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Abstract

Scientific figure interpretation is crucial for
Al scientific assistants built on Large Vision
Language Models, yet current datasets mainly
cover restricted scientific domains, and lim-
ited figure complexity (like charts). We ad-
dress this gap with a comprehensive dataset
from peer-reviewed Nature Communications
articles spanning 72 scientific fields, featuring
complex visualizations that require graduate-
level expertise to interpret. Evaluation of 19
proprietary and open-source models on figure
captioning and multiple-choice tasks, along-
side human expert annotation, revealed signifi-
cant performance gaps. Beyond benchmarking,
our dataset enables effective large-scale train-
ing. Fine-tuning Qwen2-VL-2B with our data
outperformed GPT-40 and human experts in
multiple-choice tasks, while continuous pre-
training on interleaved article-figure data en-
hanced downstream performance in materials
science. The dataset has been made anony-
mously available to support further research. !

1 Introduction

Recent advancements in Large Vision Language
Models (LVLMs) (Li et al., 2023; Zhu et al., 2023;
Liu et al., 2024; Chen et al., 2024c; Bai et al.,
2023b; Achiam et al., 2023; Team et al., 2023; An-
thropic, 2024a; Wang et al., 2024a), have demon-
strated remarkable capabilities in solving problems
involving visual context. The growing capabilities
of LVLMs make them promising as Al-driven sci-
entific assistants capable of solving problems and
assisting in research in various science domains.
A critical aspect of this assistance is interpreting
the figures in research articles, which often con-
tain rich, compressed, and complex information,
requiring domain-specific expertise to understand.

Current LVLM evaluations focus mainly on bar
charts (Kahou et al., 2017; Masry et al., 2022;

'The links to data and code are provided in Appendix A.1.1
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Figure 1: Top 20 out of 72 science subjects with most
articles in our dataset MMSCI. The corresponding
numbers of papers and figures (in brackets) are shown.

Roberts et al., 2024; Wang et al., 2024b) and sim-
ple figures in limited science domains (Kembhavi
et al., 2017; Lu et al., 2022; Yue et al., 2023, 2024;
Liet al., 2024; Chen et al., 2024a). Scientific arti-
cles, however, contain diverse visualizations, like
microscopy images, molecular structures, astro-
nomical images, phylogenetic trees, and various
specialized plots, requiring graduate-level domain
expertise for proper interpretation.

To bridge this gap, we introduce MMSCI, a com-
prehensive multimodal dataset curated from open-
access Nature Communications articles” under CC
BY 4.0 license®. The dataset encompasses 72 scien-
tific disciplines, containing 131k articles and 742k
figures across diverse visualization types, with dis-
cipline distribution shown in Figure 1. To evaluate
LVLMs’ understanding of these complex scientific
figures requiring graduate-level expertise, we de-
veloped benchmark tasks for figure captioning and
multiple-choice questions across different settings.

Our evaluation revealed wide performance gaps
among LVLMs. For multiple-choice questions,
many open-source models performed at random-
guess levels, though Qwen2-VL-7B (Wang et al.,

2https: //www.nature.com/ncomms/
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Quantitative Data Visualization Charts (53.5%):
For charts and graphs displaying quantitative data, such as
scatter plots, bar graphs, and line charts.

Microscopic photographs(14.7%):
Photographs or images captured using a microscope,
revealing details not visible to the naked eye. a4

Schematic Diagrams (13.2%):

Simplified and symbolic representations of systems, processes,

or structures to explain how something works or is constructed.
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Experimental Results Visualizations (8.8%):

such as Western blots, PCR results, and gel electrophoresis.

For images that display results from experimental procedures,

Macroscopic photographs (5.2%):
Images or photographs of objects or scenes that are
visible to the naked eye, often used for visual analysis.
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Simulated Images (3.4%):
Computer-generated images or visualizations
created to model, predict, or illustrate theoretical
scenarios, processes, or phenomena.

L and Envil L Maps (1.2%):
Visual representations of geographical areas or
environmental data, often used for navigation, analysis, or
to illustrate spatial relationships and patterns in maps.
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Figure 2: Examples of the heterogeneous types of scientific figures in MMSCI, collected from open-access,

peer-reviewed articles in Nature Communications.

2024a) and MiniCPM-V-2.6 (Yao et al., 2024)
matched proprietary models like Gemini-1.5-Flash
(Reid et al., 2024) and Claude-3-Opus (Anthropic,
2024a). GPT-40 (Achiam et al., 2023) and Claude-
3.5-Sonnet (Anthropic, 2024b) led significantly.
Human expert evaluations confirmed top models
performed comparable to or exceeded domain ex-
perts, highlighting both task difficulty and these
models’ potential as scientific assistants. While all
models struggled with precise figure caption gen-
eration, especially for nuanced semantics, Claude-
3.5-Sonnet and GPT-4o still significantly outper-
formed others.

Our dataset also serves as a rich training re-
source with high-quality research content across
diverse subjects. Converting task-specific data to
instruction-following formats for fine-tuning sig-
nificantly improved Qwen2-VL-2B (Wang et al.,
2024a), achieving top multiple-choice accuracy on
our benchmark and better performance on other
datasets, though captioning remained challenging.
Pre-training on interleaved article text and figures
also enhanced material generation performance, a
critical materials science task.

Our contributions are threefold: (1) Data diver-
sity, scope and quality: Our dataset comprises high-
quality, peer-reviewed academic articles spanning
72 scientific disciplines, featuring diverse figure
types beyond charts. (2) Challenging benchmark:
Our evaluation framework includes varied task set-

tings for comprehensive assessment, with model
and human expert performance highlighting the
task’s complexity. (3) Rich training resources: We
provide valuable resources for model improvement,
including task-specific multimodal fine-tuning data
and interleaved article-figure data for continuous
LVLM pre-training, demonstrating potential for
enhancing scientific knowledge comprehension.

2 Related Dataset Work

Scientific Figure Understanding. Scientific fig-
ure interpretation research has evolved consider-
ably, but as Table 1 shows, existing datasets pre-
dominantly feature simple charts requiring general
interpretation skills rather than specialized knowl-
edge. Early synthetic datasets (Chen et al., 2020;
Kahou et al., 2017; Kafle et al., 2018) focused on
basic data visualizations, while later efforts like
FigureSeer (Siegel et al., 2016) and SciCap (Yang
et al., 2023) extracted figures from computer sci-
ence papers on arXiv. SciFiBench (Roberts et al.,
2024) expanded SciCap with additional tasks, and
CharXiv (Wang et al., 2024b) manually selected
chart figures from arXiv. Though ArxivQA/Cap
(Li et al., 2024) broadened scope to 32 arXiv sub-
jects beyond charts, it remains CS/mathematics-
centric with limited natural science coverage and
uses non-peer-reviewed papers. Our dataset distin-
guishes itself through peer-reviewed Nature Com-
munications articles spanning 72 subjects, compre-



Table 1: Comparison with prior scientific figure understanding benchmark datasets. *The number of subjects
in each work is taken from the original paper that uses different taxonomies, offering a sense of the relative coverage

across datasets rather than direct quantitative comparison.

Benchmark Dataset Data Source Peer-reviewed # Subjects*  Image Type Annotations Training Set
FigureQA (Kahou et al., 2017) Synthetic Data N/A N/A Charts Synthetic X
DvQA (Kafle et al., 2018) Synthetic Data N/A N/A Charts Synthetic X
SciCap (Yang et al., 2023) CS Arxiv Papers X 1(CS) Charts Authentic X
SciFiBench (Roberts et al., 2024) CS Arxiv Papers X 1(CS) Charts Authentic X
CharXiv (Wang et al., 2024b) Arxiv Papers X 8 Charts Human-picked X
ArxivCap/QA (Li et al., 2024) Arxiv Papers X 32 Open Category  Authentic/Synthetic 4
MMScI (Ours) Nature Communications 4 72 Open Category Authentic 4

Table 2: The key statistics of MMSCI, including the source data and the constructed benchmark test/validation
(dev) set and the data for visual fine-tuning in the training set.

Source dataset Number [Benchmark test/dev set Number [Training set Number
Total subjects 72 |Used articles 1,418/1,414 [Used articles 128,561
Total articles 131,393 |Figure Captioning 1,218 /1,412 | Figure Captioning 725,646
Total figures 742,273 |Fig2Cap Matching 1,188/1,297 |Fig2Cap Matching 84,328
Avg. caption length 153 |SubFig2Cap Matching  1,119/1,214 | SubFig2Cap Matching 53,882
Avg. figures per article  5.65 |SubCap2Fig Matching  1,114/1,221 |SubCap2Fig Matching 107,098
Avg. abstract length 150 Multi-turn conversation 108,843
Avg. article length 7,457 Total samples 1,079,797

hensive natural science coverage, and rich train-
ing resources for enhancing scientific figure under-
standing.

Multimodal Science Problems. Recent LVLM
evaluation studies assess simple image comprehen-
sion rather than complex scientific figure under-
standing. Existing datasets use straightforward vi-
suals not requiring expert knowledge. ScienceQA
(Lu et al., 2022) covers K-12 content. SciBench
(Wang et al., 2023) spans only three disciplines.
MMMU (Yue et al., 2023) and MMMU-Pro (Yue
et al., 2024) have limited natural science coverage
with image understanding not being their primary
focus, and MMStar (Chen et al., 2024a) offers par-
tial scientific scope. Our work uniquely targets
complex scientific figures requiring graduate-level
domain expertise across disciplines, with potential
applications for constructing multimodal science
problems in future research.

3 Data Curation

Source Data Collection. = We collected our
dataset from Nature Communications—comprising
open-access, peer-reviewed papers across 5 ma-
jor categories and 72 subjects (top 20 shown in
Figurel, complete list in Appendix Table 7). We
gathered article information (title, abstract, main
body, references) directly from article webpages,
while figures and captions came from dedicated fig-
ures pages, avoiding PDF extraction quality issues.
Mathematical formulas were converted to plain text

using pylatexenc.* The peer-reviewed nature of
the content ensured high quality, requiring no ad-
ditional filtering. Our crawl (up to 2024/04/15)
yielded 131,393 articles and 742,273 figures. More
statistics are shown in Table 2.

Sub-caption Extraction. Many figures in the
dataset consist of multiple sub-figures in a single
image, with captions that include a main caption
and descriptions of each sub-figure (sub-caption),
as illustrated in Figure 3. We developed a regular
expression matching function to identify sub-figure
indices at the beginning of sentences in alphabetical
order (a to z), extracting and identifying 514,054
sub-captions/figures, which aids in the consecutive
construction of our benchmark.

