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Abstract

Large Language Models (LLMs) are increasingly aligned with human preferences
through Reinforcement Learning from Human Feedback (RLHF). Among RLHF
methods, Group Relative Policy Optimization (GRPO) has gained attention for
its simplicity and strong performance, notably eliminating the need for a learned
value function. However, GRPO implicitly assumes a balanced domain distribution
and uniform semantic alignment across groups—assumptions that rarely hold
in real-world datasets. When applied to multi-domain, imbalanced data, GRPO
disproportionately optimizes for dominant domains, neglecting underrepresented
ones and resulting in poor generalization and fairness. We propose Domain-
Informed Self-Consistency Policy Optimization (DISCO), a principled extension
to GRPO that addresses inter-group imbalance with two key innovations. Domain-
aware reward scaling counteracts frequency bias by reweighting optimization based
on domain prevalence. Difficulty-aware reward scaling leverages prompt-level self-
consistency to identify and prioritize uncertain prompts that offer greater learning
value. Together, these strategies promote more equitable and effective policy
learning across domains. Extensive experiments across multiple LLMs and skewed
training distributions show that DISCO improves generalization, outperforms
existing GRPO variants by 5% on Qwen3 models, and sets new state-of-the-art
results on multi-domain alignment benchmarks.

1 Introduction

Aligning large language models (LLMs) with human preferences is a central challenge in modern
AI systems [12, 20, 23]. Reinforcement Learning from Human Feedback (RLHF) has become the
dominant approach for fine-tuning LLMs toward desirable behavior, enabling alignment with nuanced
human intent [13, 16, 28, 14, 29, 22, 21]. Within this framework, Group Relative Policy Optimization
(GRPO) [16] offers a promising alternative to value-based methods, simplifying training while
achieving strong performance.

Despite its advantages, GRPO faces a significant challenge when applied to multi-domain datasets.
While GRPO effectively removes the need for a value network and mitigates within-group variance, it
implicitly assumes that prompt groups are sampled uniformly and that reward signals are semantically
aligned across domains. However, this assumption often fails in practice. Real-world datasets
are typically imbalanced, with a few dominant domains and many underrepresented ones [30].
Optimization gradients become skewed toward high-frequency domains, starving rare domains of
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Figure 1: Overview of the proposed DISCO scaling framework. The framework is composed of
two strategies to enhance GRPO’s robustness: (1) domain-aware scaling, which reweights prompt
groups based on domain frequency, and (2) difficulty-aware scaling, which encourages the model to
focus more on uncertain samples based on self-consistency scores. wdom and wdiff denote the domain
and difficulty weight. G=Group size, A=Advantage.

IMDB GSM8K Math NQ ARC Avg.

Balanced 89.60 57.94 23.82 14.90 47.44 46.74
Math heavy 87.80 58.98 24.38 13.96 45.99 46.22
IMDB heavy 90.90 56.88 23.54 13.85 45.90 46.21
NQ heavy 89.40 56.22 23.36 16.57 46.58 46.43
ARC heavy 88.80 55.29 22.46 14.16 48.29 45.80

Table 1: Performance (Exact Match (EM) Accuracy %) of Qwen2.5-0.5B trained with GRPO (G = 4)
under various domain-heavy training distributions.

learning signal. This results in models that generalize poorly to critical low-resource domains and
amplify existing data biases. Data augmentation offers one workaround but introduces substantial
overhead in generating high-quality synthetic prompts [19].

To address the inter-group imbalance in GRPO, we propose Domain-Informed Self-Consistency
Policy Optimization (DISCO), an enhanced framework designed to promote equitable learning
across imbalanced multi-domain datasets. DISCO introduces two complementary strategies to
improve generalization under distributional skew: domain-aware and difficulty-aware reward scaling.

Domain-aware scaling reweights prompt groups inversely by their frequency, reducing over-
optimization on dominant domains while amplifying learning signals from underrepresented ones.
Difficulty-aware scaling leverages prompt-level self-consistency, an intrinsic signal in GRPO, to
identify and upweight prompts where the policy exhibits high uncertainty or inconsistent responses.
Since not all prompts are equally challenging, treating them uniformly can lead the policy to overfit on
easy examples while neglecting harder, more informative ones. By prioritizing uncertain prompts, this
strategy guides the model to focus its learning on cases that offer a greater signal for improvement.

