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Abstract001

Augmenting Transformers with linguistic struc-002
tures effectively enhances the syntactic general-003
ization performance of language models. Previ-004
ous work in this direction focuses on syntactic005
tree structures of languages, in particular con-006
stituency tree structures. We propose Graph-007
Infused Layers Transformer Language Model008
(GiLT) which leverages dependency graphs for009
augmenting Transformers language model. Un-010
like most previous work, GiLT dose not insert011
extra structural tokens in language modeling;012
instead, it injects structural information into013
language modeling by modulating attention014
weights in the Transformer with features ex-015
tracted from the dependency graph that is incre-016
mentally constructed along with token predic-017
tion. In our experiments, GiLT with semantic018
dependency graphs achieves better syntactic019
generalization while maintaining competitive020
perplexity in comparison with Transformer lan-021
guage model baselines. In addition, GiLT can022
be finetuned from a pretrained language model023
to achieve improved downstream task perfor-024
mance. Our code is available for release.025

1 Introduction026

Transformer-based language models (LMs) have027

shown excellent performance in language model-028

ing and downstream tasks (Vaswani et al., 2017).029

Notably, linguistic structures such as syntactic and030

semantic parses that were deemed essential in tra-031

ditional natural language processing are absent032

from the model design and training process of033

Transformer-based LMs.034

Over the past decade, a number of researches035

have been trying to integrate linguistic structures036

into neural language models. Among them are037

syntactic LMs which jointly model syntactic struc-038

tures and surface words (Choe and Charniak, 2016).039

These include earlier work such as RNNG, which040

combines constituency parsing with recurrent neu-041

ral networks (Dyer et al., 2016; Kim et al., 2019;042

Noji and Oseki, 2021), and recent studies that 043

incorporate constituency and dependency syntax 044

into Transformers (Yoshida and Oseki, 2022; Qian 045

et al., 2021; Sartran et al., 2022; Murty et al., 2023; 046

Zhao et al., 2024). Experiments have shown their 047

competitive perplexity in language modeling and 048

improved syntactic generalization compared with 049

standard Transformer LMs. However, existing re- 050

searches in this direction have two major limita- 051

tions. First, most of them are based on constituency 052

syntactic tree structures. Dependency tree struc- 053

tures, another important form of syntax, receive 054

much less attention (Zhao et al., 2024). In addi- 055

tion, little work has been done to jointly model 056

linguistic structures other than syntactic trees in 057

LMs. Second, most of the existing methods require 058

additional tree-building operations inserted into the 059

input and output sequence, leading to longer se- 060

quence lengths and higher computation cost and 061

also making it harder to finetune a pretrained LM 062

into a syntactic LM. The only exception is Push- 063

down Layers (Murty et al., 2023), which uses syn- 064

tactic trees to influence attention computation and 065

does not change the input and output space of the 066

LM. 067

In this paper, we propose Graph-Infused Layer 068

Transformer LM (GiLT) that tackles the above- 069

mentioned limitations in integrating linguistic struc- 070

tures into Transformer-based LMs. GiLT is based 071

on dependency graphs that subsume both syntactic 072

dependency trees and semantic dependency graphs, 073

thus extending the line of research on syntactic 074

LMs beyond syntax. Inspired by Pushdown Layers 075

(Murty et al., 2023), GiLT incrementally constructs 076

dependency graphs without changing the input and 077

output space of the underlying LM, and moderates 078

attention scores with features extracted from the 079

constructed dependency graphs. 080

Experimental results show that GiLT achieves 081

competitive perplexity performance in language 082

modeling and improved syntactic generalization 083
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over baselines. Furthermore, finetuning pretrained084