Heterogeneous Figure Types. We categorized
(sub-)figures in MMSCI into seven major types,
focusing on smallest individual components when
sub-figures were present. After manual review,
we employed GPT-4o to classify images within
the benchmark test set (see next section for data
splits). Figure 2 shows examples of these types,
with detailed statistics in Appendix Section A.1.3.
While charts comprise approximately half of the
figures like in previous benchmarks, we identified
six additional major types that vary significantly
across scientific disciplines.

4ht’cps: //github.com/phfaist/pylatexenc
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User: summarize the content in the figure based on the article. Article: {article}

Assistant: Fabrication of freestanding single-crystalline PbZrOi (PZO) membranes. a Schematics of the
whole fabrication process as depositing PbZrOs/Sr3Al,06 (SAO) heterostructure on SrTiO; (STO)
substrates, releasing PbZrO; films from the substrates by water etching, and then transferring

PbZrO; membranes to other substrates. b Optical images of a 2.5 mm x 2.5 mm PbZrO; membrane
transferred to polydimethylsiloxane (PDMS) with good flexibility. ¢ Surface morphology of transferred
PbZrO; on platinized silicon substrate scanned by AFM. d X-ray diffraction patterns of as-grown
SrTiOs/Sr3Al,04/PbZrO; heterostructure and freestanding PbZrO; membranes on the platinized silicon
substrate. a.u., arbitrary units. e The RSM studies of as-grown SrTiO5/Sr;Al,0¢/PbZrO; heterostructure
around (103) diffraction. f Top-view TEM image of a freestanding PbZrO; membrane supported by Cu grid
with lacey carbon film. g Atomic-resolution HAADF-STEM image of a freestanding PbZrO; membrane
from the top view. h Selected-area electron diffraction pattern of fi PbZrO3

—

User: which of the following options best describe sub-figure (d)?

A. X-ray diffraction patterns of as-grown SrTiOs...  B. Selected-area electron diffraction pattern ...

C. Atomic-resolution HAADF-STEM image of a...  D. The RSM studies of as-grown SrTiO3 /Sr3Al,0s...
Assistant: A

User: Which of the following subfigure best matches this description: Optical images of a 2.5 mm x
2.5 mm PbZrO; membrane transferred to polydimethylsiloxane (PDMS) with good flexibility ?

=7 Cu grid g A. sub-figure (a) B. sub-figure (b) C. sub-figure (c) D. sub-figure (d)

o E. sub-figure (e) F. sub-figure (f) G. sub-figure (g) H. sub-figure (h)

Assistant: B

Source: https://www.nature.com/articles/s41467-024-47419-w/figures/1

Figure 3: Illustration of the benchmark data in MMSCI. This example is taken from (Guo et al., 2024). The
figure (left) contains multiple sub-figures with a main caption (bold) and color-coded sub-captions corresponding to
each sub-figure. These sub-figures and sub-captions are used to construct tasks for figure captioning (upper right),

sub-figure to sub-caption matching (center right), and sub-caption to sub-figure matching (lower right).

4 Benchmarks

We developed two benchmark tasks with varying
settings to comprehensively test models’ under-
standing of scientific figures and content (Figure 3).

MMSCICAP: Scientific Figure Captioning.
Scientific figure captioning in MMSCI presents
distinct challenges beyond natural image caption-
ing, requiring graduate-level domain expertise and
article context understanding. These captions av-
erage 153 words, substantially longer than those
in natural image datasets and ArxivCap (Li et al.,
2024), creating a particularly demanding bench-
mark. We evaluate captioning under three settings:
(1) Figure-only captioning, where models gen-
erate captions solely from figures; (2) Abstract-
grounded captioning, providing both figures and
paper abstracts as context; and (3) full article con-
text evaluation, limited to long-context proprietary
models due to length constraints (detailed in Ap-
pendix A.2.2).

For evaluation, we use both traditional met-
rics (BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005),
BERTScore (Zhang et al., 2019), CIDEr (Vedantam
et al., 2015)) and two LLM-based metrics tailored
for scientific captions: modified FACTSCORE (Min
et al., 2023) and G-EVAL (Liu et al., 2023b). Our
FACTSCORE variant breaks generated captions
into atomic units, evaluates support from ground-
truth captions on a 0-1 scale, and applies a brevity
penalty for concise captions:

F) = (] X 6(0.€) - explmin(1 — 7.0).

acAy Y

We set v to 10 in our evaluation. This metric fo-
cuses on precision rather than recall. G-EVAL rates
overall quality on a 1-5 scale by comparing with
reference captions.

MMSCcCIQA: Figure Caption Matching. We
evaluate models’ figure comprehension abilities us-
ing multiple-choice questions across three settings:
(1) Figure-to-Caption (Fig2Cap): Models select
the correct main caption from four options, with
distractors from other figures in the same article,
testing holistic figure understanding. (2) Subfigure-
to-Subcaption (SubFig2Cap): Given a sub-figure,
models identify its corresponding sub-caption from
four choices within the same figure, evaluating
component-specific interpretation. (3) Subcaption-
to-Subfigure (SubCap2Fig): Given a sub-caption,
models select its matching sub-figure from all sub-
figures within the same figure, testing text-to-visual
association abilities.

Data Split. We allocated 1% of articles from
each subject to both test and validation sets, yield-
ing 1,418 test and 1,414 validation articles (5-50
articles per subject). Test samples were derived
from unique articles to prevent content overlap.
For caption tasks, we required a minimum length
of 50 words. Each task setting comprised around
1,200 samples, balancing coverage and evaluation
costs.

S Training Resources

Our dataset consists of rich articles and figure data,
which we explore as training resources to enhance
models’ capabilities in comprehending scientific
figures and content.



Table 3: Performance on scientific figure captioning. B2, RL, M, BS, CD, FS, and GE denote BLEU-2, ROUGE-L,
METEOR, BERTScore, CIDEr, FActScore, and G-Eval, respectively. *LLM-based evaluation results, using GPT-4o,
are reported on a randomly selected subset of 200 samples. Best results are bolded, with second-best underlined.

Image-only Captioning

Abstract-grounded Captioning

Model

| B2 RL M BS CD FS* GE*| B2 RL M BS CD FS* GE*

Open-source Models
Kosmos2 494 11.69 1453 7751 097 087 112 | 290 11.81 19.54 79.09 1.62 399 1.39
LLaVAL.5-7B 315 1256 11.80 79.93 0.17 3.89 108 | 3.70 13.97 1454 8120 076 9.07 2.02
LLaVAL.6-Mistral-7B | 2.8 1097 2045 79.53 0.08 5.17 123 | 390 1270 21.49 80.84 048 7.67 147
Qwen-VL-7B-Chat 10.02 1478 1534 8195 143 3.06 128 | 880 1555 16.02 81.87 278 9.14 1.64
InternVL2-2B 1.69 9.60 17.74 78.89 0.03 599 1.76 | 227 1174 1845 80.88 096 1038 2.17
InternVL2-8B 250 11.39 21.07 79.41 0.00 801 263 | 3.74 1230 2266 80.57 0.02 998 3.00
InternVL2-26B 418 1326 2421 81.02 0.19 1243 301 | 521 1492 23.19 8027 230 1231 3.20
IDEFICS2-8B 6.18 940 651 8030 021 256 140 | 696 1081 806 8030 065 517 1.96
IDEFICS3-8B-Llama3 | 1.85 10.11 19.09 78.65 0.0 726 171 | 233 11.28 20.61 7942 0.5 7.71 198
MiniCPM-V-2.6 475 1457 2484 81.19 142 11.15 296 | 6.11 1536 2509 82.68 327 1293 295
Llama3.2-11B-Vision | 2.68 1298 21.21 78.89 0.08 827 246 | 260 11.24 2263 79.63 0.00 9.55 2.18
Qwen2-VL-7B 3.60 1296 23.88 80.06 0.00 10.03 3.39 | 473 1445 2600 81.21 0.19 1036 3.45
Qwen2-VL-2B 345 1274 2139 80.03 038 994 231 | 568 1447 2177 8123 143 11.88 2.64
Qwen2-VL-2Bymscr | 1642 1977 19.74 8356 326 11.72 291 | 17.69 20.70 21.44 8378 5.66 13.57 3.18
Proprietary Models

Gemini-1.5-Flash 484 1549 2682 81.10 008 8.18 3.70 | 524 16.03 2871 81.80 0.00 10.14 4.08
Gemini-1.5-Pro 540 1638 27.06 81.13 0.19 1459 379 | 530 16.89 2891 81.93 0.00 13.76 4.08
Claude-3.5-Sonnet 501 1554 2632 8176 0.65 939 353 | 594 16,65 2752 81.76 046 12.11 4.04
GPT-4V 497 1486 2662 81.75 037 1417 3.69 | 524 1565 27.62 8237 020 19.52 4.13
GPT-40 493 1559 27.02 81.11 027 1320 4.01 | 557 1636 2837 81.84 036 1887 4.22
Task-specific Multimodal Training Data. We  2024b,a), InternVL?2 series (Chen et al., 2024b),

developed a comprehensive multimodal training
dataset pairing single-turn examples (multiple-
choice and abstract-grounded captioning) with
multi-turn chat discussing the figure content.
Specifically, we transformed captions into multi-
turn question-answer pairs using diverse templates,
where each turn discusses the content within a
panel sub-figure. This ensure quality by deriving
all responses from original article content. This
leads to more than 1M training instances. Fine-
tuning Qwen2-VL-2B (Wang et al., 2024a) for one
epoch produced Qwen2-VL-2Byvscr-

Interleaved Data for Pre-training. MMSCI in-
cludes full article content and figures, naturally
forming interleaved text and image data suitable
for pre-training LVLMs (Lin et al., 2023). We dis-
cuss the usage of this interleaved data in Section 7.

6 Benchmark Evaluation Results

Evaluated Models. We evaluated a wide range of
LVLMs spanning proprietary models (Gemini-1.5-
Flash/Pro (Reid et al., 2024), Claude-3-Opus (An-
thropic, 2024a), Claude-3.5-Sonnet (Anthropic,
2024b), GPT-4V/40 (Achiam et al., 2023)), and
open-source (Kosmos-2 (Peng et al., 2023), Qwen-
VL-7B-Chat (Bai et al., 2023a), Qwen2-VL-
2B/7B (Wang et al., 2024a), LLaVA1.5/NeXT (Liu
et al., 2024, 2023a), IDEFICS2/3 (Laurencon et al.,

and Llama3.2-11B-Vision (Team, 2024)). Specific
model versions are detailed in Appendix A.2.1.

