shyue Ping Ong. 2022. A universal graph 557
deep learning interatomic potential for the periodic 558
table. Nature Computational Science, 2(11):718– 559
728. 560

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang 561
Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, 562
Yu Qiao, Dahua Lin, and 1 others. 2024a. Are we 563
on the right way for evaluating large vision-language 564
models? arXiv preprint arXiv:2403.20330. 565

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, 566
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi 567
Hu, Jiapeng Luo, Zheng Ma, and 1 others. 2024b. 568
How far are we to gpt-4v? closing the gap to com- 569
mercial multimodal models with open-source suites. 570
arXiv preprint arXiv:2404.16821. 571

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo 572
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, 573
Xizhou Zhu, Lewei Lu, and 1 others. 2024c. Internvl: 574
Scaling up vision foundation models and aligning 575
for generic visual-linguistic tasks. In Proceedings of 576
the IEEE/CVF Conference on Computer Vision and 577
Pattern Recognition, pages 24185–24198. 578

Pedro da Silva-Coelho, Leonie I. Kroeze, Kenichi 579
Yoshida, Theresia N. Koorenhof-Scheele, Ruth 580
Knops, Louis T. van de Locht, Aniek O. de Graaf, 581
Marion Massop, Sarah Sandmann, Martin Dugas, 582
Marian J. Stevens-Kroef, Jaroslav Cermak, Yuichi 583
Shiraishi, Kenichi Chiba, Hiroko Tanaka, Satoru 584
Miyano, Theo de Witte, Nicole M. A. Blijlevens, 585
Petra Muus, and 4 others. 2017. Clonal evolution 586
in myelodysplastic syndromes. Nature Communica- 587
tions, 8(1):15099. 588

Daniel W Davies, Keith T Butler, Adam J Jackson, 589
Jonathan M Skelton, Kazuki Morita, and Aron Walsh. 590
2019. Smact: Semiconducting materials by anal- 591
ogy and chemical theory. Journal of Open Source 592
Software, 4(38):1361. 593

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke 594
Zettlemoyer. 2021. 8-bit optimizers via block-wise 595
quantization. arXiv preprint arXiv:2110.02861. 596

Nate Gruver, Anuroop Sriram, Andrea Madotto, An- 597
drew Gordon Wilson, C Lawrence Zitnick, and 598
Zachary Ulissi. 2024. Fine-tuned language models 599
generate stable inorganic materials as text. arXiv 600
preprint arXiv:2402.04379. 601

Yunting Guo, Bin Peng, Guangming Lu, Guohua Dong, 602
Guannan Yang, Bohan Chen, Ruibin Qiu, Haixia Liu, 603
Butong Zhang, Yufei Yao, and 1 others. 2024. Re- 604
markable flexibility in freestanding single-crystalline 605
antiferroelectric pbzro3 membranes. Nature Commu- 606
nications, 15(1):4414. 607

Jürgen Hafner. 2008. Ab-initio simulations of materials 608
using vasp: Density-functional theory and beyond. 609
Journal of computational chemistry, 29(13):2044– 610
2078. 611

9

https://api.semanticscholar.org/CorpusID:257532815
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.1038/ncomms15099
https://doi.org/10.1038/ncomms15099
https://doi.org/10.1038/ncomms15099


Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,612
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,613
and 1 others. 2021. Lora: Low-rank adaptation of614
large language models. In International Conference615
on Learning Representations.616

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei617
Chen, William Davidson Richards, Stephen Dacek,618
Shreyas Cholia, Dan Gunter, David Skinner, Ger-619
brand Ceder, and 1 others. 2013. Commentary: The620
materials project: A materials genome approach to621
accelerating materials innovation. APL materials,622
1(1).623

Kushal Kafle, Brian Price, Scott Cohen, and Christo-624
pher Kanan. 2018. Dvqa: Understanding data visual-625
izations via question answering. In Proceedings of626
the IEEE conference on computer vision and pattern627
recognition, pages 5648–5656.628

Samira Ebrahimi Kahou, Vincent Michalski, Adam629
Atkinson, Ákos Kádár, Adam Trischler, and Yoshua630
Bengio. 2017. Figureqa: An annotated fig-631
ure dataset for visual reasoning. arXiv preprint632
arXiv:1710.07300.633

Boseok Kang, Moonjeong Jang, Yoonyoung Chung,634
Haena Kim, Sang Kyu Kwak, Joon Hak Oh, and Kil-635
won Cho. 2014. Enhancing 2d growth of organic636
semiconductor thin films with macroporous struc-637
tures via a small-molecule heterointerface. Nature638
Communications, 5(1):4752.639

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk,640
Jonghyun Choi, Ali Farhadi, and Hannaneh Ha-641
jishirzi. 2017. Are you smarter than a sixth grader?642
textbook question answering for multimodal machine643
comprehension. In Proceedings of the IEEE Confer-644
ence on Computer Vision and Pattern recognition,645
pages 4999–5007.646

Hugo Laurençon, Andrés Marafioti, Victor Sanh, and647
Léo Tronchon. 2024a. Building and better under-648
standing vision-language models: insights and future649
directions. Preprint, arXiv:2408.12637.650

Hugo Laurençon, Léo Tronchon, Matthieu Cord,651
and Victor Sanh. 2024b. What matters when652
building vision-language models? Preprint,653
arXiv:2405.02246.654

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.655
2023. Blip-2: Bootstrapping language-image pre-656
training with frozen image encoders and large lan-657
guage models. In International conference on ma-658
chine learning, pages 19730–19742. PMLR.659

Lei Li, Yuqi Wang, Runxin Xu, Peiyi Wang, Xiachong660
Feng, Lingpeng Kong, and Qi Liu. 2024. Multimodal661
arxiv: A dataset for improving scientific comprehen-662
sion of large vision-language models. arXiv preprint663
arXiv:2403.00231.664

Chin-Yew Lin. 2004. Rouge: A package for automatic665
evaluation of summaries. In Text summarization666
branches out, pages 74–81.667

Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo 668
Molchanov, Andrew Tao, Huizi Mao, Jan Kautz, Mo- 669
hammad Shoeybi, and Song Han. 2023. Vila: On pre- 670
training for visual language models. arXiv preprint 671
arXiv:2312.07533. 672

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae 673
Lee. 2023a. Improved baselines with visual instruc- 674
tion tuning. arXiv preprint arXiv:2310.03744. 675

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 676
Lee. 2024. Visual instruction tuning. Advances in 677
neural information processing systems, 36. 678

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, 679
Ruochen Xu, and Chenguang Zhu. 2023b. G-eval: 680
Nlg evaluation using gpt-4 with better human align- 681
ment. arXiv preprint arXiv:2303.16634. 682

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun- 683
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai- 684
Wei Chang, Michel Galley, and Jianfeng Gao. 2023. 685
Mathvista: Evaluating mathematical reasoning of 686
foundation models in visual contexts. arXiv preprint 687
arXiv:2310.02255. 688

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai- 689
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter 690
Clark, and Ashwin Kalyan. 2022. Learn to explain: 691
Multimodal reasoning via thought chains for science 692
question answering. Advances in Neural Information 693
Processing Systems, 35:2507–2521. 694

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, 695
and Enamul Hoque. 2022. Chartqa: A benchmark 696
for question answering about charts with visual and 697
logical reasoning. arXiv preprint arXiv:2203.10244. 698

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike 699
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, 700
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. 701
Factscore: Fine-grained atomic evaluation of factual 702
precision in long form text generation. arXiv preprint 703
arXiv:2305.14251. 704

Santiago Miret and NM Krishnan. 2024. Are llms ready 705
for real-world materials discovery? arXiv preprint 706
arXiv:2402.05200. 707

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 708
Jing Zhu. 2002. Bleu: a method for automatic evalu- 709
ation of machine translation. In Proceedings of the 710
40th annual meeting of the Association for Computa- 711
tional Linguistics, pages 311–318. 712

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, 713
Shaohan Huang, Shuming Ma, and Furu Wei. 714
2023. Kosmos-2: Grounding multimodal large 715
language models to the world. arXiv preprint 716
arXiv:2306.14824. 717

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 718
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas- 719
try, Amanda Askell, Pamela Mishkin, Jack Clark, and 720
1 others. 2021. Learning transferable visual models 721
from natural language supervision. In International 722

