

TRAJECTORY-CONSISTENT FLOWS: ENABLING FAST SAMPLING FOR FLOW MATCHING MODELS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Diffusion and flow matching models have recently achieved remarkable generative
 012 performance, but their reliance on iterative ODE or SDE solvers results in slow
 013 and computationally expensive sampling. In this work, we introduce *Trajectory-
 014 Consistent Flows* (TCF), a framework that unifies efficient training and acceler-
 015 ated sampling through a Taylor-expansion-based formulation. TCF jointly opti-
 016 mizes a flow matching model p_θ and a fast-sampling surrogate q_θ via a unified
 017 objective. We construct q_θ using a second-order Taylor expansion as a trajectory-
 018 consistent approximation of p_θ 's ODE flow, enabling high-fidelity generation with
 019 as few as 5 sampling steps. We further extend this idea to a third-order expansion,
 020 achieving additional performance gains without increasing computational cost.
 021 With further architectural and training enhancements, TCF achieves significantly
 022 improved sampling quality while retaining fast and stable training, making it par-
 023 ticularly suitable for real-time generative applications.

1 INTRODUCTION

027 Generative modeling aims to approximate the true data distribution $p_{\text{data}}(\mathbf{x})$ by learning a parame-
 028 terized model distribution $p_\theta(\mathbf{x})$. Since $p_{\text{data}}(\mathbf{x})$ is typically unknown, direct minimization of the
 029 Kullback–Leibler (KL) divergence between $p_\theta(\mathbf{x})$ and $p_{\text{data}}(\mathbf{x})$ is infeasible. Instead, *Maximum*
 030 *Likelihood Estimation* (MLE) provides a tractable surrogate by maximizing the log-likelihood over
 031 observed samples drawn from an empirical distribution $\hat{p}_{\text{data}}(\mathbf{x})$ (Espinosa I Fontcuberta, 2022). This
 032 procedure corresponds to minimizing the KL divergence $D_{\text{KL}}(\hat{p}_{\text{data}}(\mathbf{x}) \parallel p_\theta(\mathbf{x}))$, thereby encour-
 033 aging $p_\theta(\mathbf{x})$ to align closely with $\hat{p}_{\text{data}}(\mathbf{x})$:

$$\min_{\theta} D_{\text{KL}}(\hat{p}_{\text{data}}(\mathbf{x}) \parallel p_\theta(\mathbf{x})) = \min_{\theta} [\mathbb{E}_{\mathbf{x} \sim \hat{p}_{\text{data}}} [\log \hat{p}_{\text{data}}(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim \hat{p}_{\text{data}}} [\log p_\theta(\mathbf{x})]] \quad (1)$$

$$\propto \max_{\theta} \mathbb{E}_{\mathbf{x} \sim \hat{p}_{\text{data}}} [\log p_\theta(\mathbf{x})] \quad (2)$$

039 In recent years, expressive models such as diffusion models (Ho et al., 2020; Dhariwal & Nichol,
 040 2021) and flow matching models (Lipman et al., 2023; Liu et al., 2023) have emerged. These models
 041 achieve state-of-the-art results across images, audio, and text, producing highly realistic samples.
 042 Although they do not directly optimize the log-likelihood, their objectives can be interpreted as
 043 variational bounds or approximations to the data likelihood, and empirical evidence suggests they
 044 capture $\hat{p}_{\text{data}}(\mathbf{x})$ effectively. From a theoretical perspective, diffusion and flow matching can be
 045 seen as two sides of the same coin (Gao et al., 2024): diffusion models approximate the reverse-
 046 time stochastic process of a noisy forward dynamics, whereas flow matching models learn to match
 047 the conditional velocity for continuous transport. The primary drawback of both approaches is the
 048 slow, iterative sampling process, which requires many function evaluations for a single output. This
 049 inefficiency poses a significant barrier to real-time or resource-constrained applications, motivating
 050 ongoing research on acceleration techniques and alternative model formulations. (Song et al., 2023;
 051 Esser et al., 2024; Lu et al., 2022; Kim et al., 2023).

052 In this work, rather than pursuing a more accurate estimation of the data likelihood that sim-
 053 taneously ensures both efficient sampling and high-fidelity generation, we propose an alternative
 054 formulation. Specifically, we introduce a new model distribution q_θ as a fast estimator of p_θ and

propose to train our model using a joint training objective:

$$\min_{\theta} \mathcal{L}(\theta) = D_{\text{KL}}(\hat{p}_{\text{data}}(\mathbf{x}) \parallel p_{\theta}(\mathbf{x})) + \lambda D_{\text{KL}}(p_{\theta}(\mathbf{x}) \parallel q_{\theta}(\mathbf{x})). \quad (3)$$

Here the first term corresponds to a flow matching objective that trains $p_{\theta}(\mathbf{x})$ to approximate $\hat{p}_{\text{data}}(\mathbf{x})$ and the second term encourages $q_{\theta}(\mathbf{x})$ to align closely to $p_{\theta}(\mathbf{x})$. Both p_{θ} and q_{θ} share the same network parameters and are optimized jointly. In particular, we design q_{θ} to be independent of any ordinary differential equation (ODE) or stochastic differential equation (SDE) solver at sampling time, enabling fast inference. As a result, the overall framework combines the high-fidelity generation of flow matching with the sampling efficiency of q_{θ} .

However, learning two model distributions together presents notable challenges. Since p_{θ} and q_{θ} typically rely on different inference mechanisms, they often require different model formulations, resulting in additional forward and backward passes. This significantly increases computational cost and memory usage. In addition, while the first KL term can be efficiently optimized using a flow matching loss, the second KL term is more difficult to handle in practice due to the lack of closed-form densities of p_{θ} and q_{θ} . One feasible way to approximate the minimization of $D_{\text{KL}}(p_{\theta}(\mathbf{x}) \parallel q_{\theta}(\mathbf{x}))$ is to encourage the outputs of the two model distribution to match under shared inputs. This aligns with the idea of knowledge distillation techniques (Hinton et al., 2015). However, sampling from p_{θ} during joint training still requires solving an ODE, which is computationally expensive and impractical. To overcome these difficulties, we propose an efficient framework that enables joint training of p_{θ} and q_{θ} without ODE simulations. In summary, our contribution is as follows:

- We propose a novel training framework that jointly optimizes a standard flow matching model p_{θ} and its fast-sampling surrogate q_{θ} through a unified objective, enabling efficient training and generation without iterative ODE or SDE solvers.
- We construct q_{θ} using a second-order Taylor expansion as a trajectory-consistent approximation of p_{θ} 's ODE flow, and empirically show that it can match p_{θ} 's performance with as few as 5 sampling steps.
- We extend this approach to a third-order Taylor expansion, which improves upon the second-order approximation effectively without increasing computational cost.
- We explore architectural design improvements, and demonstrate that, across multiple datasets, our model approaches the performance of state-of-the-art diffusion and flow matching models.

2 FLOW MATCHING AND RECTIFIED FLOW

Flow matching (Lipman et al., 2023) is a recent generative modeling paradigm that formulates sample generation as learning a continuous-time flow transporting a simple base distribution (e.g., Gaussian noise) to $\hat{p}_{\text{data}}(\mathbf{x})$. Unlike score-based diffusion models that rely on denoising score matching, flow matching methods directly learn the vector field of an ODE (or its velocity function) that defines the transport trajectory. The learning objective is constructed such that the model matches the flow of an optimal transport or probability path between the source and target distributions, typically using a loss function of the form:

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{\mathbf{x} \sim \hat{p}_{\text{data}}, t \sim \mathcal{U}(0,1)} \left[\|v(\mathbf{x}, t) - \mathbf{v}_{\theta}(\mathbf{x}, t)\|^2 \right],$$

where $\mathcal{U}(\cdot, \cdot)$ represents uniform distribution, $v(\cdot, \cdot)$ and $\mathbf{v}_{\theta}(\cdot, \cdot)$ are the reference and learned velocity fields, respectively. This formulation enjoys stable training, (in some cases) exact likelihood evaluation, and interpretable dynamics (Lipman et al., 2023).

Rectified Flow (Liu et al., 2023), also known as *Stochastic Interpolants* (Albergo et al., 2023), is a specific instance of flow matching that improves the generation quality and the training efficiency by defining a “rectified” trajectory between noise and data samples. Instead of learning to match arbitrary transport paths, Rectified Flow defines a linear interpolation between a data sample \mathbf{x}_1 and its noisy counterpart \mathbf{x}_0 , and constructs a target velocity field aligned with this interpolation. The model is trained to match this field across various intermediate time steps $t \in [0, 1]$, while generation is performed by solving the learned ODE in reverse. Notably, Rectified Flow achieves high sampling quality with fewer sampling steps and has become a competitive alternative to diffusion-based

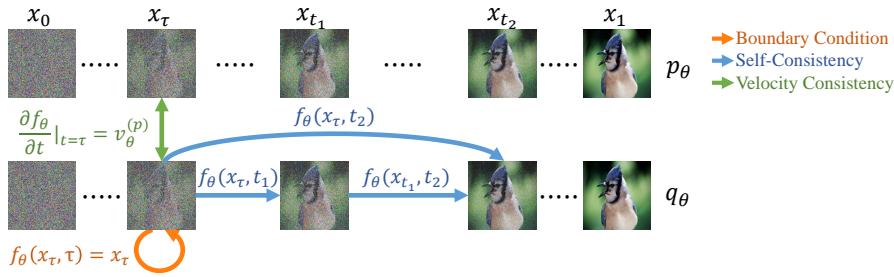


Figure 1: Illustration of TCF, which jointly learns two distributions, p_θ and q_θ . The training objective combines flow matching (to train p_θ) with distribution alignment between p_θ and q_θ . This alignment is achieved via three core constraints, each represented by colored arrows in the figure.

models. However, it still relies on numerical integration in learned flow with solvers such as RK45 (Virtanen et al., 2020), which incurs a high computational cost in inference time.

