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Abstract
We study the task of online learning in the pres-
ence of Massart noise. Specifically, instead of
assuming that the online adversary chooses an
arbitrary sequence of labels, we assume that the
context x is selected adversarially but the label y
presented to the learner disagrees with the ground-
truth label of x with unknown probability at most
η. We focus on the fundamental class of γ-margin
linear classifiers and present the first computa-
tionally efficient algorithm that achieves mistake
bound ηT + o(T ). We point out that the mistake
bound achieved by our algorithm is qualitatively
tight for computationally efficient algorithms; this
follows from the fact that, even in the offline set-
ting, achieving 0-1 error better than η requires
super-polynomial time under standard complexity
assumptions.

We extend our online learning model to a k-
arm contextual bandit setting where the rewards—
instead of satisfying commonly used realizabil-
ity assumptions—are consistent, in expectation,
with some linear ranking function with weight
vector w∗. Given a list of contexts x1, . . .xk, if
w∗ ·xi > w∗ ·xj , the expected reward of action i
must be larger than that of j by at least ∆. We use
our Massart online learner to design an efficient
bandit algorithm that obtains expected reward at
least (1− 1/k) ∆T − o(T ) bigger than choosing
a random action at every round.

1. Introduction
Online prediction has a rich history dating back to the works
of (Robbins, 1951; Hannan, 1957; Blackwell et al., 1954).
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In the online scenario, the learner’s objective is to tackle
a prediction task by acquiring a hypothesis from a series
of examples presented one at a time. The aim is to mini-
mize the overall count of incorrect predictions, known as
the mistake bound, considering the knowledge of correct
answers to previously encountered examples (Littlestone,
1988; 1989; Blum, 1990; Littlestone & Warmuth, 1994;
Maass & Turan, 1994). In the context of online linear clas-
sification, i.e., when the presented labels can be realized
by a linear threshold function, the seminal perceptron al-
gorithm (Rosenblatt, 1958; Novikoff, 1962), was the first
online learning algorithm.

Realizable and Agnostic Online Learning In (Little-
stone, 1988) the realizable online classification setting was
defined, where the adversary is allowed to select an arbi-
trary datapoint x(t) at every round but the label y(t) must
be consistent with an underlying ground hypothesis f from
a classH. The number of mistakes in the realizable setting
was shown to be characterized by the Littlestone dimension
LD(H) of the classH. Similarly to the agnostic PAC learn-
ing of (Haussler, 1992), in (Ben-David et al., 2009), moti-
vated by the fact that often the observed labels are noisy, the
setting of online learning with label noise was introduced. In
the most extreme case of agnostic (adversarial) label noise
where no assumptions are placed on the labels, it was shown
that the regret over T rounds is Õ(

√
T LD(H)). Even

though the regret in the agnostic setting was shown to be
sublinear in T , the corresponding computational task is far
from being well-understood. In particular, even for simple
classes such as linear classifiers efficient online algorithms
with sublinear regret would imply efficient algorithms in the
offline setting – a well known computationally intractable
problem (Guruswami & Raghavendra, 2006).

Online Learning with Massart Noise Investigating
regimes beyond the above, worst-case, agnostic setting has
been an important area of research with the goal to get im-
proved regret (and mistake) bounds but also to allow the
design of efficient algorithms. Similar to the definition of
Massart or Bounded noise (Massart & Nedelec, 2006) for
offline (PAC) learning, in (Ben-David et al., 2009) a semi-
random online classification setting was introduced with
a focus on improving over the agnostic regret bounds. In
this model, while the online adversary is allowed to pick
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arbitrary locations to present to the learner, the labels that
they choose must be consistent with the ground-truth with
probability strictly larger than 50%.

Definition 1.1 (Online Learning with Massart Noise (Ben–
David et al., 2009)). Fix a class of concepts C over Rd

and a target concept c∗ ∈ C. An (oblivious) adversary
selects a sequence of examples x(1), . . . ,x(T ) and noisy
label random variables y(1), . . . , y(T ) such that for all t
it holds that Pr[y(t) ̸= c∗(x(t)) | x(t)] ≤ η. At round
t = 1, . . . , T , the learner observes x(t), predicts a label ŷ(t),
and suffers loss 1{ŷ(t) ̸= y(t)}. The goal of the learner
is to minimize the total number of mistakes, defined as
M(T ) = E

[∑T
t=1 1{y(t) ̸= ŷ(t)}

]
.

Remark 1.2 (Regret vs Mistake Bound). In Definition 1.1,
often the regret over T rounds is used, i.e., the expected
difference between the mistakes made by the learner and
the minimum number of mistakes that any hypothesis h in
H could achieve

R(T, h) = M(T )−E
[ T∑

t=1

1{y(t) ̸= h(x(t))}
]
.

Remark 1.3 (Random vs Massart Noise). We stress that the
probability that a label is flipped in Definition 1.1 is at most
η (and not equal to η). The fact that the flip probability is
not uniformly η for all examples results in asymmetric noise,
which is exactly what makes (even offline) learning with
Massart noise algorithmically challenging. In fact, as we
point out in Remark 1.10, achieving optimal error (or regret)
in the Massart setting is computationally hard (which is not
the case when the labels are flipped uniformly with proba-
bility η). Here we will focus on obtaining computationally
efficient online algorithms matching the best-known offline
guarantees of (Diakonikolas et al., 2019).

In (Ben-David et al., 2009), an algorithm based on Little-
stone’s Standard Optimal Algorithm is given that achieves
a mistake bound M(T ) ≤ minh∈H

∑T
t=1 1{h(x(t) ̸=

y(t)+LD(H) log T/(1−2
√
η(1− η)). Therefore, as long

as η is bounded away from 1/2, a strong separation between
the agnostic regret (that grows roughly as Ω(

√
T )) and the

Massart regret was established. However, as discussed in
(Ben-David et al., 2009), this and other similar approaches
for establishing regret bounds do not yield computationally
efficient algorithms as they rely on computing combinato-
rial quantities that are at least as hard as computing the
VC-dimension (Frances & Litman, 1998).

Linear Classification To investigate the computational
aspects of online classification we focus on the fundamen-
tal class of linear classifiers or halfspaces, i.e., functions
of the form h(x) = sign(w · x) for some weight vector
w ∈ Rd. In the offline setting, a long line of recent works
(Awasthi et al., 2015; Diakonikolas et al., 2019; 2020; Chen

et al., 2020; Diakonikolas et al., 2021a;b) has successfully
bypassed the computational hardness of worst-case agnostic
learning and has provided efficient algorithms for linear
classification in the presence of Massart noise. However,
no efficient algorithm that achieves any non-trivial mistake
bound is known for the more challenging online Massart
setting of Definition 1.1. In this work, we aim to answer the
following fundamental question.

Are there computationally efficient algorithms for online
linear classification with Massart noise?