Scientific Figure Captioning Results. Table 3
shows that abstract grounding consistently im-
proves caption quality across all models by pro-
viding essential context. On overlap-based metrics,
our fine-tuned model achieves high scores, likely
from learning the concise caption style during train-
ing. On LLM-based metrics, proprietary models
significantly outperform open-source counterparts,
particularly on G-EVAL (overall caption similarity).
While our fine-tuned model performs comparably
with proprietary models on FACTSCORE (precision
in component description), it still falls short of sat-
isfactory performance, highlighting the significant
model capabilities required for precise scientific
figure description.

Multi-choice Question Results. Table 5
presents multi-choice results across three settings.
In the most challenging Figure-to-Caption (Set-
ting I) task which requires models to identify
correct summaries of multi-panel figures (Fig-
ure 7, Appendix), our fine-tuned model outper-
formed the strongest proprietary model by nearly
10%. For SubFig2Cap (Setting 1I) and SubCap2Fig
(Setting I11), proprietary models significantly out-
performed most open-source models, suggesting
limitations in identifying nuanced figure content



Table 4: Model performance on MathVista (Lu et al., 2023) and TextbookQA (Kembhavi et al., 2017).

Model MathVista TextbookQA

GPS MWP VQA FQA TQA Al ‘ Diagram Non-Diagram
Qwen2-VL-2B 1773 25.00 68.48 59.48 57.01 44.07 25.40 24.44
Qwen2-VL-2Byvscer | 32.02  50.00 62.64 56.52 61.68 49.07 29.54 25.11

Table 5: Accuracies (%) on multiple-choice questions.
Setting I, II, and III denote Fig2Cap, SubFig2Cap, and
SubCap2Fig, respectively.

Model \ I I it Avg.
Open-source Models
Kosmos2 23.99 23.95 24.33 24.09
LLaVA1.5-7B 3274 2431 2280 2675
LLaVA1.6-Mistral-7B 3476  20.38  24.15  26.60
Qwen-VL-7B-Chat 39.56 19.93  27.83 2923
InternVL2-2B 42776  33.07 3842  38.18
InternVL2-8B 52.78  49.60 40.13  47.62
InternVL2-26B 50.59 57.82 71.63  59.81
IDEFICES2-8B 48.65 2583 21.10 3221
IDEFICES3-8B-Llama3 | 5042 2843 2998  36.57
MiniCPM-V-2.6 53.20 5827 61.67 57.61
Llama3.2-11B-Vision 5497 4504 71.18 57.00
Qwen2-VL-7B 66.16  73.10 79.80  72.87
Qwen2-VL-2B 60.61 37.62  55.12  51.30
Qwen2-VL-2Byvscr 78.62  83.02 83.57 81.67
Proprietary Models
Gemini-1.5-Flash 5477 77.84 6441 6524
Gemini-1.5-Pro 62.79  81.41 77.16  73.52
Claude-3-Opus 52.19  53.17 60.23  55.13
Claude-3.5-Sonnet 68.77 8534 87.16 80.18
GPT-4V 6043  75.07 76.12  70.45
GPT-40 6742 8740  84.65  79.57
Random Guess 25.86 24.63 20.62 23.24
PhD Experts 64.18 71.64 7272  69.51

within figures. While some open-source models
performed at random-chance levels (LLaVA1.5,
LLaVA1.6, Qwen-VL-7B-Chat), others demon-
strated strong competitiveness (MiniCPM-V-2.6,
Llama3.2-11B-Vision, Qwen2-VL-7B). Despite
Claude-3.5-Sonnet and GPT-4V leading among
proprietary models, our fine-tuned Qwen2-VL-
TBmmscr achieved the highest overall performance.

PhD Expert Evaluations. To establish human
performance baselines and validate question qual-
ity, we recruited PhD experts through the Pro-
lific platform>. We organized our dataset into 10
major scientific categories aligned with Prolific’s
specialization areas: Material Science, Chem-
istry, Physics, Biochemistry, Environment, Cli-
mate Sciences, Earth Sciences, Biological Sciences,
Biomedical Sciences, and Health/Medicine. For
each category, we selected 75 questions (25 per set-
ting) and recruited three evaluators who hold Phd
degrees in that domain, totaling 30 experts. These

5h’ctps://www. prolific.com/

specialists provided two assessments: (1) Ques-
tion Quality Assessment: rating clarity and effec-
tiveness at testing domain knowledge on a 5-point
scale; and (2) Human Expert Performance: an-
swering questions with a one-minute time limit to
establish a performance baseline. The experts gave
an average quality score of 4.01 (4.09 Fig2Cap,
4.03 SubFig2Cap, 3.91 SubCap2Fig), where 4 indi-
cates questions are clear, answerable, and require
adequate scientific understanding, validating our
benchmark’s quality. Notably, as shown in Table 5,
our fine-tuned model and leading proprietary mod-
els surpassed PhD-expert performance, likely re-
flecting models’ ability to rapidly process dense
scientific information across domains. This high-
lights both the task’s complexity and LVLMs’ po-
tential as efficient cross-domain scientific assistants.
Detailed human evaluation procedures appear in
Appendix A.2.3.

Performance on Other Datasets. We evaluated
our fine-tuned model on other multimodal datasets,
specifically MathVista (Lu et al., 2023), which fo-
cuses on mathematical reasoning in visual con-
texts. MathVista comprises five task types: ge-
ometry problem solving (GPS), math word prob-
lems (MWP), visual question answering (VQA),
figure question answering (FQA), and textbook
question answering (TQA). While VQA primar-
ily involves mathematical reasoning with natural
and synthetic images less related to scientific con-
tent, TQA most closely aligns with our focus, fea-
turing diagrams and questions from six grader’s
textbook. As shown in Table 4, our model’s per-
formance improved after training on our dataset,
with notable gains in GPS (geometry reasoning)
and TQA (scientific diagrams). Given TQA’s lim-
ited size within MathVista, we also evaluated on
the complete TextbookQA (Kembhavi et al., 2017)
test set, demonstrating improvements on both di-
agram and non-diagram problems. Notably, Text-
bookQA targets sixth-grade content, different from
our graduate-level scientific figures.
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Table 6: Evaluation of unconditional material generation covering validity, coverage and property distribution, and
stability checks. Performance reported over 10,000 samples.

Method Validity Check Coverage Property Distribution | Metastable Stable
Structuralf Compositiont | Recallf Precisiont | wdist (p)] wdist (Ne;)) | M3GNet+ DFTT 4

Previous non-language baselines

CDVAE 1.000 0.867 0.992 0.995 0.688 1.432 22.1% 1.2%

LM-CH 0.848 0.836 0.993 0.979 0.864 0.132 N/A N/A

LM-AC 0.958 0.889 0.996 0.986 0.696 0.092 N/A N/A

GPT-40 with Few-shot Prompting

GPT-40 5-shot 0.799 0.898 0.280 0.961 5.421 1.017 1.50% -

GPT-40 10-shot 0.787 0.820 0.654 0.963 3.976 0.917 4.72% 0.09%

Gruver et al. (2024): LLaMA?2 with Task-specific Fine-Tuning

LLaMA2-7B 0.967 0.933 0.923 0.950 3.609 1.044 33.6% 2.1%

LLaMA2-13B 0.958 0.923 0.884 0.983 2.086 0.092 34.3% 4.9%

LLaMA2-70B 0.997 0.949 0.860 0.988 0.842 0.433 50.1% 5.3%

Ours: LLaMA?2 with Continuous Pre-Training on MMSCTI plus Task-specific Fine-Tuning

LLaMA2-7Byvmsct ‘ 0.993 0.979 ‘ 0.916 0.996 1.675 0.353 64.5% 8.2%

T Fraction of structures that are first predicted by M3GNet to have EM3|GNCl < 0.1 eV/atom, and then verified with DFT to have E}]])“liv]r < 0.0 eV/atom.

hul

Material Generation Prompt

Below is a description of a bulk material. The chemical formula is ToGdAl6.
The band gap is 0.0. The spacegroup number is 187. Generate a
description of the lengths and angles of the lattice vectors and then the
element type and coordinates for each atom within the lattice:

6.36.34.6

90 90 120

Tb

0.650.430.78

Figure 4: The prompt for generating crystal structure.

7 A Case Study in Material Sciences

Material science as the subject with the most arti-
cles and figures in our dataset, is an important and
highly interdisciplinary field that requires knowl-
edge from various subjects. Given its signifi-
cance, we conducted a case study to explore how
our dataset could enhance material science knowl-
edge. Previous research has investigated the ap-
plication of language models to material science
tasks (Walker et al., 2021; Rubungo et al., 2023;
Miret and Krishnan, 2024). A recent study (Gru-
ver et al., 2024) demonstrated promising results
using LLaMA?2 (Touvron et al., 2023) for mate-
rial generation by representing crystal structures
as text strings and training the model to generate
these structures. However, LLaMA2’s scientific
knowledge may be insufficient for fully understand-
ing material generation principles. To address this
limitation, we explored continuous pre-training of
LLaMAZ2 using our interleaved scientific article
and figure dataset, aiming to improve the model’s
performance on stable material generation tasks.

Visual Pre-Training on MMSCI. We continu-
ously pre-trained the LLaMA2-7B model on our

collected interleaved article text and figure images,
using data within materials science as well as other
eight related subjects in the same Physical Science
category. To achieve that, we leverage LLaVA’s
architecture (Liu et al., 2024), equipping LLaMA?2
with a pre-trained CLIP ViT-L/14-336 (Radford
et al., 2021) as the visual encoder and a 2-layer
MLP as the projector. During training, we initially
kept the LLLM frozen and used data from general
domains provided by (Liu et al., 2024) to initial-
ize the projector. We then trained the model on
the interleaved text and image data from general
domains in MMC4 (Zhu et al., 2024) to further
develop its image perception abilities, followed
by our collected interleaved articles and figures in
MMSCcI to infuse scientific knowledge. In this
stage, we tuned both the LLM and the projector,
for one epoch. For the resulting multimodal model,
we use its LLM part, named LLaMA2-7Bymscrs
for the subsequent material generation.