language models by moderating attention scores085

with our proposed Graph-Infused layers can ef-086

fectively improve the performance on downstream087

tasks, which suggests that the Graph-Infused layer088

is a competitive replacement for standard self-089

attention.090

In summary, our contributions are as follows:091

• We propose GiLT, leveraging dependency092

graphs to enhance LM without modifying the093

input or output space.094

• We introduce feature tape extracted explic-095

itly from partially built dependency graphs to096

moderate attention scores.097

• Experimental results on language modeling098

and syntactic generalization validate the effec-099

tiveness of Graph-Infused layers.100

2 Background101

2.1 Pushdown Layers102

Transformer LM with Pushdown Layers103

(Pushdown-LM) (Murty et al., 2023) is a104

type of syntactic LMs that incrementally build105

constituency syntactic trees and moderate attention106

scores based on the constituency trees. Unlike107

other syntactic LMs, it does not change the input108

and output space of the underlying LM.109

At each decoding step i, Pushdown-LM predicts110

shift/reduce operations to simulate the status of a111

pushdown automaton that corresponds to the par-112

tially built constituency tree, and records on a stack113

tape Wi the depth of all the tokens that are already114

generated in the partially built constituency tree.115

Pushdown-LM then augments self-attention with116

stack tape Wi:117

α̃l
ij = [hlj + dlij ]

⊤W⊤
keyWqueryh

l
i (1)118

where α̃l
ij is the attention score before softmax as-119

signed to the jth token from the ith token at layer l,120

hlj is the hidden states of jth token at the lth atten-121

tion block, dlij is an embedding of the depth of the122

jth token recorded in Wi, and Wkey and Wquery are123

learnable parameters in self-attention. In this way,124

structural information from the constituency tree is125

implicitly introduced into self-attention computa-126

tion and thus influence the decoding of LM.127

2.2 Semantic Dependency Graphs 128

A Semantic Dependency Graph forms a directed 129

acyclic graph instead of a tree. The dependency 130

arcs in the graph, where nodes correspond to words, 131

illustrate semantic relations (e.g., agent and patient 132

(Palmer et al., 2005)). The graph often includes a 133

virtual root node. 134

In this paper, we consider three types of seman- 135

tic dependency graphs from Oepen et al. (2015) 136

as discussed below. DELPH-IN MRS-Derived 137

Bi-Lexical Dependencies (Flickinger et al., 2012) 138

(DM) are derived from Deep Bank (Flickinger, 139

2000), in which roots designate the highest-scoping 140

predicate in the graph. Enju Predicate–Argument 141

Structures (PAS) originate from Enju Treebank 142

(Miyao, 2006), which is obtained by automatically 143

annotating the PTB. The root of PAS denotes the 144

semantic head in the sentence. Prague Semantic 145

Dependencies (PSD) is based on Prague Czech- 146

English Dependency Treebank (Hajic et al., 2012), 147

where the roots mostly correspond to main verbs. 148

3 Graph-Infused Layers 149

We introduce a dependency-graph-based language 150

model, Graph-Infused Layers Transformer LM 151

(GiLT), which simultaneously generates tokens that 152

form sentences and dependency arcs that incremen- 153

tally form dependency graphs over the sentences. 154

We also develop the graph-based feature tape to 155

characterize generated tokens in the graph, and uti- 156

lize it to influence attention computation. 157

3.1 Dependency Scoring 158

Whenever a word wi is generated by the Trans- 159

former LM, we score all possible dependencies 160

connected from and to wi. 161

Since a word may correspond to multiple tokens, 162

we first define word representation. Suppose word 163

wi is tokenized into m tokens whose input em- 164

beddings are xk, ..., xk+m−1 and hidden states are 165

hk, ..., hk+m−1. We define hk by concatenating 166

the hidden states from the penultimate layer L− 1 167

and middle layer L/2 to capture both semantic and 168

syntactic information. We do not use the hidden 169

state of the last layer to leave it only focused on 170

next token prediction. We consider three methods 171

for representing wi: (i) complete token representa- 172

tion (CTR): the mean of hk, ..., hk+m−1; (ii) first 173

token representation (FTR): the hidden state of the 174

first token, hk; (iii) representation ahead of time 175

(RA): the concatenation of the hidden state of the 176
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last token of the previous word wi−1 and the in-177

put embedding of the first token of word wi, i.e.,178

[hk−1;xk]. We choose RA by default for word rep-179

resentation in this work, because with RA we can180

predict all the dependencies of wi before feeding181

the tokens of wi into the Transformer, thus being182

able to infuse structural information from the de-183

pendency graph to the hidden states of the tokens184

in wi and hence influence next token prediction185

of the Transformer LM. Empirically, we find that186

RA outperforms the other two methods in improv-187

ing language modeling of GiLT. The disadvantage188

of RA is that its word representation clearly con-189

tains less information than the other two methods,190

resulting in worse dependency prediction accuracy.191

We follow the biaffine parsing approach (Dozat192

and Manning, 2018) to compute the score pij of193

the dependency from the word wi to wj . Note that194

for the root node, we use a learnable vector as its195

word representation.196

õpi = MLP2
p(MLP1

p(oi) + rii)

