GiLT: Augmenting Transformer Language Models with Dependency
Graphs

Anonymous ACL submission

Abstract

Augmenting Transformers with linguistic struc-
tures effectively enhances the syntactic general-
ization performance of language models. Previ-
ous work in this direction focuses on syntactic
tree structures of languages, in particular con-
stituency tree structures. We propose Graph-
Infused Layers Transformer Language Model
(GiLT) which leverages dependency graphs for
augmenting Transformers language model. Un-
like most previous work, GiLT dose not insert
extra structural tokens in language modeling;
instead, it injects structural information into
language modeling by modulating attention
weights in the Transformer with features ex-
tracted from the dependency graph that is incre-
mentally constructed along with token predic-
tion. In our experiments, GiLT with semantic
dependency graphs achieves better syntactic
generalization while maintaining competitive
perplexity in comparison with Transformer lan-
guage model baselines. In addition, GiLT can
be finetuned from a pretrained language model
to achieve improved downstream task perfor-
mance. Our code is available for release.

1 Introduction

Transformer-based language models (LMs) have
shown excellent performance in language model-
ing and downstream tasks (Vaswani et al., 2017).
Notably, linguistic structures such as syntactic and
semantic parses that were deemed essential in tra-
ditional natural language processing are absent
from the model design and training process of
Transformer-based LMs.

Over the past decade, a number of researches
have been trying to integrate linguistic structures
into neural language models. Among them are
syntactic LMs which jointly model syntactic struc-
tures and surface words (Choe and Charniak, 2016).
These include earlier work such as RNNG, which
combines constituency parsing with recurrent neu-
ral networks (Dyer et al., 2016; Kim et al., 2019;

Noji and Oseki, 2021), and recent studies that
incorporate constituency and dependency syntax
into Transformers (Yoshida and Oseki, 2022; Qian
et al., 2021; Sartran et al., 2022; Murty et al., 2023;
Zhao et al., 2024). Experiments have shown their
competitive perplexity in language modeling and
improved syntactic generalization compared with
standard Transformer LMs. However, existing re-
searches in this direction have two major limita-
tions. First, most of them are based on constituency
syntactic tree structures. Dependency tree struc-
tures, another important form of syntax, receive
much less attention (Zhao et al., 2024). In addi-
tion, little work has been done to jointly model
linguistic structures other than syntactic trees in
LMs. Second, most of the existing methods require
additional tree-building operations inserted into the
input and output sequence, leading to longer se-
quence lengths and higher computation cost and
also making it harder to finetune a pretrained LM
into a syntactic LM. The only exception is Push-
down Layers (Murty et al., 2023), which uses syn-
tactic trees to influence attention computation and
does not change the input and output space of the
LM.

In this paper, we propose Graph-Infused Layer
Transformer LM (GiLT) that tackles the above-
mentioned limitations in integrating linguistic struc-
tures into Transformer-based LMs. GiLT is based
on dependency graphs that subsume both syntactic
dependency trees and semantic dependency graphs,
thus extending the line of research on syntactic
LMs beyond syntax. Inspired by Pushdown Layers
(Murty et al., 2023), GiLT incrementally constructs
dependency graphs without changing the input and
output space of the underlying LM, and moderates
attention scores with features extracted from the
constructed dependency graphs.

Experimental results show that GiLT achieves
competitive perplexity performance in language
modeling and improved syntactic generalization



over baselines. Furthermore, finetuning pretrained
language models by moderating attention scores
with our proposed Graph-Infused layers can ef-
fectively improve the performance on downstream
tasks, which suggests that the Graph-Infused layer
is a competitive replacement for standard self-
attention.

In summary, our contributions are as follows:

* We propose GiLT, leveraging dependency
graphs to enhance LM without modifying the
input or output space.

* We introduce feature tape extracted explic-
itly from partially built dependency graphs to
moderate attention scores.

» Experimental results on language modeling
and syntactic generalization validate the effec-
tiveness of Graph-Infused layers.

2 Background

2.1 Pushdown Layers

Transformer LM with Pushdown Layers
(Pushdown-LM) (Murty et al., 2023) is a
type of syntactic LMs that incrementally build
constituency syntactic trees and moderate attention
scores based on the constituency trees. Unlike
other syntactic LMs, it does not change the input
and output space of the underlying LM.