By integrating these two forms of adaptive scaling, DISCO enables all domains, regardless of
their prevalence, to meaningfully contribute to policy optimization. As a result, it effectively
mitigates GRPO’s inter-group imbalance and achieves state-of-the-art performance across diverse
LLM architectures and training distributions.Our contributions are summarized as follows:

• Systematic Analysis of GRPO under data imbalance: We perform the first systematic analysis
on GRPO’s inherent vulnerability to dataset imbalance.

• Strategic Framework: Our novel DISCO framework introduces a powerful integration of domain-
aware and difficulty-aware reward scaling strategies.

• SoTA Performance: Our comprehensive empirical evaluations confirm that DISCO improves
existing GRPO algorithms by 5% on Qwen3 models across diverse benchmarks and sets new
standards for generalization performance.

2 Domain- and Difficulty-Aware Scaling

2.1 Background and Motivation

While GRPO normalizes advantages locally within prompt groups, its global optimization trajectory
can be unduly influenced by the frequency of domains in the training data, a vulnerability already
highlighted in Section 1. To empirically demonstrate this limitation, we performed an experiment
training Qwen2.5-0.5B [23] with GRPO using datasets featuring distinct domain compositions and
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Dataset Task Domain
IMDB [11] Text Classification (TC)
GSM8K [2] Mathematical Reasoning
MATH [6] Mathematical Reasoning
Natural Questions (NQ) [9] Open-domain QA
ARC [1] Multi-step Reasoning QA

(a) Test datasets and their corresponding task domains.
All evaluations are conducted using exact match (EM)
accuracy.

Setup Math NQ ARC IMDB
Balanced 25% 25% 25% 25%
Math-heavy 75% 8.3% 8.3% 8.4%
NQ-heavy 8.3% 75% 8.3% 8.4%
ARC-heavy 8.3% 8.3% 75% 8.4%
IMDB-heavy 8.3% 8.3% 8.4% 75%

(b) Training Distribution by Domain (Proportions)

Table 2: Overview of evaluation and training datasets. “Heavy” settings allocate 75% of training
prompts to a single domain, with the remaining 25% distributed equally among the others. For the
math domain, we sample from the MetaMath dataset [24] for training, while for all other domains,
we use the training portion of each corresponding evaluation benchmark.

present the performance in Table 1. Specifically, we trained multiple models, each on 4,000 examples.
For each model, the training data composition was intentionally skewed by heavily weighting one
domain while underrepresenting the others.

As shown in Table 1, domain-heavy training biases GRPO performance: models excel in the
overrepresented domain but underperform on others compared to a balanced setup. The Math-
heavy model performs best on math tasks, but its average score across all domains is lower than the
balanced model’s.These results confirm that GRPO lacks a mechanism for inter-group calibration,
and its optimization may become biased toward more frequently sampled domains.

2.2 Domain-Aware Scaling

Vanilla GRPO’s group-level normalization operates independently of a prompt group’s originat-
ing domain frequency. In imbalanced datasets (Section 2.1), this means high-frequency domains
disproportionately influence the aggregated optimization gradient, potentially marginalizing low-
frequency domains. To mitigate this issue, we introduce a domain-aware reward scaling strat-
egy. For each prompt group q from domain d, we apply a domain weight wdom(q) to rescale its
rewardsrscaled

i = ri · wdom(q), and compute the group-level advantage as:

Ai = rscaled
i − r̄scaled, (1)

where r̄scaled = 1
G

∑G
j=1 r

scaled
j is the group mean.

Note that we do not apply standard deviation normalization, in order to preserve the absolute scaling
effect of the domain weights. This design allows domain frequency to directly modulate the magnitude
of the advantage signal, enabling rarer domains to exert a stronger influence during policy updates.

2.3 Difficulty-Aware Scaling

The GRPO algorithm provides a natural mechanism for estimating prompt-level difficulty.

To capture this, we define the self-consistency (SC) score for prompt q as: SC(q) = 1
G

∑G
i=1 ri, and

define the difficulty weight as:wdiff(q) = 1
SC(q)+ϵ′ , where ϵ′ is a small constant to ensure numerical

stability.

Note that when all generations in a group are incorrect (i.e., SC(q) = 0), wdiff becomes large.
However, this does not lead to instability, as all advantages will be zero based on Equation 1, and
thus no policy update occurs. This mechanism encourages the model to focus more on prompts it
finds uncertain, while ignoring uniformly poor or trivially easy cases.

Combining both components, we compute the final scaled reward of DISCO as:

rscaled
i = ri · wdom(q) · wdiff(q), (2)

where wdom(q) and wdiff(q) are the domain- and difficulty-based weights for prompt group q, re-
spectively. The final advantage is then computed using Equation 1. This formulation retains the
structure of GRPO while enhancing it with principled scaling to reflect domain imbalance and prompt
difficulty.