õcj = MLP2
c(MLP1

c(oj) + rij)

pij = σ([õpi ; 1]
⊤Wp[õ

c
j ; 1])

(2)197

where oi is the word representation of wi as dis-198

cussed earlier, õi ∈ Rn is a vector with the199

same dimension as the hidden states of Trans-200

former, Wp ∈ R(n+1)×(n+1) is a learnable matrix,201

MLP1/2
p/c denotes the first/second MLP for comput-202

ing parent/child representations, σ denotes the Sig-203

moid function, and rij represents positional encod-204

ings involving relative position |i− j| and graph-205

based feature tape Gi (see Section 3.3).206

3.2 Graph Update207

Given dependency scores {pij , pji, pii} (j =208

0, · · · , i − 1) for all the dependencies involving209

word wi, a naive method to update the dependency210

graph is to predict the existence of each dependency211

independently. However, this becomes computa-212

tionally infeasible when we employ beam search213

decoding (Section 3.5) because of the exponen-214

tially large search space. To address this issue,215

we follow a two-step method. First, we predict216

ai ∈ {0, 1, · · · , c}, the total number of dependen-217

cies of word wi, where c is a constant upper bound. 218

s =
i∑

j=0

õpi ⊙Wsõ
c
j +

i−1∑
j=0

õpj ⊙Wsõ
c
i

πi = softmax
(
W⊤

a (
s√

2i− 1
) + ba

)
p(ai) = maxπi

ai = argmax(πi)

(3) 219

where ⊙ denotes the hadamard product operation, 220

Wa ∈ R(c+1)×n, Ws ∈ Rn×n and ba ∈ Rc+1 are 221

learnable parameters, πi ∈ Rc+1 is the probability 222

distribution with c + 1 dimensions and ai is the 223

action we pick when using greedy decoding. Also, 224

we scale s by
√
2i− 1 to normalize the variance. 225

With the dependency number ai picked from 226

the distribution πi, we then simply rank all the 227

dependencies based on their scores and add the 228

top-ai dependencies to the dependency graph. This 229

two-step method reduces the search space from 230

exponential to linear for each step. 231

3.3 Feature Extraction 232

Given input x<k, we extract features from the par- 233

tially constructed dependency graph and form a 234

graph-based feature tape Gk ∈ N4×k for the to- 235

ken xk. Note that the graph is word-level, but Gk 236

corresponds to a token. Therefore, the values of 237

Gk, Gk+1, ...Gk+m−1 are always the same for each 238

word wi consisting of m tokens xk, ..., xk+m−1. 239

The feature tape involves four graph-based features 240

ranging from fine-grained properties of words to 241

coarse-grained properties of subgraphs: (i) degree, 242

an attribute for each word; (ii) distance, measur- 243

ing local topology between nodes; (iii) depth, rep- 244

resenting the global structure of subgraphs; (iv) 245

predicate depth, indicating relations between sub- 246

graphs. 247

Degree. The degree of a word is defined as the 248

number of its incoming and outgoing dependencies 249

cin and cout respectively. The value of out-degree 250

plus in-degree is assigned as the degree feature 251

for each word. Empirically, we discover that the 252

weighted summation achieve better performance, 253

so we assign weight min to in-degree and mout to 254

out-degree, where min < mout and update degree 255

as moutcout +mincin. 256

Distance. The distance between words wi and 257

wj is defined to be the minimal sum of the weights 258
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Figure 1: Illustration of how feature tape is updated
when constructing a parse graph. Each row in G2 and
G3 form top to bottom respectively are Degree values,
Distance values, Depth values and Subgraph Distance
values.minis 1 and mout is 10 for this picture. As dogs
is predicted, one dependency is added to the PSD graph.