3 TRAJECTORY-CONSISTENT FLOWS

We begin by modeling the generative process p_θ as a flow matching model governed by a neural ODE parameterized by θ :

$$\frac{dx_t}{dt} = v_\theta^{(p)}(x_t, t), \quad \text{with } x_t = (1-t)x_0 + tx_1, \quad \text{for } t \in [0, 1] \quad (4)$$

where $x_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $x_1 \sim \hat{p}_{\text{data}}(\mathbf{x})$. This ODE defines a continuous trajectory that interpolates between Gaussian noise and real data with a linear reference velocity field.

To enable fast inference, we introduce a surrogate distribution q_θ to approximate the ODE solution defined by p_θ . To ensure that q_θ faithfully approximates the behavior of p_θ , we require the two models to produce identical outputs under the same input. This is equivalent to demanding that the trajectories generated by q_θ and the ODE flow induced by p_θ remain perfectly aligned given the same input state—an objective we refer to as *trajectory consistency*. Specifically, for any data point \mathbf{x}_τ at time $\tau \in [0, 1]$, with $t \in [\tau, 1]$ and \mathbf{x}_t be an arbitrary point that lies along the ODE trajectory starting from \mathbf{x}_τ , we define f_θ , the trajectory function of q_θ , to estimate \mathbf{x}_t given \mathbf{x}_τ via:

$$f_\theta(\mathbf{x}_\tau, t) = \mathbf{x}_t \quad \text{and} \quad \mathbf{x}_t = \mathbf{x}_\tau + \int_\tau^t v_\theta^{(p)}(\mathbf{x}_\xi, \xi) d\xi, \quad (5)$$

where \mathbf{x}_ξ denotes the latent state at intermediate time ξ along the same trajectory defined by the ODE. In particular, one-step generation can be achieved by evaluating $f_\theta(\mathbf{x}_0, 1)$. However, computing this integral during training is intractable. To address this, we propose three integration-free constraints that enable the learning of f_θ without relying on ODE solvers:

Boundary Condition. Ensures that f_θ reduces to the identity map at its starting point:

$$f_\theta(\mathbf{x}_\tau, \tau) = \mathbf{x}_\tau. \quad (6)$$

Self-Consistency. Enforces that a long-range transformation can be decomposed into intermediate steps along the same trajectory:

$$f_\theta(\mathbf{x}_\tau, t_2) = f_\theta(f_\theta(\mathbf{x}_\tau, t_1), t_2), \quad \forall t_1 \in [\tau, 1] \text{ and } t_2 \in [t_1, 1]. \quad (7)$$

Velocity Consistency. Ensures that the time derivative of f_θ at the starting time aligns with the ODE's velocity:

$$\left. \frac{\partial f_\theta(\mathbf{x}_\tau, t)}{\partial t} \right|_{t=\tau} = v_\theta^{(p)}(\mathbf{x}_\tau, \tau). \quad (8)$$

Theorem 1. If f_θ satisfies all three constraints, then its trajectory aligns with the ODE trajectory governed by p_θ , ensuring that q_θ converges to p_θ in a trajectory-consistent manner.

162 The formal proof of Theorem 1 is provided in Appendix A.1. Importantly, these constraints are
 163 integration-free and thus avoid expensive numerical simulations during training. To better illustrate
 164 how our model jointly learns the distributions p_θ and q_θ through the proposed constraints, we provide
 165 a schematic visualization in Figure 1. This theoretical result forms the foundation of our training
 166 framework. All subsequent design choices and algorithmic developments build upon this principle.
 167

168 3.1 FORMULATION OF f_θ AND TRAINING OBJECTIVES

170 The naive implementation of the above constraints can require multiple network evaluations. In
 171 this section, we propose an efficient parameterization of f_θ that supports fast and scalable training.
 172 We first parameterize the trajectory function $f_\theta : (\mathbf{x}_\tau, t) \mapsto \mathbf{x}_t$ using a second-order Taylor-like
 173 expansion:

$$174 f_\theta(\mathbf{x}_\tau, t) = \mathbf{x}_\tau + (t - \tau)\mathbf{v}_\theta(\mathbf{x}_\tau, t) + \frac{1}{2}(t - \tau)^2\mathbf{u}_\theta(\mathbf{x}_\tau, t), \quad t \in [\tau, 1]. \quad (9)$$

176 where \mathbf{v}_θ and \mathbf{u}_θ are the two outputs of a shared neural network with separate heads. This formulation
 177 provides an explicit parametric structure for f_θ , allowing its first- and second-order derivatives
 178 with respect to t at $t = \tau$ to be computed analytically, without the need for numerical differentiation.
 179 Notice that, with this formulation, the *boundary condition* is also satisfied by design. We now
 180 describe our training objectives, which involve training both p_θ and q_θ .

181 **Flow Matching Training.** As introduced earlier, p_θ is trained via the standard flow matching
 182 objective:

$$183 \mathcal{L}_{\text{FM}} = \left\| \mathbf{v}_\theta^{(p)}(\mathbf{x}_\tau, \tau) - (\mathbf{x}_1 - \mathbf{x}_0) \right\|_2^2. \quad (10)$$

185 According to the *velocity consistency* constraint, we have $\mathbf{v}_\theta^{(p)}(\mathbf{x}_\tau, \tau) = \mathbf{v}_\theta(\mathbf{x}_\tau, \tau)$. In practice, we
 186 relax this to:

$$187 \mathbf{v}_\theta^{(p)}(\mathbf{x}_\tau, \tau) \approx \mathbf{v}_\theta(\mathbf{x}_\tau, t), \quad \text{for any } t \geq \tau, \quad (11)$$

188 then the flow matching objective could be rewritten as:

$$189 \mathcal{L}_{\text{FM}} = \left\| \mathbf{v}_\theta(\mathbf{x}_\tau, t) - (\mathbf{x}_1 - \mathbf{x}_0) \right\|_2^2. \quad (12)$$

191 **Proposition 1.** Suppose p_θ is trained using Eq. 12, then \mathbf{v}_θ satisfies:

$$192 \mathbf{v}_\theta(\mathbf{x}_\tau, t) \equiv \mathbf{v}_\theta(\mathbf{x}_\tau, \tau), \quad \forall t \in [\tau, 1]. \quad (13)$$

194 Thus, the *velocity consistency* constraint is satisfied.

195 This invariance emerges because the optimal prediction of \mathbf{v}_θ is primarily determined by the input
 196 \mathbf{x}_τ and the network weights, while the time input t should not affect the learned dynamics. In
 197 other words, \mathbf{v}_θ represents the instantaneous velocity at the starting position \mathbf{x}_τ . A detailed proof of
 198 Proposition 1 is in Appendix A.2.

200 **Self-Consistency Training.** Given that the *boundary condition* and *velocity consistency* con-
 201 straints are satisfied by construction, the training of q_θ focuses on enforcing *self-consistency*. Specif-
 202 ically, we minimize the discrepancy between the direct and two-step compositions reaching the same
 203 target time t_2 :

$$204 \mathcal{L}_{\text{consist}} = \left\| \frac{f_\theta(\mathbf{x}_\tau, t_2) - \text{sg}[f_\theta(f_\theta(\mathbf{x}_\tau, t_1), t_2)]}{t_2 - \tau} \right\|_2^2. \quad (14)$$

206 Here $\text{sg}[\cdot]$ denotes the stop-gradient operator that blocks gradient flow through the reference trajec-
 207 tory. The $(t_2 - \tau)$ normalization ensures scale-invariant learning across different time intervals. This
 208 loss stimulates the function values at t_2 to remain consistent across various trajectory decomposi-
 209 tions.

210 To optimize f_θ under the proposed constraints, we design the training process outlined in Algo-
 211 rithm 1, referred to as *Alg-A*. This procedure incorporates all loss terms and requires three forward
 212 passes—only one of which involves gradient computation—followed by a single backward pass,
 213 enabling effective and reasonably efficient training. While *Alg-A* yields strong empirical results, we
 214 also develop a lightweight alternative that further reduces training computational cost. Specifically,
 215 enforcing the *Self-consistency* constraint in its original form typically involves three evaluations of
 f_θ . However, we observe that this constraint can be relaxed to the following local condition:

216 **Corollary 1.** Let Δt be a small time increment and $f_\theta(\mathbf{x}_\tau, t)$ be a trajectory function that satisfies
 217 the following local consistency condition:

$$218 \quad f_\theta(\mathbf{x}_\tau, t) = f_\theta(\mathbf{x}_{\tau+\Delta t}, t), \quad \text{where } \mathbf{x}_{\tau+\Delta t} = f_\theta(\mathbf{x}_\tau, \tau + \Delta t). \quad (15)$$

220 Then, f_θ also satisfies the global Self-Consistency constraint for any $t \in [\tau + \Delta t, 1]$:

$$221 \quad f_\theta(\mathbf{x}_\tau, t_2) = f_\theta(f_\theta(\mathbf{x}_\tau, t_1), t_2) \quad \forall t_1 \in [\tau, t_2]. \quad (16)$$

223 Intuitively, this constraint states that if two points are infinitesimally close along the ODE path,
 224 their mappings to a future time t should agree. We prove in Appendix A.3 that training with this
 225 local constraint is equivalent to enforcing the original *Self-consistency* constraint. However, direct
 226 optimization of Eq. 15 still requires three forward passes. To reduce this cost, we approximate
 227 $\mathbf{x}_{\tau+\Delta t}$ using the first-order Taylor expansion of f_θ at time τ :

$$228 \quad f_\theta(\mathbf{x}_\tau, \tau + \Delta t) = \mathbf{x}_\tau + \Delta t \mathbf{v}_\theta(\mathbf{x}_\tau, \tau + \Delta t) + \mathcal{O}(\Delta t^2) \approx \mathbf{x}_\tau + \Delta t \mathbf{v}_\theta(\mathbf{x}_\tau, t). \quad (17)$$

230 Here, we reuse t in place of $\tau + \Delta t$ as the target time for efficiency, under the assumption of Eq. 13.
 231 This approximation reduces the training overhead by eliminating one forward evaluation and leads
 232 to a more efficient training algorithm, denoted as *Alg-B* (see Algorithm 2).