At each decoding step ¢, Pushdown-LM predicts
shift/reduce operations to simulate the status of a
pushdown automaton that corresponds to the par-
tially built constituency tree, and records on a stack
tape W; the depth of all the tokens that are already
generated in the partially built constituency tree.

Pushdown-LLM then augments self-attention with
stack tape W;:

déj = [hé + déj]Tle;quueryhé (1)

where d! ; 1s the attention score before softmax as-
signed to the jth token from the ¢th token at layer [,
hg- is the hidden states of jth token at the /th atten-
tion block, dé ; 1s an embedding of the depth of the
Jjth token recorded in W;, and Wiey and Wyyery are
learnable parameters in self-attention. In this way,
structural information from the constituency tree is
implicitly introduced into self-attention computa-
tion and thus influence the decoding of LM.

2.2 Semantic Dependency Graphs

A Semantic Dependency Graph forms a directed
acyclic graph instead of a tree. The dependency
arcs in the graph, where nodes correspond to words,
illustrate semantic relations (e.g., agent and patient
(Palmer et al., 2005)). The graph often includes a
virtual root node.

In this paper, we consider three types of seman-
tic dependency graphs from Oepen et al. (2015)
as discussed below. DELPH-IN MRS-Derived
Bi-Lexical Dependencies (Flickinger et al., 2012)
(DM) are derived from Deep Bank (Flickinger,
2000), in which roots designate the highest-scoping
predicate in the graph. Enju Predicate—Argument
Structures (PAS) originate from Enju Treebank
(Miyao, 2006), which is obtained by automatically
annotating the PTB. The root of PAS denotes the
semantic head in the sentence. Prague Semantic
Dependencies (PSD) is based on Prague Czech-
English Dependency Treebank (Hajic et al., 2012),
where the roots mostly correspond to main verbs.

3 Graph-Infused Layers

We introduce a dependency-graph-based language
model, Graph-Infused Layers Transformer LM
(GILT), which simultaneously generates tokens that
form sentences and dependency arcs that incremen-
tally form dependency graphs over the sentences.
We also develop the graph-based feature tape to
characterize generated tokens in the graph, and uti-
lize it to influence attention computation.

3.1 Dependency Scoring

Whenever a word w; is generated by the Trans-
former LM, we score all possible dependencies
connected from and to w;.

Since a word may correspond to multiple tokens,
we first define word representation. Suppose word
w; is tokenized into m tokens whose input em-
beddings are xy, ..., Tx+m—1 and hidden states are
hiy ...y hkrm—1. We define hy by concatenating
the hidden states from the penultimate layer L — 1
and middle layer L /2 to capture both semantic and
syntactic information. We do not use the hidden
state of the last layer to leave it only focused on
next token prediction. We consider three methods
for representing w;: (i) complete token representa-
tion (CTR): the mean of hy, ..., Ag4+m—1; (1) first
token representation (FTR): the hidden state of the
first token, hg; (iii) representation ahead of time
(RA): the concatenation of the hidden state of the



last token of the previous word w;_; and the in-
put embedding of the first token of word wy;, i.e.,
[hi—1; zk]. We choose RA by default for word rep-
resentation in this work, because with RA we can
predict all the dependencies of w; before feeding
the tokens of w; into the Transformer, thus being
able to infuse structural information from the de-
pendency graph to the hidden states of the tokens
in w; and hence influence next token prediction
of the Transformer LM. Empirically, we find that
RA outperforms the other two methods in improv-
ing language modeling of GiLT. The disadvantage
of RA is that its word representation clearly con-
tains less information than the other two methods,
resulting in worse dependency prediction accuracy.

We follow the biaffine parsing approach (Dozat
and Manning, 2018) to compute the score p;; of
the dependency from the word w; to w;. Note that
for the root node, we use a learnable vector as its
word representation.

6! = MLP?(MLP, (0;) + ry;)
05 = MLP?(MLP(0;) + r;;) )
pij = o([6]; 1]T Wp[65; 1))

where o; is the word representation of w; as dis-
cussed earlier, 0; € R"™ is a vector with the
same dimension as the hidden states of Trans-
former, W, € RHDx(n+1) g 5 Jearnable matrix,

MLP;?? denotes the first/second MLP for comput-
ing parent/child representations, o denotes the Sig-
moid function, and r;; represents positional encod-
ings involving relative position |i — j| and graph-
based feature tape G; (see Section 3.3).