Fine-tuning for Materials Generation. Given
the LLM, we further fine-tune it for the material
generation task as in (Gruver et al., 2024). Specifi-
cally, periodic materials are characterized by a unit
cell that repeats infinitely in all three dimensions.
Each unit cell is specified by its side lengths ({1,
lo, l3) and angles (01, 02, 03). Within this lattice
structure, there are N atoms, each identified by an
element symbol, e;, and a set of 3D coordinates
(x4, ¥i, z;). The structure of a bulk material C' can
be represented by:

C= (l17 l27 l37 01) 027937

€1,T1, Y1, 21, - - (D

-7€N75UN,Z/N72’N)-
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Figure 5: Ablation studies on the influence of different
pre-training data over LLaMA2-7B.

The prompt for generating these structures is shown
in Figure 4. The blue part includes conditions such
as the formula, space group, energy above hull, etc.
The red part is the generated representation of the
crystal structure, and the text above is the prompt.

Following (Xie et al., 2021; Gruver et al., 2024),
we use the MP-20 dataset (Jain et al., 2013) of
45,231 stable materials, where successful genera-
tion should produce at least metastable crystals.
The training data incorporates both conditional
generation prompts (single or multiple conditions)
and infilling prompts for masked crystal structure
strings. Training is limited to one epoch to maintain
diversity in generated materials.

Results. We evaluated unconditional mate-
rial generation (10,000 structures, temperature
0.7) (Xie et al., 2021; Gruver et al., 2024) using
metrics for validity, coverage, property distribution,
and stability (via M3GNet (Chen and Ong, 2022)
and DFT (Hafner, 2008)). Table 6 shows GPT-
4o fails without specific training, while LLaMA2-
7B achieves superior results after continuous pre-
training on our interleaved article-figure data plus
multi-task fine-tuning, demonstrating best perfor-
mance in compositional validity, coverage preci-
sion, and the critical metastability and stability met-
rics. These results highlight our dataset’s effective-
ness in enhancing scientific knowledge acquisition
in generative models.

Ablation Studies. To understand the factors con-
tributing to LLaMA2-7Bymsc:’s performance, we
explored different pre-training data configurations:
using only interleaved data from either MMC4
(general interleaved data) or MMSCI, using inter-

leaved data from MMC4 combined with text-only
data from MMSCcI, and using no additional pre-
training data, followed by the same fine-tuning
setup. As shown in Figure 5, the text-only and
interleaved data from MMSCI achieved the top-2
overall performance when combined with MM C4
which equips the model to effectively read text and
interpret images within scientific articles. Using
both articles and figures led to better performance
than using text-only data from MMScT, highlight-
ing the importance of understanding both figures
and content in scientific literature. In contrast, us-
ing only general domain data from MMC4 did not
result in improvements, and directly training on
MMSCcTI even slightly decreased performance in
structure validity. This is likely because incorporat-
ing visual information can confuse the model if it
has not been sufficiently pre-trained with general
interleaved data. Overall, continuous pre-training
on our data shows the potential to infuse scientific
knowledge that enhances downstream tasks.

8 Conclusion

In this work, we present MMSCI, a multidisci-
plinary multimodal dataset containing high-quality,
peer-reviewed articles and figures across 72 scien-
tific disciplines. Using this dataset, we construct
a challenging benchmark to evaluate the capabili-
ties of LVLMs in understanding scientific figures
and content, revealing significant deficiencies. Ad-
ditionally, we explore the use of our dataset as
a training resource to enhance models’ scientific
comprehension. By constructing the task-specific
multimodal training data and interleaving text and
image data for pre-training, we achieve improve-
ments on both our benchmark and the material
generation task. Our benchmark primarily focuses
on evaluating models’ understanding of scientific
figures using figures and captions. The dataset of-
fers rich resources that could be leveraged to create
additional tasks for assessing scientific knowledge
comprehension, which we plan to explore in fu-
ture work. Overall, we anticipate that MMSCI
will serve as a valuable resource for evaluating and
improving the scientific understanding of genera-
tive models, thereby advancing the development of
Al-based scientific assistants.

Limitations

Our dataset MMSCI provides a comprehensive
multimodal resource across 72 scientific disci-



plines, serving as both a benchmark and train-
ing resource. However, our current exploration
has limitations. Due to resource constraints, we
were unable to synthesize large-scale, high-quality
question-answer data using human experts or gener-
ative models. Instead, our benchmark primarily as-
sesses scientific figure understanding using original
figures and captions from the articles, ensuring data
quality. The task-specific data also demonstrates
effectiveness in enhancing models’ scientific fig-
ure comprehension capabilities. Additionally, the
full article content alongside figures serves as rich
pre-training data and presents opportunities for gen-
erating additional synthetic data, including single-
and multimodal questions evaluating models’ sci-
entific knowledge. We believe MMSCI will serve
as a valuable resource for the research community
and will make all data publicly available.
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A Appendix

A.1 Dataset Description
A.1.1 Data and Code Access

We provide access to our data, model checkpoints,
and code through the following links:

* Source dataset, including the collected
articles and figures:
https://mmsci.s3.amazonaws.com/
rawdata.zip.

* Benchmark sets, including the dev and test
sets for evaluation and the train set consisting
of task-specific training data:
https://mmsci.s3.amazonaws.com/
benchmark.zip.

* Pre-training data, including the interleaved
article and figure data for pre-training:
https://mmsci.s3.amazonaws.com/
pretraindata.zip.

* Checkpoints, including the Qwen2-VL-2B
model fine-tuned on our task-specific training
data (Qwen2-VL-2Byvmscr):
https://mmsci.s3.amazonaws.com/
checkpoints.zip

* Code: All the code used in our experiments
is available at:
https://anonymous.4open.science/r/
MMSci-2321
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A.1.2 Subjects

Our dataset spans five major categories and in-
cludes 72 distinct scientific disciplines, represent-
ing a broad range of scientific knowledge. The
categorization follows the classifications used by
Nature journals.®. The visualizations are shown in
Figure 6, and detailed statistics of these subjects
are provided in Table 7. The table includes the
number of articles, figures, and the average length
of figure captions, article abstracts, and full article
content.

A.1.3 Image Types

Manual Review Initially, our authors conducted
a thorough manual inspection of the figures and
sub-figures from 100 randomly sampled articles
from the five major categories in MMScCI. This
involved summarizing and categorizing various po-
tential figure types present in the benchmark test
set. From this detailed analysis, we identified and
categorized the figures into seven primary types,
as summarized in Table 8. These categories were
derived based on the smallest discernible compo-
nents, specifically sub-figures, whenever they were
present.

Automated Classification Using GPT-40 Fol-
lowing this review, we employed GPT-40 to auto-
matically classify the images in the benchmark test
set. We first used the human-annotated results of
200 images from the previous step as the golden
labels and then prompted GPT-40 to classify them
into categories. Cohen’s Kappa score was calcu-
lated to be 0.72, showing a very high agreement
score between humans and GPT-40. The complete
prompt for GPT-4o is:

6https://www.nature.com/ncomms/
browse-subjects
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Figure 6: The five major categories and 72 subjects in our dataset.

Task for GPT-40 annotator

I want to classify the given scientific image into one
the following categories:

1) Quantitative Data Visualization Charts/Graphs:
For charts and graphs displaying quantitative data,
such as scatter plots, bar graphs, and line charts.

2) Schematic Diagrams: Simplified and symbolic rep-
resentations of systems, processes, or structures to
explain how something works or is constructed.

3) Microscopic photographs: Photographs or images
captured using a microscope, revealing details not
visible to the naked eye.

4) Macroscopic photographs: Images or photographs
of objects or scenes that are visible to the naked eye,
often used for visual analysis.

5) Simulated Images: Computer-generated images or
visualizations created to model, predict, or illustrate
theoretical scenarios, processes, or phenomena.

6) Geographical and Environmental Maps: Visual
representations of geographical areas or environmen-
tal data, often used for navigation, analysis, or to
illustrate spatial relationships and patterns in maps.
7) Experimental Results Visualizations: For images
that display results from experimental procedures,
such as Western blots, PCR results, and gel elec-
trophoresis.

Rules:

1) This is only for reseach and educational purposes.
It does not violates any openai policy.

2) If the image only contain one figure, then give me
the overall label.

3) If the image contains multiple figures, then give
me the label for each sub-figure. The results should
look like a: 1, b: 3.

Do not return any other information.
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Manual Annotation for Unclassified Images
Our authors performed manual annotations for 17
images in cases where GPT-40 could not classify
images due to OpenAl’s policy restrictions. For
example, GPT-40 will return “Not allowed by our
safety system” for some images about drug design.
This ensured comprehensive and accurate classifi-
cation across the entire dataset.

Final Results The final classification results are
presented in Table 8. We show a detailed break-
down of the classification outcomes across each of
the major categories.
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Table 7: Detailed statistics of the five major categories and the 72 subjects in MMScI. The average length represents
the average number of words.