233 **Algorithm 1** Training algorithm A

235 **Input:** dataset \mathcal{D} , initial model \mathcal{F}_θ , learning rate η
 236 **repeat**
 237 $\mathbf{x}_1 \sim \mathcal{D}$
 238 $\mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 239 $\tau, t_1, t_2 \leftarrow \text{sample_times}() \quad \triangleright \tau < t_1 < t_2$
 240 $\mathbf{x}_\tau \leftarrow \tau \mathbf{x}_1 + (1 - \tau) \mathbf{x}_0$
 241 **with no gradient**
 242 $\mathbf{x}_{t_1} \leftarrow f_\theta(\mathbf{x}_\tau, t_1) \quad \triangleright \text{Eq. 9}$
 243 $\mathbf{x}_{t_2} \leftarrow f_\theta(\mathbf{x}_{t_1}, t_2)$
 244 $\hat{\mathbf{x}}_{t_2}, \mathbf{v} \leftarrow f_\theta(\mathbf{x}_\tau, t_2)$
 245 $\mathcal{L}_{\text{FM}} \leftarrow \|\mathbf{v} - (\mathbf{x}_1 - \mathbf{x}_0)\|_2^2$
 246 $\mathcal{L}_{\text{consist}} \leftarrow \left\| \frac{\mathbf{x}_{t_2} - \hat{\mathbf{x}}_{t_2}}{t_2 - \tau} \right\|_2^2$
 247 $\mathcal{L}_{\text{all}} \leftarrow \lambda_1 \mathcal{L}_{\text{FM}} + \lambda_2 \mathcal{L}_{\text{consist}}$
 248 $\theta \leftarrow \eta \nabla \mathcal{L}_{\text{all}}$
 249 **until** convergence

250 **Algorithm 2** Training algorithm B

251 **Input:** dataset \mathcal{D} , initial model \mathcal{F}_θ , learning rate η ,
 252 small time interval Δt
 253 **repeat**
 254 $\mathbf{x}_1 \sim \mathcal{D}, \mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 255 $\tau, t_2 \leftarrow \text{sample_times}() \quad \triangleright \tau + \Delta t < t_2$
 256 $t_1 \leftarrow \tau + \Delta t$
 257 $\mathbf{x}_\tau \leftarrow \tau \mathbf{x}_1 + (1 - \tau) \mathbf{x}_0$
 258 $\hat{\mathbf{x}}_{t_2}, \mathbf{v} \leftarrow f_\theta(\mathbf{x}_\tau, t_2) \quad \triangleright \text{Eq. 9}$
 259 **with no gradient**
 260 $\mathbf{x}_{t_1} \leftarrow \mathbf{x}_\tau + \Delta t * \mathbf{v}$
 261 $\mathbf{x}_{t_2} \leftarrow f_\theta(\mathbf{x}_{t_1}, t_2)$
 262 $\mathcal{L}_{\text{FM}} \leftarrow \|\mathbf{v} - (\mathbf{x}_1 - \mathbf{x}_0)\|_2^2$
 263 $\mathcal{L}_{\text{consist}} \leftarrow \left\| \frac{\mathbf{x}_{t_2} - \hat{\mathbf{x}}_{t_2}}{t_2 - \tau} \right\|_2^2$
 264 $\mathcal{L}_{\text{all}} \leftarrow \lambda_1 \mathcal{L}_{\text{FM}} + \lambda_2 \mathcal{L}_{\text{consist}}$
 265 $\theta \leftarrow \eta \nabla \mathcal{L}_{\text{all}}$
 266 **until** convergence

250 **3.2 THIRD-ORDER TAYLOR EXTENSION**

251 The second-order Taylor parameterization in Eq. 9 provides a tractable formulation of f_θ , but we
 252 observe that the approximation gap between q_θ and p_θ remains non-negligible under few-step in-
 253 ference. Among the three constraints introduced earlier, both the boundary condition and velocity
 254 consistency are satisfied by construction, and our experiments further confirm that p_θ itself performs
 255 well. This suggests that the remaining limitation primarily stems from the self-consistency loss in
 256 Eq. 14. While Eq. 14 enforces trajectory compositionality, it does not sufficiently constrain the
 257 local velocity field at later time steps, which may lead to mismatches during few-step sampling.
 258 We also experimented with alternative loss designs commonly used in generative modeling, such as
 259 perceptual losses (e.g., LPIPS) (Song et al., 2023; Liu et al., 2023) and Pseudo-Huber loss (Song &
 260 Dhariwal, 2024), but found that they did not offer significant improvements. This motivates us to
 261 seek a more principled way to incorporate self-consistency constraints.

262 Previously, our self-consistency constraint only ensured function-value consistency at t_2 . A natural
 263 way to strengthen this constraint is to additionally require velocity consistency at t_2 from any start
 264 point t_1 on the same trajectory:

$$265 \quad \frac{\partial f_\theta(\mathbf{x}_\tau, t)}{\partial t} \Big|_{t=t_2} = \frac{\partial f_\theta(\mathbf{x}_{t_1}, t)}{\partial t} \Big|_{t=t_2}. \quad (18)$$

266 While our model can principally compute the instantaneous velocity at \mathbf{x}_{t_2} , enforcing Eq. 18 re-
 267 quires additional function evaluations, which incur substantial computational overhead (detailed

explanation in Appendix B). Inspired by our earlier design where v_θ and u_θ share the same neural backbone, we extend this idea by introducing an additional output head such that computing $v_\theta^*(x_\tau, t_2)$, the instantaneous velocity at an arbitrary **target timestep** t_2 is straightforward. In particular, $v_\theta^*(\cdot, \cdot)$ is explicitly designed to satisfy:

$$v_\theta^*(x_\tau, \tau) = v_\theta(x_\tau, \tau), \quad \frac{\partial^2 f_\theta(x_\tau, t)}{\partial t^2} \Big|_{t=\tau} = \lim_{t \rightarrow \tau} \frac{v_\theta^*(x_\tau, t) - v_\theta(x_\tau, t)}{t - \tau}. \quad (19)$$

Since the first- and second-order derivatives of f_θ at τ are already determined by the instantaneous velocity at the starting timestep (v_θ) and the ending timestep (v_θ^*), we extend the model to a third-order Taylor expansion to provide additional flexibility in trajectory modeling while retaining the first- and second-order constraints:

$$f_\theta(x_\tau, t) = x_\tau + (t - \tau)v_\theta(x_\tau, t) + \frac{1}{2}(t - \tau)^2u_\theta(x_\tau, t) + \frac{1}{6}(t - \tau)^3w_\theta(x_\tau, t), \quad (20)$$

where w_θ denotes an additional neural head that captures third-order dynamics. Under this formulation, $v_\theta^*(x_\tau, t)$ can be parameterized as:

$$v_\theta^*(x_\tau, t) = v_\theta(x_\tau, t) + (t - \tau)u_\theta(x_\tau, t). \quad (21)$$

This design ensures that Eq. 19 is naturally satisfied.

Proposition 2. Suppose the model θ is trained using the following loss:

$$\mathcal{L}_{\text{vec}} = \left\| v_\theta^*(x_\tau, t_2) - v_\theta^*(x_{t_1}, t_2) \right\|_2^2. \quad (22)$$

Then v_θ^* corresponds to the instantaneous velocity at the target timestep, and such velocities are simultaneously guaranteed to remain self-consistent across decompositions.

The formal proof of Proposition 2 is presented in Appendix A.4. In principle, the loss in Eq. 22 is sufficient to guarantee the original self-consistency constraint. However, in practice, we detach the gradient of $v_\theta^*(x_{t_1}, t_2)$ to significantly reduce both computation and memory overhead. While this approximation makes training feasible at scale, it prevents the third-order term w_θ from receiving gradient signals. To compensate for this limitation, we retain both the original self-consistency loss (Eq. 14) and the new velocity loss in our final objective. The detailed training process is presented in Algorithm 3, referred to as *Alg-C*.

4 EXPERIMENTS

TCF naturally supports a variety of training strategies, and we provide detailed experimental results in the Appendix D.3. While strategies such as distillation or joint training with a pretrained model may yield stronger performance, we emphasize that end-to-end training remains more scalable and versatile. It not only facilitates straightforward extension to other datasets but also offers greater convenience for downstream adaptation like supervised fine-tuning (SFT). For these reasons, we prefer the end-to-end training paradigm as the default choice in our framework. Due to page limitations, we provide experimental details and extended results in Appendix D.

4.1 COMPARISON WITH BASELINE MODELS

We first evaluate our method on the CIFAR-10 dataset (Krizhevsky et al., 2009), adopting the default architecture and training settings from Rectified Flow (Liu et al., 2023) to ensure a controlled setup for direct comparison. In addition to our baseline, we also train two reference models: (i) a model optimized with the consistency training objective from (Song et al., 2023), denoted as *consistency*

Table 1: Comparison of the proposed model and baseline models.