3.2 Graph Update

Given dependency scores {pij,pji,pii} (J =
0,---,7 — 1) for all the dependencies involving
word w;, a naive method to update the dependency
graph is to predict the existence of each dependency
independently. However, this becomes computa-
tionally infeasible when we employ beam search
decoding (Section 3.5) because of the exponen-
tially large search space. To address this issue,
we follow a two-step method. First, we predict
a; € {0,1,---,c}, the total number of dependen-

cies of word w;, where c is a constant upper bound.

i i—1
_ ~p ~c ~p ~c
s—E oiQWSoj—i-E ojCDWSoi
Jj=0 Jj=0

_ TS 3)
7; = softmax <Wa (m) + ba>

p(a;) = maxm;

a; = arg max(7;)

where ® denotes the hadamard product operation,
W, € RE+Dxn W, e R"™" and b, € R are
learnable parameters, 7r; € RH! is the probability
distribution with ¢ 4+ 1 dimensions and a; is the
action we pick when using greedy decoding. Also,
we scale s by v/2¢ — 1 to normalize the variance.

With the dependency number a; picked from
the distribution 7r;, we then simply rank all the
dependencies based on their scores and add the
top-a,; dependencies to the dependency graph. This
two-step method reduces the search space from
exponential to linear for each step.

3.3 Feature Extraction

Given input ., we extract features from the par-
tially constructed dependency graph and form a
graph-based feature tape G, € N*** for the to-
ken x;. Note that the graph is word-level, but Gy,
corresponds to a token. Therefore, the values of
Gy, Gra1, ...Gg1m—1 are always the same for each
word w; consisting of m tokens g, ..., Tktm—1-
The feature tape involves four graph-based features
ranging from fine-grained properties of words to
coarse-grained properties of subgraphs: (i) degree,
an attribute for each word; (ii) distance, measur-
ing local topology between nodes; (iii) depth, rep-
resenting the global structure of subgraphs; (iv)
predicate depth, indicating relations between sub-
graphs.

Degree. The degree of a word is defined as the
number of its incoming and outgoing dependencies
Cin and cqyt respectively. The value of out-degree
plus in-degree is assigned as the degree feature
for each word. Empirically, we discover that the
weighted summation achieve better performance,
so we assign weight m;, to in-degree and m,; to
out-degree, where m;,, < My, and update degree
as MoutCout + MinCin-

Distance. The distance between words w; and
w is defined to be the minimal sum of the weights
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Figure 1: Illustration of how feature tape is updated
when constructing a parse graph. Each row in G2 and
('3 form top to bottom respectively are Degree values,
Distance values, Depth values and Subgraph Distance
values.m;,is 1 and my, is 10 for this picture. As dogs
is predicted, one dependency is added to the PSD graph.

along the dependencies connecting them. We al-
low both parent-to-child and child-to-parent passes
over dependencies when traversing. Intuitively, the
distance measures the relevance of the two nodes.
In order to incorporate some dependency direction
information into the distance measure, we assign
weights m,¢ and m;, to parent-to-child and child-
to-parent passes similar to the setting of Degree.

Depth. For each connected component in the par-
tial dependency graph, we define its root as the first
word from left to right. For each other node in the
subgraph, we apply the breadth-first search algo-
rithm on the undirected version of the subgraph and
assign the depth (from the root) as the total (min-
imum) number of edges of the path from the root
to this node. As an example, the root of one sub-
graph has a depth 0, and 1-hop nodes from the root
defined on the undirected version of the subgraph
have 1 as their depth values.

Subgraph Distance. Since we build the depen-
dency graph incrementally, there may exist a se-

quence of multiple disconnected subgraphs when
generating the k-th token. We define the words
without incoming dependencies as the roots of each
subgraph g, and define the Subgraph Distance of
these root words as the number of subgraphs to
the right of g (including g itself). We define the
Subgraph Distance of non-root words to be 0. Sub-
graph Distance reflects relative positions between
subgraphs.