10

https://doi.org/10.1038/ncomms5752
https://doi.org/10.1038/ncomms5752
https://doi.org/10.1038/ncomms5752
https://doi.org/10.1038/ncomms5752
https://doi.org/10.1038/ncomms5752
https://arxiv.org/abs/2408.12637
https://arxiv.org/abs/2408.12637
https://arxiv.org/abs/2408.12637
https://arxiv.org/abs/2408.12637
https://arxiv.org/abs/2408.12637
https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2405.02246


conference on machine learning, pages 8748–8763.723
PMLR.724

Machel Reid, Nikolay Savinov, Denis Teplyashin,725
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste726
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan727
Firat, Julian Schrittwieser, and 1 others. 2024. Gem-728
ini 1.5: Unlocking multimodal understanding across729
millions of tokens of context. arXiv preprint730
arXiv:2403.05530.731

Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel732
Albanie. 2024. Scifibench: Benchmarking large mul-733
timodal models for scientific figure interpretation.734
arXiv preprint arXiv:2405.08807.735

Andre Niyongabo Rubungo, Craig Arnold, Barry P736
Rand, and Adji Bousso Dieng. 2023. Llm-prop: Pre-737
dicting physical and electronic properties of crys-738
talline solids from their text descriptions. arXiv739
preprint arXiv:2310.14029.740

Noah Siegel, Zachary Horvitz, Roie Levin, Santosh741
Divvala, and Ali Farhadi. 2016. Figureseer: Parsing742
result-figures in research papers. In Computer Vision–743
ECCV 2016: 14th European Conference, Amsterdam,744
The Netherlands, October 11–14, 2016, Proceedings,745
Part VII 14, pages 664–680. Springer.746

Gemini Team, Rohan Anil, Sebastian Borgeaud,747
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu748
Soricut, Johan Schalkwyk, Andrew M Dai, Anja749
Hauth, and 1 others. 2023. Gemini: a family of750
highly capable multimodal models. arXiv preprint751
arXiv:2312.11805.752

Meta Llama Team. 2024. Llama 3.2: Revolutionizing753
edge ai and vision with open, customizable models.754

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-755
bert, Amjad Almahairi, Yasmine Babaei, Nikolay756
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti757
Bhosale, and 1 others. 2023. Llama 2: Open foun-758
dation and fine-tuned chat models. arXiv preprint759
arXiv:2307.09288.760

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi761
Parikh. 2015. Cider: Consensus-based image de-762
scription evaluation. In Proceedings of the IEEE763
conference on computer vision and pattern recogni-764
tion, pages 4566–4575.765

Jean-Philippe Vert. 2023. How will generative ai disrupt766
data science in drug discovery? Nature Biotechnol-767
ogy, 41(6):750–751.768

Nicholas Walker, Amalie Trewartha, Haoyan Huo,769
Sanghoon Lee, Kevin Cruse, John Dagdelen, Alexan-770
der Dunn, Kristin Persson, Gerbrand Ceder, and771
Anubhav Jain. 2021. The impact of domain-specific772
pre-training on named entity recognition tasks in ma-773
terials science. Available at SSRN 3950755.774

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-775
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin776
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei777

Du, Xuancheng Ren, Rui Men, Dayiheng Liu, 778
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024a. 779
Qwen2-vl: Enhancing vision-language model’s per- 780
ception of the world at any resolution. arXiv preprint 781
arXiv:2409.12191. 782

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, 783
Jieyu Zhang, Satyen Subramaniam, Arjun R Loomba, 784
Shichang Zhang, Yizhou Sun, and Wei Wang. 785
2023. Scibench: Evaluating college-level scientific 786
problem-solving abilities of large language models. 787
arXiv preprint arXiv:2307.10635. 788

Yu-Chuan Wang, Ko-Hsin Chin, Zhi-Le Tu, Jin He, 789
Christopher J. Jones, David Zamorano Sanchez, Fit- 790
nat H. Yildiz, Michael Y. Galperin, and Shan-Ho 791
Chou. 2016. Nucleotide binding by the widespread 792
high-affinity cyclic di-gmp receptor mshen domain. 793
Nature Communications, 7(1):12481. 794

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, 795
Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu, 796
Haotian Liu, Sadhika Malladi, and 1 others. 2024b. 797
Charxiv: Charting gaps in realistic chart under- 798
standing in multimodal llms. arXiv preprint 799
arXiv:2406.18521. 800

Logan Ward, Alexander Dunn, Alireza Faghaninia, 801
Nils ER Zimmermann, Saurabh Bajaj, Qi Wang, 802
Joseph Montoya, Jiming Chen, Kyle Bystrom, 803
Maxwell Dylla, and 1 others. 2018. Matminer: An 804
open source toolkit for materials data mining. Com- 805
putational Materials Science, 152:60–69. 806

Andrew D White. 2023. The future of chemistry is 807
language. Nature Reviews Chemistry, 7(7):457–458. 808

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina 809
Barzilay, and Tommi Jaakkola. 2021. Crystal dif- 810
fusion variational autoencoder for periodic material 811
generation. arXiv preprint arXiv:2110.06197. 812

Zhishen Yang, Raj Dabre, Hideki Tanaka, and Naoaki 813
Okazaki. 2023. Scicap+: A knowledge augmented 814
dataset to study the challenges of scientific figure 815
captioning. arXiv preprint arXiv:2306.03491. 816

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo 817
Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin 818
Zhao, Zhihui He, and 1 others. 2024. Minicpm-v: 819
A gpt-4v level mllm on your phone. arXiv preprint 820
arXiv:2408.01800. 821

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, 822
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, 823
Weiming Ren, Yuxuan Sun, and 1 others. 2023. 824
Mmmu: A massive multi-discipline multimodal un- 825
derstanding and reasoning benchmark for expert agi. 826
arXiv preprint arXiv:2311.16502. 827

Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, 828
Kai Zhang, Shengbang Tong, Yuxuan Sun, Ming 829
Yin, Botao Yu, Ge Zhang, and 1 others. 2024. 830
Mmmu-pro: A more robust multi-discipline mul- 831
timodal understanding benchmark. arXiv preprint 832
arXiv:2409.02813. 833

11

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://doi.org/10.1038/s41587-023-01789-6
https://doi.org/10.1038/s41587-023-01789-6
https://doi.org/10.1038/s41587-023-01789-6
https://doi.org/10.1038/ncomms12481
https://doi.org/10.1038/ncomms12481
https://doi.org/10.1038/ncomms12481


Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-834
berger, and Yoav Artzi. 2019. Bertscore: Evaluating835
text generation with bert. In International Confer-836
ence on Learning Representations.837

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan838
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.839
2024. Llamafactory: Unified efficient fine-tuning840
of 100+ language models. In Proceedings of the841
62nd Annual Meeting of the Association for Compu-842
tational Linguistics (Volume 3: System Demonstra-843
tions), Bangkok, Thailand. Association for Computa-844
tional Linguistics.845

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and846
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing847
vision-language understanding with advanced large848
language models. arXiv preprint arXiv:2304.10592.849

Wanrong Zhu, Jack Hessel, Anas Awadalla,850
Samir Yitzhak Gadre, Jesse Dodge, Alex Fang,851
Youngjae Yu, Ludwig Schmidt, William Yang Wang,852
and Yejin Choi. 2024. Multimodal c4: An open,853
billion-scale corpus of images interleaved with text.854
Advances in Neural Information Processing Systems,855
36.856

A Appendix857

A.1 Dataset Description858

A.1.1 Data and Code Access859

We provide access to our data, model checkpoints,860

and code through the following links:861

• Source dataset, including the collected862

articles and figures:863

https://mmsci.s3.amazonaws.com/864

rawdata.zip.865

• Benchmark sets, including the dev and test866

sets for evaluation and the train set consisting867

of task-specific training data:868

https://mmsci.s3.amazonaws.com/869

benchmark.zip.870

• Pre-training data, including the interleaved871

article and figure data for pre-training:872

https://mmsci.s3.amazonaws.com/873

pretraindata.zip.874

• Checkpoints, including the Qwen2-VL-2B875

model fine-tuned on our task-specific training876

data (Qwen2-VL-2BMMSCI):877

https://mmsci.s3.amazonaws.com/878

checkpoints.zip879

• Code: All the code used in our experiments880

is available at:881

https://anonymous.4open.science/r/882

MMSci-2321883

A.1.2 Subjects 884

Our dataset spans five major categories and in- 885

cludes 72 distinct scientific disciplines, represent- 886

ing a broad range of scientific knowledge. The 887

categorization follows the classifications used by 888

Nature journals.6. The visualizations are shown in 889

Figure 6, and detailed statistics of these subjects 890

are provided in Table 7. The table includes the 891

number of articles, figures, and the average length 892

of figure captions, article abstracts, and full article 893

content. 894

A.1.3 Image Types 895

Manual Review Initially, our authors conducted 896

a thorough manual inspection of the figures and 897

sub-figures from 100 randomly sampled articles 898

from the five major categories in MMSCI. This 899

involved summarizing and categorizing various po- 900

tential figure types present in the benchmark test 901

set. From this detailed analysis, we identified and 902

categorized the figures into seven primary types, 903

as summarized in Table 8. These categories were 904

derived based on the smallest discernible compo- 905

nents, specifically sub-figures, whenever they were 906

present. 907

Automated Classification Using GPT-4o Fol- 908

lowing this review, we employed GPT-4o to auto- 909

matically classify the images in the benchmark test 910

set. We first used the human-annotated results of 911

200 images from the previous step as the golden 912

labels and then prompted GPT-4o to classify them 913

into categories. Cohen’s Kappa score was calcu- 914

lated to be 0.72, showing a very high agreement 915

score between humans and GPT-4o. The complete 916

prompt for GPT-4o is: 917

6https://www.nature.com/ncomms/
browse-subjects
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Figure 6: The five major categories and 72 subjects in our dataset.