Massart Bandits Going beyond full-information on-
line learning, we consider the multi-armed bandit setting:
a multi-disciplinary research area that was initiated by
(Thompson, 1933) and has received enormous attention in
the past 30 years (see (Berry & Fristedt, 1985; Cesa-Bianchi
& Lugosi, 2006; Slivkins et al., 2019) and references
therein). In this work, we focus on the k-arm contextual
bandit setting, where at every round t the learner receives k
contexts x(t)

1 , . . .x
(t)
k , chooses an action α = 1, . . . , k, and

receives the reward/loss of their chosen action (the rewards
of the other actions are not revealed). In this setting a com-
mon assumption known as realizability (Filippi et al., 2010;
Abbasi-Yadkori et al., 2011; Chu et al., 2011; Agarwal et al.,
2012; Li et al., 2017; Foster et al., 2018; Foster & Rakhlin,
2020) prescribes that the expected rewards are parametric
functions of the contexts, e.g., E[ri | x(t)] = w · x(t)

i

for some unknown weight vector w. Using this structural
assumption, those works typically reduce the bandit prob-
lem to an online regression problem which can often be
solved efficiently (for linear and generalized linear mod-
els). An orthogonal direction (Langford & Zhang, 2007;
Dudik et al., 2011; Agarwal et al., 2014) makes minimal
distributional assumptions and reduces the contextual bandit
problem to agnostic (offline) classification. Since agnostic
classification is computationally intractable (for most non-
trivial classes) such approaches do not provide end-to-end
efficient algorithms and rely on heuristics to solve the un-
derlying classification task. Therefore, existing algorithms
for contextual bandits either (i) make strong realizability
assumptions and reduce the problem to (linear) regression
or (ii) make minimal assumptions but face the computa-
tional intractability of agnostic classification. Motivated
by the online Massart classification setting of (Ben-David
et al., 2009), in this work, we propose a semi-random and
semi-parametric Bandit model that lies between those two
extreme settings and investigate the design of “end-to-end”
efficient algorithms.

Before we describe our semi-random noise model, we start
with its “noiseless” version. Instead of assuming that the ex-
pected rewards are given by a linear function of the contexts,
we assume that they are ranked according to their linear
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scores, i.e., if w∗ · xi > w∗ · xj then the reward of action i
must be at least as that of action j.

Definition 1.4 (Contexts and Linearly Sorted Rewards).
Let B be the d-dimensional unit ball. We define X =
{(x1, . . . ,xk) : x1, . . . ,xk ∈ B} to be the context space.
For simplicity, we view each context as a d × k matrix
X. Fix M > 0 and let w∗ ∈ Rd be some unit vector.
Given a context (x1, . . . ,xk), we say that a reward vector
r ∈ [0,M ]k is sorted according to w∗ if

for all i, j : (ri − rj)(w
∗ · xi −w∗ · xj) ≥ 0 .

Under the linear ranking setting of Definition 1.4 one can
reduce the bandit problem to a noiseless linear classification
task and design efficient algorithms (based on perceptron
or linear programming) that will eventually learn to select
the action with the highest reward. Our semi-random model
extends the above definition where we require that rewards
are only sorted in expectation with some margin ∆ > 0.

Definition 1.5 (Monotone Reward Distributions). Let X
be the context space and T = N be the set of rounds. Fix
some unit vector w∗ ∈ Rd, M > 0, and ∆ > 0. Define a
class of distributions D indexed by rounds t and contexts
X: D = {D(t,X) : t ∈ T ,X ∈ X} . We assume that each
reward distribution D(t,X) is supported on [0,M ]k. We say
that the class D has monotone rewards with respect to w∗

with margin ∆ if for all t ∈ T , X ∈ X , i, j ∈ [k] with
i ̸= j it holds

E
r∼D(t,X)

[ri − rj | w∗ · xi > w∗ · xj ] ≥ ∆ .

Remark 1.6 (Massart Online Classification as a 2-arm Ban-
dit). To obtain the online Massart setting we set the re-
wards r(t) = ((1 + y(t))/2, (1 − y(t))/2) and the con-
texts X(t) = (x(t),−x(t)). We observe that in that case
when y(t) satisfies the Massart noise condition of Defini-
tion 1.1, it holds that conditional on w∗ · x > 0 it holds
that E[(r

(t)
1 − r

(t)
2 )] ≥ 1− 2η. Therefore, Definition 1.5 is

satisfied with ∆ = 1− 2η.

We stress that the monotone reward distributions of Defini-
tion 1.5 are a semi-parametric model as we do not assume
that the expected rewards have some parametric form rather
than only require that they are sorted with respect to a lin-
ear sorting function. A similar semi-random linear sorting
model was used in (Fotakis et al., 2022) in the context of
(offline) learning linear rankings with bounded noise under
the Gaussian distribution. We next define our contextual
bandit model.

Definition 1.7 (Contextual Bandits with Monotone Re-
wards (Massart Bandits)). Fix some unit vector w∗ ∈ Rd,
γ,∆,M > 0, and a class of monotone reward distributions
D (see Definition 1.5). At round t:

1. The adversary picks context X(t) ∈ X and draws a
random reward vector r(t) from D(t,X(t)).

2. The learner observes the context X(t), picks action
a(t) ∈ [K] and receives reward ra(t) .

We also define the full-information setting the same way
except from the last step where the learner receives reward
ra(t) and observes the full reward vector r(t).

Remark 1.8. In what follows, we shall often simplify no-
tation by writing D(t) instead of D(t,X) for the reward
distribution at round t.

1.1. Our Results

Our first result answers our main question posed in Section 1
and gives an efficient online classification algorithm that
makes roughly ηT + o(T ) mistakes in the Massart noise
model of Definition 1.1. Our algorithm only requires that
the sequence of examples picked by the adversary satisfies
a standard γ-margin assumption. Without the margin as-
sumption it is known (Littlestone, 1988) that, even in the
noiseless setting, it is information theoretically impossible
for the learner to do less than T mistakes.

Theorem 1.9. Consider the Online Massart Learning set-
ting of Definition 1.1. Additionally, assume that the exam-
ples picked by the adversary have at least γ-margin with
respect to some target halfspace, i.e., for all t = 1, . . . , T ,
it holds that ∥x(t)∥2 ≤ 1 and |w∗ · x(t)| ≥ γ, for
some unit vector w∗. There exists an algorithm that does
M(T ) = ηT + O(T 3/4/γ) mistakes and runs in poly(d)
time per round.