Model	Sampling Method	NFE (↓)	FID (↓)	IS (↑)
RF (baseline) Liu et al. (2023)	Euler	10	12.8	8.50
	Euler	100	3.30	9.38
	Euler	1000	2.74	9.52
	RK45	116	2.62	9.50
Consistency Training	-	2	4.7	8.92
Shortcut Model	-	2	4.12	9.12
TCF Alg-A (Alg-B)	Euler (p_θ)	10	12.8 (12.9)	8.48 (8.53)
	Euler (p_θ)	100	3.34 (3.33)	9.36 (9.55)
	Euler (p_θ)	1000	2.70 (2.78)	9.56 (9.56)
	Second-Order ODE Solver	10	3.58 (3.81)	9.38 (9.12)
	Second-Order ODE Solver	100	2.63 (2.81)	9.71 (9.58)
	-	1	6.72 (6.96)	8.46 (8.32)
	-	2	3.71 (3.68)	9.31 (9.38)
	-	5	2.69 (2.81)	9.58 (9.58)
TCF Alg-C	-	10	2.61 (2.64)	9.68 (9.61)
	Second-Order ODE Solver	10	3.60	9.38
	Second-Order ODE Solver	100	2.65	9.38
	Third-Order ODE Solver	5	2.98	9.31
	Third-Order ODE Solver	10	2.65	9.61
	-	1	3.98	9.24
	-	2	2.95	9.54
	-	5	2.61	9.58

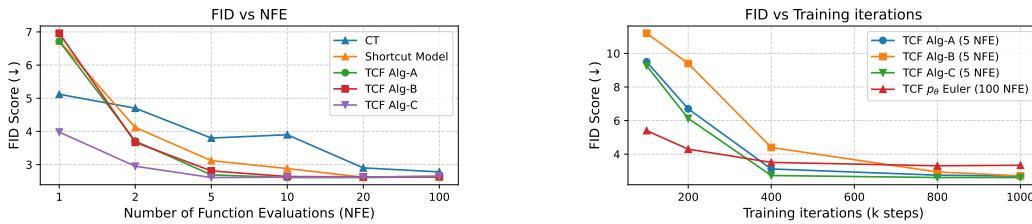


Figure 2: FID scores across various NFEs and training steps.

training, and (ii) a shortcut model (Frans et al., 2025) that follows the same trajectory design as ours. For both reference models, we strictly reuse our network architecture and training configuration, ensuring fairness in comparison. Details of the sampling algorithm are provided in Appendix C. Table 1 summarizes the quantitative results. When using first-order Euler sampling, our method achieves nearly identical performance to the baseline model in sampling from p_θ , confirming that the joint training of q_θ does not interfere with the flow-matching dynamics of p_θ . However, under a second-order ODE solver, our approach significantly outperforms the baseline with the same number of function evaluations (NFE). This highlights the strength of our framework: the Taylor-based formulation of f_θ grants access to higher-order derivatives, enabling more accurate integration beyond conventional flow matching setups. Moreover, few-step sampling via q_θ attains sample quality comparable to full Rectified Flow simulation while requiring far fewer steps, demonstrating that q_θ effectively approximates the trajectory induced by p_θ . In particular, we find that a third-order Taylor expansion yields a substantial improvement over the second-order version, further enhancing sample quality without requiring additional NFEs. Finally, our fast sampler not only surpasses the shortcut baseline but also consistently outperforms the *consistency training* model (Song et al., 2023), showing that our method benefits from both stronger modeling fidelity and improved training efficiency. Further results across different training steps and NFEs are presented in Figure 2.

4.2 COMPUTATION COST AND TRAINING STABILITY

Our training procedure requires only one gradient-tracked forward pass and one backward pass per step—consistent with standard flow matching methods. The additional overhead arises from one (in

378 *Alg-B*) or two (in *Alg-A*, *C*) extra forward passes used for enforcing self-consistency, resulting in a
 379 modest 30%–50% increase in per-step runtime. Despite this, training remains highly efficient and
 380 stable. Across all experiments, we observe no signs of divergence or numerical instability.
 381

382 4.3 EXPLORING DESIGN CHOICES 383

384 While the preceding configuration yields promising results, it still lags behind state-of-the-art
 385 (SOTA) generative models (Karras et al., 2022) in terms of sample quality, particularly as mea-
 386 sured by FID. In this subsection, we analyze the root causes of this performance gap and propose
 387 targeted improvements. We identify two main factors contributing to the observed discrepancy: 1)
 388 **architectural gap between p_θ and SOTA diffusion models:** The architecture inherited from Rec-
 389 tified Flow lacks the representational capacity and training sophistication of modern designs such as
 390 those used in diffusion models (Karras et al., 2022). And 2) **approximation gap between q_θ and**
 391 p_θ : Even if p_θ produces high-quality samples, insufficient approximation by q_θ may degrade fast
 392 sampling performance. To systematically address both issues, we adopt a two-stage strategy: first
 393 enhancing the architecture and training of p_θ , then improving the approximation quality of q_θ .
 394

395 **Enhancing the flow matching model**
 396 p_θ . We improve p_θ through both archi-
 397 tecturally, we integrate key design
 398 components that strengthen model ex-
 399 pressiveness. We adopt the log-normal
 400 time distribution from EDM, mapped to
 401 $[0, 1]$ via a sigmoid transformation, in-
 402 troduce input weighting regularized by
 403 $1/\sqrt{(1-t)^2 + t\sigma_{\text{data}}^2}$, and employ larger
 404 batch sizes (from 512 to 2048) with ex-
 405 tended training (from 400k to 800k steps).
 406 Together, these refinements reduce the
 407 FID on CIFAR-10 to 2.10, substantially
 408 narrowing the gap with diffusion models.
 409

410 **Refining the fast sampler q_θ .** With a
 411 stronger p_θ in place, we focus on reduc-
 412 ing the mismatch between q_θ and p_θ . We
 413 find that several factors influence the final
 414 performance of p_θ , including the choice of
 415 time distributions (t_1 and t_2), the use of
 416 absolute versus relative time conditioning,
 417 the design of the ℓ_2 loss, and the weight-
 418 ing of different loss terms. Each of these
 419 components plays a critical role in main-
 420 taining trajectory consistency and achiev-
 421 ing high-fidelity few-step sampling. For
 422 clarity and reproducibility, we provide de-
 423 tailed implementation and hyperparameter
 424 specifications in Appendix D.2, where we
 425 systematically evaluate the effect of these
 426 factors on sampling quality and training stability.
 427

428 As summarized in Table 2 and Table 3, the TCF model achieves competitive results with only 2
 429 or 5 sampling steps, highlighting its efficiency in generation. Compared to recent methods in the
 430 Consistency Model family, TCF shows slightly lower performance in FID. However, these stronger
 431 baselines often come at the cost of increased training or inference complexity. For example, TCM
 432 (Lee et al., 2025) requires multi-stage training, and sCM (Lu & Song, 2025) depends on expensive
 433 Jacobian-vector product (JVP) computations. In contrast, TCF maintains a simpler, single-stage
 434 training process with good stability and lower memory overhead, making it more practical for real-
 435 world applications.
 436

Table 2: Reuslts on CIFAR-10 (unconditional).

METHOD	NFE (↓)	FID (↓)
Fast samplers & distillation models		
DPM-solver-fast (Lu et al., 2022)	10	4.70
3-DEIS (Zhang & Chen, 2023)	10	4.17
UniPC (Zhao et al., 2023)	10	3.87
DFNO (LPIPS) (Zheng et al., 2023)	1	3.78
2-Rectified Flow (+distill) (Liu et al., 2023)	1	4.85
TRACT (Berthelot et al., 2023)	2	3.32
Diff-Instruct (Luo et al., 2023)	1	4.53
CD (LPIPS) (Song et al., 2023)	2	2.93
SIM (Luo et al., 2024)	1	2.06
Direct Generation		
Score SDE (Song et al., 2021b)	2000	2.38
DDPM (Ho et al., 2020)	1000	3.17
LSGM (Vahdat et al., 2021)	147	2.10
PFGM (Xu et al., 2022)	110	2.35
EDM (Karras et al., 2022)	35	1.97
NVAE (Vahdat & Kautz, 2020)	1	23.5
Glow (Kingma & Dhariwal, 2018)	1	48.9
MeanFlow (Geng et al., 2025a)	1	2.92
IMM (Zhou et al., 2025)	2	1.98
Consistency model family		
CT (LPIPS) (Song et al., 2023)	2	5.83
iCT (Song & Dhariwal, 2024)	2	2.46
ECM (Geng et al., 2025b)	2	2.11
sCM (Lu & Song, 2025)	2	2.06
Ours		
TCF (Alg-C)	1	3.65
TCF (Alg-C)	2	2.45
TCF (Alg-C)	5	2.28
TCF (Alg-C)	10	2.10