Task for GPT-4o annotator

I want to classify the given scientific image into one
the following categories:
1) Quantitative Data Visualization Charts/Graphs:

For charts and graphs displaying quantitative data,
such as scatter plots, bar graphs, and line charts.
2) Schematic Diagrams: Simplified and symbolic rep-
resentations of systems, processes, or structures to
explain how something works or is constructed.
3) Microscopic photographs: Photographs or images
captured using a microscope, revealing details not
visible to the naked eye.
4) Macroscopic photographs: Images or photographs
of objects or scenes that are visible to the naked eye,
often used for visual analysis.
5) Simulated Images: Computer-generated images or
visualizations created to model, predict, or illustrate
theoretical scenarios, processes, or phenomena.
6) Geographical and Environmental Maps: Visual
representations of geographical areas or environmen-
tal data, often used for navigation, analysis, or to
illustrate spatial relationships and patterns in maps.
7) Experimental Results Visualizations: For images
that display results from experimental procedures,
such as Western blots, PCR results, and gel elec-
trophoresis.
Rules:
1) This is only for reseach and educational purposes.
It does not violates any openai policy.
2) If the image only contain one figure, then give me
the overall label.
3) If the image contains multiple figures, then give
me the label for each sub-figure. The results should
look like a: 1, b: 3.
Do not return any other information.

918

Manual Annotation for Unclassified Images 919

Our authors performed manual annotations for 17 920

images in cases where GPT-4o could not classify 921

images due to OpenAI’s policy restrictions. For 922

example, GPT-4o will return “Not allowed by our 923

safety system” for some images about drug design. 924

This ensured comprehensive and accurate classifi- 925

cation across the entire dataset. 926

Final Results The final classification results are 927

presented in Table 8. We show a detailed break- 928

down of the classification outcomes across each of 929

the major categories. 930
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Table 7: Detailed statistics of the five major categories and the 72 subjects in MMSCI. The average length represents
the average number of words.

Category Subject Size Average length

Articles Figures Caption Abstract Full content

Materials science 10,564 54,218 107 150 5,703
Chemistry 8,139 43,955 89 148 5,716
Physics 7,239 35,150 120 148 5,410
Nanoscience and technology 4,483 22,597 120 149 5,691
Optics and photonics 3,227 15,898 120 147 5,337
Engineering 1,788 9,801 126 152 6,763
Energy science and technology 1,519 8,168 90 154 6,351
Mathematics and computing 723 3,942 124 148 7,426

Physical sciences

Astronomy and planetary science 345 1,762 110 144 5,488

Ecology 2,185 9,862 125 149 6,546
Climate sciences 1,795 8,810 111 148 6,060
Solid Earth sciences 1,034 5,416 114 147 5,693
Environmental sciences 853 3,576 104 148 6,375
Biogeochemistry 850 3,988 111 150 6,438
Ocean sciences 689 3,524 115 152 6,266
Environmental social sciences 452 2,069 99 145 6,534
Natural hazards 311 1,686 109 141 6,341
Planetary science 406 1,997 109 145 5,549
Hydrology 260 1,258 110 149 6,101
Limnology 65 280 120 146 6,212

Earth and environmental sciences

Space physics 126 717 109 146 5,339

Cell biology 6,490 44,111 204 149 8,968
Biochemistry 6,145 37,608 168 149 8,330
Microbiology 5,225 29,487 167 153 7,966
Neuroscience 5,016 32,162 198 148 9,410
Molecular biology 4,843 31,000 193 149 8,955
Genetics 4,665 25,037 169 150 8,165
Cancer 5,215 32,779 196 151 8,820
Immunology 4,024 26,103 195 152 8,781
Biological techniques 3,540 20,169 176 147 8,297
Computational biology and bioinformatics 2,914 16,084 162 150 8,523
Biotechnology 2,633 14,689 170 147 8,118
Biophysics 2,440 14,315 166 150 7,923
Structural biology 3,432 20,402 155 150 8,024
Ecology 2,223 10,052 126 149 6,561
Developmental biology 2,205 14,947 199 151 9,018
Evolution 1,941 9,493 144 150 7,202
Plant sciences 1,659 9,528 163 151 7,846
Physiology 1,619 10,649 190 150 8,892
Chemical biology 1,812 10,523 150 147 7,885
Systems biology 993 5,594 184 149 8,674
Drug discovery 964 5,877 174 150 8,675
Stem cells 1,191 7,870 205 152 9,277
Zoology 502 2,347 144 150 6,613

Biological sciences

Psychology 410 2,066 154 148 8,744

Diseases 3,459 20,256 177 152 8,060
Medical research 1,839 10,171 167 154 7,572
Oncology 1,161 7,140 196 156 8,897
Health care 880 4,357 137 150 6,701
Pathogenesis 505 3,223 190 151 8,157
Biomarkers 558 2,959 168 152 7,905
Cardiology 400 2,580 188 152 8,927
Gastroenterology 406 2,670 188 154 8,792
Endocrinology 393 2,590 192 156 9,104
Anatomy 378 2,431 187 147 8,098
Neurology 355 2,164 179 153 8,741
Molecular medicine 342 2,100 187 150 8,697
Risk factors 246 1,058 135 154 6,870
Rheumatology 153 999 191 151 8,969
Nephrology 137 943 193 153 9,194
Signs and symptoms 50 262 169 148 7,270
Urology 38 232 198 155 8,681

Health sciences

Health occupations 2 12 84 162 5,666

Social sciences 393 1,713 114 143 6,848
Scientific community 127 363 123 90 4,576
Energy and society 158 827 95 149 6,991
Agriculture 85 396 107 147 6,581
Developing world 75 330 111 128 5,986
Water resources 61 289 100 150 6,531
Geography 49 228 101 144 6,444
Business and industry 46 233 94 143 6,441

Scientific community and society

Forestry 43 185 107 148 6,618

Total 72 131,393 742,273 153 150 7,457
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Table 8: The figure types in the benchmark test set of MMSCI regarding the five major categories, where C1-C5
represents Physical sciences, Earth and environmental sciences, Biological sciences, Health sciences, and Scientific
community and society, respectively.

Type Definition C1 C2 C3 C4 C5

Quantitative Data Visu-
alization Charts/Graphs

For charts and graphs displaying quantitative
data, such as scatter plots, bar graphs, and
line charts.

1,761 643 5,046 1,062 200

Schematic Diagrams Simplified and symbolic representations of
systems, processes, or structures to explain
how something works or is constructed.

633 63 1,291 129 30

Microscopic Pho-
tographs

Photographs or images captured using a mi-
croscope, revealing details not visible to the
naked eye.

615 36 1,438 287 12

Macroscopic Pho-
tographs

Images or photographs of objects or scenes
that are visible to the naked eye, often used
for visual analysis.

149 48 493 133 17

Simulated Images Computer-generated images or visualizations
created to model, predict, or illustrate theo-
retical scenarios, processes, or phenomena.

251 15 250 23 13

Geographical and Envi-
ronmental Maps

Visual representations of geographical areas
or environmental data, often used for naviga-
tion, analysis, or to illustrate spatial relation-
ships and patterns in maps.

13 125 28 3 26

Experimental Results
Visualizations

For images that display results from exper-
imental procedures, such as Western blots,
PCR results, and gel electrophoresis.