3.4 Computing Attention Scores

We incorporate information contained in the graph-
based feature tape Gy, into the Transformer LM by
modifying the self-attention module. Specifically,
we first map contents of G, € N**k onto a global
embedding ég € R¥#xd_ For each Transformer
layer [, we use a linear function f; for feature fu-
sion, that is, e’ = f;(e{’) € R¥*?. For index of
token j € {0,1,--- ,k}, the corresponding fused
graph feature eijl € R is directly added to its key
in attention computation,

ag; = (B + ef ] Wi Wawerhf, (4

In this work, we follow TXL (Dai et al., 2019)
for attention computation, so we additionally trans-
form Equation 4 as follows.

Ul T T !
akj = h] Wkey, chueryhk
GI\T T l
+ (Rk] + ekj) Wkey, quueryhj

+ uTWkey, Chéf + ’UTWkey, r(Rkj + €ijl),

)
where Ry; is a vector with sinusoid encoding of
|k—7, Wiey, ¢ and Wiy, ; are key matrix for respec-
tively content and relative representation. Content
and relative attention scores are divided into two
parts. Since |k — j| € [0, k|, TXL precomputes
relative scores for £ values instead of k£ X k matrix.

3.5 Training and Inference

Training. Given a corpus of strings annotated
with parse graphs, we precompute graph-based
feature tape G, for each prefix x<;, baesd on the
ground-truth dependencies over x <. Afterwards,
GiLT can be trained in parallel like a standard
Transformer. During training, teacher forcing is
applied to both token prediction and dependency
prediction. Given a string « with IV tokens, ground-
truth action sequence {ai, as, - - - ,aps} of length
M based on the annotated graphs and matrix p
where p;; = 1, if there is a dependency from 7 to j.



The training loss function is defined as follow:
L=y > s, )
- N - m’L? xl
M M
Z Z pjk7p]k' (6)
7=1 k=1
42 Z CE(my,, 7))
— Thy T
Vi 2 ks Tk

where [ is a constant coefficient, N denotes the
total token number, M denotes the total word num-
ber, x and Z are the output distribution in each step
and ground-truth one-hot vector, and 7 is based
on the action sequence {ay,ag, - ,an}.

Inference. GiLT jointly models a string and
its parse graph. For any string z with length
N and a parse graph g with totally M actions
{a1,aq,- -+ ,ap}, their joint probability p(z, g) is
computed as the product of token and action proba-
bilities:

N
H (Tr|rar; Gr—1) ¥

A_/[ (7N
[ [p(arlz<s; Grr)
k=1

Computing the marginal p(z) = 3_, p(z, g) is

computationally intractable due to the huge space
of all possible graphs. Following Murty et al.
(2023), we approximate it by marginalizing over a
relatively small set of parse graphs produced via
beam search. The probability p(z) computed in
this way is an exact lower bound of its true value.
Note that, since GiLT does not generate extra to-
kens representing parsing actions in the output se-
quence, we do not need to use complicated word-
synchronous beam search decoding (Stern et al.,
2017), which has been widely used in previous
syntactic LMs.

4 Experiments

4.1 Sentence-Level Language Modeling

Dataset and prepocessing. We use the BLLIP-
LG dataset of Charniak et al. (2000), with training
splits from Hu et al. (2020). We obtain annotated
PSD, PAS and DM parse graphs with unlabelled
dependency edges by parsing the dataset with the
ACE parser (Wang et al., 2021). Since dependency

Model PPL| 10%BLiMP1 SG*
TXL (baseline) 14.8 71.2 76.1
Pushdown-LM 14.6 70.1 78.2
GiLT-DP 15.6 70.1 75.5
GiLT-DM 14.9 71.8 76.8
Ours

GiLT-PAS 15.1 714 71.7
GiLT-PSD 14.9 72.5 80.2

Table 1: Result of our models and baselines. The results
of Pushdown-LM are reproduced using a TXL base
model. All PPL results except for that of TXL are upper
bounds.

trees can be seen as special cases of dependency
graphs, we also obtain unlabeled projective depen-
dency trees with the Biaffine-roberta parser (Dozat
and Manning, 2017) following Zhao et al. (2024).
Tokenization is performed with the same scheme as
in Sartran et al. (2022) with Sentence Piece (Kudo
and Richardson, 2018). We follow Murty et al.
(2023) and model each sentence independently.