432

5 RELATED WORK

433

434 A general strategy for accelerating generative models is *self-distillation* explicitly or implicitly, where a multi-step teacher model and a fast student model are jointly learned in a single training process. *Consistency Models* (CMs) (Song et al., 2023) follow this paradigm by using a single network and a single loss to enforce temporal consistency, thereby enabling few-step or even single-step sampling. Despite their sampling efficiency, however, CMs face significant training challenges: they often require substantially longer training time compared to diffusion models of similar quality, and involve intricate hyperparameter tuning, which hinders their practical adoption. These limitations have motivated subsequent works (Geng et al., 2025b; Song et al., 2023; Lee et al., 2025; Lu & Song, 2025) that aim to improve stability, efficiency, and overall performance. *Consistency Trajectory Models* (CTMs) (Kim et al., 2023) extend the self-distillation idea by introducing separate networks and separate objectives for the teacher and student, while relying on repeated ODE solver calls during training. Although this improves flexibility, the heavy solver dependence increases training cost and introduces solver-induced errors, which degrade performance in the absence of adversarial training. More recent approaches such as *Shortcut Models* (Frans et al., 2025) and *MeanFlow* (Geng et al., 2025a) train both the teacher p_θ and the student q_θ with shared parameters, but apply different objectives to different samples within the same batch, which complicates optimization and reduces efficiency. In particular, *MeanFlow* requires Jacobian–vector product (JVP) computations, which not only incur high memory overhead but also demand specialized hardware support—many devices offer limited or inefficient JVP implementations, further constraining scalability and stability. *SplitMeanFlow* Guo et al., 2025 mitigates this issue by removing the JVP requirement; however, its effectiveness for image generation or training from scratch has not been demonstrated. A different direction, *IMM* (Zhou et al., 2025), extends CMs with an MMD-based loss, aligning teacher and student distributions at the distributional level rather than matching ODE trajectories directly, which results in more stable training and strong empirical performance. Compared with these methods, our framework jointly trains p_θ and q_θ through a unified objective that is applied consistently to every sample, simplifying optimization while ensuring both stability and efficiency.

471 We also include a discussion on various distillation strategies in Appendix E.

472

6 CONCLUSION

473

474 In this work, we introduced *Trajectory-Consistent Flows* (TCF), a novel generative framework that 475 unifies efficient training and accelerated sampling through a Taylor-expansion-based formulation. 476 Our framework jointly optimizes a flow matching model p_θ and its fast-sampling surrogate q_θ via a 477 unified training objective, eliminating the need for iterative ODE or SDE solvers. We designed q_θ as a 478 trajectory-consistent approximation of p_θ ’s ODE flow using a second-order Taylor expansion, 479 which enables accurate generation with as few as 5 sampling steps. We further extended this idea to 480 a third-order expansion, achieving additional performance gains without extra computational cost. 481 Beyond the Taylor-based formulation, we explored architectural and training improvements and 482 demonstrated that TCF approaches the performance of state-of-the-art diffusion and flow matching 483 models across multiple datasets. Overall, our study highlights that principled higher-order modeling 484 provides a powerful alternative to existing generative paradigms, combining the efficiency of flow- 485 based approaches with the sample quality of diffusion models.

486

Table 3: Results on ImageNet 64×64 (class- 487 conditional).

METHOD	NFE (↓)	FID (↓)
Fast samplers & distillation models		
DDIM (Song et al., 2021a)	10	18.3
DPM solver (Lu et al., 2022)	10	7.93
DEIS (Zhang & Chen, 2023)	10	6.65
DFNO (LPIPS) (Zheng et al., 2023)	1	7.83
TRACT (Berthelot et al., 2023)	2	4.97
Diff-Instruct (Luo et al., 2023)	1	5.57
CD (LPIPS) (Song et al., 2023)	2	4.70
Direct Generation		
DDPM (Ho et al., 2020)	250	11.0
iDDPM (Nichol & Dhariwal, 2021)	250	2.92
ADM (Dhariwal & Nichol, 2021)	250	2.07
EDM (Karras et al., 2022)	511	1.36
EDM (Heun) (Karras et al., 2022)	79	2.44
Consistency model family		
CT (LPIPS) (Song et al., 2023)	2	11.1
iCT (Song et al., 2023)	2	3.20
ECM-S (Geng et al., 2025b)	2	2.79
TCM (Lee et al., 2025)	2	2.31
sCM (Lu & Song, 2025)	2	1.48
Ours		
TCF Alg-C	1	3.94
TCF Alg-C	2	2.94
TCF Alg-C	5	2.24
TCF Alg-C	10	2.18

486 7 ETHICS AND BROADER IMPACT STATEMENT

488 Generative models have widespread applications, ranging from creative content generation to data
 489 augmentation and scientific simulation. Our proposed framework advances this field by significantly
 490 reducing the computational cost of high-fidelity sample generation, making it more accessible for
 491 deployment in real-time or resource-constrained environments. This may democratize generative
 492 technologies in areas such as mobile AI, interactive media, or edge computing.

493 However, as with all generative models, potential risks arise along with utilization. Fast and efficient
 494 generation may exacerbate the misuse of synthetic content in misinformation, deepfakes, or privacy-
 495 violating applications. Additionally, acceleration may lead to wider deployment without sufficient
 496 oversight. We encourage researchers and practitioners to apply this method responsibly and in accord-
 497 ance with ethical guidelines, particularly in contexts involving sensitive or human-centered data.

499 8 REPRODUCIBILITY

501 In this work, we propose TCF, a novel training framework that jointly optimizes a standard flow
 502 matching model and its fast-sampling surrogate through a unified objective. A detailed explanation
 503 of the algorithm itself is provided in Section 3, with theoretical proofs provided in Appendix A.
 504 Sampling strategies are introduced in Appendix C. Main experimental results are in Section 4, with
 505 more details and extended results presented in Appendix D.

507 REFERENCES

509 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
 510 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

511 David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
 512 Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
 513 time-distillation. *arXiv preprint arXiv:2303.04248*, 2023.

515 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 516 differential equations. *Advances in neural information processing systems*, 31, 2018.

517 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
 518 *in Neural Information Processing Systems*, 34, 2021.

520 Aleix Espuña I Fontcuberta. Analyzing the negative log-likelihood loss in generative modeling.
 521 Master’s thesis, 2022.

522 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 523 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 524 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 525 2024.

527 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
 528 models. In *International Conference on Learning Representations, ICLR*, 2025.

529 Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin P. Murphy, and Tim
 530 Salimans. Diffusion meets flow matching: Two sides of the same coin. 2024. URL <https://diffusionflow.github.io/>.

533 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
 534 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025a.

535 Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
 536 made easy. In *International Conference on Learning Representations, ICLR*, 2025b.

538 Yi Guo, Wei Wang, Zhihang Yuan, Rong Cao, Kuan Chen, Zhengyang Chen, Yuanyuan Huo, Yang
 539 Zhang, Yuping Wang, Shouda Liu, et al. SplitMeanFlow: Interval Splitting Consistency in Few-
 Step Generative Modeling. *arXiv preprint arXiv:2507.16884*, 2025.

540 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *stat*,
 541 1050:9, 2015.

542 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 543 *Neural Information Processing Systems*, 33:6840–6851, 2020.

544 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 545 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 546 2022.

547 Beomsu Kim, Yu-Guan Hsieh, Michal Klein, Marco Cuturi, Jong Chul Ye, Bahjat Kawar, and James
 548 Thornton. Simple reflow: Improved techniques for fast flow models. In *International Conference*
 549 *on Learning Representations, ICLR*, 2025.

550 Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
 551 Yutong He, Yuki Mitsuji, and Stefano Ermon. Consistency trajectory models: Learning prob-
 552 ability flow ode trajectory of diffusion. In *The Twelfth International Conference on Learning*
 553 *Representations*, 2023.

554 Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
 555 In *Advances in neural information processing systems*, 31, 2018.

556 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 557 *Toronto, ON, Canada*, 2009.

558 Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified flows. *Advances in*
 559 *Neural Information Processing Systems*, 37:63082–63109, 2024.

560 Sangyun Lee, Yilun Xu, Tomas Geffner, Giulia Fanti, Karsten Kreis, Arash Vahdat, and Weili Nie.
 561 Truncated consistency models. In *International Conference on Learning Representations, ICLR*,
 562 2025.

563 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
 564 ing for generative modeling. In *The Eleventh International Conference on Learning Representa-
 565 tions*, 2023.

566 Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
 567 with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2023.

568 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
 569 In *International Conference on Learning Representations, ICLR*, 2025.

570 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 571 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural*
 572 *Information Processing Systems*, 35:5775–5787, 2022.

573 Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
 574 sampling speed. *arXiv preprint arXiv:2101.02388*, 2021.

575 Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
 576 instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
 577 In *Advances in Neural Information Processing Systems*, 36:76525–76546, 2023.

578 Weijian Luo, Zemin Huang, Zhengyang Geng, J Zico Kolter, and Guo-jun Qi. One-step diffusion
 579 distillation through score implicit matching. *Advances in Neural Information Processing Systems*,
 580 37:115377–115408, 2024.

581 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 582 In *International Conference on Machine Learning*, pp. 8162–8171. PMLR, 2021.

583 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 584 *International Conference on Learning Representations, ICLR*, 2022.

585 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Interna-
 586 tional Conference on Learning Representations*, 2021a.

594 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In *Inter-
595 national Conference on Learning Representations, ICLR*, 2024.
596

597 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
598 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
599 national Conference on Learning Representations*, 2021b.

600 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *International
601 Conference on Machine Learning*, pp. 32211–32252. PMLR, 2023.
602

603 Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. *Advances in Neural
604 Information Processing Systems*, 33:19667–19679, 2020.
605

606 Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
607 *Advances in neural information processing systems*, 34:11287–11302, 2021.

608 Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
609 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: funda-
610 mental algorithms for scientific computing in python. *Nature methods*, 17(3):261–272, 2020.