47 3 1,120 290 1

Total - 3,469 933 9,666 1,927 299

Table 9: Evaluated LVLMs in our experiments with their versions or Huggingface model paths.

Model Model versioning/path
GPT-4V gpt-4-turbo-2024-04-09
GPT-4o gpt-4o-2024-05-13
Gemini-1.5-Pro gemini-1.5-pro-001
Gemini-1.5-Flash gemini-1.5-flash-001
Claude-3.5-Sonnet claude-3-5-sonnet-20240620
Claude-3-Opus laude-3-opus-20240229

Kosmos2 https://huggingface.co/microsoft/kosmos-2-patch14-224
LLaVA1.5-7B https://huggingface.co/llava-hf/llava-1.5-7b-hf
LLaVA1.6-Mistral-7B https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
Qwen-VL-7B-Chat https://huggingface.co/Qwen/Qwen-VL-Chat
InternVL2-2B https://huggingface.co/OpenGVLab/InternVL2-2B
InternVL2-8B https://huggingface.co/OpenGVLab/InternVL2-8B
InternVL2-26B https://huggingface.co/OpenGVLab/InternVL2-26B
IDEFICS2-8B https://huggingface.co/HuggingFaceM4/idefics2-8b
IDEFICS3-8B-Llama3 https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3
MiniCPM-V-2.6 https://huggingface.co/openbmb/MiniCPM-V-2_6
Llama3.2-11B-Vision https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
Qwen2-VL-2B https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct
Qwen2-VL-7B https://huggingface.co/Qwen/Qwen2-VL-&B-Instruct
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A.2 Experimental Setup931

A.2.1 Evaluated Model932

The exact model versions used are detailed in Ta-933

ble 9. All inferences for the open-source models934

were executed on a computing cluster equipped935

with eight NVIDIA A100 GPUs, each with 40GB936

of memory.937

A.2.2 Captioning Evaluation938

FACTSCORE Evaluation We modified the939

FACTSCORE, which was originally designed to940

evaluate the factual accuracy of generations using941

external knowledge sources like Wikipedia. The942

original method breaks down the generation into943

atomic factual statements and assesses the accuracy944

of each unit based on credible sources. In our adap-945

tation, we apply this approach to complex captions946

involving multiple sub-figures, evaluating each part947

individually. Since there is no external knowledge948

source, we assess each atomic unit based on the949

ground-truth caption. This process involves two950

steps.951

The first step is to decompose the entire caption952

into independent atomic units. We provide the953

model with an example for this step, as shown954

below in Prompt 1.955

The second step is to evaluate each atomic unit’s956

description against the ground-truth caption. In this957

step, we use zero-shot prompting. The model is958

tasked with comparing each atomic unit’s descrip-959

tion to the ground-truth caption and assigning a960

rating on a scale of 0-5, which is then normalized961

to a 0-1 range. The prompt is shwon in Prompt 2.962

Prompt 1 for Caption Decomposition

Your task is to break down the caption into separate, independent
descriptions for the entire figure and each panel, formatted
appropriately and separated by ’-’.

The figure consists of four sub-figures labeled a, b, c, and d. All four
images appear to be scanning electron microscope (SEM) images
showing the microstructure of different materials, likely related to
the iron-based cathode catalysts described in the article.

a. This image shows a highly porous structure with interconnected
particles forming a network. The particles appear to be in the
nanometer to micrometer size range. The scale bar indicates 1 µm.
b. This image displays a closer view of what seems to be a similar
material to (a), but at a higher magnification. The individual particles
are more clearly visible, showing a rough, granular texture. The
scale bar indicates 200 nm.
c. This image reveals a different morphology compared to (a) and
(b). It shows larger, more consolidated structures with a rougher
surface texture. There are still visible pores and gaps between the
structures. The scale bar indicates 1 µm.
d. This final image appears to be a cross-sectional view of a porous
material, possibly showing the internal structure of the catalyst.
It reveals a highly interconnected network of pores and channels
throughout the material. The scale bar indicates 200 nm.

These images likely represent different stages or variations of
the iron-acetate/phenanthroline/zeolitic-imidazolate-framework-
derived electrocatalyst mentioned in the article. The varying
structures and porosities shown in these images could be related to
the enhanced mass-transport properties and increased volumetric
activity described in the text.

Independent Descriptions:
- The figure consists of four sub-figures labeled a, b, c, and d.
- All four images appear to be scanning electron microscope (SEM)
images.
- The images show the microstructure of different materials.
- The materials are likely related to the iron-based cathode catalysts
described in the article.
- Image a shows a highly porous structure with interconnected parti-
cles forming a network.
- The particles in image a are in the nanometer to micrometer size
range. - The scale bar in image a indicates 1 µm.
- Image b displays a closer view of a material similar to that in image
a but at higher magnification.
- The individual particles in image b are more clearly visible and
show a rough, granular texture.
- The scale bar in image b indicates 200 nm.
- Image c shows larger, more consolidated structures with a rougher
surface texture.
- There are visible pores and gaps between the structures in image c.
- The scale bar in image c indicates 1 µm.
- Image d appears to be a cross-sectional view of a porous material.
- Image d reveals the internal structure of the catalyst with a highly
interconnected network of pores and channels.
- The scale bar in image d indicates 200 nm.
- These images likely represent different stages or variations
of the iron-acetate/phenanthroline/zeolitic-imidazolate-framework-
derived electrocatalyst mentioned in the article.
- The varying structures and porosities shown in these images could
be related to the enhanced mass-transport properties described in the
text.
- The varying structures and porosities in the images may contribute
to increased volumetric activity described in the article.

963

Prompt 2 for Atom Unit Description Rating

How relevant is the generated caption to the
provided human-written caption for the figure?
Determine the extent to which the information in
the generated caption is included or referenced in
the human-written caption. Respond with a score
between 0 and 5.

Human-written caption: {REFERENCE}

Generated caption: {GENERATION}
964
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G-EVAL Evaluation Our G-EVAL evaluation965

follows the implementation in (Liu et al., 2023b).966

We provide the definition of evaluation criteria and967

evaluation steps without providing examples. The968

model is tasked with assigning a score in the range969

of 1-5. The detailed prompt is as follows:970

Prompt for G-EVAL Evaluation

You will be given a oracle caption that describes
a figure. You will then be given a second caption
written for the same figure. Your task is to rate the
second caption on one the following metric.

Evaluation Criteria:
Relevance (1-5) - The extent to which the second
caption is relevant to the key elements and context
described in the oracle caption. A relevant caption
should focus on the same subjects, objects, actions,
or context highlighted in the oracle caption, without
introducing unrelated or extraneous details.

Evaluation Steps:
1. Review the Oracle Caption: Carefully read the
oracle caption to understand the main elements and
context it describes.
2. Review the Second Caption: Assess whether the
second caption focuses on the same key elements and
context as the oracle caption. Evaluate if the second
caption stays on topic and does not introduce irrele-
vant details.
3. Assign a Score for Relevance: Based on the Evalu-
ation Criteria, rate how relevant the second caption is
to the oracle caption’s description of the same image.