Setup. We evaluate the perplexity of the mod-
els on the BLLIP-LG dataset. We train a 16-layer
Transformer-XL (TXL) (Dai et al., 2019) language
model with 252M parameters as the Baseline. To
fairly compare with Pushdown-LM (Murty et al.,
2023), we reimplement Pushdown-LM based on
TXL instead of vanilla Transformer. We use PSD,
DM and PAS parse graphs to train our GiLT re-
spectively, resulting in three models: GiLT-PSD,
GiLT-DM and GiLT-PAS. We also train GiLT on
dependency parse trees, resulting in the GiLT-DP
model. We use the same hyperparameters (model
size, dropout, learning rate schedulers) as in Zhao
et al. (2024) for TXL. We set the hyperparame-
ters of GILT with w;, = 1, weu = 10, f = %,
d = 256 (dimension of égj), and d = 1024 (dimen-
sion of e,fj). This results in 268M parameters for
Transformer and 54M parameters for the modules
described in Section 3.1- 3.4 in GiLT. For perplex-
ity computation, we follow Pushdown-LM (Murty
et al., 2023) and use beam search with a beam size
of 300 to estimate the perplexity upper bound of
GiLT.

Result. We report the perplexity (PPL) of all
models in Table 1. Pushdown-LM achieves the
best PPL and even outperforms the baseline, con-
firming previous observation that Pushdown-LM
excels in language modeling among syntactic LMs
(Murty et al., 2023). Our GiLT models based on



parse graphs maintain PPL levels that are compa-
rable to both Pushdown-LM and the baseline. No-
tably, GiLT-DM and GiLT-PSD only underperform
the baseline by 0.1. On the other hand, GiLT-DP
achieves the worst PPL, implying the limitation of
tree structures in comparison with graph structures.

4.2 Syntactic Generalization

We evaluate syntactic generalization on BLIMP
(Warstadt et al., 2020) and the SG test suites (Hu
et al., 2020).

Setup. We use the same models as in Section 4.1.
For BLiMP, models are provided with a pair of sen-
tences of which one is grammatical and the other
is ungrammatical, and are tasked with assigning
a higher probability to the grammatical sentence.
Due to limited computational resources, we experi-
ment with a subset of the BLIMP dataset by select-
ing every tenth example (i.e., the Ist, 11th, 21st,
etc.). The SG test suites consist of six fine-grained
syntactic phenomena. For each suite, there exists
an inequality about the probability of generating
a target span that the models should satisfy. For
10%BLiMP and SG, we use beam search to both
compute marginal probability p(x) and conditional
probability — log p(x¢|x<¢). Note that conditional
probability is marginalized based on the beam state
at time step ¢.

Result. The results are presented in Table 1.
GIiLT-PSD achieves the best performance in both
tests, surpassing the baseline by 1.3 points in
10%BLiMP and 4.1 points in SG. GiLT-DM and
GiLT-PAS also outperform the baseline in both
tests. In contrast, Pushdown-LM exhibits better SG
performance but worse 10%BLiMP performance
than the baseline. GiLT-DP has the worst perfor-
mance, underperforming the baseline in both tests,
the reason of which is discussed in Appendix B.
Figure 2 illustrates the scores of each suite in SG.
Our best-performing GiLT-PSD outperforms the
baseline in 5 out of 6 suites, while showing a slight
disadvantage in Gross Syntactic State. Pushdown-
LM performs well in most scenarios except licens-
ing, which significantly degrades its overall SG
score.

4.3 Finetuning on Pretrained LM

Since GiLT does not change the input and output
space of the Transformer LM, it can be finetuned
from any pretrained language model on datasets
annotated with parse graphs to introduce syntactic

inductive bias. We evaluate GiLT trained in this
way on downstream tasks.

Setup. We use the pretrained TXL on BLLIP-LG
in Section 4.1 to act as the base model. We replace
the last four layers of pretrained TXL with Graph-
Infused Layers, whose parameters involving the
embedding for the graph-based feature tape and
modules for scoring and constructing graphs are
randomly initialized, and then finetune the model
with silver parse graphs obtained by running our
GiLT-PSD with beam search. We name the re-
sulting model GILT-TXL. We evaluate GiLT-TXL
on four downstream text classification tasks from
GLUE (Wang et al., 2018): RTE, SST2, MRPC
and STS-B. We reduce each task into language
modeling via prompting (details are provided in
Appendix A).