along the dependencies connecting them. We al-259

low both parent-to-child and child-to-parent passes260

over dependencies when traversing. Intuitively, the261

distance measures the relevance of the two nodes.262

In order to incorporate some dependency direction263

information into the distance measure, we assign264

weights mout and min to parent-to-child and child-265

to-parent passes similar to the setting of Degree.266

Depth. For each connected component in the par-267

tial dependency graph, we define its root as the first268

word from left to right. For each other node in the269

subgraph, we apply the breadth-first search algo-270

rithm on the undirected version of the subgraph and271

assign the depth (from the root) as the total (min-272

imum) number of edges of the path from the root273

to this node. As an example, the root of one sub-274

graph has a depth 0, and 1-hop nodes from the root275

defined on the undirected version of the subgraph276

have 1 as their depth values.277

Subgraph Distance. Since we build the depen-278

dency graph incrementally, there may exist a se-279

quence of multiple disconnected subgraphs when 280

generating the k-th token. We define the words 281

without incoming dependencies as the roots of each 282

subgraph g, and define the Subgraph Distance of 283

these root words as the number of subgraphs to 284

the right of g (including g itself). We define the 285

Subgraph Distance of non-root words to be 0. Sub- 286

graph Distance reflects relative positions between 287

subgraphs. 288

3.4 Computing Attention Scores 289

We incorporate information contained in the graph- 290

based feature tape Gk into the Transformer LM by 291

modifying the self-attention module. Specifically, 292

we first map contents of Gk ∈ N4×k onto a global 293

embedding ẽGk ∈ R4×k×d̃. For each Transformer 294

layer l, we use a linear function fl for feature fu- 295

sion, that is, eGl
k = fl(e

G
k ) ∈ Rk×d. For index of 296

token j ∈ {0, 1, · · · , k}, the corresponding fused 297

graph feature eGl
kj ∈ Rd is directly added to its key 298

in attention computation, 299

α̃l
kj = [hlj + eGl

kj ]
⊤W⊤

keyWqueryh
l
k (4) 300

In this work, we follow TXL (Dai et al., 2019) 301

for attention computation, so we additionally trans- 302

form Equation 4 as follows. 303

α̃l
kj = hlj

⊤
W⊤

key, cWqueryh
l
k

+ (Rkj + eGl
kj )

⊤W⊤
key, rWqueryh

l
j

+ u⊤Wkey, ch
l
k + v⊤Wkey, r(Rkj + eGl

kj ),
(5) 304

where Rkj is a vector with sinusoid encoding of 305

|k−j|, Wkey, c and Wkey, r are key matrix for respec- 306

tively content and relative representation. Content 307

and relative attention scores are divided into two 308

parts. Since |k − j| ∈ [0, k], TXL precomputes 309

relative scores for k values instead of k × k matrix. 310

3.5 Training and Inference 311

Training. Given a corpus of strings annotated 312

with parse graphs, we precompute graph-based 313

feature tape Gk for each prefix x≤k baesd on the 314

ground-truth dependencies over x≤k. Afterwards, 315

GiLT can be trained in parallel like a standard 316

Transformer. During training, teacher forcing is 317

applied to both token prediction and dependency 318

prediction. Given a string x with N tokens, ground- 319

truth action sequence {a1, a2, · · · , aM} of length 320

M based on the annotated graphs and matrix p̂ 321

where p̂ij = 1, if there is a dependency from i to j. 322
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The training loss function is defined as follow:323

L = β
1

N

N∑
i=1

CE(xi, x̂i)

+ (1− β)(
1

M2

M∑
j=1

M∑
k=1

BCE(pjk, p̂jk)

+
1

M

M∑
k=1

CE(πk, π̂k))