3



3 Results

We evaluate DISCO impact through comparisons with baseline methods and targeted ablation studies.
Details about experiment setups can be found in the appendix.

Model Math-heavy IMDB-heavy NQ-heavy ARC-heavy Avg.
Qwen2.5-0.5B

Base 42.80
Naive GRPO 46.22 46.21 46.43 45.80 46.17
Dr GRPO 46.90 46.22 47.84 47.62 47.14
Ours 47.92 47.67 47.91 47.70 47.80

Qwen2.5-1.5B
Base 60.06
Naive GRPO 64.81 64.91 65.15 65.02 64.97
Dr GRPO 64.76 64.75 64.72 65.16 64.85
Ours 64.12 64.93 65.26 65.35 64.91

Qwen2-0.5B
Base 43.18
Naive GRPO 44.05 43.76 43.97 45.35 44.28
Dr GRPO 45.48 44.31 43.14 44.87 44.45
Ours 43.98 44.83 44.50 45.07 44.60

LLaMA3.2-1B
Base 22.31
Naive GRPO 27.61 29.94 21.76 25.86 26.29
Dr GRPO 22.24 29.72 22.17 29.74 25.97
Ours 28.97 30.02 22.19 30.56 27.94

Qwen1.5-MoE
Base 45.57
Naive GRPO 66.05 64.03 66.04 65.46 65.40
Dr GRPO 62.46 64.85 64.50 65.58 64.35
Ours 66.37 65.59 65.19 66.00 65.79

Qwen3-0.6B
Base 25.59
Naive GRPO 41.99 34.83 34.72 34.31 36.46
Dr GRPO 42.08 33.23 36.76 32.91 36.25
Ours 45.07 35.64 44.44 38.28 40.86
Figure 2: Average accuracy under each domain-heavy train-
ing setup for different methods. Scores are averaged over
five task-specific datasets per domain. Bold indicates the
best-performing method.

Our method outperforms baselines
across different models and train-
ing distributions. To evaluate the ef-
fectiveness of DISCO, we compare
DISCO against two key baselines:
Naive GRPO, the original formula-
tion without reward rescaling, and
Dr. GRPO [10].

Focusing on Table 2, we first note that
all GRPO variants evaluated consis-
tently yield substantial improvements
over their respective base models, con-
firming the effectiveness of GRPO-
based alignment [4]. Turning to the
comparison between the GRPO vari-
ants, we observe from the overall aver-
age performance (‘Avg.’ column) that
DISCO achieves the highest over-
all average score on 5 out of the 6
models.

While Dr. GRPO occasionally im-
proves over Naive GRPO, the consis-
tent advantages of DISCO underscore
the benefit of incorporating explicit
domain and difficulty signals. These
findings highlight the strength of our
joint scaling approach in enhancing
GRPO alignment, particularly in nav-
igating performance trade-offs intro-
duced by domain imbalance.

4 Related Work

Reinforcement Learning from Human Feedback (RLHF) aligns Large Language Models (LLMs)
with human preferences, commonly using Proximal Policy Optimization (PPO) [13, 15]. A popular
successor, GRPO, simplifies this process by eliminating the need for a value function [16, 4]. Recent
work has focused on improving GRPO’s training dynamics by addressing challenges such as length
bias [10, 27] and instability [25, 26, 17]. While these methods target training algorithms, our work
is the first to examine GRPO’s vulnerability to dataset imbalance. Our proposed strategies are
complementary and can be integrated with existing GRPO variants.

Data Imbalance in NLP is a well-known challenge where skewed data distributions cause models to
underperform on minority classes [7, 5]. Common mitigation strategies include data augmentation
and loss adjustment [30, 18]. Our approach is analogous to loss adjustment, but we directly modify
the rewards within the GRPO framework rather than reweighting the loss function. Unlike data
augmentation, which can incur additional computational costs, our policy modifications are cost-
neutral and can be used in conjunction with data-based techniques.

5 Conclusion

In this work, we investigate the vulnerability of GRPO to domain imbalance in multi-domain
alignment and introduce DISCO that combines domain and difficulty-aware reward scaling to enable
GRPO to better handle skewed training distributions.
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A Domain Weight Variants

Domain Weight Variants. We explore three definitions of the domain weight based on domain
frequency. Let pd denote the proportion of prompt groups from domain d: pd = Nd∑

d′ Nd′
, where Nd

is the number of prompts from domain d.