Result. In Table 2, we report F1 score for
SST2 and RTE, accuracy/F1 for MRPC, and Pear-
son/Spearman correlation for STS-B. We find that
our GILT-TXL outperforms the baseline on all the
tasks. However, the F1 scores of RTE are both
close to 0.5, indicating that both models struggle
with this task, probably because our base model
is pretrained on a rather small dataset and have
limited ability in complicated tasks.

Model RTE{ SST2{ MRPC? STS-B1
TXL 50.1 83.0  67.4/79.5 36.3/33.2
GILT-TXL  50.2 842  68.9/80.6 38.9/36.8

Table 2: Results of finetuned models on downstream
tasks.

4.4 Ablation for Representing Strategy

We compare three representing strategies men-
tioned in Section 3.1 for GiLT: (i) representation
ahead of time (RA); (ii) first token representation
(FTR); (iii) complete token representation (CTR).
We train our models on % of the BLLIP-LG dataset
with PSD dependency graphs and compare the F1
score of dependency prediction and average log
joint probability % log p(x, g) on the test set with
the best model evaluating on validation set during
training in Table 3, where NN is the total number of
tokens in the test set. Unsurprisingly, RA achieves
the lowest F1 score because it receives least infor-
mative word representation compared with FTR
and CTR. However, RA update the graph earliest
and is able to utilize the inductive bias brought by
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Method F171  Log Joint Probability T
RA 89.43 -3.27
FTR 92.64 -3.35
CTR 9.1 -3.31

Table 3: The F1 score of dependencies and average
log joint probability of the test set when training with
different representing strategies

the graph in our Graph-Infused layer, which helps
to improve the generation ability greatly. Theoreti-
cally, although FTR is able to update graph earilier
than CTR and more informative word representa-
tion than RA, FTR behave worst.

5 Related Work

There has been a line of studies about leveraging
recursive linguistic structural information for se-
quential language modeling. RNNGs (Dyer et al.,
2016), known as syntactic LMs, jointly model the
syntactic structure and words by integrating top-
down transition-based constituency parsing into a
recursive neural network, while more recent stud-
ies (Qian et al., 2021; Yoshida and Oseki, 2022;
Sartran et al., 2022) have applied this approach
to the Transformer architecture. They explicitly
model the syntactic tree along with words by im-
posing hard constraints over attention masks to
simulate the shift/compose operations in transition-
based parsing, which serves as a bottleneck in in-
formation gathering to force better representation
learning of compositions. Hu et al. (2024) further

explores an unsupervised training framework for
constituency-based syntactic LMs, showing the po-
tential of training syntactic LMs at scale.

In addition to constituency-based models men-
tioned above, studies on neural models based on
dependency tree structures (Buys and Blunsom,
2015; Mirowski and Vlachos, 2015), which is an-
other important form of syntax, also achieve im-
proved syntactic generalization performance. A
recent example is Dependency Transformer Gram-
mars (Zhao et al., 2024), which employs a con-
strained attention pattern similar to Sartran et al.
(2022) to encourage head-dependent representation
learning.

Both constituency-based and dependency-based
studies discussed above incorporate the inductive
biases of symbolic structures into the self-attention
mechanism by regulating the attention masks dy-
namically. Some other studies focus on adapting
the self-attention modules, or combining the two
(Wang et al., 2019; Peng et al., 2019; Deshpande
and Narasimhan, 2020; Murty et al., 2023). Our
work also follows these conventions of adaptation,
modifying the self-attention module by incorpo-
rating dependency graph feature representations
without changing the input or output space of Trans-
former LMs.

This line of models shows considerable perfor-
mance in generalizing syntactic information via re-
cursion as tree structures. However, most of these
studies focus solely on trees rather than a more
general and flexible form — graphs. One notable



work (Prange et al., 2022) proposes a model that ex-
ploits information from both syntactic and semantic
graphs. However, this work only introduces graph-
informed language modeling without actually mod-
eling the explicit symbolic structure; that is, gold
syntax and semantics are needed for both training
and test-time inference of the model. Semantic
graphs are also employed to guide the model in
other research fields such as machine translation
and visual tasks, but these studies directly apply the
gold signals for model augmentation from seman-
tic graphs instead of encoding the graphs into the
model (Aue et al., 2004; Ke et al., 2024). GiLT dif-
fers from these models as we model graphs in the
Transformer LM, and we can incrementally build a
graph along with the next token prediction without
graph supervision during inference.