Our mistake bound matches (when viewed as an offline PAC
learning result) the best known error guarantees of the cor-
responding offline learners of Massart halfspaces with mar-
gin given in (Diakonikolas et al., 2019; Chen et al., 2020).
Moreover, the mistake-bound achieved by our algorithm
is essentially best-possible when considering computation-
ally efficient (statistical query) algorithms: in the recent
works (Diakonikolas & Kane, 2020; Diakonikolas et al.,
2022; Nasser & Tiegel, 2022) that consider offline (PAC)
learning with Massart noise, it is shown that, even when
the underlying distribution has γ-margin, no polynomial-
time algorithm can achieve classification error better than
η/polylog(1/(1− 2η)) in the Statistical Query framework.
By a standard online to offline reduction this readily implies
a ηT lower bound (up to polylog(1/(1− 2η)) factors).
Remark 1.10 (Information-Theoretic vs Computationally
Efficient Online Learning). The ηT mistake bound is not
information-theoretically optimal: in particular, in (Ben-
David et al., 2009)) better, near-optimal, mistake bounds
are given albeit with inefficient algorithms (i.e., with run-
time exponential in the dimension d). When considering
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computationally efficient algorithms, as we do here, there
is strong evidence (see the SQ lower bounds of (Diakoniko-
las & Kane, 2020; Diakonikolas et al., 2022)]) that the ηT
mistake is essentially best possible. Before our work no
computationally efficient algorithm was known that could
beat the random guessing benchmark (that makes T/2 mis-
takes). Moreover, we remark that, even in the offline setting
of linear classification under Massart noise, the first compu-
tationally efficient that achieved classification error η (the
offline equivalent of ηT mistakes) was only given in the
relatively (given the history of the problem) recent work
(Diakonikolas et al., 2019).

Our algorithm is particularly simple: we perform online
gradient descent on a sequence of reweighted Leaky-ReLU
loss functions. The Leaky-ReLU loss has been successfully
used in several works on learning with Random Classifica-
tion and Massart noise (Bylander, 1998; Diakonikolas et al.,
2019; Chen et al., 2020). In the online setting however
simply using (online) gradient descent on the Leaky-ReLU
does not suffice: even though the adversary is restricted to
select examples with margin with respect to some ground-
truth halfspace, they can still select examples very close
to the decision boundary of the current hypothesis which
would cause online gradient descent to get stuck or con-
verge to sub-optimal solutions. To overcome this issue, we
reweight the Leaky-ReLU loss by the margin of the cur-
rent example according to the current hypothesis vector,
see Algorithm 1. We are then able to show that standard
regret guarantees for Online Convex optimization can be
translated to obtain mistake bounds in the presence of Mas-
sart noise, see Lemma 2.2. Finally, we remark that our
technique is also valuable for the offline setting: the re-
cent works (Chandrasekaran et al., 2024; Diakonikolas &
Zarifis, 2024), building on the ideas of this paper, were
able to design sample-optimal algorithms for offline Massart
classification.

We next present our result on semi-random “Massart” k-
arm setting presented in Definition 1.5. In addition to the ∆
“reward-margin” assumption of Definition 1.5, similarly to
our online classification result of Theorem 1.9, we require
a γ “geometric-margin” assumption for the contexts with
respect to some halfspace. We give an efficient bandit algo-
rithm, see Algorithm 3, that is able to accumulate expected
reward roughly ∆T more than playing a random action at
every round.

Theorem 1.11 (Monotone k-arm Contextual Bandits). Con-
sider the monotone reward online setting of Definition 1.5.
Moreover, for some unit vector w∗ ∈ Rd, assume that for
all t, it holds that for all i ∥X(t)

i ∥2 ≤ 1 and for all i ̸= j,
|w∗ ·X(t)

i −w∗ ·X(t)
j )| ≥ γ. There exists a bandit algorithm

that runs in poly(d) time per round and selects a sequence

of arms α(1), . . . , α(T ) ∈ [k] that obtain expected reward

E

[
T∑

t=1
r(t)(α(t))

]
≥ E

[
T∑

t=1

1

k

k∑
i=1

r
(t)
i

]
+

k − 1

k
∆T −O(T 5/6(k∆M2)1/3/γ) .

Our algorithm for the k-arm bandit setting relies on the
observation that, assuming that we could observe all rewards
r
(t)
i , then one could treat the labeled pairs (x(t)

i −x
(t)
j , r

(t)
i −

r
(t)
j ) as real-valued versions of online linear classification

with Massart noise and provide it as input to our online
learning algorithm. As is common in bandit problems, to
adapt this “full-information” approach to the bandit setting,
we pick a random action with small probability at every
round that provides us with unbiased estimates of the full
reward vectors. For more details we refer to Section 3.
Finally, we remark that for the special case of 2-armed
bandits our result implies the following corollary.
Corollary 1.12 (Monotone 2-arm Contextual Bandits). Con-
sider the monotone reward online setting of Definition 1.5.
In the bandit setting, Algorithm 3 produces a sequence of
arm choices α(1), . . . , α(T ) ∈ {1, 2} that obtain expected
reward

E

[
T∑

t=1
r(t)(α(t))

]
≥ E

[
T∑

t=1

r
(t)
1 + r

(t)
2

2

]
+

1

2
∆T −O((M2∆)1/3T 5/6/γ) .

Corollary 1.12 is a generalization of our online learning
result of Theorem 1.9: indeed, using Remark 1.6, we obtain
that the expected reward is equal to T−M(T ), where M(T )
are the expected mistakes. Thus, Corollary 1.12 implies that
T−M(T ) ≥ T/2+(∆/2)T+o(T ) and, using the fact that
∆ = 1− 2η and M = 1, we get that M(T ) ≤ ηT + o(T ).
Given the hardness result for improving upon ηT regret for
online Massart classification that we already discussed we
conclude that our reduction from Bandit to Online Massart
is tight for 2-armed bandits.

1.2. Notation

For n ∈ Z+, let [n] := {1, . . . , n}. We use lowercase
boldface characters for vectors. We use x · y for the inner
product of x,y ∈ Rd. For x ∈ Rd, ∥x∥2 denotes the
ℓ2-norm of x. For a set of vectors k, X = {x1, . . . ,xk},
Xi−j denotes the difference between the vectors xi,xj ,
i.e., Xi−j = xi − xj . We use 1A = 1{A} to denote the
characteristic function of the set A. We use the standard
O(·),Θ(·),Ω(·) asymptotic notation. We use EX∼D[X] for
the expectation of a random variable X according to the
distribution D and Pr[E ] for the probability of event E . For
simplicity of notation, we omit the distribution when it is
clear from the context.
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2. Online Learning with Massart Noise
In this section, we provide an algorithm for online learning
halfspaces with Massart noise. The learner iteratively pro-
cesses a sequence of covariates and associated labels (x, y)
provided by the adversary, chooses a label corresponding to
the current decision vector w, and then updates (even if the
label was correct) the decision vector using a carefully cho-
sen convex loss. Our loss is based on a modification of the
LeakyReLU loss, i.e., LeakyReLUλ(t) ≜ (1 − λ)t1{t >
0}+ λt1{t < 0}. First, we show an equivalent expression
for the Leaky-ReLU loss.
Fact 2.1. Let LeakyReLUλ(t) ≜ (1 − λ)t1{t > 0} +
λt1{t < 0}. It can be equivalently expressed as
LeakyReLUλ(t) ≜ 1/2((1− 2λ)|t|+ t).