971

Captioning Grounded on Full Article We also972

explored using entire articles as context for caption-973

ing. Due to the average article length exceeding974

10k tokens, we evaluated this approach only on pro-975

prietary models capable of handling long contexts:976

GPT-4o, GPT-4V, Claude-3.5-Sonnet, and Gemini-977

1.5-Pro/Flash. As shown in Table 10, providing the978

full article as context improved performance com-979

pared to using only the abstract. This improvement980

is reasonable since understanding scientific figures981

typically requires grounding in the article’s con-982

tent, as abstracts alone may not provide sufficient983

context. However, we note that this approach may984

potentially benefit from content repetition, as sim-985

ilar descriptions might appear in both the caption986

and the article text.987

A.2.3 Human Expert Evaluation988

To analyze our dataset, we recruited domain ex-989

perts (PhDs in corresponding fields) through the990

online professional annotation platform Prolific7.991

We refined and consolidated the original 72 subject992

7https://www.prolific.com/

categories from Prolific into 18 broader groups to 993

balance between comprehensive coverage and suf- 994

ficient specificity. The recategorized subjects are 995

shown in Table 11. From these 18 recategorized 996

fields, we focused on 10 major scientific domains 997

where PhD annotators were available on Prolific. 998

We recruited 30 PhDs as human evaluators with 999

verified degrees in these domains: Material Sci- 1000

ence, Chemistry, Physics, Biochemistry, Environ- 1001

ment, Climate Sciences, Earth Sciences, Biological 1002

Sciences, Biomedical Sciences, and Health and 1003

Medicine. Each evaluator provided two types of 1004

assessments: Question Quality Assessment and Ex- 1005

pert Performance Score. The results for each group 1006

are detailed in Table 12. 1007

Question Quality Assessment For the quality as- 1008

sessment, evaluators were asked to assess whether 1009

the questions were clear and demonstrated under- 1010

standing of scientific knowledge within their re- 1011

spective disciplines. They used the following 5- 1012

point scale: 1013

• Score Point 1: The question is irrelevant or 1014

cannot be answered based on the scientific 1015

content presented in the figure. 1016

• Score Point 2: The question lacks clarity or 1017

can be answered without specific knowledge 1018

of the scientific content in the figure (e.g., it 1019

can be answered with common sense). 1020

• Score Point 3: The question is clear but re- 1021

quires only minimal understanding of the sci- 1022

entific content in the figure. 1023

• Score Point 4: The question is clear, answer- 1024

able, and requires an adequate understanding 1025

of the scientific content in the figure. 1026

• Score Point 5: The question is clear, answer- 1027

able, and effectively evaluates a very deep 1028

understanding of the scientific content in the 1029

figure. 1030

Expert Performance Score For the expert eval- 1031

uation tasks, we created a subset of questions for 1032

each category by selecting 25 questions per setting 1033

(75 total) from our three figure-caption matching 1034

tasks in the original test set. We report the results 1035

from the best-performing expert (who achieved the 1036

highest average performance) in each category. The 1037

annotators were instructed to select their answers 1038

within a one-minute time limit per question. 1039
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Table 10: Performance comparison on scientific figure captioning task when grounded on abstract and full article.

Model Context BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L Meteor BertScore FActScore G-Eval
Gemini-1.5-Flash Abstract 3.29 26.74 7.47 16.03 28.71 81.80 10.14 4.08
Gemini-1.5-Pro Abstract 3.33 28.71 7.73 16.89 28.91 81.93 13.76 4.08
Claude-3.5-Sonnet Abstract 3.20 29.60 6.71 16.65 27.52 81.76 12.11 4.04
GPT-4V Abstract 3.18 28.45 7.01 15.65 27.62 82.37 19.52 4.13
GPT-4o Abstract 3.58 28.85 7.79 16.36 28.37 81.84 18.87 4.22
Gemini-1.5-Flash Full Article 6.94 32.83 14.15 22.02 34.50 83.26 19.41 4.12
Gemini-1.5-Pro Full Article 7.01 32.24 13.34 19.32 33.75 83.18 19.33 4.22
Claude-3.5-Sonnet Full Article 7.99 37.63 13.61 23.63 34.66 84.34 21.67 4.52
GPT-4V Full Article 5.65 33.09 10.95 19.25 31.46 83.48 23.18 4.24
GPT-4o Full Article 9.90 37.06 17.63 24.89 37.52 83.64 24.12 4.58

Table 11: Recategorization of the 72 subjects in MMSci dataset for recruiting Phd experts of each major category
from Prolific platform.

Re-categoried Fields Original Subjects from Nature Communications
Material Science Materials science, Nanoscience and technology
Chemistry Chemistry
Physics Physics, Optics and photonics
Engineering Engineering
Energy Energy science and technology, Energy and society
Mathematics and Computing Mathematics and computing
Astronomy and Planetary Sci-
ence

Astronomy and planetary science, Planetary science, Space physics

Environment Ecology, Environmental sciences, Biogeochemistry, Water resources
Climate Sciences Climate sciences
Earth Solid Earth sciences, Ocean sciences, Natural hazards, Hydrology, Limnology, Geography
Social Sciences Environmental social sciences, Psychology, Social sciences, Scientific community, Devel-

oping world
Biochemistry Biochemistry, Molecular biology, Biophysics, Structural biology, Chemical biology
Biological Sciences Microbiology, Genetics, Biological techniques, Computational biology and bioinformatics,

Developmental biology, Evolution, Plant sciences, Physiology, Systems biology, Zoology,
Cell biology

Biomedical Sciences Neuroscience, Immunology, Biotechnology, Stem cells, Pathogenesis, Biomarkers,
Anatomy, Molecular medicine

Health and Medicine Cancer, Diseases, Medical research, Health care, Oncology, Cardiology, Gastroenterology,
Endocrinology, Neurology, Risk factors, Rheumatology, Nephrology, Signs and symptoms,
Urology, Health occupations

Pharmacology Drug discovery
Agriculture Agriculture, Forestry
Business and Industry Business and industry

A.2.4 Visual Supervised Fine-tuning1040

We fine-tuned the Qwen2-VL-2B model on our1041

dataset for one epoch with LoRA (Hu et al., 2021),1042

targeting all linear modules. We use the LLAMA-1043

Factory framework for training (Zheng et al., 2024).1044

The hyperparameters are provided in Table 13. The1045

fine-tuning was conducted on a computing cluster1046

with eight NVIDIA A100 GPUs, each with 40GB1047

of memory, and the process took approximately 81048

hours to complete.1049

A.2.5 Visual Language Pre-training1050

In our case study experiments on the material gen-1051

eration task, we continuously pre-train a LLaMA2-1052

7B model using our interleaved article and fig-1053

ure data to infuse more material science-relevant1054

knowledge. Specifically, for pre-training on the1055

interleaved text and image data, we follow the 1056

methodology outlined in (Lin et al., 2023). 1057

Model Architecture Following the approach out- 1058

lined in (Liu et al., 2024; Lin et al., 2023), we 1059

extend the LLaMA2-7B model from a text-only 1060

model to a multimodal model by augmenting the 1061

LLM with a visual encoder to learn visual embed- 1062

dings and a projector to bridge the embeddings 1063

between the text and visual modalities. Specifi- 1064

cally, the visual encoder processes the image and 1065

outputs visual features. These features are then 1066

mapped into the word embedding space by the pro- 1067

jector, creating visual tokens. These visual tokens 1068

are concatenated with the word tokens and fed into 1069

the LLM, allowing the model to integrate both text 1070

and visual information for generation. The specific 1071
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Table 12: Quality scores and Phd experts’ accuracies across the ten re-grouped fields.

Field Fig2Cap SubFig2Cap SubCap2Fig
Quality (1-5) Accuracies (%) Quality (1-5) Accuracies (%) Quality (1-5) Accuracies (%)

Material Science 4.0267 92.00 4.2933 92.00 4.1333 84.00
Chemistry 4.1333 84.00 3.7467 92.00 3.6133 100.00
Physics 4.0267 48.00 3.5467 72.00 3.8133 80.00
Biochemistry 3.1600 80.00 4.8267 56.00 4.4133 72.00
Environment 4.1067 44.00 4.4667 64.00 4.3467 76.00
Climate Sciences 4.1296 77.78 3.6471 88.24 3.4118 82.35
Earth 4.0267 44.00 4.2319 52.17 4.1739 60.87
Biological Sciences 3.8800 48.00 3.6800 48.00 3.7867 32.00
Biomedical Sciences 4.0133 68.00 4.1333 72.00 3.7733 88.00
Health and Medicine 4.3733 56.00 3.7467 80.00 3.6800 52.00
Average 4.0873 64.18 4.0319 71.64 3.9149 72.72

Table 13: Hyperparameters for visual supervised fine-tuning.

Hyperparameter Values
base model https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct
epochs 1
global batch size 8
learning rate 0.0001
learning rate scheduler cosine
weight decay 0.0
warmup ratio 0.1
max length 4096
lora modules q_proj, k_proj, v_proj, o_proj, up_proj, gate_proj, down_proj

Table 14: Hyperparameters for visual language pre-training on interleaved text and image data.