We consider the following three scaling variants:

v1 (log): wdom = log

(
1 +

1

pd

)
(3)

v2 (log-squared): wdom =

[
log

(
1 +

1

pd

)]2
(4)

v3 (inverse): wdom =
1

pd
(5)

These variants are chosen to represent a spectrum of upweighting strengths. v1 (log) is hypothesized
to provide a tempered yet significant boost to underrepresented domains; the logarithmic function
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naturally moderates the impact of extreme pd values, potentially enhancing training stability. v2
(log-squared) represents a more assertive non-linear scaling. v3 (inverse) offers the most direct and
aggressive form of upweighting, making domain weights sharply inversely proportional to their
frequency. This systematic variation from a more conservative (v1) to a highly aggressive (v3)
approach allows us to study how different levels and types of domain correction affect training
dynamics and model performance.

B Implementation Details

We train models using the OpenRLHF framework [8] with GRPO optimization. Each model is fine-
tuned for 1 epoch. The rollout and training batch sizes are both set to 64, with micro-batch sizes of
8 and 4, respectively. We use a maximum prompt and generation length of 1024 tokens. The KL
penalty is initialized at 1e−3 and estimated using the K3 estimator. All models use a learning rate of
1e−6.

All evaluations are conducted using zero-shot inference, with models generating answers without
access to in-context examples. For each task, we apply a fixed, task-specific prompt template for both
training and evaluation. The prompts are designed to clearly define the task instruction and input
format.

C Experiment Setups

Dataset Setup. We evaluate across four task domains: IMDB (text classification), GSM8K and
MATH (math problem solving), NATURAL QUESTIONS (open-domain QA), and ARC (reasoning
QA). Our training dataset consists of 4,000 examples, as detailed in Table 2.

Baseline Methods. We compare our method against the following baselines: (1) Base Model, the
pretrained model without any fine-tuning; (2) Naive GRPO, which applies the original group-relative
optimization without any reward reweighting; and (3) Dr. GRPO [10], which removes the length
and standard deviation normalization. While other GRPO variants address issues like length bias
or training instability [25, 27, 26], they are not included as baselines as our work targets GRPO’s
vulnerability to domain imbalance. In addition, we conduct ablation studies to isolate the contributions
of domain-aware and difficulty-aware components.

Model Setup. We evaluate our method across a diverse set of language models. These include
Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2-0.5B, Qwen3-0.6B, and Qwen1.5-MoE-A2.7B (14B total
parameters, 2.7B activated) [23], as well as LLaMA3.2-1B [3]. This selection spans both dense
and mixture-of-experts (MoE) architectures and covers a range of model capacities from 0.5B to
14B parameters. For the GRPO group size, we use G = 2, 4, 8, 16 depending on the experiment.
Additional implementation details are provided in Appendix B.

Table 3 presents the prompt templates used across the five datasets.

Performance Breakdown by Dataset. To illustrate how our method navigates domain trade-offs,
we break down Qwen3-0.6B performance by evaluation dataset under each domain-heavy setting
(Figure 3). This case study compares Naive GRPO, Dr. GRPO, and DISCO on the individual
datasets.

The results for Qwen3-0.6B reveal a clear pattern where DISCO significantly boosts minority domain
performance, sometimes involving a trade-off with majority domain scores. On majority domains
(those comprising 75% of training data), DISCO performance varies compared to Naive GRPO. For
instance, when trained NQ-heavy, DISCO improves performance on the NQ dataset (12.30% vs
11.47%). However, when trained Math-heavy, it scores lower on both MATH (41.68% vs 43.40%)
and GSM8K (55.20% vs 58.91%). Similarly, under ARC-heavy training, the ARC score is slightly
lower (48.29% vs 49.91%).

In contrast, DISCO demonstrates substantial and consistent improvements on tail domains. The most
dramatic gains are seen in the NQ-heavy setting: the IMDB score jumps to 82.60% (from 57.90%
for Naive GRPO), GSM8K increases to 42.72% (from 34.86%), and MATH rises to 35.70% (from
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Dataset Prompt Template
MATH Below is a math problem. Provide a detailed, step-by-step solution. ### Problem:

{problem} ### Answer:

GSM8K Same as MATH

IMDB Below is a movie review. Determine the sentiment of the review as Positive or
Negative. ### Review: {review} ### Answer:

NQ Below is a question that requires a concise and accurate answer. Provide a detailed
explanation before concluding with the correct answer. ### Question: {question}
### Answer:

ARC Below is a question with multiple-choice answers. Choose the correct option
based on your reasoning. ### Question: {question} ### Choices: A. {choice_A} B.
{choice_B} ... ### Answer:

Table 3: Prompt templates used for zero-shot inference. Each template is applied consistently during
both training and evaluation.