Proof. Note that it holds t1{t > 0} = (t + |t|)/2 and
t1{t < 0} = (t − |t|)/2. Therefore by plugging these
identities in the definition of LeakyReLUλ(t), we obtain
the result.

In our algorithm, we use as loss the LeakyReLUλ(−ty)
where t ∈ R and y ∈ {±1}. For the sake of brevity in
notation, we define C∆(t; y) = LeakyReLU(1−∆)/2(−ty),
i.e.,

C∆(t; y) ≜ (1/2)(∆|t| − yt) .

We provide some intuition behind our choice of the Leaky-
ReLU loss. Notice, that in Definition 1.1 we have
the label consistency which corresponds to the condition
E[y]sign(w∗ · x) ≥ (1− 2η) := ∆. This is clear, from the
fact that y ̸= sign(w∗·x) with probability at most η and that,
Ey[y] = Ey[sign(w

∗ · x)(1{y = sign(w∗ · x)} − 1{y ̸=
sign(w∗ · x)})] = sign(w∗ · x)(1− 2E[1{y ̸= sign(w∗ ·
x)}]), therefore E[y]sign(w∗ · x) ≥ ∆. The Leaky-ReLU
loss has the property that Ey[C∆(−w∗ · x; y)] ≤ 0 (see
Claim 2.3), which we can later use to design a loss for our
problem. However, optimizing this loss function exclusively
does not guarantee minimal regret. To this end, we define
the loss function ℓu,τ,∆(w, y,x) := C∆(w·x;y)

max(|u·x|,τ) . To sim-

plify the notation, we define ℓ(t)(w) =
C∆̃(w·x(t);y(t))

max(|w(t)·x(t)|,τ) ,

where τ, ∆̃ are fixed and the other parameters are chang-
ing through the iterations of our algorithm. Subsequently,
we demonstrate that minimizing the regret associated with
these reweighted chosen loss functions concurrently yields
substantive guarantees for the regret in the context of Defi-
nition 1.1.
Lemma 2.2. Assume that a sequence w(t) is produced by
a (possibly randomized) online algorithm A with the guar-
antee that E[

∑T
t=1 ℓ

(t)(w(t)) −
∑T

t=1 ℓ
(t)(w∗)] ≤ R̄(T ),

with ℓ(t)(w) =
C∆̃(w·x(t);y(t))

max(|w(t)·x(t)|,τ) . Then, for R(T, ϵ, γ, τ) =

T ((ϵ/2) + (8τ)/(ϵγ)) + R̄(T )(1 + (8τ)/(ϵγ)), it holds
T∑

t=1
E[(1{sign(w(t) ·x(t)) ̸= y(t)})] ≤ Tη+R(T, ϵ, γ, τ) .

Algorithm 1 Online Learning Massart Halfspaces

1. ∆̃← 1− 2η − ϵ, τ ← ϵγ/4 and w(0) = e1.

2. For t = 1, . . . , T :
(a) Adversary selects point x(t) ∈ Rd and generates

label y(t).
(b) Learner observes x(t) and chooses label ŷ(t) =

sign(w(t) · x(t))

(c) Learner gets label y(t).
(d) Set

ℓ(t)(w) =
C∆̃(w · x

(t); y(t))

max(|w(t) · x(t)|, τ)

(e) Run Online Convex Optimization on ℓ(t)(·).

Proof. Denote ϵ = ∆ − ∆̃, with ϵ < ∆/2 and let τ ≤
ϵγ/2. Let (F (t))t∈[T ] be a filtration adapted to stochastic
sequence w(t). We note that the expectations in this proofs
are with respect the random variables y(t). First, we show
that the optimal decision vector w∗ gets a negative loss on
expectation.

Claim 2.3. It holds Ey(t) [C∆̃(w
∗ · x(t); y(t)) | F (t)] ≤

−(ϵ/2)|w∗ · x(t)|.

Proof. Recall that C∆̃(t; y) = (1/2)(∆̃|t| − yt), therefore,
we have that

E
y(t)

[C∆̃(w
∗ · x(t); y(t)) | F (t)]

=
1

2
(∆̃|w∗ · x(t)| − E

y(t)
[y(t) | F (t)]w∗ · x(t))

=
1

2
(∆̃− E

y(t)
[y(t) | F (t)]sign(w∗ · x(t)))|w∗ · x(t)|

≤ 1

2
(∆̃−∆)|w∗ · x(t)| ,

where we used that Ey(t) [y(t) | F (t)]sign(w∗ · x(t)) ≥
∆.

We first show that E[
∑T

t=1 ℓ
(t)(w∗))] ≤ −Tγϵ/2 . Us-

ing the tower rule, we have that E[
∑T

t=1 ℓ
(t)(w∗)] =∑T

t=1 E[ℓ(t)(w∗) | F (t)]. From Claim 2.3, we have that
Ey(t) [C∆̃(−w

∗ · x(t); y(t))] ≤ −(ϵ/2)|w∗ · x(t)|. Hence,
we have that

T∑
t=1

E[ℓ(t)(w∗) | F (t)] (1)

≤ −(ϵ/2)
T∑

t=1

|w∗ · x(t)|
max(|w(t) · x(t)|, τ)

≤ −(ϵγ/2)
T∑

t=1

1

max(|w(t) · x(t)|, τ)
, (2)
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where we used that |w∗ · x(t)| ≥ γ from the assumptions.
Recall that C∆̃(w ·x; y) = (1/2)(∆̃−ysign(w ·x))|w ·x|.
Let g(t)(y) = (1/2)(∆̃ − ysign(w(t) · x(t))). Using the
tower rule, we get

E

[
T∑

t=1
ℓ(t)(w(t))−

T∑
t=1

ℓ(t)(w∗)

]
=

T∑
t=1

(
g(t)(E[y(t) | F (t)])

|w(t) · x(t)|
max(|w(t) · x(t)|, τ)

−E[ℓ(t)(w∗)]

)
.