(6)324

where β is a constant coefficient, N denotes the325

total token number, M denotes the total word num-326

ber, x and x̂ are the output distribution in each step327

and ground-truth one-hot vector, and π̂k is based328

on the action sequence {a1, a2, · · · , aM}.329

Inference. GiLT jointly models a string and330

its parse graph. For any string x with length331

N and a parse graph g with totally M actions332

{a1, a2, · · · , aM}, their joint probability p(x, g) is333

computed as the product of token and action proba-334

bilities:335

p(x, g) =
N∏
k=1

p(xk|x<k;Gk−1)×

M∏
k=1

p(ak|x<k;Gk−1)

(7)336

Computing the marginal p(x) =
∑

g p(x, g) is337

computationally intractable due to the huge space338

of all possible graphs. Following Murty et al.339

(2023), we approximate it by marginalizing over a340

relatively small set of parse graphs produced via341

beam search. The probability p(x) computed in342

this way is an exact lower bound of its true value.343

Note that, since GiLT does not generate extra to-344

kens representing parsing actions in the output se-345

quence, we do not need to use complicated word-346

synchronous beam search decoding (Stern et al.,347

2017), which has been widely used in previous348

syntactic LMs.349

4 Experiments350

4.1 Sentence-Level Language Modeling351

Dataset and prepocessing. We use the BLLIP-352

LG dataset of Charniak et al. (2000), with training353

splits from Hu et al. (2020). We obtain annotated354

PSD, PAS and DM parse graphs with unlabelled355

dependency edges by parsing the dataset with the356

ACE parser (Wang et al., 2021). Since dependency357

Model PPL ↓ 10%BLiMP ↑ SG ↑
TXL (baseline) 14.8 71.2 76.1

Pushdown-LM 14.6 70.1 78.2

Ours

GiLT-DP 15.6 70.1 75.5

GiLT-DM 14.9 71.8 76.8

GiLT-PAS 15.1 71.4 77.7

GiLT-PSD 14.9 72.5 80.2

Table 1: Result of our models and baselines. The results
of Pushdown-LM are reproduced using a TXL base
model. All PPL results except for that of TXL are upper
bounds.

trees can be seen as special cases of dependency 358

graphs, we also obtain unlabeled projective depen- 359

dency trees with the Biaffine-roberta parser (Dozat 360

and Manning, 2017) following Zhao et al. (2024). 361

Tokenization is performed with the same scheme as 362

in Sartran et al. (2022) with Sentence Piece (Kudo 363

and Richardson, 2018). We follow Murty et al. 364

(2023) and model each sentence independently. 365

Setup. We evaluate the perplexity of the mod- 366

els on the BLLIP-LG dataset. We train a 16-layer 367

Transformer-XL (TXL) (Dai et al., 2019) language 368

model with 252M parameters as the Baseline. To 369

fairly compare with Pushdown-LM (Murty et al., 370

2023), we reimplement Pushdown-LM based on 371

TXL instead of vanilla Transformer. We use PSD, 372

DM and PAS parse graphs to train our GiLT re- 373

spectively, resulting in three models: GiLT-PSD, 374

GiLT-DM and GiLT-PAS. We also train GiLT on 375

dependency parse trees, resulting in the GiLT-DP 376

model. We use the same hyperparameters (model 377

size, dropout, learning rate schedulers) as in Zhao 378

et al. (2024) for TXL. We set the hyperparame- 379

ters of GiLT with win = 1, wout = 10, β = 5
6 , 380

d̃ = 256 (dimension of ẽGkj), and d = 1024 (dimen- 381

sion of eGkj). This results in 268M parameters for 382

Transformer and 54M parameters for the modules 383

described in Section 3.1- 3.4 in GiLT. For perplex- 384

ity computation, we follow Pushdown-LM (Murty 385

et al., 2023) and use beam search with a beam size 386

of 300 to estimate the perplexity upper bound of 387

GiLT. 388

Result. We report the perplexity (PPL) of all 389

models in Table 1. Pushdown-LM achieves the 390

best PPL and even outperforms the baseline, con- 391

firming previous observation that Pushdown-LM 392

excels in language modeling among syntactic LMs 393

(Murty et al., 2023). Our GiLT models based on 394
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parse graphs maintain PPL levels that are compa-395