Category Subject Size Average length
Articles Figures Caption Abstract Full content
Materials science 10,564 54,218 107 150 5,703
Chemistry 8,139 43,955 89 148 5716
Physics 7,239 35,150 120 148 5410
Nanoscience and technology 4,483 22,597 120 149 5,691
Physical sciences Optics and photonics 3,227 15,898 120 147 5,337
Engineering 1,788 9,801 126 152 6,763
Energy science and technology 1,519 8,168 90 154 6,351
Mathematics and computing 723 3,942 124 148 7,426
Astronomy and planetary science 345 1,762 110 144 5,488
Ecology 2,185 9,862 125 149 6,546
Climate sciences 1,795 8,810 111 148 6,060
Solid Earth sciences 1,034 5,416 114 147 5,693
Environmental sciences 853 3,576 104 148 6,375
Biogeochemistry 850 3,988 111 150 6,438
Earth and environmental sciences Ocelan sciences . . 689 3,524 115 152 6,266
Environmental social sciences 452 2,069 99 145 6,534
Natural hazards 311 1,686 109 141 6,341
Planetary science 406 1,997 109 145 5,549
Hydrology 260 1,258 110 149 6,101
Limnology 65 280 120 146 6,212
Space physics 126 717 109 146 5,339
Cell biology 6,490 44,111 204 149 8,968
Biochemistry 6,145 37,608 168 149 8,330
Microbiology 5,225 29,487 167 153 7,966
Neuroscience 5,016 32,162 198 148 9,410
Molecular biology 4,843 31,000 193 149 8,955
Genetics 4,665 25,037 169 150 8,165
Cancer 5215 32,779 196 151 8,820
Immunology 4,024 26,103 195 152 8,781
Biological techniques 3,540 20,169 176 147 8,297
Computational biology and bioinformatics 2,914 16,084 162 150 8,523
Biotechnology 2,633 14,689 170 147 8,118
Biological sciences Biophysics 2,440 14,315 166 150 7,923
Structural biology 3,432 20,402 155 150 8,024
Ecology 2,223 10,052 126 149 6,561
Developmental biology 2,205 14,947 199 151 9,018
Evolution 1,941 9,493 144 150 7,202
Plant sciences 1,659 9,528 163 151 7,846
Physiology 1,619 10,649 190 150 8,892
Chemical biology 1,812 10,523 150 147 7,885
Systems biology 993 5,594 184 149 8,674
Drug discovery 964 5,877 174 150 8,675
Stem cells 1,191 7,870 205 152 9,277
Zoology 502 2,347 144 150 6,613
Psychology 410 2,066 154 148 8,744
Diseases 3,459 20,256 177 152 8,060
Medical research 1,839 10,171 167 154 7,572
Oncology 1,161 7,140 196 156 8,897
Health care 880 4,357 137 150 6,701
Pathogenesis 505 3,223 190 151 8,157
Biomarkers 558 2,959 168 152 7,905
Cardiology 400 2,580 188 152 8,927
Gastroenterology 406 2,670 188 154 8,792
Health sciences Endocrinology 393 2,590 192 156 9,104
Anatomy 378 2,431 187 147 8,098
Neurology 355 2,164 179 153 8,741
Molecular medicine 342 2,100 187 150 8,697
Risk factors 246 1,058 135 154 6,870
Rheumatology 153 999 191 151 8,969
Nephrology 137 943 193 153 9,194
Signs and symptoms 50 262 169 148 7,270
Urology 38 232 198 155 8,681
Health occupations 2 12 84 162 5,666
Social sciences 393 1,713 114 143 6,848
Scientific community 127 363 123 90 4,576
Energy and society 158 827 95 149 6,991
Agriculture 85 396 107 147 6,581
Scientific community and society Developing world 75 330 111 128 5,986
Water resources 61 289 100 150 6,531
Geography 49 228 101 144 6,444
Business and industry 46 233 94 143 6,441
Forestry 43 185 107 148 6,618
Total 72 131,393 742,273 153 150 7,457
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Table 8: The figure types in the benchmark test set of MMSCI regarding the five major categories, where C1-C5
represents Physical sciences, Earth and environmental sciences, Biological sciences, Health sciences, and Scientific
community and society, respectively.

Type Definition Cl1 C2 C3 C4 Cs
Quantitative Data Visu- For charts and graphs displaying quantitative 1,761 643 5,046 1,062 200
alization Charts/Graphs data, such as scatter plots, bar graphs, and
line charts.
Schematic Diagrams Simplified and symbolic representations of 633 63 1,291 129 30
systems, processes, or structures to explain
how something works or is constructed.
Microscopic Pho- Photographs or images captured using ami- 615 36 1,438 287 12
tographs croscope, revealing details not visible to the
naked eye.
Macroscopic Pho- Images or photographs of objects or scenes 149 48 493 133 17
tographs that are visible to the naked eye, often used
for visual analysis.
Simulated Images Computer-generated images or visualizations 251 15 250 23 13
created to model, predict, or illustrate theo-
retical scenarios, processes, or phenomena.
Geographical and Envi- Visual representations of geographical areas 13 125 28 3 26
ronmental Maps or environmental data, often used for naviga-
tion, analysis, or to illustrate spatial relation-
ships and patterns in maps.
Experimental Results For images that display results from exper- 47 3 1,120 290 1
Visualizations imental procedures, such as Western blots,
PCR results, and gel electrophoresis.
Total - 3,469 933 9,666 1,927 299

Table 9: Evaluated LVLMs in our experiments with their versions or Huggingface model paths.

Model Model versioning/path

GPT-4V gpt-4-turbo-2024-04-09

GPT-40 gpt-40-2024-05-13

Gemini-1.5-Pro gemini-1.5-pro-001

Gemini-1.5-Flash gemini-1.5-flash-001

Claude-3.5-Sonnet claude-3-5-sonnet-20240620

Claude-3-Opus laude-3-opus-20240229

Kosmos2 https://huggingface.co/microsoft/kosmos-2-patch14-224
LLaVA1.5-7B https://huggingface.co/llava-hf/1lava-1.5-7b-hf
LLaVA1.6-Mistral-7B | https://huggingface.co/1lava-hf/llava-v1.6-mistral-7b-hf
Qwen-VL-7B-Chat https://huggingface.co/Qwen/Qwen-VL-Chat

InternVL2-2B https://huggingface.co/OpenGVLab/InternVL2-2B
InternVL2-8B https://huggingface.co/OpenGVLab/InternVL2-8B
InternVL2-26B https://huggingface.co/OpenGVLab/InternVL2-26B
IDEFICS2-8B https://huggingface.co/HuggingFaceM4/idefics2-8b
IDEFICS3-8B-Llama3 | https://huggingface.co/HuggingFaceM4/Idefics3-8B-L1lama3
MiniCPM-V-2.6 https://huggingface.co/openbmb/MiniCPM-V-2_6
Llama3.2-11B-Vision | https://huggingface.co/meta-1lama/Llama-3.2-11B-Vision-Instruct
Qwen2-VL-2B https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct
Qwen2-VL-7B https://huggingface.co/Qwen/Qwen2-VL-&B-Instruct
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A.2 Experimental Setup

A.2.1 Evaluated Model

The exact model versions used are detailed in Ta-
ble 9. All inferences for the open-source models
were executed on a computing cluster equipped
with eight NVIDIA A100 GPUs, each with 40GB
of memory.

A.2.2 Captioning Evaluation

FACTSCORE Evaluation We modified the
FACTSCORE, which was originally designed to
evaluate the factual accuracy of generations using
external knowledge sources like Wikipedia. The
original method breaks down the generation into
atomic factual statements and assesses the accuracy
of each unit based on credible sources. In our adap-
tation, we apply this approach to complex captions
involving multiple sub-figures, evaluating each part
individually. Since there is no external knowledge
source, we assess each atomic unit based on the
ground-truth caption. This process involves two
steps.

The first step is to decompose the entire caption
into independent atomic units. We provide the
model with an example for this step, as shown
below in Prompt 1.

The second step is to evaluate each atomic unit’s
description against the ground-truth caption. In this
step, we use zero-shot prompting. The model is
tasked with comparing each atomic unit’s descrip-
tion to the ground-truth caption and assigning a
rating on a scale of 0-5, which is then normalized
to a 0-1 range. The prompt is shwon in Prompt 2.
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Prompt 1 for Caption Decomposition

Your task is to break down the caption into separate, independent
descriptions for the entire figure and each panel, formatted
appropriately and separated by ’-’.

The figure consists of four sub-figures labeled a, b, ¢, and d. All four
images appear to be scanning electron microscope (SEM) images
showing the microstructure of different materials, likely related to
the iron-based cathode catalysts described in the article.

a. This image shows a highly porous structure with interconnected
particles forming a network. The particles appear to be in the
nanometer to micrometer size range. The scale bar indicates 1 pm.
b. This image displays a closer view of what seems to be a similar
material to (a), but at a higher magnification. The individual particles
are more clearly visible, showing a rough, granular texture. The
scale bar indicates 200 nm.

c. This image reveals a different morphology compared to (a) and
(b). It shows larger, more consolidated structures with a rougher
surface texture. There are still visible pores and gaps between the
structures. The scale bar indicates 1 pm.

d. This final image appears to be a cross-sectional view of a porous
material, possibly showing the internal structure of the catalyst.
It reveals a highly interconnected network of pores and channels
throughout the material. The scale bar indicates 200 nm.

These images likely represent different stages or variations of
the iron-acetate/phenanthroline/zeolitic-imidazolate-framework-
derived electrocatalyst mentioned in the article. The varying
structures and porosities shown in these images could be related to
the enhanced mass-transport properties and increased volumetric
activity described in the text.

Independent Descriptions:

- The figure consists of four sub-figures labeled a, b, ¢, and d.

- All four images appear to be scanning electron microscope (SEM)
images.

- The images show the microstructure of different materials.

- The materials are likely related to the iron-based cathode catalysts
described in the article.

- Image a shows a highly porous structure with interconnected parti-
cles forming a network.

- The particles in image a are in the nanometer to micrometer size
range. - The scale bar in image a indicates 1 pm.

- Image b displays a closer view of a material similar to that in image
a but at higher magnification.

- The individual particles in image b are more clearly visible and
show a rough, granular texture.

- The scale bar in image b indicates 200 nm.

- Image ¢ shows larger, more consolidated structures with a rougher
surface texture.

- There are visible pores and gaps between the structures in image c.
- The scale bar in image ¢ indicates 1 pm.

- Image d appears to be a cross-sectional view of a porous material.
- Image d reveals the internal structure of the catalyst with a highly
interconnected network of pores and channels.

- The scale bar in image d indicates 200 nm.

- These images likely represent different stages or variations
of the iron-acetate/phenanthroline/zeolitic-imidazolate-framework-
derived electrocatalyst mentioned in the article.

- The varying structures and porosities shown in these images could
be related to the enhanced mass-transport properties described in the
text.

- The varying structures and porosities in the images may contribute
to increased volumetric activity described in the article.

Prompt 2 for Atom Unit Description Rating

How relevant is the generated caption to the
provided human-written caption for the figure?
Determine the extent to which the information in
the generated caption is included or referenced in
the human-written caption. Respond with a score
between 0 and 5.

Human-written caption: {REFERENCE}

Generated caption: { GENERATION}




G-EVAL Evaluation Our G-EVAL evaluation
follows the implementation in (Liu et al., 2023b).
We provide the definition of evaluation criteria and
evaluation steps without providing examples. The
model is tasked with assigning a score in the range
of 1-5. The detailed prompt is as follows:

Prompt for G-EVAL Evaluation

You will be given a oracle caption that describes
a figure. You will then be given a second caption
written for the same figure. Your task is to rate the
second caption on one the following metric.

Evaluation Criteria:

Relevance (1-5) - The extent to which the second
caption is relevant to the key elements and context
described in the oracle caption. A relevant caption
should focus on the same subjects, objects, actions,
or context highlighted in the oracle caption, without
introducing unrelated or extraneous details.

Evaluation Steps:

1. Review the Oracle Caption: Carefully read the
oracle caption to understand the main elements and
context it describes.

2. Review the Second Caption: Assess whether the
second caption focuses on the same key elements and
context as the oracle caption. Evaluate if the second
caption stays on topic and does not introduce irrele-
vant details.

3. Assign a Score for Relevance: Based on the Evalu-
ation Criteria, rate how relevant the second caption is
to the oracle caption’s description of the same image.