We define J to be the set of rounds where the |w(t) ·x(t)| is
smaller than the threshold τ , i.e., J = {t : |w(t) ·x(t)| ≤ τ}.
We have that

∑
t̸∈J

g(t)(E[y(t) | F (t)])
|w(t) · x(t)|

max(|w(t) · x(t)|, τ)

=
∑
t ̸∈J

g(t)(E[y(t) | F (t)]) ≥ −(T − |J |)/2 , (3)

and that
∑

t∈J g(t)(E[y(t) | F (t)]) |w(t)·x(t)|
max(|w(t)·x(t)|,τ) ≥

−|J |/2. Moreover note that from Inequality 2, it
holds that

∑
t∈J −E[ℓ(t)(w∗)] ≥ (ϵγ)/(2τ)|J | and that∑

t ̸∈J −E[ℓ(t)(w∗)] ≥ 0. Therefore, we get that

T∑
t∈J

E[ℓ(t)(w(t))]−
T∑

t∈J

E[ℓ(t)(w∗)] ≥ |J | ϵγ
2τ
− |J |1

2
,

and by using our assumption that τ ≤ ϵγ/2, we get that∑T
t∈J E[ℓ(t)(w(t))] −

∑T
t∈J E[ℓ(t)(w∗)] ≥ |J |(ϵγ)/(4τ).

Using the assumption for the regret guarantee, we have that
E[

∑T
t=1 ℓ

(t)(w(t))] ≤ R̄(T ) + E[
∑T

t=1 ℓ
(t)(w∗)] , which

is equivalent to∑
i ̸∈J

E[ℓ(t)(w(t))]︸ ︷︷ ︸
I1

≤ R̄(T )

−
∑
i∈J

(E[ℓ(t)(w(t))]−E[ℓ(t)(w∗)])︸ ︷︷ ︸
I2

+
∑
i ̸∈J

E[ℓ(t)(w∗)]︸ ︷︷ ︸
I3

.

(4)

Using that I1 ≥ (|J | − T )/2 from Inequality 3, that I2 ≤
−|J |(ϵγ)/(4τ) from above and that I3 ≤ 0 from Claim 2.3,
we have that

|J | ≤ (R̄(T ) + T )(4τ)/(ϵγ) . (5)

Finally, from the regret guarantees, i.e., Inequality 4, we
have that

∑
t ̸∈J E[ℓ(t)(w(t))] ≤ R̄(T ). Recall that that

g(t)(E[y]) = (1/2)(∆̃−E[y]sign(w(t) ·x(t))). By adding

∑
t∈J(∆̃ − sign(w(t) · x(t))E[y(t)]) on both sides of In-

equality 4 and using that g(t)(E[y]) ≤ 2 for all t ∈ [T ], we
have: ∑

t∈J

(∆̃− sign(w(t) · x(t))E[y(t)])

+
∑
t ̸∈J

(∆̃− sign(w(t) · x(t))E[y(t)])

≤ 2R̄(T ) + 2|J | , (6)

where we have used that
∑

t∈J(∆̃ − sign(w(t) ·
x(t))E[y(t)]) ≤ 2|J | and that I2, I3 ≤ 0 as discuseed
above. Equivalently, using Inequality 5, we obtain the fol-
lowing bound over all rounds t = 1, . . . , T :

∑
t=1(∆̃ −

sign(w(t) ·x(t))E[y(t)]) ≤ 2R̄(T )+(R̄(T )+T )4τ/(ϵγ) .
Using that sign(w(t)·x(t))y(t) = 1−21{sign(w(t)·x(t)) ̸=
y(t)} and ∆̃ = 1− 2η − ϵ, we get that

T∑
t=1

E[(1{sign(w(t) · x(t)) ̸= y(t)})]

≤ T (η + ϵ) + R̄(T ) + 16(R̄(T ) + T )τ/(ϵγ) .

Before proceeding with the proof of Theorem 1.9, we make
use of the following fact about the online gradient descent
on convex functions to bound the R̄(T ) of Lemma 2.2.

Fact 2.4 ((Hazan, 2016)). Let ℓ(t) be a convex function and
let D = diam(W) and let G = maxt ∥∇ℓ(t)(·)∥2. Online
gradient descent with step size: λ = D/(G

√
T ) guarantees

the following for all T ≥ 1:

R(T ) =

T∑
t=1

ℓ(t)(w(t))−min
w

T∑
t=1

ℓ(t)(w) ≤ GD/3
√
T .

Proof of Theorem 1.9. Using Fact 2.4, we get that R̄(T ) =
O(
√
T/τ), therefore from Lemma 2.2, we get that the ex-

pected total regret is bound above by E[
∑

t=1(1{sign(w(t)·
x(t)) ̸= y(t)})] ≤ ηT + R(T, ϵ, γ, τ), where
R(T, ϵ, γ, τ) = (ϵ/2)T + R̄(T ) + (R̄(T ) + T )8τ/(ϵγ)
To minimize this quantity, we set τ = Θ(ϵ1+ζγ) for any
ζ > 0 and ϵ = Θ(T−1/(4+2ζ)/γ) gives R(T, ϵ, γ, τ) ≤
T 3/4−O(ζ)/γ. By taking ζ close to 0 and get the result.

3. Contextual Bandits with Monotone Rewards
In this section, we describe an algorithm for the setting
of Definition 1.5. To this end, we use a generalization of
the LeakyLeRU loss we used in Theorem 1.9. This loss
is described in Algorithm 2. First we show that our loss
satisfies some properties required by our main algorithm to
work. The proof can be found at Appendix A.

Claim 3.1. The loss ℓ(w) computed by Algorithm 2 is con-
vex and 2Mkmax(Λ, 1/ρ)-Lipschitz.
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Algorithm 2 Compute G(w;X,v, r, α), where w is the
argument and X,v, r, α are parameters.

1. Generate reward differences and context for every
j ∈ {1, . . . , k}: yj = rα − rj .

2. If u = 0: Return the loss

ℓ(w) = G(w;X,v, r, α) ≜ −Λ
∑
j ̸=α

w ·Xα−jyj

3. Otherwise:

(a) For every j ∈ {1, . . . , k} set:

zj = Xα−j + ρsign(Xα−j · v)v∥v∥2−1

(b) Return the loss
ℓ(w) = G(w;X,v, r, α) ≜

∑
j ̸=α

C∆(w · zj ;yj)

|v · zj |

Algorithm 3 Bandits with Monotone Rewards

1. w(0) = e1.

2. For t = 1, . . . , T :

(a) Adversary picks context X(t) = (x
(t)
1 , . . . ,x

(t)
k )

and samples reward r(t) ∼ D(t).
(b) If w(t) = 0: Learner picks a uniformly random

α(t).
(c) Otherwise: Learner picks α(t) = argmaxi w

(t) ·
x
(t)
i .

(d) Learner flips a coin c(t) with HEADS probability q.
(e) If HEADS:

i. Learner picks uniformly random action β(t).
ii. Learner gets reward r(t)(β(t)) and defines the fake

reward vector r̃(t):

r̃(t)(i) =

{
(k − 1) r(t)(β(t)) if i = β(t)

M − r(t)(β(t)) if i ̸= β(t) ,

iii. Set ℓ(t)(w) = 1
qG(w;X(t),w(t), r̃(t), α(t)).