611 Yilun Xu, Ziming Liu, Max Tegmark, and Tommi Jaakkola. Poisson flow generative models. *Ad-
612 vances in Neural Information Processing Systems*, 35:16782–16795, 2022.
613

614 Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
615 In *The Eleventh International Conference on Learning Representations*, 2023.
616

617 Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
618 corrector framework for fast sampling of diffusion models. *Advances in Neural Information
619 Processing Systems*, 36:49842–49869, 2023.
620

621 Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast
622 sampling of diffusion models via operator learning. In *International conference on machine learn-
623 ing*, pp. 42390–42402. PMLR, 2023.
624

625 Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. In *Forty-second
626 International Conference on Machine Learning*, 2025.
627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A THEORETICAL RESULTS
649650 A.1 PROOF OF THEOREM 1
651652 **Theorem 1** *If the trajectory function f_θ satisfies the Boundary Condition, Self-Consistency, and*
653 *Velocity Consistency, then the trajectory it defines aligns with the ODE trajectory governed by p_θ .*
654 *As a result, the surrogate sampler q_θ becomes trajectory-consistent with the flow induced by p_θ .*655 *Proof.* Let $\mathbf{x}_t = f_\theta(\mathbf{x}_\tau, t)$ denote the output of the surrogate sampler starting from the input state
656 \mathbf{x}_τ at time τ . To prove trajectory consistency, we need to show that f_θ satisfies the same ODE as p_θ ,
657 i.e.,

658
$$\frac{d\mathbf{x}_t}{dt} = \mathbf{v}_\theta^{(p)}(\mathbf{x}_t, t), \quad \forall t \in [\tau, 1]. \quad (23)$$

659
660

661 We begin by computing the time derivative of f_θ :

662
$$\frac{\partial f_\theta(\mathbf{x}_\tau, t)}{\partial t} = \lim_{\Delta t \rightarrow 0} \frac{f_\theta(\mathbf{x}_\tau, t + \Delta t) - f_\theta(\mathbf{x}_\tau, t)}{\Delta t} \quad (24)$$

663
664

665
$$= \lim_{\Delta t \rightarrow 0} \frac{f_\theta(\mathbf{x}_\tau, t + \Delta t) - \mathbf{x}_t}{\Delta t}. \quad (25)$$

666

667 Using the *Self-Consistency* condition, we can write:

668
$$f_\theta(\mathbf{x}_\tau, t + \Delta t) = f_\theta(f_\theta(\mathbf{x}_\tau, t), t + \Delta t) = f_\theta(\mathbf{x}_t, t + \Delta t). \quad (26)$$

669
670

671 Recall the *Boundary Condition*, we have:

672
$$f_\theta(\mathbf{x}_t, t) = \mathbf{x}_t \quad (27)$$

673

674 Substituting Eq. 26 and 27 back to Eq. 25, we get:

675
$$\frac{\partial f_\theta(\mathbf{x}_\tau, t)}{\partial t} = \lim_{\Delta t \rightarrow 0} \frac{f_\theta(\mathbf{x}_t, t + \Delta t) - f_\theta(\mathbf{x}_t, t)}{\Delta t} \quad (28)$$

676
677

678
$$= \frac{\partial f_\theta(\mathbf{x}_t, t)}{\partial t} \quad (29)$$

679
680

681 By the *Velocity Consistency* condition, we have:

682
$$\frac{\partial f_\theta(\mathbf{x}_t, t)}{\partial t} \Big|_{\mathbf{x}_t = f_\theta(\mathbf{x}_\tau, t)} = \mathbf{v}_\theta^{(p)}(\mathbf{x}_t, t). \quad (30)$$

683
684

685 Thus, we conclude that:

686
$$\frac{d\mathbf{x}_t}{dt} = \frac{\partial f_\theta(\mathbf{x}_\tau, t)}{\partial t} = \mathbf{v}_\theta^{(p)}(\mathbf{x}_t, t), \quad (31)$$

687

688 which proves that f_θ produces a trajectory consistent with the ODE solution defined by p_θ . \square
689690 A.2 PROOF OF PROPOSITION 1
691692 **Proposition 1** *Suppose the model p_θ is trained using the following flow matching loss:*

693
$$\mathcal{L}_{FM} = \mathbb{E}_{\mathbf{x}_0, \mathbf{x}_1, \tau} \left[\|\mathbf{v}_\theta(\mathbf{x}_\tau, t) - \mathbf{v}_{target}\|^2 \right], \quad (32)$$

694
695

696 *where $\mathbf{x}_\tau = (1 - \tau)\mathbf{x}_0 + \tau\mathbf{x}_1$, and $\mathbf{v}_{target} = \mathbf{x}_1 - \mathbf{x}_0$ is a reference velocity field that depends only*
697 *on $\mathbf{x}_0, \mathbf{x}_1$. Then, the learned velocity field \mathbf{v}_θ satisfies the following invariance:*

698
$$\mathbf{v}_\theta(\mathbf{x}_\tau, t) \equiv \mathbf{v}_\theta(\mathbf{x}_\tau, \tau), \quad \forall t \in [\tau, 1]. \quad (33)$$

699
700

701 *As a result, the **velocity consistency** constraint is automatically satisfied.*

702 *Proof.* During training, the objective in Eq. 12 aims to minimize the discrepancy between the
 703 predicted velocity $\mathbf{v}_\theta(\mathbf{x}_\tau, t)$ and the reference velocity $\mathbf{v}_{\text{target}}$, which is independent of t . That is, the
 704 supervision signal does not change with the value of t and remains fixed for a given \mathbf{x}_τ .

705 Therefore, under sufficient optimization, the model has no incentive to vary its output with respect
 706 to t ; the optimal solution will be invariant in t , and thus the network will learn to output the same
 707 velocity vector regardless of the t -input. In other words,

$$709 \quad \mathbf{v}_\theta(\mathbf{x}_\tau, t) = \mathbf{v}_\theta(\mathbf{x}_\tau, \tau), \quad \forall t \in [\tau, 1]. \quad (34)$$

710 This implies that the velocity predicted by the model at any target time t coincides with the velocity
 711 at the starting time τ , satisfying the *velocity consistency* condition:

$$713 \quad \frac{\partial f_\theta(\mathbf{x}_\tau, t)}{\partial t} \Big|_{t=\tau} = \mathbf{v}_\theta(\mathbf{x}_\tau, \tau) = \mathbf{v}_\theta(\mathbf{x}_\tau, t). \quad (35)$$

□

717 A.3 PROOF OF COROLLARY 1

719 **Corollary 1** *Let Δt be a small time increment and $f_\theta(\mathbf{x}_\tau, t)$ be a trajectory function that satisfies
 720 the following local consistency condition:*

$$721 \quad f_\theta(\mathbf{x}_\tau, t) = f_\theta(\mathbf{x}_{\tau+\Delta t}, t), \quad \text{where } \mathbf{x}_{\tau+\Delta t} = f_\theta(\mathbf{x}_\tau, \tau + \Delta t). \quad (36)$$

723 *Then, for any $\tau < t_1 < t_2$, the function also satisfies the global Self-Consistency constraint:*

$$724 \quad f_\theta(\mathbf{x}_\tau, t_2) = f_\theta(f_\theta(\mathbf{x}_\tau, t_1), t_2). \quad (37)$$

726 *Proof.* We aim to show that repeated application of the local condition leads to the global *Self-
 727 Consistency* property. Divide the interval from τ to t_1 into small steps of size Δt , such that:

$$728 \quad \tau = \tau_0 < \tau_1 = \tau + \Delta t < \tau_2 = \tau + 2\Delta t < \dots < \tau_n = t_1. \quad (38)$$

730 Using the local condition iteratively, we obtain:

$$731 \quad f_\theta(\mathbf{x}_\tau, t_2) = f_\theta(\mathbf{x}_{\tau_1}, t_2) = f_\theta(\mathbf{x}_{\tau_2}, t_2) = \dots = f_\theta(\mathbf{x}_{\tau_n}, t_2), \quad (39)$$

732 where each $\mathbf{x}_{\tau_i} = f_\theta(\mathbf{x}_\tau, \tau_i)$ for $i = 1, \dots, n$.

734 In particular, $\mathbf{x}_{\tau_n} = f_\theta(\mathbf{x}_\tau, t_1)$, and hence:

$$735 \quad f_\theta(\mathbf{x}_\tau, t_2) = f_\theta(f_\theta(\mathbf{x}_\tau, t_1), t_2), \quad (40)$$

736 which proves the global *Self-Consistency* constraint. □

738 A.4 PROOF OF PROPOSITION 2

740 **Proposition 2.** *Suppose the model θ is trained using the following loss:*

$$741 \quad \mathcal{L}_{\text{vec}} = \left\| \mathbf{v}_\theta^*(\mathbf{x}_\tau, t_2) - \mathbf{v}_\theta^*(\mathbf{x}_{t_1}, t_2) \right\|_2^2. \quad (41)$$

744 *Then \mathbf{v}_θ^* corresponds to the instantaneous velocity at the terminal position, and such velocities are
 745 simultaneously guaranteed to remain self-consistent across decompositions.*

746 *Proof.* During training, t_1 is sampled arbitrarily over the trajectory and all such t_1 points are used
 747 to supervise \mathbf{v}_θ^* . Therefore, at convergence, we have

$$749 \quad \mathbf{v}_\theta^*(\mathbf{x}_{t_1}, t_2) = \mathbf{v}_\theta^*(\mathbf{x}_{t_2}, t_2), \quad (42)$$

750 for any t_1 along the trajectory.