IMDB GSM8K MATH NQ ARC0

20

40

60

80

100 Math-heavy

IMDB GSM8K MATH NQ ARC0

20

40

60

80

100 IMDB-heavy

IMDB GSM8K MATH NQ ARC0

20

40

60

80

100 NQ-heavy

IMDB GSM8K MATH NQ ARC0

20

40

60

80

100 ARC-heavy

Naive GRPO Dr GRPO DISCO

Figure 3: Qwen3-0.6B performance (EM Accuracy %) breakdown by the dataset under four domain-
heavy training conditions (one condition per panel/subplot). Bar groups show results on individual
datasets.

22.34%). Significant minority domain recovery is also evident in other settings, such as the gains on
GSM8K (+2.28%) and MATH (+2.34%) under IMDB-heavy training.

These Qwen3-0.6B results show our joint scaling strategy effectively counters dominant domain
overfitting, leading to significant recovery on minority domains, sometimes at the cost of peak
head-domain performance. This yields a more balanced, generalized performance profile across
diverse tasks, driven by the synergy between domain-aware reweighting and difficulty-aware scaling.

C.1 Ablation Study of Scaling Components

Combining domain- and difficulty-aware scaling delivers the strongest overall performance. To
understand the individual contributions of our proposed scaling strategies, we conduct an ablation
study selectively applying either the domain-aware weight (‘Domain only’) or the difficulty-aware
weight (‘Diff only’), comparing against the full version (‘DISCO’) and the Naive GRPO baseline.
Results are reported in Table 4.

We observe varied effects from the individual components across models. For instance, on Qwen2.5-
0.5B, neither difficulty-aware scaling alone (46.05%) nor domain-aware scaling alone (45.91%)
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Model Math-heavy IMDB-heavy NQ-heavy ARC-heavy Avg.
Qwen2.5 0.5B

Naive GRPO 46.22 46.21 46.43 45.80 46.17
Diff only 46.87 46.21 45.03 46.07 46.05
Domain only 45.94 46.33 45.28 46.10 45.91
DISCO 47.92 47.67 47.91 47.70 47.80

Qwen2.5 1.5B
Naive GRPO 64.81 64.91 65.15 65.02 64.97
Diff only 64.45 64.40 64.67 65.39 64.73
Domain only 65.39 64.73 64.65 65.18 64.99
DISCO 64.12 64.93 65.26 65.35 64.92

LLaMA3.2 1B
Naive GRPO 27.61 29.94 21.76 25.86 26.29
Diff only 28.67 29.87 22.46 30.52 27.88
Domain only 26.42 29.61 21.87 30.01 26.98
DISCO 28.97 30.02 22.19 30.56 27.94

Table 4: Ablation study comparing Naive GRPO with variants using only difficulty-aware scaling
(‘Diff only’), only domain-aware log-scaling (‘Domain only’, v1 weights), and both (‘DISCO’). Best
result among the three variants in each numerical column is bolded.

improved upon Naive GRPO (46.17%) on average. However, combining both in DISCO yields a
significant boost to 47.80%. Conversely, on LLaMA3.2-1B, both ‘Diff only’ (27.88%) and ‘Domain
only’ (26.98%) offer improvements over Naive GRPO (26.29%), and DISCO achieves the highest
overall score (27.94%).

Interestingly, on the larger Qwen2.5-1.5B model, using ‘Domain only’ scaling achieves the highest
average score (64.99%), slightly surpassing both Naive GRPO (64.97%) and DISCO (64.92%).
This suggests domain re-weighting alone can be particularly effective for this model configuration.
Despite ‘Domain only’ having the best average here, DISCO (64.92%) achieves competitive overall
performance and secures the best scores among the variants under the IMDB-heavy and NQ-heavy
conditions specifically.

These results reveal a complementary relationship between the two scaling components. Relying
on one component alone proves insufficient: ‘Domain only’ scaling neglects sample difficulty
variance within domains, while ‘Diff only’ scaling ignores global domain imbalance, both leading
to inconsistent performance. In contrast, their joint use in DISCO consistently provides a more
robust and generally higher-performing configuration across different models and domain imbalances,
validating our combined approach.
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