(f) If TAILS: Learner gets reward r(t)(α(t)) and sets
ℓ(t)(w) = 0.

(g) Learner performs Online Convex Optimization with
loss ℓ(t)(·).

Lemma 3.2. Let w(t) be the sequence produced by algo-
rithm Algorithm 3 in the bandit setting of Definition 1.5 with
exploration probability q. It holds

E

[ T∑
t=1

(G(w(t);X(t), r(t),α(t))−G(w∗;X(t), r(t), α(t)))

]
≤ O(kM

√
TΛ/q) ,

where the expectation is over the randomness of Algorithm 3
and the randomness of the reward vectors r(t) ∼ D(t).

Proof. We first show that for any reward vector r(t) the
loss ℓ(t)(w) that we construct at every round is an unbiased
estimate of the corresponding full-information loss function
G(w;X(t),w(t), r(t), α(t)). We show the following claim,
see Appendix A for the proof.

Claim 3.3 (Unbiased Loss Estimate). For any w ∈ Rd it
holds

E
c(t),β(t)

[ℓ(t)(w) | F (t), r(t)] = G(w;X(t),w(t), r(t), α(t)) .

We have that the loss ℓ(t)(w) = G(w;X(t),w(t), r̃(t), α(t))
constructed at each step t of Algorithm 3 is convex since it
is the convex combination of the zero loss and the convex
losses G(w;X(t),w(t), r, α(t)) (see Claim 3.1) for differ-
ent reward vector vectors r (each realization of the random
variable β(t) corresponds to a different reward vector r).
From Fact 2.4 and Claim 3.1 we have that the sequence w(t)

produced by Algorithm 3 achieves expected regret

E

[ T∑
t=1

(G(w(t);X(t), r(t), α(t))−G(w∗;X(t), r(t), α(t)))

]
≤ O(kM

√
TΛ/q) .

Next, we prove a generalization of Lemma 2.2 for the k-arm
setting. It shows that minimizing the regret over the loss
functions, bounds the expected reward of our setting.
Lemma 3.4. Let w(t) be a stochastic process in Rd adapted
to the filtration (F (t))t∈T such that

E

[ T∑
t=1

G(w(t);X(t),w(t), r(t), α(t))

−
T∑

t=1

G(w∗;X(t),w(t), r(t), α(t))

]
≤ R̄(T ) .

Then, for R(T, γ,∆,Λ, k) = (R̄(T )/k)(1 + 1/(γΛ)) +
TM/Λ, it holds that

E

[ T∑
t=1

r
(t)

α(t))

]
≥ E

[ T∑
t=1

1

k

k∑
i=1

r
(t)
i

]
+ (k − 1)/k∆T

−R(T, γ,∆,Λ, k) .
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Proof. We denote as A(t) the event that w(t) ̸= 0 and ρ =

γ/2. We first observe that by adding ρsign(w·X(t)

α(t)−j
)w to

the difference X(t)

α(t)−j
we do not affect the choice of the the

optimal weight vector w∗ and our guess w(t). We observe
that w∗ ·z(t)

j sign(w∗ ·X(t)

α(t)−j
) ≥ (|w∗ ·X(t)

α(t)−j
|−ρw∗ ·

w(t)/∥w(t)∥2) ≥ γ − ρ ≥ 0, therefore sign(w∗ · z(t)
j ) =

sign(w∗ · X(t)

α(t)−j
). For w(t) the similarly note that w ·

z
(t)
j = sign(w(t) ·X(t)

α(t)−j
)(|w(t) ·X(t)

α(t)−j
|+ ρ∥w(t)∥2).

First, we show that the optimal decision vector w∗ gets
negative loss on expectation (see Appendix A).

Claim 3.5. It holds that

E
y

[
T∑

t=1

ℓ(t)(w∗))

]
≤ −kγ∆

T∑
t=1

1{(A(t))c} .

Next, we bound the contribution of the loss of the w(t) (See
Appendix A for the proof).

Claim 3.6. It holds that

E[

T∑
t=1

ℓ(t)(w(t))] =

T∑
t=1

∑
j ̸=α(t)

(1/2)(∆

− sign(w(t) ·X(t)

α(t)−j
)E[(r

(t)

α(t) − r
(t)
j )])1{A(t)} .

Let J =
∑T

t=1 1{(A(t))c}, we bound from above J (See
Appendix A for the proof).

Claim 3.7. It holds that

J ≤ (R̄(T ) + TM(k − 1))/((k − 1)γ∆Λ).

By plugging Inequality 8 and using Claim 3.5 in the assump-
tion for the regret guarantee, we get that

T∑
t=1

∑
j ̸=α(t)

(
1{A(t)}(∆− sign(w(t) ·X(t)

α(t)−j
)

E[r
(t)

α(t) − r
(t)
j ])

)
≤ 2R̄(T ) . (7)

Finally, we need to bound from below the term
E
[∑T

t=1 r
(t)

α(t)

]
. For this reason, we need to connect the

reward of each round r
(t)

α(t) with the regret of the loss (7).
Note that if the learner chose the action α(t) that means that
w(t) ·X(t)

α(t)−j
≥ 0 for all j given that we are in the event

A(t). Therefore we can decompose r
(t)

α(t) as follows

r
(t)

α(t) =
1

k

k∑
i=1

r
(t)
i

+
1

k

k∑
j ̸=α(t)

sign(w(t) ·X(t)

α(t)−j
)(r

(t)

α(t) − r
(t)
j ) .

Furthermore, note that when we are in the event (Ac)(t),
the learner chooses a random action, therefore, using In-
equality 7 and the equality above, we have that the expected
reward is

E

[
T∑

t=1

r
(t)

α(t)

]
≥ E

[
T∑

t=1

1

k

k∑
i=1

r
(t)
i

]

+
k − 1

k
∆(T − J)− (2R̄(T )/k) .

Using Claim 3.7 and setting R(T, γ,∆,Λ, k) =
(R̄(T )/k)(1 + 1/(γΛ)) + TM/Λ, we complete the proof
of Lemma 3.4.

The proof of Theorem 1.11 follows from Lemma 3.4 and
Lemma 3.2, see Appendix A for details.

4. Conclusions and Open Problems
In this work we considered online linear classification in
the Massart or Bounded online classification model of (Ben-
David et al., 2009). Under a standard (and necessary) margin
assumption, we gave the first efficient algorithm for this
problem achieving a mistake bound of ηT + o(T ). This
bound is essentially optimal due to known hardness results
in the Statistical Query model (Diakonikolas et al., 2022).
We extended our online learning setting to a k-arm Bandit
model that lies between the commonly used regression-
based, realizable and the pessimistic agnostic classification
contextual bandit models. In this model, we utilized our
online Massart learner to obtain an efficient bandit algorithm
that obtains roughly (1−1/k)∆T more reward than playing
at random at every round. We observed that our reduction is
tight for the case of 2 arms (given the aforementioned SQ
hardness results for learning with Massart noise). However,
for k > 2 arms it is unclear whether this reward bound is
best possible, as the gap between playing at random and
playing the best arm at every round may be much larger
than ∆. We leave this as an interesting open problem for
future work.
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Buc, F., Fox, E., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 32, pp. 4751–
4762. Curran Associates, Inc., 2019.