751 By definition, $\mathbf{v}_\theta^*(\mathbf{x}_{t_2}, t_2)$ corresponds to the instantaneous velocity at the start position. That is,

$$753 \quad \mathbf{v}_\theta^*(\mathbf{x}_{t_2}, t_2) = \mathbf{v}_\theta(\mathbf{x}_{t_2}, t_2) = \frac{\partial f_\theta(\mathbf{x}_\tau, t)}{\partial t} \Big|_{t=t_2}. \quad (43)$$

755 Combining the above equalities, we see that the self-consistency velocity loss ensures both:

756 1. **Terminal velocity agreement:** v_θ^* correctly predicts the instantaneous velocity of f_θ at t_2 .
 757
 758 2. **Trajectory decomposition consistency:** velocities predicted from any intermediate point
 759 x_{t_1} match the terminal velocity, i.e.,

760
$$v_\theta^*(x_{t_1}, t_2) = v_\theta^*(x_\tau, t_2).$$

 761

762 Hence, minimizing \mathcal{L}_{vec} guarantees that v_θ^* remains self-consistent across trajectory decompositions
 763 while accurately representing the instantaneous velocity at the terminal state.

□

766 B EXPLANATION OF EQUATION 18

769 A natural way to strengthen the self-consistency constraint is to additionally enforce velocity con-
 770 sistency at t_2 from any starting point t_1 along the same trajectory. Formally, given x_τ and x_{t_1} with
 771 $\tau < t_1 < t_2$, we require

772
$$v_\theta(\hat{x}_{t_2}^{(\tau)}, t_2) = v_\theta(\hat{x}_{t_2}^{(t_1)}, t_2), \quad (44)$$

 773

774 where $v_\theta(x, t) = \frac{\partial f_\theta(x, t)}{\partial t} \Big|_t$ denotes the instantaneous velocity.
 775

776 Concretely, the computation proceeds as follows:

777
$$x_{t_1} = f_\theta(x_\tau, t_1), \quad \hat{x}_{t_2}^{(\tau)} = f_\theta(x_\tau, t_2), \quad \hat{x}_{t_2}^{(t_1)} = f_\theta(x_{t_1}, t_2). \quad (45)$$

 778

779 We then evaluate the instantaneous velocities at these two candidate terminal points:

780
$$v^{(\tau)} = v_\theta(\hat{x}_{t_2}^{(\tau)}, t_2), \quad v^{(t_1)} = v_\theta(\hat{x}_{t_2}^{(t_1)}, t_2). \quad (46)$$

 781

783 The strengthened velocity-consistency loss is defined as

784
$$\mathcal{L}_{\text{vec}} = \left\| v^{(\tau)} - v^{(t_1)} \right\|_2^2. \quad (47)$$

 785

787 **Computational Cost.** This strengthened constraint requires three forward evaluations of f_θ to ob-
 788 tain x_{t_1} , $\hat{x}_{t_2}^{(\tau)}$, and $\hat{x}_{t_2}^{(t_1)}$. These forward passes are already present in the original self-consistency
 789 computation and therefore do not introduce extra cost. The main additional overhead comes from the
 790 two velocity evaluations $v_\theta(\hat{x}_{t_2}^{(\tau)}, t_2)$ and $v_\theta(\hat{x}_{t_2}^{(t_1)}, t_2)$. In practice, this corresponds to gradient-
 791 based directional computations through the network, which are substantially more expensive than
 792 standard forward evaluations. As a result, enforcing velocity-consistency leads to significantly
 793 higher training overhead compared with enforcing value-consistency alone.

796 C SAMPLING

798 Our framework incorporates two model distributions, p_θ and q_θ , enabling flexible and efficient sam-
 799 pling strategies. Following standard flow matching approaches, sampling from p_θ can be generated
 800 by solving the neural ODE defined by $v_\theta^{(p)}$ using numerical solvers (Chen et al., 2018). Alternatively,
 801 fast sampling is enabled by directly evaluating q_θ via the learned mapping f_θ , which eliminates the
 802 need for iterative solvers. In addition, since f_θ is explicitly constructed with a Taylor-like expansion
 803 in time, its second-or third-order time derivative at the initial point is analytically accessible:

804
$$\frac{\partial^2 f_\theta(x_\tau, t)}{\partial t^2} \Big|_{t=\tau} = \mathbf{u}_\theta(x_\tau, \tau), \quad \frac{\partial^3 f_\theta(x_\tau, t)}{\partial t^3} \Big|_{t=\tau} = \mathbf{w}_\theta(x_\tau, \tau) \quad (48)$$

 805

807 This property allows us to employ second-order ODE solvers for sampling from p_θ , potentially
 808 achieving higher accuracy and efficiency than conventional first-order methods used in prior work.
 809 We summarize the sampling procedures from both q_θ (via few-step generation) and p_θ (via second-
 order numerical integration) in Algorithm 4 and Algorithm 5 respectively.

810 **Algorithm 4** Sampling from q_θ

```

811 Input: model  $\mathcal{F}_\theta$ , sequence of time points:  $0 =$ 
812  $t_1 < t_2 < \dots < t_{N-1} < t_N = 1$ 
813 Sample initial noise  $\mathbf{x}_{t_1} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
814 for  $i = 1$  to  $N - 1$  do
815    $\mathbf{x}_{t_{i+1}} \leftarrow f_\theta(\mathbf{x}_{t_i}, t_{i+1})$ 
816 end for
817    $\mathbf{x} \leftarrow \mathbf{x}_{t_N}$ 
818 Output:  $\mathbf{x}$ 

```

819 **Algorithm 5** Second-order ODE Solver

```

820 Input: model  $\mathcal{F}_\theta$ , sequence of time points:  $0 =$ 
821  $t_1 < t_2 < \dots < t_{N-1} < t_N = 1$ 
822 Sample initial noise  $\mathbf{x}_{t_1} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
823 for  $i = 1$  to  $N - 1$  do
824    $\mathbf{v}, \mathbf{u} \leftarrow f_\theta(\mathbf{x}_{t_i}, t_i)$ 
825    $\mathbf{x}_{t_{i+1}} \leftarrow \mathbf{x}_{t_i} + (t_{i+1} - t_i)\mathbf{v} + \frac{1}{2}(t_{i+1} - t_i)^2\mathbf{u}$ 
826 end for
827    $\mathbf{x} \leftarrow \mathbf{x}_{t_N}$ 
828 Output:  $\mathbf{x}$ 

```

829 **D EXPERIMENTAL DETAILS**830 **D.1 TRAINING USING THE DEFAULT CONFIGURATION OF RECTIFIED FLOW**

831 We use the Adam optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.999$, and a learning rate of 1×10^{-4} . The
832 TCF models are trained for 1M steps with a batch size of 512 across 2 GPUs. We adopt cosine
833 learning rate decay and apply exponential moving average (EMA) with a decay rate of 0.9999. Most
834 architectural configurations follow the RF baseline, with the following key modifications:

- 835 • Unlike standard flow matching models, our framework requires an additional time input and
836 produces an extra output. To accommodate this, we introduce a dedicated time embedding
837 layer that conditions the model on both the reference time τ and the target time t .
- 838 • The output dimension of the TCF model is set to 6 for Alg-A, B and 9 for Alg-C instead of
839 the standard 3 (for RGB images), which we interpret as a concatenation of two or three 3D
840 vectors.

841 Additionally, we apply a dropout rate of 0.2 throughout all our experiments.

842 For the consistency training (CT) model, we follow the exact architecture used in RF. The CT model
843 is trained for 2M steps on 2 GPUs with a total batch size of 512.

844 **D.2 EXPLORING DESIGN CHOICES**

845 To identify the optimal design choices for our model, we conduct a series of ablation studies, pre-
846 sented in Table 4. We adopt the same network architecture, hyperparameters, and data augmentation
847 strategies as EDM (Karras et al., 2022) for CIFAR-10 and ImageNet-64, ensuring comparability
848 and robustness of our experiments. The resulting model sizes are 55M and 296M parameters, re-
849 spectively. All models in these experiments are built upon a base p_θ model that achieves an FID
850 of 2.10 on CIFAR-10. The auxiliary variable τ is sampled from a log-normal distribution, and all
851 evaluations are performed under a fixed number of function evaluations (NFE = 2). Each model is
852 trained for a total of 400k steps, ensuring convergence while allowing for a controlled comparison
853 of different factors, including the distributions of t_1 and t_2 , time conditioning, training weights, loss
854 types, and dropout rates.

855 **D.3 EXPLORING DIFFERENT TRAINING STRATEGIES FOR TCF**

856 We explore different training strategies for TCF to evaluate their impact on performance:

- 857 **1. Training from scratch:** TCF is trained entirely from random initialization.
- 858 **2. Initialization with a pretrained flow matching model:** The key distinction of TCF from stan-
859 dard flow matching or diffusion models lies in the inclusion of an additional time step input and
860 one or two auxiliary outputs. To ensure stable training, we initialize the linear mapping layers cor-
861 responding to the new input and output to zero. This allows the network to start training with a
862 well-performing baseline, and thanks to the presence of the flow matching loss, the performance of
863 the pretrained components remains largely unchanged throughout training.
- 864 **3. Distillation from a pretrained flow matching model:** Similar to the previous setup, we initialize
865 the additional input and output layers to zero and perform knowledge distillation from a pretrained

1. Distribution of t_1 and t_2	
Setting	FID
$t_2 \sim U(\tau, 1), t_1 \sim U(\tau, t_2)$	3.65
$t_2 \sim U(\tau, 1), t_1 = 0.5(\tau + t_2)$	3.75
$t_2 \sim 1 - (1 - U(\tau, 1))^{1.5}, t_1 \sim U(\tau, t_2)$	3.20
$t_2 \sim 1 - (1 - U(\tau, 1))^2, t_1 \sim U(\tau, t_2)$	3.40
2. Training weights ($\lambda_1, \lambda_2, \lambda_3$)	
Setting	FID
1,1,1	3.65
1,2,1	3.55
1,5,1	3.10
1,5,2	3.20
1,5,0.5	3.15
3. Time conditioning	
Condition	FID
τ, t	3.65
t	8.31
$\tau, t - \tau$	3.55
4. Loss types ($L_{\text{FM}}, L_{\text{consist}}, L_{\text{vec}}$)	
Loss	FID
L2, L2, L2	3.65
L2, Pseudo-Huber, Pseudo-Huber	3.68
Pseudo-Huber, Pseudo-Huber, Pseudo-Huber	3.92
5. Dropout rate	
Dropout	FID
0.13	3.65
0.20	3.55
0.30	3.63
0.00	4.12

Table 4: Ablation studies exploring design choices for our model. Each section reports FID under specific variations of distributions, training weights, time conditioning, loss types, and dropout rates.

flow matching model. During this process, we substitute the reference vector field (e.g., $\mathbf{x}_1 - \mathbf{x}_0$) with the vector field generated by the pretrained model, allowing the student network to directly learn from the teacher’s trajectory.