Captioning Grounded on Full Article We also
explored using entire articles as context for caption-
ing. Due to the average article length exceeding
10k tokens, we evaluated this approach only on pro-
prietary models capable of handling long contexts:
GPT-40, GPT-4V, Claude-3.5-Sonnet, and Gemini-
1.5-Pro/Flash. As shown in Table 10, providing the
full article as context improved performance com-
pared to using only the abstract. This improvement
is reasonable since understanding scientific figures
typically requires grounding in the article’s con-
tent, as abstracts alone may not provide sufficient
context. However, we note that this approach may
potentially benefit from content repetition, as sim-
ilar descriptions might appear in both the caption
and the article text.

A.2.3 Human Expert Evaluation

To analyze our dataset, we recruited domain ex-
perts (PhDs in corresponding fields) through the
online professional annotation platform Prolific’.
We refined and consolidated the original 72 subject

"https://www.prolific.com/
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categories from Prolific into 18 broader groups to
balance between comprehensive coverage and suf-
ficient specificity. The recategorized subjects are
shown in Table 11. From these 18 recategorized
fields, we focused on 10 major scientific domains
where PhD annotators were available on Prolific.
We recruited 30 PhDs as human evaluators with
verified degrees in these domains: Material Sci-
ence, Chemistry, Physics, Biochemistry, Environ-
ment, Climate Sciences, Earth Sciences, Biological
Sciences, Biomedical Sciences, and Health and
Medicine. Each evaluator provided two types of
assessments: Question Quality Assessment and Ex-
pert Performance Score. The results for each group
are detailed in Table 12.

Question Quality Assessment For the quality as-
sessment, evaluators were asked to assess whether
the questions were clear and demonstrated under-
standing of scientific knowledge within their re-
spective disciplines. They used the following 5-
point scale:

* Score Point 1: The question is irrelevant or
cannot be answered based on the scientific
content presented in the figure.

* Score Point 2: The question lacks clarity or
can be answered without specific knowledge
of the scientific content in the figure (e.g., it
can be answered with common sense).

* Score Point 3: The question is clear but re-
quires only minimal understanding of the sci-
entific content in the figure.

* Score Point 4: The question is clear, answer-
able, and requires an adequate understanding
of the scientific content in the figure.

* Score Point 5: The question is clear, answer-
able, and effectively evaluates a very deep
understanding of the scientific content in the
figure.

Expert Performance Score For the expert eval-
uation tasks, we created a subset of questions for
each category by selecting 25 questions per setting
(75 total) from our three figure-caption matching
tasks in the original test set. We report the results
from the best-performing expert (who achieved the
highest average performance) in each category. The
annotators were instructed to select their answers
within a one-minute time limit per question.


https://www.prolific.com/

Table 10: Performance comparison on scientific figure captioning task when grounded on abstract and full article.

Model Context BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L Meteor BertScore FActScore G-Eval
Gemini-1.5-Flash Abstract 3.29 26.74 7.47 16.03 28.71 81.80 10.14 4.08
Gemini-1.5-Pro Abstract 3.33 28.71 7.73 16.89 2891 81.93 13.76 4.08
Claude-3.5-Sonnet | Abstract 3.20 29.60 6.71 16.65 27.52 81.76 12.11 4.04
GPT-4V Abstract 3.18 28.45 7.01 15.65 27.62 82.37 19.52 4.13
GPT-40 Abstract 3.58 28.85 7.79 16.36 28.37 81.84 18.87 4.22
Gemini-1.5-Flash | Full Article 6.94 32.83 14.15 22.02 34.50 83.26 19.41 4.12
Gemini-1.5-Pro Full Article 7.01 32.24 13.34 19.32 33.75 83.18 19.33 422
Claude-3.5-Sonnet | Full Article 7.99 37.63 13.61 23.63 34.66 84.34 21.67 4.52
GPT-4V Full Article 5.65 33.09 10.95 19.25 31.46 83.48 23.18 4.24
GPT-40 Full Article 9.90 37.06 17.63 24.89 37.52 83.64 24.12 4.58

Table 11: Recategorization of the 72 subjects in MMSci dataset for recruiting Phd experts of each major category

from Prolific platform.

Re-categoried Fields

Original Subjects from Nature Communications

Material Science

Materials science, Nanoscience and technology

Chemistry Chemistry

Physics Physics, Optics and photonics

Engineering Engineering

Energy Energy science and technology, Energy and society

Mathematics and Computing

Mathematics and computing

Astronomy and Planetary Sci-
ence

Astronomy and planetary science, Planetary science, Space physics

Environment Ecology, Environmental sciences, Biogeochemistry, Water resources
Climate Sciences Climate sciences
Earth Solid Earth sciences, Ocean sciences, Natural hazards, Hydrology, Limnology, Geography

Social Sciences

Environmental social sciences, Psychology, Social sciences, Scientific community, Devel-
oping world

Biochemistry

Biochemistry, Molecular biology, Biophysics, Structural biology, Chemical biology

Biological Sciences

Microbiology, Genetics, Biological techniques, Computational biology and bioinformatics,
Developmental biology, Evolution, Plant sciences, Physiology, Systems biology, Zoology,
Cell biology

Biomedical Sciences

Neuroscience, Immunology, Biotechnology, Stem cells, Pathogenesis, Biomarkers,
Anatomy, Molecular medicine

Health and Medicine Cancer, Diseases, Medical research, Health care, Oncology, Cardiology, Gastroenterology,
Endocrinology, Neurology, Risk factors, Rheumatology, Nephrology, Signs and symptoms,
Urology, Health occupations

Pharmacology Drug discovery

Agriculture Agriculture, Forestry

Business and Industry

Business and industry

A.2.4 Visual Supervised Fine-tuning

We fine-tuned the Qwen2-VL-2B model on our
dataset for one epoch with LoRA (Hu et al., 2021),
targeting all linear modules. We use the LLAMA-
Factory framework for training (Zheng et al., 2024).
The hyperparameters are provided in Table 13. The
fine-tuning was conducted on a computing cluster
with eight NVIDIA A100 GPUs, each with 40GB
of memory, and the process took approximately 8
hours to complete.

A.2.5 Visual Language Pre-training

In our case study experiments on the material gen-
eration task, we continuously pre-train a LLaMA2-
7B model using our interleaved article and fig-
ure data to infuse more material science-relevant
knowledge. Specifically, for pre-training on the
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interleaved text and image data, we follow the
methodology outlined in (Lin et al., 2023).

Model Architecture Following the approach out-
lined in (Liu et al., 2024; Lin et al., 2023), we
extend the LLaMA2-7B model from a text-only
model to a multimodal model by augmenting the
LLM with a visual encoder to learn visual embed-
dings and a projector to bridge the embeddings
between the text and visual modalities. Specifi-
cally, the visual encoder processes the image and
outputs visual features. These features are then
mapped into the word embedding space by the pro-
jector, creating visual tokens. These visual tokens
are concatenated with the word tokens and fed into
the LLM, allowing the model to integrate both text
and visual information for generation. The specific



Table 12: Quality scores and Phd experts’ accuracies across the ten re-grouped fields.

Field Fig2Cap SubFig2Cap SubCap2Fig
Quality (1-5) | Accuracies (%) | Quality (1-5) | Accuracies (%) | Quality (1-5) | Accuracies (%)
Material Science 4.0267 92.00 4.2933 92.00 4.1333 84.00
Chemistry 4.1333 84.00 3.7467 92.00 3.6133 100.00
Physics 4.0267 48.00 3.5467 72.00 3.8133 80.00
Biochemistry 3.1600 80.00 4.8267 56.00 4.4133 72.00
Environment 4.1067 44.00 4.4667 64.00 4.3467 76.00
Climate Sciences 4.1296 77.78 3.6471 88.24 3.4118 82.35
Earth 4.0267 44.00 4.2319 52.17 4.1739 60.87
Biological Sciences 3.8800 48.00 3.6800 48.00 3.7867 32.00
Biomedical Sciences 4.0133 68.00 4.1333 72.00 3.7733 88.00
Health and Medicine 4.3733 56.00 3.7467 80.00 3.6800 52.00
Average 4.0873 64.18 4.0319 71.64 3.9149 72.72
Table 13: Hyperparameters for visual supervised fine-tuning.

Hyperparameter Values

base model https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct

epochs 1

global batch size 8

learning rate 0.0001

learning rate scheduler  cosine

weight decay 0.0

warmup ratio 0.1

max length 4096

lora modules

g_proj, k_proj, v_proj, o_proj, up_proj, gate_proj, down_proj

Table 14: Hyperparameters for visual language pre-training on interleaved text and image data.

Hyperparameter Values

base model https://huggingface.co/meta-1lama/Llama-2-7b-hfb

vision encoder https://huggingface.co/openai/clip-vit-large-patch14-336

projector 2-layer MLP

Stage 1: Projector Initialization

epochs 1

global batch size 256

learning rate 0.001

learning rate scheduler cosine

weight decay 0.0

warmup ratio 0.03

max length 4096

tune LLM X

tune vision encoder X

tune projector v

Stage 2: Visual Language Pre-training

epochs 1

global batch size 128

learning rate 0.00005

learning rate scheduler cosine

weight decay 0.0

warmup ratio 0.03

max length 4096

tune LLM v

tune vision encoder X

tune projector v
LLM, visual encoder, and projectors used in our 1. Projection initialization: In this stage, the
experiments are presented in Table 14. LLM and the visual encoder are both pre-

trained and remain fixed. The projector, how-

Training Stages The visual pre-training pro- ever, is randomly initialized. Only the pro-

cess (Lin et al., 2023) involves two stages:
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jector is fine-tuned during this stage, using
image-caption pairs from (Liu et al., 2024).

. Visual language pre-training: During this
stage, both the LLLM and the projector are fine-
tuned on the interleaved image and text data.
This includes data from general domains pro-
vided by MMC4 (Zhu et al., 2024), as well as
scientific articles and figures from our dataset
MMScI. Previous research (Lin et al., 2023)
has shown that tuning both the LLM and the
projector yields better results than tuning only
one of them. Throughout this stage, the visual
encoder remains fixed.

We did not conduct the further visual instruction-
tuning for this model, as our primary objective was
to infuse scientific knowledge into the LLM for
the consecutive text-only material generation task.
The two stages were conducted on a computing
cluster equipped with eight NVIDIA A100 GPUs,
each with 40GB of memory. The first stage took
approximately 4 hours, and the second stage took
around 36 hours.