rable to both Pushdown-LM and the baseline. No-396

tably, GiLT-DM and GiLT-PSD only underperform397

the baseline by 0.1. On the other hand, GiLT-DP398

achieves the worst PPL, implying the limitation of399

tree structures in comparison with graph structures.400

4.2 Syntactic Generalization401

We evaluate syntactic generalization on BLIMP402

(Warstadt et al., 2020) and the SG test suites (Hu403

et al., 2020).404

Setup. We use the same models as in Section 4.1.405

For BLiMP, models are provided with a pair of sen-406

tences of which one is grammatical and the other407

is ungrammatical, and are tasked with assigning408

a higher probability to the grammatical sentence.409

Due to limited computational resources, we experi-410

ment with a subset of the BLiMP dataset by select-411

ing every tenth example (i.e., the 1st, 11th, 21st,412

etc.). The SG test suites consist of six fine-grained413

syntactic phenomena. For each suite, there exists414

an inequality about the probability of generating415

a target span that the models should satisfy. For416

10%BLiMP and SG, we use beam search to both417

compute marginal probability p(x) and conditional418

probability − log p(xt|x<t). Note that conditional419

probability is marginalized based on the beam state420

at time step t.421

Result. The results are presented in Table 1.422

GiLT-PSD achieves the best performance in both423

tests, surpassing the baseline by 1.3 points in424

10%BLiMP and 4.1 points in SG. GiLT-DM and425

GiLT-PAS also outperform the baseline in both426

tests. In contrast, Pushdown-LM exhibits better SG427

performance but worse 10%BLiMP performance428

than the baseline. GiLT-DP has the worst perfor-429

mance, underperforming the baseline in both tests,430

the reason of which is discussed in Appendix B.431

Figure 2 illustrates the scores of each suite in SG.432

Our best-performing GiLT-PSD outperforms the433

baseline in 5 out of 6 suites, while showing a slight434

disadvantage in Gross Syntactic State. Pushdown-435

LM performs well in most scenarios except licens-436

ing, which significantly degrades its overall SG437

score.438

4.3 Finetuning on Pretrained LM439

Since GiLT does not change the input and output440

space of the Transformer LM, it can be finetuned441

from any pretrained language model on datasets442

annotated with parse graphs to introduce syntactic443

inductive bias. We evaluate GiLT trained in this 444

way on downstream tasks. 445

Setup. We use the pretrained TXL on BLLIP-LG 446

in Section 4.1 to act as the base model. We replace 447

the last four layers of pretrained TXL with Graph- 448

Infused Layers, whose parameters involving the 449

embedding for the graph-based feature tape and 450

modules for scoring and constructing graphs are 451

randomly initialized, and then finetune the model 452

with silver parse graphs obtained by running our 453

GiLT-PSD with beam search. We name the re- 454

sulting model GiLT-TXL. We evaluate GiLT-TXL 455

on four downstream text classification tasks from 456

GLUE (Wang et al., 2018): RTE, SST2, MRPC 457

and STS-B. We reduce each task into language 458

modeling via prompting (details are provided in 459

Appendix A). 460

Result. In Table 2, we report F1 score for 461

SST2 and RTE, accuracy/F1 for MRPC, and Pear- 462

son/Spearman correlation for STS-B. We find that 463

our GiLT-TXL outperforms the baseline on all the 464

tasks. However, the F1 scores of RTE are both 465

close to 0.5, indicating that both models struggle 466

with this task, probably because our base model 467

is pretrained on a rather small dataset and have 468

limited ability in complicated tasks.

Model RTE ↑ SST2 ↑ MRPC ↑ STS-B ↑
TXL 50.1 83.0 67.4/79.5 36.3/33.2

GiLT-TXL 50.2 84.2 68.9/80.6 38.9/36.8

Table 2: Results of finetuned models on downstream
tasks.