Diakonikolas, I., Kontonis, V., Tzamos, C., and Zarifis, N.
Learning halfspaces with tsybakov noise. arXiv, 2020.

Diakonikolas, I., Kane, D. M., Kontonis, V., Tzamos, C.,
and Zarifis, N. Agnostic proper learning of halfspaces
under gaussian marginals. In Proceedings of The 34th

Conference on Learning Theory, COLT, 2021a.

Diakonikolas, I., Kane, D. M., Kontonis, V., Tzamos, C., and
Zarifis, N. Efficiently learning halfspaces with tsybakov
noise. STOC, 2021b.

Diakonikolas, I., Kane, D., Ren, L., and Sun, Y. Sq lower
bounds for learning single neurons with massart noise.
Advances in Neural Information Processing Systems, 35:
24006–24018, 2022.

Dudik, M., Hsu, D., Kale, S., Karampatziakis, N., Langford,
J., Reyzin, L., and Zhang, T. Efficient optimal learning
for contextual bandits. arXiv preprint arXiv:1106.2369,
2011.

Filippi, S., Cappe, O., Garivier, A., and Szepesvári, C. Para-
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Supplementary Material

A. Omitted Proofs from Section 3
A.1. Proof of Claim 3.1

We prove the following:

Claim A.1. The loss ℓ(w) = G(w;X,v, r, α) generated by Algorithm 2 is convex and 2Mkmax(Λ, 1/ρ)-Lipschitz.

Proof. First, ℓ(·) is convex because is a sum of convex functions. Moreover, note that the derivative is

∇ℓ(w) =
∑
j ̸=α

1

2

∆sign(w · zj)− y

|v · zj |
zj ,

and note that |y| ≤ maxi |ri| and ∥zj∥2 ≤ 2 + ρ since all the xi have norm at most 1. Hence, ∥∇ℓ(w)∥2 is upper bounded
by kmaxi |ri|maxi(1/|u · zi|) ≤ 2kmaxi |ri|/ρ.

A.2. Proof of Claim 3.5

We provide proof for the following claim:

Claim A.2. It holds that Ey[
∑T

t=1 ℓ
(t)(w∗))] ≤ −kγ∆

∑T
t=1 1{(A(t))c} .

Proof. Using the tower rule, we have that

E
y
[

T∑
t=1

ℓ(t)(w∗))] =

T∑
t=1

E
y
[ℓ(t)(w∗))1{A(t)}+ 1{(Ac)(t)}] .

We first show that Ey[ℓ
(t)(w∗))1{A(t)}] ≤ 0. Recall that C∆(t; y) =

1
2 (∆|t| − yt). By taking the expectation over y in

the Ey[C∆(−w∗ · z(t)
j ; y

(t)
j )], we get that

E
y
[C∆(−w∗ · z(t)

j ; y
(t)
j )]

=
1

2
(∆|w∗ · z(t)

j | −E
[(

r
(t)

α(t) − r
(t)
j

)]
w∗ · z(t)

j ) .

Recall that by the Definition 1.5, we have that E[(r
(t)

α(t) − r
(t)
j )]sign(w∗ · X(t)

α(t)−j
) ≥ ∆ and as we discussed above

sign(w∗ · z(t)
j ) = sign(w∗ ·X(t)

α(t)−j
). Therefore we have that

E
[(

r
(t)

α(t) − r
(t)
j

)]
w∗ · z(t)

j ≥ ∆|w∗ · z(t)
j | ,

which gives that Ey[C∆(−w∗ · z(t)
j ; y

(t)
j )] ≤ 0 and hence Ey[ℓ

(t)(w∗))1{A(t)}] ≤ 0 . Next, with similar arguments as
before we have that Ey[ℓ

(t)(w∗))1{(Ac)(t)}] ≤ −kΛ∆1{(Ac)(t)} which completes the proof.

A.3. Proof of Claim 3.6

We prove the following:

Claim A.3. It holds that

E[

T∑
t=1

ℓ(t)(w(t))] =

T∑
t=1

∑
j ̸=α(t)

(1/2)
(
∆

− sign(w(t) ·X(t)

α(t)−j
)E[(r

(t)

α(t) − r
(t)
j )]

)
1{A(t)} .

11
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Proof. Note that in the case that the event (Ac)(t) the loss of w(t) is zero. Recall that it holds that C∆(w
(t) · z(t)

j ; y
(t)
j ) =

(1/2)(∆ − y
(t)
j sign(w(t) · z(t)

j ))|w(t) · z(t)
j |. To simplify the notation, let g(t)j (y

(t)
j ) = (1/2)(∆ − y

(t)
j sign(w(t) · z(t)

j )).
Using the tower rule, we get

E[

T∑
t=1

ℓ(t)(w(t))]

=

T∑
t=1

∑
j ̸=α(t)

g
(t)
j (E[y

(t)
j ])|w(t) · z(t)

j |

|w(t) · z(t)
j |

1{A(t)}

=

T∑
t=1

∑
j ̸=α(t)

g
(t)
j (E[y

(t)
j ])1{A(t)} . (8)

Moreover, since it holds that sign(w(t) · z(t)
j ) = sign(w(t) ·X(t)

α(t)−j
), we have g

(t)
j (E[y

(t)
j ]) = (1/2)(∆ − sign(w(t) ·

X
(t)

α(t)−j
)E[y

(t)
j ]). Hence, we have that

g
(t)
j (E[y

(t)
j ])

= (1/2)
(
∆− sign(w(t) ·X(t)

α(t)−j
)E[(r

(t)

α(t) − r
(t)
j )]

)
.

A.4. Proof of Claim 3.3

We restate and prove the following:

Claim A.4 (Unbiased Loss Estimate). For any w ∈ Rd it holds

E
c(t),β(t)

[
ℓ(t)(w) | F (t), r(t)

]
= G(w;X(t),w(t), r(t), α(t)) .