6 Conclusion

We propose GiLT, a novel type of syntactic lan-
guage models that incorporates dependency graphs
— a more general and flexible form of linguis-
tic structural information compared with tradi-
tional syntactic tree structures - into Transform-
ers. GiLT predicts dependencies jointly with token
generation, and moderate attention scores through
features extracted from building up dependency
graphs. Our experiments show that GiLT surpasses
base language models and other syntactical lan-
guage models in terms of syntactic generalization,
achieving these gains without inserting extra tokens
and with minimal impact on perplexity. Addition-
ally, pretrained LM finetuned with Graph-Infused
Layers can also improve performance on several
downstream tasks.

For future work, we plan to explore the potential
of the feature tape for jointly modeling multiple
types of parse graphs. This presents a significant
challenge for both effective training and efficient
inference. Furthermore, we consider unsupervised
training for GiLT as another promising direction.

Limitations

During inference, we rely on beam search to esti-
mate the marginalized probability, which can only
provide the lower bound. Although our action
space is constant and independent of the sequence
length, beam search remains computationally ex-
pensive.

Additionally, the discussion in Appendix B sug-
gests that the performance limitations observed are

primarily due to the underutilization of tree prop-
erties in our graph-based modeling approach. This
insight highlights the potential for further research
to focus on better integrating the inherent proper-
ties of graphs, such as the presence of multiple
heads, to improve the model’s overall performance
and effectiveness.
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A Other Experimeatal Details

Hyperparamter for finetuning We use a batch
size of 64 and a fixed learning rate of 3e-6. We
choose the best model based on performance on
the validation set. We use the following prompts to
convert text classification task into language mod-
eling:

* RTE: We utilize the following prompt:
Sentencel :{s1}; Sentence2:{ss}; Label:{l].
1 € {0, 1} for input sentence pair (s1, S2)

* MRPC: Given input sentence pair (s1, s2),
we construct the prompt:
Sentencel:{s1}; Sentence2:{ss}; Label:{l}.
[ € {inequivalent, equivalent}.

* SST2: Given string s and label [, prompt is:
Sentencel :{s1}; Sentiment:{l}. 1 € {0, 1}.

» STS-B: Given the sentence pair (s1,s2),
we create the prompt Sentencel:{si};
Sentence2:{ss}; Score:. We use the final
hidden states to train a linear regression
model, training jointly with LM.

Since our pretrained TXL is sentence-level, we use
semicolons instead of periods.

Computational costs We use PyTorch version
2.7.0 for all experiments. For language modeling
experiment, we spent one NVIDIA A6000 GPU for
each training, which lasted about 50 hours. For fine-
tuning experiment, we spent one NVIDIA H800
GPU for each training, which lasted less than 1
hour for each task.
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B Discussion on different parsing

By analyzing metrics in Table 1, we discover that
the order of performance from high to low in per-
plexity is: PSD, DM, PAS and DP. It also roughly
conforms to this order in other metrics.

SDP Dataset  Avg. Dependencies PPL

PSD 16.9 14.9
DM 18.8 14.9
PAS 24.6 15.1
DP 242 15.6

Table 4: average number of dependencies per sentence
in different SDP dataset based on BLLIP-LG and re-
ported perplexity of each model from Section 4.1.

We calculate the average number of dependen-
cies in the graphs and report the results in Table 4.
We can surprisingly find that the fewer dependen-
cies we need to establish, the better performance
we will get. This is likely because fewer depen-
dencies result in less noise we obtained from silver
parse graphs, and the simpler graphs are probably
easier to model. Although PAS has more depen-
dencies than DP, GiLT-PAS performs better than
GiLT-DP.

Performance degradation on the DP dataset is
not unexpected, as the parse graphs for DP are es-
sentially trees. We get rid of the property of trees
which is unable to leverage their unique properties.
This suggests that while GiLT is able to handle
more dependencies in graphs with relatively minor
performance degradation, it has limitations in ef-
fectively utilizing tree structures, a specific type of
graph.
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