469

4.4 Ablation for Representing Strategy 470

We compare three representing strategies men- 471

tioned in Section 3.1 for GiLT: (i) representation 472

ahead of time (RA); (ii) first token representation 473

(FTR); (iii) complete token representation (CTR). 474

We train our models on 1
4 of the BLLIP-LG dataset 475

with PSD dependency graphs and compare the F1 476

score of dependency prediction and average log 477

joint probability 1
N log p(x, g) on the test set with 478

the best model evaluating on validation set during 479

training in Table 3, where N is the total number of 480

tokens in the test set. Unsurprisingly, RA achieves 481

the lowest F1 score because it receives least infor- 482

mative word representation compared with FTR 483

and CTR. However, RA update the graph earliest 484

and is able to utilize the inductive bias brought by 485
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Figure 2: Scores on the six circuits of the SG test suites. The order from left to right in the table corresponds to the
order of scores of SG from low to high.

Method F1 ↑ Log Joint Probability ↑
RA 89.43 -3.27
FTR 92.64 -3.35

CTR 94.1 -3.31

Table 3: The F1 score of dependencies and average
log joint probability of the test set when training with
different representing strategies

the graph in our Graph-Infused layer, which helps486

to improve the generation ability greatly. Theoreti-487

cally, although FTR is able to update graph earilier488

than CTR and more informative word representa-489

tion than RA, FTR behave worst.490

5 Related Work491

There has been a line of studies about leveraging492

recursive linguistic structural information for se-493

quential language modeling. RNNGs (Dyer et al.,494

2016), known as syntactic LMs, jointly model the495

syntactic structure and words by integrating top-496

down transition-based constituency parsing into a497

recursive neural network, while more recent stud-498

ies (Qian et al., 2021; Yoshida and Oseki, 2022;499

Sartran et al., 2022) have applied this approach500

to the Transformer architecture. They explicitly501

model the syntactic tree along with words by im-502

posing hard constraints over attention masks to503

simulate the shift/compose operations in transition-504

based parsing, which serves as a bottleneck in in-505

formation gathering to force better representation506

learning of compositions. Hu et al. (2024) further507

explores an unsupervised training framework for 508

constituency-based syntactic LMs, showing the po- 509

tential of training syntactic LMs at scale. 510

In addition to constituency-based models men- 511

tioned above, studies on neural models based on 512

dependency tree structures (Buys and Blunsom, 513

2015; Mirowski and Vlachos, 2015), which is an- 514

other important form of syntax, also achieve im- 515

proved syntactic generalization performance. A 516

recent example is Dependency Transformer Gram- 517

mars (Zhao et al., 2024), which employs a con- 518

strained attention pattern similar to Sartran et al. 519

(2022) to encourage head-dependent representation 520

learning. 521

Both constituency-based and dependency-based 522

studies discussed above incorporate the inductive 523

biases of symbolic structures into the self-attention 524

mechanism by regulating the attention masks dy- 525

namically. Some other studies focus on adapting 526

the self-attention modules, or combining the two 527

(Wang et al., 2019; Peng et al., 2019; Deshpande 528

and Narasimhan, 2020; Murty et al., 2023). Our 529

work also follows these conventions of adaptation, 530

modifying the self-attention module by incorpo- 531

rating dependency graph feature representations 532

without changing the input or output space of Trans- 533

former LMs. 534

This line of models shows considerable perfor- 535

mance in generalizing syntactic information via re- 536

cursion as tree structures. However, most of these 537

studies focus solely on trees rather than a more 538

general and flexible form — graphs. One notable 539
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work (Prange et al., 2022) proposes a model that ex-540