Hyperparameter Values
base model https://huggingface.co/meta-llama/Llama-2-7b-hfb
vision encoder https://huggingface.co/openai/clip-vit-large-patch14-336
projector 2-layer MLP

Stage 1: Projector Initialization
epochs 1
global batch size 256
learning rate 0.001
learning rate scheduler cosine
weight decay 0.0
warmup ratio 0.03
max length 4096
tune LLM ✗
tune vision encoder ✗
tune projector ✓

Stage 2: Visual Language Pre-training
epochs 1
global batch size 128
learning rate 0.00005
learning rate scheduler cosine
weight decay 0.0
warmup ratio 0.03
max length 4096
tune LLM ✓
tune vision encoder ✗
tune projector ✓

LLM, visual encoder, and projectors used in our1072

experiments are presented in Table 14.1073

Training Stages The visual pre-training pro-1074

cess (Lin et al., 2023) involves two stages:1075

1. Projection initialization: In this stage, the 1076

LLM and the visual encoder are both pre- 1077

trained and remain fixed. The projector, how- 1078

ever, is randomly initialized. Only the pro- 1079
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jector is fine-tuned during this stage, using1080

image-caption pairs from (Liu et al., 2024).1081

2. Visual language pre-training: During this1082

stage, both the LLM and the projector are fine-1083

tuned on the interleaved image and text data.1084

This includes data from general domains pro-1085

vided by MMC4 (Zhu et al., 2024), as well as1086

scientific articles and figures from our dataset1087

MMSCI. Previous research (Lin et al., 2023)1088

has shown that tuning both the LLM and the1089

projector yields better results than tuning only1090

one of them. Throughout this stage, the visual1091

encoder remains fixed.1092

We did not conduct the further visual instruction-1093

tuning for this model, as our primary objective was1094

to infuse scientific knowledge into the LLM for1095

the consecutive text-only material generation task.1096

The two stages were conducted on a computing1097

cluster equipped with eight NVIDIA A100 GPUs,1098

each with 40GB of memory. The first stage took1099

approximately 4 hours, and the second stage took1100

around 36 hours.1101

A.2.6 Materials Generation1102

As a case study to investigate whether scien-1103

tific knowledge has been effectively infused into1104

the LLM (LLaMA2-7B in our experiments) and1105

whether it can enhance performance on material1106

science-related tasks, we follow the methodology1107

from (Gruver et al., 2024) to explore the material1108

generation task. The primary objective is to for-1109

mat material crystal structures into text strings and1110

fine-tuning the LLM to generate stable materials.1111

Prompt design We adhere to the prompt design1112

described in (Gruver et al., 2024). There are two1113

types of prompts in the training data: the generation1114

prompt with one or multiple conditions and infilling1115

prompts, where partial crystal structure strings are1116

masked and the model generates the masked parts.1117

The specific prompt templates are shown below,1118

adapted from (Gruver et al., 2024).1119

The formula condition as shown above is always1120

included, while other conditions are sampled from1121

the following: formation energy per atom, band1122

gap, energy above hull, and space group number.1123

Evaluation Our evaluations follows (Xie et al.,1124

2021; Gruver et al., 2024), including four key as-1125

pects. We reiterate some details here. Structural1126

validity is assessed by ensuring that the shortest1127

distance between any pair of atoms exceeds 0.5Å.1128

Compositional validity is evaluated by verifying 1129

that the overall charge is neutral, as calculated us- 1130

ing SMACT (Davies et al., 2019). Coverage metrics, 1131

COV-R (Recall) and COV-P (Precision), measure 1132

the similarity between ensembles of generated ma- 1133

terials and ground truth materials in the test set. 1134

The property distribution metrics quantify the earth 1135

mover’s distance (EMD) between the property dis- 1136

tributions of generated materials and those in the 1137

test set, specifically for density (ρ, in g/cm3) and 1138

the number of unique elements (Nel). 1139

Metastability and stability are assessed based on 1140

the energy above the convex hull, denoted as Êhull. 1141

Two approaches are employed to estimate Êhull: 1142

M3GNet (Chen and Ong, 2022) and Density Func- 1143

tional Theory (DFT) using the VASP code (Hafner, 1144

2008). For M3GNet, each sample undergoes re- 1145

laxation using force and stress calculations before 1146

evaluating the energy of the final structure. For 1147

DFT, relaxation is performed using the VASP code, 1148

which provides more accurate results but requires 1149

significantly more computational resources. A ma- 1150

terial is considered metastable by M3GNet if the 1151

predicted energy above the hull, EM3GNet
hull , is less 1152

than 0.1 eV/atom. Furthermore, if validated by 1153

DFT, the material must have EDFT
hull < 0.0 eV/atom 1154

to be considered stable. The percentages of such 1155

materials are reported over the total 10,000 infer- 1156

ences. We use the Materials Project (Jain et al., 1157

2013) dated 2023-02-07. 1158

Training Details Following the approach in 1159

(Gruver et al., 2024), we utilize 4-bit quantization 1160

(Dettmers et al., 2021) and Low-Rank Adapters 1161

(LoRA) (Hu et al., 2021) for efficient fine-tuning. 1162

The model is trained with a batch size of 1 for 1 1163

epoch. We set the LoRA rank to 8 and the LoRA al- 1164

pha to 32. The learning rate is 0.0001, annealed by 1165

a cosine scheduler. The training was conducted on 1166

a single NVIDIA A100 GPU, took approximately 1167

4 hours to complete. 1168

Conditional Generation and Infilling Results 1169

Due to space constraints, we did not include the 1170

results for the conditional materials generation and 1171

infilling tasks in the main paper. Here, we present 1172

these additional findings. The performance met- 1173

rics reported are based on the same model used 1174

in the main paper. Our training data included two 1175

types of prompts: conditional generation prompts 1176

and infilling prompts. We compare our model 1177

LLaMA2-7BMMSCI, which has undergone continu- 1178

ous pre-training, with the original LLaMA2-7B 1179
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Generation Prompt Infilling Prompt

<s>Below is a description of a bulk
material. [The chemical formula is
Pm2ZnRh]. Generate a description of the
lengths and angles of the lattice vectors
and then the element type and coordinates
for each atom within the lattice:

[ Crystal string ]</s>

<s>Below is a partial description of a bulk material where one
element has been replaced with the string “[MASK]”:

[ Crystal string with [MASK]s ]

Generate an element that could replace [MASK] in the bulk
material:

[ Masked element ]</s>

Blue text is the condition for generation. Purple text stands in for string encodings of atoms.

Table 15: Evaluation of conditional materials generation and infilling tasks. Comp. Div. and Struct. Div. represent
the composition and structure diversity, respectively. The two models are fine-tuned with the same training data and
setup in our implementation.

Method Conditional Generation Infilling
Formula↑ Space Group↑ Ehull ↑ Comp. Div.↑ Struct. Div. ↑ Metastability ↑

LLaMA2-7B 0.85 0.14 0.58 10.60 0.16 64.20%
LLaMA2-7BMMSCI 0.87 0.22 0.59 8.31 0.52 77.74%

that was trained without additional pre-training1180

data. Both models were trained on datasets that1181

included prompts for both conditional generation1182

and infilling tasks under the same setup.1183

Following (Gruver et al., 2024), we performed1184

1,000 inferences for each condition in the condi-1185

tional generation evaluation and 1,000 inferences1186

for the infilling evaluation. For conditional gen-1187

eration evaluation, we assessed the percentage of1188

generated materials that adhered to specified condi-1189

tions, including formula, space group, and energy1190

above the hull (Ehull). In the infilling evaluation,1191

we measured diversity by computing the pairwise1192

distance between generated samples and those from1193

Matminer (Ward et al., 2018; Xie et al., 2021), fo-1194

cusing on composition and structure. Additionally,1195

we evaluated metastability estimated by M3GNet.1196

As seen in Table 15, LLaMA2-7BMMSCI, after con-1197

tinuous pre-training on our dataset MMSCI, outper-1198

forms the original LLaMA2-7B across most met-1199

rics. This demonstrates its enhanced effectiveness1200

in handling materials generation tasks.1201
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A.3 Datasheet1202