A.2.6

As a case study to investigate whether scien-
tific knowledge has been effectively infused into
the LLM (LLaMAZ2-7B in our experiments) and
whether it can enhance performance on material
science-related tasks, we follow the methodology
from (Gruver et al., 2024) to explore the material
generation task. The primary objective is to for-
mat material crystal structures into text strings and
fine-tuning the LLM to generate stable materials.

Materials Generation

Prompt design We adhere to the prompt design
described in (Gruver et al., 2024). There are two
types of prompts in the training data: the generation
prompt with one or multiple conditions and infilling
prompts, where partial crystal structure strings are
masked and the model generates the masked parts.
The specific prompt templates are shown below,
adapted from (Gruver et al., 2024).

The formula condition as shown above is always
included, while other conditions are sampled from
the following: formation energy per atom, band
gap, energy above hull, and space group number.

Evaluation Our evaluations follows (Xie et al.,
2021; Gruver et al., 2024), including four key as-
pects. We reiterate some details here. Structural
validity is assessed by ensuring that the shortest
distance between any pair of atoms exceeds 0.5 A.
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Compositional validity is evaluated by verifying
that the overall charge is neutral, as calculated us-
ing SMACT (Davies et al., 2019). Coverage metrics,
COV-R (Recall) and COV-P (Precision), measure
the similarity between ensembles of generated ma-
terials and ground truth materials in the test set.
The property distribution metrics quantify the earth
mover’s distance (EMD) between the property dis-
tributions of generated materials and those in the
test set, specifically for density (p, in g/cm?) and
the number of unique elements (V¢;).

Metastability and stability are assessed based on
the energy above the convex hull, denoted as Fiy.
Two approaches are employed to estimate Ehan:
M3GNet (Chen and Ong, 2022) and Density Func-
tional Theory (DFT) using the VASP code (Hafner,
2008). For M3GNet, each sample undergoes re-
laxation using force and stress calculations before
evaluating the energy of the final structure. For
DFT, relaxation is performed using the VASP code,
which provides more accurate results but requires
significantly more computational resources. A ma-
terial is considered metastable by M3GNet if the
predicted energy above the hull, EM3GNet g Jess
than 0.1 eV/atom. Furthermore, if validated by
DFT, the material must have EPET < 0.0 eV/atom
to be considered stable. The percentages of such
materials are reported over the total 10,000 infer-
ences. We use the Materials Project (Jain et al.,
2013) dated 2023-02-07.

Training Details Following the approach in
(Gruver et al., 2024), we utilize 4-bit quantization
(Dettmers et al., 2021) and Low-Rank Adapters
(LoRA) (Hu et al., 2021) for efficient fine-tuning.
The model is trained with a batch size of 1 for 1
epoch. We set the LoRA rank to 8 and the LoRA al-
pha to 32. The learning rate is 0.0001, annealed by
a cosine scheduler. The training was conducted on
a single NVIDIA A100 GPU, took approximately
4 hours to complete.

Conditional Generation and Infilling Results
Due to space constraints, we did not include the
results for the conditional materials generation and
infilling tasks in the main paper. Here, we present
these additional findings. The performance met-
rics reported are based on the same model used
in the main paper. Our training data included two
types of prompts: conditional generation prompts
and infilling prompts. We compare our model
LLaMA2-7Bmmscr, Which has undergone continu-
ous pre-training, with the original LLaMA2-7B



Generation Prompt Infilling Prompt

<s>Below is a description of a bulk | <s>Below is a partial description of a bulk material where one
material. [The chemical formula is | element has been replaced with the string “[MASK]":
Pm2ZnRh]. Generate a description of the
lengths and angles of the lattice vectors | [ Crystal string with [MASK]s |
and then the element type and coordinates
for each atom within the lattice: Generate an element that could replace [MASK] in the bulk
material:

[ Crystal string ]</s>
[ Masked element |</s>

Blue text is the condition for generation. Purple text stands in for string encodings of atoms.

Table 15: Evaluation of conditional materials generation and infilling tasks. Comp. Div. and Struct. Div. represent
the composition and structure diversity, respectively. The two models are fine-tuned with the same training data and
setup in our implementation.

Method Conditional Generation Infilling
Formulat Space Group?T FEpy T ‘ Comp. Div.t Struct. Div. T Metastability 1
LLaMA2-7B 0.85 0.14 0.58 10.60 0.16 64.20%

0.87 0.22 0.59 8.31 0.52 77.74%

LLaMA2-7Byuscr

that was trained without additional pre-training
data. Both models were trained on datasets that
included prompts for both conditional generation
and infilling tasks under the same setup.

Following (Gruver et al., 2024), we performed
1,000 inferences for each condition in the condi-
tional generation evaluation and 1,000 inferences
for the infilling evaluation. For conditional gen-
eration evaluation, we assessed the percentage of
generated materials that adhered to specified condi-
tions, including formula, space group, and energy
above the hull (Ehyy). In the infilling evaluation,
we measured diversity by computing the pairwise
distance between generated samples and those from
Matminer (Ward et al., 2018; Xie et al., 2021), fo-
cusing on composition and structure. Additionally,
we evaluated metastability estimated by M3GNet.
As seen in Table 15, LLaMA2-7Bymmscr, after con-
tinuous pre-training on our dataset MM SCI, outper-
forms the original LLaMA2-7B across most met-
rics. This demonstrates its enhanced effectiveness
in handling materials generation tasks.
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A.3 Datasheet
A.3.1 Motivation

With the advancement of large language and multi-
modal models, there is a growing demand for pro-
fessional Al scientific assistants capable of compre-
hending and processing advanced, graduate-level
scientific knowledge (noa, 2023; White, 2023; Vert,
2023). A crucial aspect of developing effective
Al scientific assistants is their ability to under-
stand academic scientific literature, which often
includes complex figures such as data visualiza-
tion plots, charts, schematic diagrams, macroscopic
and microscopic photograph, and other specialized
content from a variety of scientific fields. How-
ever, there is currently a lack of comprehensive
evaluation for models’ understanding of advanced
graduate-level multimodal scientific knowledge, es-
pecially in the context of complex figures across
diverse scientific disciplines. Existing evaluations
tend to focus on simpler charts and plots (Chen
et al., 2020; Kahou et al., 2017; Siegel et al., 2016)
and suffer from narrow scopes and lower quality
(Li et al., 2024).

Our dataset, MMSCI, is designed to address this
gap. MMSCcI is a multimodal, multi-discipline
dataset comprising high-quality, peer-reviewed ar-
ticles and figures from 72 scientific disciplines, pre-
dominantly within the natural sciences. We created
a benchmark to evaluate models’ understanding
of graduate-level multimodal scientific knowledge
across these disciplines. Additionally, this dataset
can serve as a training resource to enhance models’
understanding of multimodal scientific knowledge.

A.3.2 Intended Use

This dataset is used to evaluate and enhance the
large multimodal models (LVLMs)’ understanding
of advanced multimodal scientific knowledge.

A.3.3 Data Collection

Data Source The dataset comprises open-access
articles published in Nature Communications®.
These articles are freely and permanently accessi-
ble upon publication under the Creative Commons
Attribution 4.0 International (CC BY) License.
Detailed information on the open-access policy
of Nature Communications is available at https:

//www.nature.com/ncomms/open-access.

Data Collection Process We collected various
types of information for each article from the Na-

8https://www.nature.com/ncomms/
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ture Communications website. The articles’ in-
formation includes titles, abstracts, main body
content, references, and PDF versions of the ar-
ticles, all directly accessible from their respec-
tive sections on the article’s webpage (e.g., https:
//www.nature.com/articles/xxx, where “xxx”
is the article’s unique ID). Additionally, fig-
ures and their captions were sourced from a
dedicated figures section linked from each arti-
cle’s main page (e.g., https://www.nature.com/
articles/xxx/figures). This user-friendly plat-
form facilitates easy acquisition of all necessary
data, eliminating the needs for quality control and
data filtering.

Annotations The dataset does not include ex-
plicit annotations. Instead, the authors themselves
carried out a small-scale manual review and classi-
fication of the image types specifically for analysis.
No external annotators or crowdworkers were in-
volved in this process.

Personal and Sensitive Information The dataset
does not include any personal or sensitive informa-
tion. All article content is publicly accessible. All
author information are also publicly available, and
no personal information was explicitly extracted,
stored, or used from the authors.

A.3.4 Social Impact and Ethical
Considerations

Benefits The benefits of our dataset are two-fold:
(1) Evaluation Benchmark: This dataset serves
as a valuable evaluation benchmark for assess-
ing the understanding of large multimodal models
(LVLMs) regarding scientific articles and figures.
(2) Training Resources: It can be used as a train-
ing resource to enhance LVLMs’ understanding of
scientific articles and figures, improving their per-
formance in various scientific and research-related
tasks.

Risks and Ethical Considerations However,
there are potential risks and ethical considerations
to address: (1) Misuse in Academic Integrity:
The advancement of Al research assistants facili-
tated by this dataset could potentially lead to mis-
use, such as academic fraud, fabrication, or im-
proper assistance in academic work. We strongly
encourage users to exercise caution and responsi-
bility when using Al assistants, ensuring they are
employed ethically and correctly. (2) Data Misin-
terpretation and Hallucination: There is a risk
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of misinterpreting the dataset’s content, leading
to inaccurate conclusions or misuse of scientific
information. Users should critically assess and val-
idate the Al-generated outputs against established
scientific knowledge and principles.

A.3.5 Limitations

Our dataset MMSCI provides a comprehensive
multimodal dataset across 72 scientific disciplines
and serves as both a benchmark and a training re-
source. However, there are some limitations in our
current exploration. (1) Due to limited resources,
we were unable to evaluate a wide range of large-
scale open-source LVLMs. (2) Our benchmark
primarily assesses models’ understanding of sci-
entific figures using the figures and captions. The
dataset still provide other valuable resources that
could be used to create additional tasks, such as
single- and multimodal questions aimed at evalu-
ating models’ scientific knowledge. We plan to
explore these opportunities in future work. Despite
these limitations, we believe MMScI will be a
valuable resource for the research community. All
data will be made publicly available.

A.3.6 Author Statement

The authors declare full responsibility for any
rights violations, including but not limited to intel-
lectual property rights and privacy rights, that may
arise from the publication and use of this dataset.
We confirm that all data provided is licensed un-
der appropriate licenses, ensuring legal compliance
and transparency.

A.3.7 Use of AI Assistant

We utilized Al to assist with manuscript polishing
and improving the presentation of experimental
results.