ploits information from both syntactic and semantic541

graphs. However, this work only introduces graph-542

informed language modeling without actually mod-543

eling the explicit symbolic structure; that is, gold544

syntax and semantics are needed for both training545

and test-time inference of the model. Semantic546

graphs are also employed to guide the model in547

other research fields such as machine translation548

and visual tasks, but these studies directly apply the549

gold signals for model augmentation from seman-550

tic graphs instead of encoding the graphs into the551

model (Aue et al., 2004; Ke et al., 2024). GiLT dif-552

fers from these models as we model graphs in the553

Transformer LM, and we can incrementally build a554

graph along with the next token prediction without555

graph supervision during inference.556

6 Conclusion557

We propose GiLT, a novel type of syntactic lan-558

guage models that incorporates dependency graphs559

— a more general and flexible form of linguis-560

tic structural information compared with tradi-561

tional syntactic tree structures - into Transform-562

ers. GiLT predicts dependencies jointly with token563

generation, and moderate attention scores through564

features extracted from building up dependency565

graphs. Our experiments show that GiLT surpasses566

base language models and other syntactical lan-567

guage models in terms of syntactic generalization,568

achieving these gains without inserting extra tokens569

and with minimal impact on perplexity. Addition-570

ally, pretrained LM finetuned with Graph-Infused571

Layers can also improve performance on several572

downstream tasks.573

For future work, we plan to explore the potential574

of the feature tape for jointly modeling multiple575

types of parse graphs. This presents a significant576

challenge for both effective training and efficient577

inference. Furthermore, we consider unsupervised578

training for GiLT as another promising direction.579

Limitations580

During inference, we rely on beam search to esti-581

mate the marginalized probability, which can only582

provide the lower bound. Although our action583

space is constant and independent of the sequence584

length, beam search remains computationally ex-585

pensive.586

Additionally, the discussion in Appendix B sug-587

gests that the performance limitations observed are588

primarily due to the underutilization of tree prop- 589

erties in our graph-based modeling approach. This 590

insight highlights the potential for further research 591

to focus on better integrating the inherent proper- 592

ties of graphs, such as the presence of multiple 593

heads, to improve the model’s overall performance 594

and effectiveness. 595
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A Other Experimeatal Details 826

Hyperparamter for finetuning We use a batch 827

size of 64 and a fixed learning rate of 3e-6. We 828

choose the best model based on performance on 829

the validation set. We use the following prompts to 830

convert text classification task into language mod- 831

eling: 832

• RTE: We utilize the following prompt: 833

Sentence1:{s1}; Sentence2:{s2}; Label:{l}. 834

l ∈ {0, 1} for input sentence pair (s1, s2) 835

• MRPC: Given input sentence pair (s1, s2), 836

we construct the prompt: 837

Sentence1:{s1}; Sentence2:{s2}; Label:{l}. 838

l ∈ {inequivalent, equivalent}. 839

• SST2: Given string s and label l, prompt is: 840

Sentence1:{s1}; Sentiment:{l}. l ∈ {0, 1}. 841

• STS-B: Given the sentence pair (s1, s2), 842

we create the prompt Sentence1:{s1}; 843

Sentence2:{s2}; Score:. We use the final 844

hidden states to train a linear regression 845

model, training jointly with LM. 846

Since our pretrained TXL is sentence-level, we use 847

semicolons instead of periods. 848

Computational costs We use PyTorch version 849

2.7.0 for all experiments. For language modeling 850

experiment, we spent one NVIDIA A6000 GPU for 851

each training, which lasted about 50 hours. For fine- 852

tuning experiment, we spent one NVIDIA H800 853

GPU for each training, which lasted less than 1 854

hour for each task. 855
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B Discussion on different parsing856

By analyzing metrics in Table 1, we discover that857

the order of performance from high to low in per-858

plexity is: PSD, DM, PAS and DP. It also roughly859

conforms to this order in other metrics.860

SDP Dataset Avg. Dependencies PPL
PSD 16.9 14.9

DM 18.8 14.9

PAS 24.6 15.1

DP 24.2 15.6

Table 4: average number of dependencies per sentence
in different SDP dataset based on BLLIP-LG and re-
ported perplexity of each model from Section 4.1.

We calculate the average number of dependen-861

cies in the graphs and report the results in Table 4.862

We can surprisingly find that the fewer dependen-863

cies we need to establish, the better performance864

we will get. This is likely because fewer depen-865

dencies result in less noise we obtained from silver866

parse graphs, and the simpler graphs are probably867

easier to model. Although PAS has more depen-868

dencies than DP, GiLT-PAS performs better than869

GiLT-DP.870

Performance degradation on the DP dataset is871

not unexpected, as the parse graphs for DP are es-872

sentially trees. We get rid of the property of trees873

which is unable to leverage their unique properties.874

This suggests that while GiLT is able to handle875

more dependencies in graphs with relatively minor876

performance degradation, it has limitations in ef-877

fectively utilizing tree structures, a specific type of878

graph.879
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