Proof. Since at every step of Algorithm 3 we construct the loss G(w;X(t),w(t), r̃(t), α(t)), using Algorithm 2, we denote
by ỹ(t) = r̃

(t)

α(t) − r̃
(t)
j the reward difference vector of the adapted reward vector r̃. Moreover, recall that we denote

y
(t)
j = r

(t)

α(t) − r
(t)
j . Notice that ỹ(t) is a random variable that depends on the uniformly random action β(t). The loss

depends on whether the w(t) = 0 or not so, we consider each case separately. We start with the case where w(t) ̸= 0 and
we denote this event as A(t). Recall that z(t)

j = X
(t)

α(t)−j
+ ρsign(X

(t)

α(t)−j
·w(t))w(t)/∥w(t)∥2 is the vector containing the

context differences as computed in Algorithm 2. Taking the expectation with respect to the random coin flip c(t) we obtain:

E
c(t),β(t)

[
ℓ(t)(w)1{A(t)} | F (t), r(t)

]
= q

1

q
E
β(t)

[G(w;X(t),w(t), r̃(t), α(t))1{A(t)} | F (t), r(t)] =

E
β(t)

 ∑
j ̸=α(t)

C∆(w · z(t)
j ; ỹ

(t)
j )

|w(t) · z(t)
j |

1{A(t)}
∣∣∣∣ F (t), r(t)

 =
∑

j ̸=α(t)

Eβ(t) [C∆(w · z(t)
j ; ỹ

(t)
j ) | F (t), r(t)]

|w(t) · z(t)
j |

1{A(t)} .

where for the last equation we used the linearity of expectation and the fact that the action α(t), the event A(t) and the
weight vector at t-th iteration w(t) do not depend on β(t) conditional on F (t). We now observe that the loss C∆(t; y) =
(1/2)(∆|t| − yt) is linear in y. Therefore, using again the linearity of expectation, we have that

E
β(t)

[C∆(w · z(t)
j ;ỹ

(t)
j ) | F (t), r(t)] = C∆(w · z(t)

j ; E
β(t)

[ỹ
(t)
j | F

(t), r(t)]) .

Next, we consider the case where w(t) = 0, and we call this event (Ac)(t). We have that by taking the expectation with

12
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respect to the random coin flip c(t) we obtain:

E
c(t),β(t)

[
ℓ(t)(w)1{(Ac)(t)} | F (t), r(t)

]
= E

β(t)
[G(w;X(t),w(t), r̃(t), α(t))1{(Ac)(t)} | F (t), r(t)]

= E
β(t)

[−
∑

j ̸=α(t)

w ·Xα−j ỹ
(t)
j 1{(Ac)(t)}

∣∣ F (t), r(t)] = −
∑

j ̸=α(t)

w ·Xα−j E
β(t)

[ỹ
(t)
j

∣∣ F (t), r(t)]1{(Ac)(t)} ,

where for the last equation we used the linearity of expectation and the fact that the action α(t) and the event A(t) do not
depend on β(t) conditional on F (t).

To finish the proof we have to show that the adapted reward difference vector ỹ(t) is an unbiased estimate of the true reward
difference vector y(t). Since we pick the action β(t) uniformly at random from {1, . . . , k}, we have that the i-th coordinate
of the adapted reward vector r̃ is equal to

E
β(t)

[r̃
(t)
i | F

(t), r(t)] =
1

k
(k − 1)r

(t)
i +

1

k

∑
s̸=i

(M − r(t)s ) .

Therefore, we have that the expected difference ỹ
(t)
j is equal to

E
β(t)

[ỹ
(t)
j | F

(t), r(t)] =
1

k
(k − 1)r

(t)

α(t) +
1

k

∑
s̸=α(t)

(M − r(t)s )− 1

k
(k − 1)r

(t)
j −

1

k

∑
s̸=j

(M − r(t)s )

=
1

k
(k − 1)r

(t)

α(t) −
1

k
r
(t)
j −

1

k
(k − 1)r

(t)
j +

1

k
r
(t)

α(t) = r
(t)

α(t) − r
(t)
j = y

(t)
j .

Therefore, combining the above equations, we conclude that

E
c(t),β(t)

[ℓ(t)(w) | F (t), r(t)]G(w;X(t),w(t), r(t), α(t)) .

This completes the proof of Claim 3.3.

A.5. Proof of Claim 3.7

We restate and prove the following claim.

Claim A.5. It holds that J ≤ (R̄(T ) + TM(k − 1))/((k − 1)γ∆Λ).

Proof. From Inequality 8, we have that

E

[
T∑

t=1

ℓ(t)(w(t))

]
=

T∑
t=1

∑
j ̸=α(t)

g
(t)
j (E[y

(t)
j ])1{A(t)}

≥ −M(k − 1)(T − J)/2 .

Furthermore, sing the assumption for the regret guarantee, we have:

E

[
T∑

t=1

ℓ(t)(w(t))−
T∑

t=1

ℓ(t)(w∗)

]
≤ R̄(T ) .

Hence, using Claim 3.5, we get the result.

A.6. Proof of Theorem 1.11

We restate and prove Theorem 1.11.

Theorem A.6 (Monotone k-arm Contextual Bandits). Consider the monotone reward online setting of Definition 1.5.
Moreover, for some unit vector w∗ ∈ Rd, assume that for all t, it holds that for all i ∥X(t)

i ∥2 ≤ 1 and for all i ̸= j,

13
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|w∗ ·X(t)
i −w∗ ·X(t)

j )| ≥ γ. There exists a bandit algorithm that runs in poly(d) time per round and selects a sequence of
arms α(1), . . . , α(T ) ∈ [k] that obtain expected reward

E

[
T∑

t=1

r(t)(α(t))

]
≥ E

[
T∑

t=1

1

k

k∑
i=1

r
(t)
i

]

+
k − 1

k
∆T −O(T 5/6(k∆M2)1/3/γ) .

Proof of Theorem 1.11. Algorithm 3 in each iteration, either with probability q makes a random choice or with probability
1− q chooses the best action according to the current decision weight vector (or a random action if w(t) = 0). Therefore
we have that

T∑
t=1

E
c(t)

[
r(t)

]
= (1− q)

T∑
t=1

E
[
r
(t)

α(t)

]
+

q

k
E

[
T∑

t=1

k∑
i=1

r
(t)
i

]
.

Using Lemma 3.4, we get that

T∑
t=1

E
[
r(t)

]
≥ 1

k
E

[
T∑

t=1

k∑
i=1

r
(t)
i

]

+ (1− q)
k − 1

k
∆T − (1− q)R(T, γ,∆,Λ, k) .

where R(T, γ,∆,Λ, k) = (R̄(T )/k)(1 + 1/(γΛ)) + TM/Λ. From Lemma 3.2 we have that R̄(T ) = (k −
1)M
√
T/qmax(1/γ,Λ). By maximizing it, we get Λ = 1/γT 1/6(M/(k∆))1/3 and q = M/(γΛ∆). Therefore we

get that the expected reward is

T∑
t=1

E
[
r(t)

]
≥ 1

k
E

[
T∑

t=1

k∑
i=1

r
(t)
i

]

+
k − 1

k
∆T − T 5/6(k∆)1/3M2/3/γ .

14