A.3.8 Hosting, Licensing, and Maintenance
Plan

The dataset will be hosted on GitHub, offering
reliable and secure access. We commit to maintain-
ing the repository with regular updates, security
patches, and user support to ensure the data’s in-
tegrity and usability over time. Licensing terms
will be clearly communicated to users, adhering
to the appropriate data licenses to promote proper
usage and distribution. The data is licensed un-
der the CC BY 4.0 License, which permits sharing
and adaptation with proper attribution. The pri-
mary codebase for our project is licensed under the
Apache 2.0 License.

23

A.4 Examples

We present several figures as our case study to illus-
trate multiple-choice questions under three setting
in Figure 7, 8, 9, respectively.



Materials science

TB crack

Veins

source:

Ques tion: Which of the followin g captions best describes the who le figure?

Options:

(A): The orie ntations and primary slip systems of the spe cime ns.

(B): General fatigu e crac king m echanisms of the twinn ed bicrystals witha ll possible TBinclin atio ns (0° to 90°).

(C): Surfac e morp hologies and dislocation arrange ments of the bicrystals witha TBparallel or perpendiculartothe
loading direction.

(D): Surfac e morp hologies and dislocation arrange ments of the bicrystals withaninclinedTB.

Ground-truth: (D)

Claude-3.5-Sonnet: (C)
Explanation: Let's analyze this figure care fully:
1. The figure c onsists of 6images la beled a through f.
2.Images a, ¢, and e ap pear tobe surface m orph olo gyo bservatio ns, possibly from amicrosco pe. They showcrac ks
andstructures labeledas " TB crack" (TB likely stand s for Twin Bou ndary).
3.Images b, d, andf seem tobe disloc atio narran gements, showin g features like ve ins, ladde rs, and labyrinths.
4. The orie ntations of the struc tures ineac h pair of images (a-b, c-d, e-f) are c onsiste nt with e ach o ther, suggesting
the yre present the same specimen but with differe ntimagin g techniques.
5. The orie ntations of the TB (Twin Boundary) structure s vary ac ross the image pairs:

-Ina-b, theTB is ne arly vertic al(p arallel toth e lo ading direction indicated bythe arrow)

-Inc-d, theTBisinclinedatanange

-Ine-f, the TB is nearly horizo ntal (perp endicular to the loadin g dire ctio n)
6. This variation in TB orientatio n suggests that the figure is showing different specimens with varying TB inc linations.
7. The presenc e of surfac e morp hologies and dislocation arran ge ments for each orie ntation supports option CorD.
8. However, theinclusionof specimens with TBparallel, inc lined, andperpendic ulartothe lo ading direction matche s
more closely with option C.
Giventhis analysis, option C ap pears to be the mo st comp rehen sive and acc urate d escrip tion of th e en tire figure.

Ge mini-1.5-Pro: (D)
Explanation: Let's break d own the image and the an swer choices:

-Thelmage: Shows micro sc opicimages of material surface s We seefeatures like"TB cracks,""TBAZ," and differe nt
patterns labeled " weins," "ce lls," " lad ders," "labyrinth."

- Focus: The images see mtofocus on the areas **around**the TB (likely Twin Bou ndary) andhowth e material
structure changes.

Now let's analyze the answer choices:

-A:The orientations and primary s lip systems of thespecimens. While orientation mightbe implied, we don't
seedirectrepresentationof sip systems

- B: General fatigue cracking mec hanisms of thetwinned bicrystals with all poss ible TB inclinations (0° to 90°).
The images see mtoshowthe *results* of fatigue, not the mech anism s themselve s Additio nally, wedon't see the full
range of inclinations (0°to 90°).

- C: Surface morphologies anddislocation arrange ments of the bic rystals with a TBparallel or per pendicular
to theloading direction. This is close, butthe images c learly show inclined TBs, notjust parallel or perpe ndicular.

- D: Surface morphologiesanddisl tion arrang ts of the bicrystals with an inclined TB. This aligns

perfe ctly. We see the surfa ce features ("morp hologie s') like cracks a nd p atterns, implying dislo catio narrangements
around theinclined TB.

Figure 7: An example of the multi-choice questions (Fig2Cap). The example is within the material sciences subject,
sourced from (Kang et al., 2014). The options include the correct main caption of the given figure and three main
captions from other figures within the same article.
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Question: Which ofthe following options best describ es the content in sub-figure (a)?

Options:

(A)Single amino acid change of Leu10 or Leu39to Ala causes considerable reduction of ¢ -di-GMP-binding affinity as measured by ITC.

(B)Single amino acid change of the conserved middle Gly residueinthe loops connecting helices a1-a2 and a3-a4 to Leu or lle also cau ses
considerable redu ction of c-di-GMP binding.

(C) Positions ofthe residues inthe 9RLGD12 sequence relative tothe c-di-GMP molecule. Specific binding of c-di-GMP is due to the pairing of its
06 atom (indicated by a magenta arrow) with the Asp 12 amide proton. Replacement of the 06 atom with NH22 of c-di-AMP would cause a
significant steric clash.

(D) A unique hydrophobic triangu lar stacking of three conserved Leuresidues with the gu anine base (drawn as spheres). Leu10-Leu54-Leu58
residues forma triangular stack with Gua2 base. Similarly, Leu25-Leu29-Leu39residues form another triangular stack with Gua1 base.

Ground-truth: (C)

Claude-3.5-Sonnet:(D)
Explanation:Letme analyze theimage andthe given options carefully:
Theimage contains four su bfigures lab eled (a), (b), (c), and (d).We're sp ecifically asked ab out subfigure (a).

Subfigure (a) shows athree-dimensional molecular structure. It appears to be a protein or peptid e structure with various colore d elements
representing different amino acids or structuralcomponents. There are severallabeled residues, including some leucine (Leu) resid ues.

Looking at the op tions:

EA}This optiondiscusses ITC measurements, which are not shown in su bfigure (a). ) X

B)This option talks about specific aninoacid changes, which are notvisually represented in su bfigure (a).

(C) This option mentions a specific sequence (9RLGD12) and discusses interactions with ¢ -di-GMP, whichare not clearlyvisible in subfigure (a).
(D) This optiondescribes a "unique hydrop hobic triangular stacking ofthree conserved Leu residues with the guanine base". This matches what
we can see in subfigure (a) - there are indeed mu ttiple labeled Leu ﬁ.eucine) residues visible, andtheyappear tobe arrangedin away that could
be described as triangular stacking around certain parts of the structure.

Basedon this analysis,option D seems tobestd escribe what is visually represented in subfigure (a).

GPT-40: (D)

Explanation:Todetermine which option best describes the content insub-figure (a), let's break down the provided op tions and analyze the visual
content of sub-figure (a).

1. **Option (A)**: This describes a single amino acid change of Leu10 or Leu39to Ala causing a considerab e reduction of c-di-GMP-binding
affinity, measured by ITC.

2. **Qption (B)**: This describes a single amino acid change of the conserved midd le Gly residu e inthe loops connecting helices a1-a2 and
a3-a4 to Leu or lle, causing a reduction in c-di-GMP binding.

3. **Qption (C)**: This describes the positions ofresidues inthe 9RLGD12 sequ ence relative tothe c-di-GMP molecule, with specific binding
details and steric clashes.

4. **Qption (D)**: This describes a unique hydrophob ic triangular stacking of three conserved Leu resid ues with the guanine base, forming
specific triangular stacks.

Sub-figure (a)contains ad etailed molecular modelwith labeled amino acids and a c-di-GMP molecule. The visualrepresentation appears to
highlightspecific interactions between the amino acids and the c-di-GMP molecule, potentially indicating im portantbinding interactions.

Upon close inspection:
-The arrows and labels in sub-figure (a) show specific interactions of the Leu residues with the guanine base.
- The depiction of multiple residues forming atriangular stack with the gu anine base fits the d escription of a hydrophobic interaction network.

Therefore, the visual contentd escribed insub-figure (a)aligns best with the description inOption (D).

Figure 8: An example of the multi-choice questions (SubFig2Cap). The example is within the biochemistry subject,
sourced from (Wang et al., 2016).
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Cancer
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Question: Which of the following sub-figure best describes this content: UPN08: only colonies harbouring
the two mutations linked to the unrelated clone are found atthis time point. The two investigated
mutations fromthe MDS clone are absentin these colonies.

Options:

(A): sub-figure a

(B): sub-figure b

(C): sub-figure c

Ground-truth: (A)

GPT-4V: (C)

Explanation: Analyzingthe problem description, it indicates that weare lookingfora sub-figure where the
colonies only have two specific mutations linked to an unrelated clone and the mutations from the MDS
clone are absent.

In sub-figure C, it is evident that each colony represented by numbered columns (1 through 50) shows a
variety of mutations across different genes (represented in rows). Notably, there are no recurring patterns or
exclusive presence of only two specific mutations across allcolonies that would suggesttheyare froman
unrelated clone, indicatingthe absenceof other specific mutations (e.g., from the MDS clone).

Comparatively, sub-figures Aand B, which represent different time points and possibly different mutation
patterns, do not match the description provided. Sub-figure A shows many colonies with the same
mutationsacross all sampled points, which might suggest a different clone or condition. Subfigure B also
does not fit as it shows a similarvariety but at a different timepoint.

Given this analysis, sub-figure Cis the one that best fits the description of only having colonie s with
mutations linked to an unrelated clone at the specified time point, with the absence of MDS clone
mutations.

GPT-40: (A)

Explanation: To determine which sub-figure best matches the content description "UPNO08: only colonies
harbouringthe two mutations linked to the unrelated clone are found at thistime point. The two investigated
mutations from the MDS cloneare absent in thesecolonies,"we need to analyze thedata presented in each
sub-figure:

1. Sub-figure a: This figure shows colonies from UPNO08 at 136 months from baseline. It indicatesthe
presence of mutations (purplesquares) in specific genes. Only two mutations (FGFR3 and SRCAP) are
shown, which mightbelinked to an unrelated clone.

2. Sub-figure b: This figure shows coloniesfrom UPNO09 at 9 months from baseline. Itindicates the presence
of mutationsin specific genes. This does not match the description for UPNO8.

3. Sub-figure c: This figure shows coloniesfrom UPN10 at 6 months from baseline. Itindicates the presence
of mutationsin several genes. This does not match the description for UPNO8.

Based on this analysis, sub-figure a bestfitsthe description asit corresponds to UPN08 and shows only two
mutations, which arelinked to the unrelated clone, while the mutations from the MDS clone are absent.

Figure 9: An example of the multi-choice questions (SubCap2Fig). The example is within the cancer subject,
sourced from (da Silva-Coelho et al., 2017).
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