A.3.1 Motivation1203

With the advancement of large language and multi-1204

modal models, there is a growing demand for pro-1205

fessional AI scientific assistants capable of compre-1206

hending and processing advanced, graduate-level1207

scientific knowledge (noa, 2023; White, 2023; Vert,1208

2023). A crucial aspect of developing effective1209

AI scientific assistants is their ability to under-1210

stand academic scientific literature, which often1211

includes complex figures such as data visualiza-1212

tion plots, charts, schematic diagrams, macroscopic1213

and microscopic photograph, and other specialized1214

content from a variety of scientific fields. How-1215

ever, there is currently a lack of comprehensive1216

evaluation for models’ understanding of advanced1217

graduate-level multimodal scientific knowledge, es-1218

pecially in the context of complex figures across1219

diverse scientific disciplines. Existing evaluations1220

tend to focus on simpler charts and plots (Chen1221

et al., 2020; Kahou et al., 2017; Siegel et al., 2016)1222

and suffer from narrow scopes and lower quality1223

(Li et al., 2024).1224

Our dataset, MMSCI, is designed to address this1225

gap. MMSCI is a multimodal, multi-discipline1226

dataset comprising high-quality, peer-reviewed ar-1227

ticles and figures from 72 scientific disciplines, pre-1228

dominantly within the natural sciences. We created1229

a benchmark to evaluate models’ understanding1230

of graduate-level multimodal scientific knowledge1231

across these disciplines. Additionally, this dataset1232

can serve as a training resource to enhance models’1233

understanding of multimodal scientific knowledge.1234

A.3.2 Intended Use1235

This dataset is used to evaluate and enhance the1236

large multimodal models (LVLMs)’ understanding1237

of advanced multimodal scientific knowledge.1238

A.3.3 Data Collection1239

Data Source The dataset comprises open-access1240

articles published in Nature Communications8.1241

These articles are freely and permanently accessi-1242

ble upon publication under the Creative Commons1243

Attribution 4.0 International (CC BY) License.1244

Detailed information on the open-access policy1245

of Nature Communications is available at https:1246

//www.nature.com/ncomms/open-access.1247

Data Collection Process We collected various1248

types of information for each article from the Na-1249

8https://www.nature.com/ncomms/

ture Communications website. The articles’ in- 1250

formation includes titles, abstracts, main body 1251

content, references, and PDF versions of the ar- 1252

ticles, all directly accessible from their respec- 1253

tive sections on the article’s webpage (e.g., https: 1254

//www.nature.com/articles/xxx, where “xxx” 1255

is the article’s unique ID). Additionally, fig- 1256

ures and their captions were sourced from a 1257

dedicated figures section linked from each arti- 1258

cle’s main page (e.g., https://www.nature.com/ 1259

articles/xxx/figures). This user-friendly plat- 1260

form facilitates easy acquisition of all necessary 1261

data, eliminating the needs for quality control and 1262

data filtering. 1263

Annotations The dataset does not include ex- 1264

plicit annotations. Instead, the authors themselves 1265

carried out a small-scale manual review and classi- 1266

fication of the image types specifically for analysis. 1267

No external annotators or crowdworkers were in- 1268

volved in this process. 1269

Personal and Sensitive Information The dataset 1270

does not include any personal or sensitive informa- 1271

tion. All article content is publicly accessible. All 1272

author information are also publicly available, and 1273

no personal information was explicitly extracted, 1274

stored, or used from the authors. 1275

A.3.4 Social Impact and Ethical 1276

Considerations 1277

Benefits The benefits of our dataset are two-fold: 1278

(1) Evaluation Benchmark: This dataset serves 1279

as a valuable evaluation benchmark for assess- 1280

ing the understanding of large multimodal models 1281

(LVLMs) regarding scientific articles and figures. 1282

(2) Training Resources: It can be used as a train- 1283

ing resource to enhance LVLMs’ understanding of 1284

scientific articles and figures, improving their per- 1285

formance in various scientific and research-related 1286

tasks. 1287

Risks and Ethical Considerations However, 1288

there are potential risks and ethical considerations 1289

to address: (1) Misuse in Academic Integrity: 1290

The advancement of AI research assistants facili- 1291

tated by this dataset could potentially lead to mis- 1292

use, such as academic fraud, fabrication, or im- 1293

proper assistance in academic work. We strongly 1294

encourage users to exercise caution and responsi- 1295

bility when using AI assistants, ensuring they are 1296

employed ethically and correctly. (2) Data Misin- 1297

terpretation and Hallucination: There is a risk 1298
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of misinterpreting the dataset’s content, leading1299

to inaccurate conclusions or misuse of scientific1300

information. Users should critically assess and val-1301

idate the AI-generated outputs against established1302

scientific knowledge and principles.1303

A.3.5 Limitations1304

Our dataset MMSCI provides a comprehensive1305

multimodal dataset across 72 scientific disciplines1306

and serves as both a benchmark and a training re-1307

source. However, there are some limitations in our1308

current exploration. (1) Due to limited resources,1309

we were unable to evaluate a wide range of large-1310

scale open-source LVLMs. (2) Our benchmark1311

primarily assesses models’ understanding of sci-1312

entific figures using the figures and captions. The1313

dataset still provide other valuable resources that1314

could be used to create additional tasks, such as1315

single- and multimodal questions aimed at evalu-1316

ating models’ scientific knowledge. We plan to1317

explore these opportunities in future work. Despite1318

these limitations, we believe MMSCI will be a1319

valuable resource for the research community. All1320

data will be made publicly available.1321

A.3.6 Author Statement1322

The authors declare full responsibility for any1323

rights violations, including but not limited to intel-1324

lectual property rights and privacy rights, that may1325

arise from the publication and use of this dataset.1326

We confirm that all data provided is licensed un-1327

der appropriate licenses, ensuring legal compliance1328

and transparency.1329

A.3.7 Use of AI Assistant1330

We utilized AI to assist with manuscript polishing1331

and improving the presentation of experimental1332

results.1333

A.3.8 Hosting, Licensing, and Maintenance1334

Plan1335

The dataset will be hosted on GitHub, offering1336

reliable and secure access. We commit to maintain-1337

ing the repository with regular updates, security1338

patches, and user support to ensure the data’s in-1339

tegrity and usability over time. Licensing terms1340

will be clearly communicated to users, adhering1341

to the appropriate data licenses to promote proper1342

usage and distribution. The data is licensed un-1343

der the CC BY 4.0 License, which permits sharing1344

and adaptation with proper attribution. The pri-1345

mary codebase for our project is licensed under the1346

Apache 2.0 License.1347

A.4 Examples 1348

We present several figures as our case study to illus- 1349

trate multiple-choice questions under three setting 1350

in Figure 7, 8, 9, respectively. 1351
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Materials science

Ques tion: Wh ich  of th e follow in g captions best describes th e whole  figure?
Options: 
(A): The orie ntations an d p rimary slip systems o f the spe cime ns.
(B): G eneral fatigu e crac king m echan isms o f the tw inn ed bicrystals with a ll possible  TB inclin atio ns (0° to 90°).
(C): Surfac e morp hologies and  disloca tion  arran ge ments o f the bicrystals with a  TB p arallel or p erpen dicular to th e 
loading d irection .
(D): Surfac e morp hologies and  disloca tion  arran ge ments o f the bicrystals with a n incline d TB.

Claude-3.5-Sonne t: (C)
Explanation: Let' s analyze th is figu re care fu lly:
1. The figure c onsists o f 6 images la beled a throu gh  f.
2. Images a, c, and  e ap pear to be  surface m orph olo gy o bservatio ns, possibly from  a microsco pe. They sho w crac ks 
an d structu res la beled as " TB cra ck" (TB likely stand s for Twin Bou ndary).
3. Images b, d, an d f seem  to b e disloc atio n arran gements, sho win g features like  ve ins, ladde rs, an d labyrin ths.
4. The orie ntations o f the struc tures in eac h pa ir o f images (a-b, c-d, e-f) are c onsiste nt with e ach o ther, suggestin g 
the y re present the same  specimen but w ith  differe nt imagin g techn iqu es.
5. The orie ntations o f the TB (Twin  Boun dary) structure s vary ac ross the image pairs:
   - In a-b, th e TB is ne arly vertic al (p arallel to th e lo ading direction ind ica ted b y th e arro w)
   - In c-d, th e TB is incline d at a n an gle
   - In e-f, the TB is nearly horizo ntal (perpendicular to  the loadin g dire ctio n)
6. This va riation in TB o rien tatio n suggests that the figu re is sh owing d ifferent sp ecimens w ith varying TB inc linations.
7. The presenc e of surfac e morp hologies and  disloca tion  arran ge ments for each orie ntation su ppo rts option C or D .
8. Ho wever, the inclusion o f specimens w ith  TB p arallel, inc lined, an d p erpen dic ula r to th e lo ading direction matche s 
mo re closely w ith option C.
Given th is an alysis, op tion  C ap pears to  be the mo st comp rehen sive an d acc urate d escrip tio n of th e en tire figure.

source: https://www.nature.com/articles/ncomms4536/figures/3

Gr ound-truth: (D)

Ge mini-1.5-Pro: (D)
Explanation: Let' s break down  the image and the an swer ch oices:
- The Ima ge: Sh ows m icro sc opic images of ma terial surface s. W e see featu res like "TB crac ks," " TBAZ,"  and  differe nt 
pa tterns labeled " veins," "ce lls," " lad ders," "labyrin th." 
- Focus:  The images see m to fo cus on  the areas **a roun d** th e TB (likely Twin Bou ndary) an d ho w th e material 
structu re ch anges.

No w let's an alyze the answer choices:
- A: The  orientat ions and prim ary s lip syste ms of the specime ns.  Wh ile orienta tion  migh t be implied, we don 't 
see d irec t represen tatio n o f slip  system s.
- B: Genera l fatigue  cra cking mec hanisms of the twinned bic rystals with all poss ible TB inclina tions (0° to 90°).  
The images see m to sh ow th e *results* o f fa tigue, n ot the  mech anism s themselve s. Additio nally, we don' t see th e full 
ran ge  of inclina tion s (0° to 90°).
- C: Sur face  morphologie s and disloca tion arra nge ments of the bic rystals with a TB para lle l or per pendicular 
to the loa ding direc tion.  This is close, bu t the images c learly show  in clined  TBs, no t ju st parallel or perpe ndicular.
- D: Sur face  morphologie s and disloca tion arra nge ments of the bic rystals with an inc lined TB. This aligns 
pe rfe ctly. We see  the su rfa ce featu res ("morp hologie s" ) like cracks a nd p atterns, implying dislo catio n arra ngemen ts 
aro und  the inclin ed TB.

Figure 7: An example of the multi-choice questions (Fig2Cap). The example is within the material sciences subject,
sourced from (Kang et al., 2014). The options include the correct main caption of the given figure and three main
captions from other figures within the same article.
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Biochemistry

Qu estion : W hich of t he following opt ions b est describ es t he content in sub-figu re (a)?
Op tio ns:
(A ) Single amino acid change of Leu10 or Leu 39 to Ala causes considerable reduction of c -di-GMP-binding affinity  as measu red by ITC.
(B ) S ingle amino acid change of the conserv ed  midd le Gly residu e in t he loops connect ing helices α1−α2 and α3−α4 to Leu  or  Ile also cau ses 
considerable redu ct ion of c-di-GMP binding.
(C) Posit ions of t he residues in the 9R LGD12 seq uence relative to t he c-di-GMP molecule.  Specific binding of c-di-GMP is due t o the pairing of it s 
O6 atom  (indicated by a magent a arrow) with the Asp 12 amide prot on. R eplacement  of the O 6 atom  wit h NH22 of c-di-AMP would cause a 
significant  steric clash.
(D)  A  uniqu e hydrophobic t riangu lar  stacking of three conserv ed Leu residues w it h t he gu anine base ( drawn as spheres). Leu 10-Leu54-Leu58 
residues form a tr iangular stack wit h Gua2 base. Similarly, Leu 25-Leu29-Leu39 residues form anot her triangular  stack with Gua1 base.

source: https://www.nature.com/articles/ncomms12481/figures/3

Grou nd-tru th: (C)

GP T-4o: (D) 
Explan ation : To determine w hich option best describes the content  in sub -figure (a), let's break dow n t he provided op tions and analyze the v isual 
content of sub-figure (a).
1. **O ption (A)* *: This describes a single amino acid change of Leu10 or Leu 39 to Ala causing a considerab le reduct ion of c-di-GMP-binding 
affinity , m easured by ITC.
2. **O ption (B)* *: This describes a single amino acid change of the conserv ed  midd le Gly residu e in t he loops connect ing heli ces α1−α2 and 
α3−α4 to Leu  or  Ile, causing a reduct ion in c-di-GMP binding.
3. **O ption (C)** : This describes t he posit ions of residues in t he 9R LGD12 sequ ence relative t o t he c -di-GMP molecule,  wit h specific binding 
details and steric clashes.
4. **O ption (D)** : This describes a unique hy drophob ic tr iangular stacking of  three conserved Leu resid ues with the guanine b ase, form ing 
specific triangular  stacks.

Sub-figure (a) contains a d et ailed molecular  m odel wit h labeled  amino acids and a c -di-GMP molecule.  The visual representat ion appears to 
highlight specific interactions bet ween the amino acids and t he c-di-GMP molecule,  pot ent ially indicat ing im port ant b ind ing int eract ions.

Upon close inspect ion:
- The arrows and labels in sub-figure (a) show specific interact ions of  the Leu residues with the guanine base.
- The depiction of  mu lt iple residues form ing a tr iangular st ack w it h t he gu anine base f it s the d escript ion of a hydrophobic int eract ion network.

Therefore, the visual cont ent d escribed in sub-figure (a) aligns best with the description in Op tion (D) .

Clau de-3.5-So nnet: (D )
Explan ation : Let m e analyze t he image and t he giv en opt ions caref ully :
The image contains four su bfigures lab eled (a), (b), (c), and  (d) . W e're sp ecifically  asked ab out subf igure (a).

Sub figure (a) show s a three-dimensional molecular  structure. It appears t o be a protein or  pept id e st ruct ure with various colore d elem ent s 
rep resent ing d if ferent amino acids or st ruct ural com ponents.  There are sev eral labeled  residues,  including som e leucine (Leu ) resid ues.

Looking at the op tions:
(A ) This option d iscusses ITC measurements, w hich are not  shown in su bfigure (a).
(B ) This option talks about  specific am ino acid changes, w hich are not v isually represented in su bfigure (a).
(C) This opt ion ment ions a specific sequence (9R LGD12)  and discusses interactions w it h c -di-GMP, which are not clearly v isible in subf igure (a).
(D) This opt ion describes a "unique hy drop hobic tr iangular st acking of t hree conserved Leu residues with the guanine base". T his mat ches w hat  
we can see in su bfigure (a) - there are indeed  mu lt iple labeled Leu  (Leucine)  residues visib le, and t hey app ear t o be arranged i n a way that could 
be described as tr iangular stacking around certain parts of the structure.

B ased on this analysis, op tion D seems t o best d escribe what is v isually represented in su bfigure (a).

Figure 8: An example of the multi-choice questions (SubFig2Cap). The example is within the biochemistry subject,
sourced from (Wang et al., 2016).
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Cancer

Question: Which of the following sub-figure best describes this content:  UPN08: only colonies harbouring 
the two mutations  linked to the unrelated clone are found at this ti me point. The two inves ti gated 
mutations  from the MDS clone are abs ent in these colonies . 
Opti ons:
(A):  sub-figure a
(B): sub-figure b
(C):  sub-figure c

source: https://www.nature.com/articles/ncomms15099/figures/4

Ground-truth: (A)

GPT-4o: (A)
Explanation: To determine which sub-figure best matches the content description "UPN08: only colonies 
harbouring the two mutations linked to the unrelated clone are found at this time point.  The two investigated 
mutations from the MDS clone are  absent in these c olonies," we need to analyze the data presented in each 
sub-figure:
1.  Sub-figure a: This figure shows colonies from UPN08 at 136 months from baseline.  It indicates the 
presence of mutations (purple squares) in specific genes. Only two mutations (FGFR3 and SRCAP) are 
shown, which might be linked to an unrelated clone.
2.  Sub-figure b: This figure shows colonies from UPN09 at 9 months from baseline. It indicates the presence 
of mutations in specific genes. This does not match the desc ription for UPN08.
3.  Sub-figure c: This figure shows colonies from UPN10 at 6 months from baseline. It indicates the presence 
of mutations in several genes. This does not match the desc ription for UPN08.

Based on this analysis,  sub-figure a best fits the description as it corresponds to UPN08 and shows only two 
mutations,  whic h are linked to the unrelated clone,  while the mutations from the MDS clone are absent.

GPT-4V: (C)
Explanation: Analyzing the problem description, it indicates that we are looking for a sub-figure where the 
colonies only have two specific mutations linked to an unrelated clone and the mutations from the MDS 
clone are absent.  

In sub-figure C, it is evident that each colony represented by numbered columns (1 through 50) shows a 
variety of mutations across different genes (represented in rows).  Notably,  there are no recurring patterns or 
exclusive presence of only two specific mutations across all c olonies that would suggest they are  from an 
unrelated clone, indicating the absenc e of other specific mutations (e.g., from the MDS clone).

Comparatively, sub-figures A and B, which represent different time points and possibly different mutation 
patterns,  do not match the description provided. Sub-figure A shows many colonies with the same 
mutations ac ross all sampled points,  which might suggest a different clone or condition.  Sub-figure B also 
does not fit as it shows a similar variety but at a different time point.

Given this analysis, sub-figure C is the one that best fits the description of only having colonies with 
mutations linked to an unrelated clone at the specified time point,  with the absence of MDS clone 
mutations.

Figure 9: An example of the multi-choice questions (SubCap2Fig). The example is within the cancer subject,
sourced from (da Silva-Coelho et al., 2017).
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