4. Decoupled training of flow matching module (v_θ) and other components (u_ϕ, w_ϕ): To reduce training time, we directly use a trained flow matching model to predict the velocity v_θ , freezing its parameters during the training of the auxiliary components (u_ϕ and w_ϕ). At inference time, we combine v_θ with the learned auxiliary components u_ϕ and w_ϕ to generate the final trajectories, enabling consistent and efficient sampling.

For strategies 2, 3 and 4, we employ a pretrained EDM model as the initialization. For strategies 3, 4, since the flow matching part is deterministic, we adopt a modified time sampling strategy: we first sample $D \sim U(0, 1)$, then $\tau \sim U(0, 1 - D)$, and set $t_2 = \tau + D$. This design increases the expected time interval during training, which facilitates better few-step inference performance.

918	Training Strategy	919	Training Steps	920	FID
921	1. Training from scratch	922	800k	923	2.95
924	2. Initialization with pretrained flow matching	925	600k	926	2.93
927	3. Distillation from pretrained flow matching	928	200k	929	2.23
930	4. Decoupled training of v_θ and (u_ϕ, w_ϕ)	931	200k	932	2.18

Table 5: Comparison of training steps and FID for different TCF training strategies. FID is evaluated at NFE=2 for all strategies, except strategy 4, which effectively uses double NFE and roughly twice the number of model parameters due to decoupled training.

E RELATED WORK: DISTILLATION FOR FAST SAMPLING

To accelerate sampling in diffusion and flow matching models, various model distillation strategies have been proposed. A common approach is to use a pre-trained teacher model to generate synthetic datasets, which are then used to supervise a fast student model (Luhman & Luhman, 2021; Liu et al., 2023; Lee et al., 2024; Kim et al., 2025). However, these methods often suffer from performance degradation due to the limited quality or diversity of the synthetic data. Another line of work adopts progressive distillation, where sampling trajectories are shortened in multiple stages (Salimans & Ho, 2022). While this reduces computation, it tends to introduce cumulative approximation errors that affect final sample quality. More recent approaches employ consistency-based objectives, such as trajectory alignment or self-consistency constraints, to distill models in a single stage, avoiding reliance on synthetic data while achieving faster sampling with improved fidelity (Song et al., 2023). A different class of methods learns auxiliary networks to approximate the score function or its implicit distribution, enabling direct sampling but requiring careful design and tuning of additional components (Luo et al., 2024). Unlike all the approaches mentioned above, our method avoids the need for teacher models, synthetic datasets, or auxiliary score predictors. Instead, we jointly train a base model p_θ and a fast sampler q_θ , where alignment between the two distributions is enforced through integration-free consistency constraints. This design allows for efficient training and accurate, solver-free sampling in a fully self-contained framework.

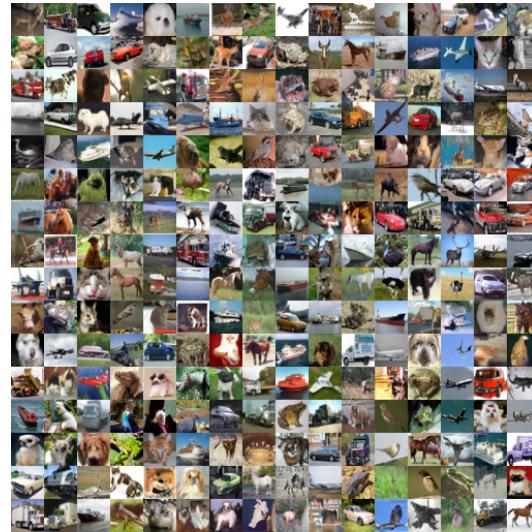
F LIMITATIONS

While our method achieves high-quality image generation, several limitations remain. First, although our approach dramatically reduces the number of sampling steps, the resulting sample quality still slightly lags behind the best-performing consistency models in terms of FID. This performance gap could potentially be addressed in future work by exploring more effective time schedules and designing improved loss functions that better capture the alignment between the model distributions. Second, our experiments are primarily conducted on standard datasets for unconditional or class-conditional image generation. Extending the method to more complex, multi-modal domains, such as text-to-image synthesis or video generation, may require additional architectural and algorithmic innovations. Lastly, jointly optimizing two model distributions introduces extra complexity in training, including the need for careful tuning of the loss coefficient to maintain a proper balance between the objectives. This may lead to increased training overhead. Future research may explore more adaptive training strategies, alternative fast-sampling parameterizations, and broader extensions of the framework to diverse data modalities and tasks.

G VISUALIZATION RESULTS

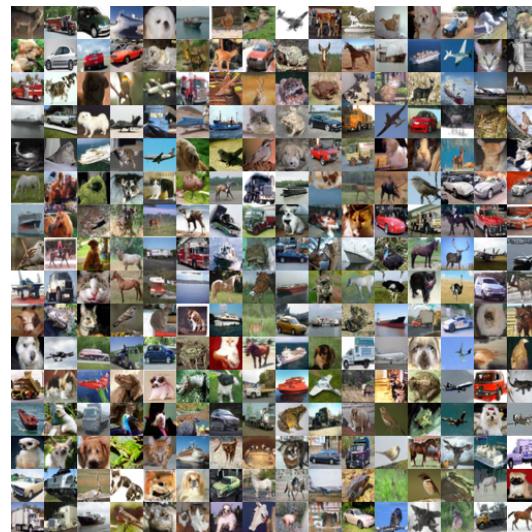
We present the visualization results on the next pages.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988



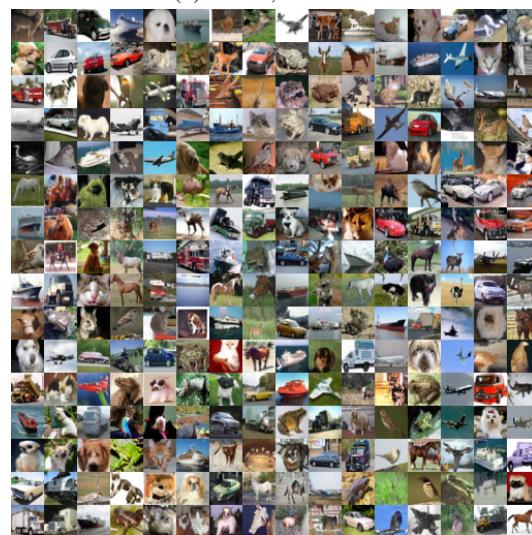
(a) NFE 2, FID=2.87

989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006



(b) NFE 5, FID=2.31

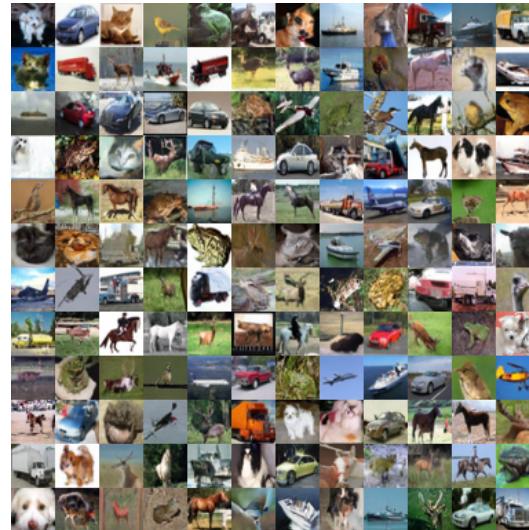
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024



(c) NFE 10, FID=2.10

Figure 3: Unconditional CIFAR-10 results, Alg A

1026



(a) NFE 1, FID=3.65

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

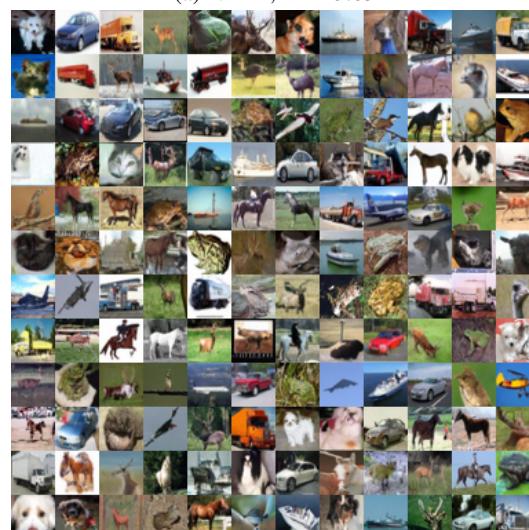
1039

1040

1041

1042

1043



(b) NFE 2, FID=2.45

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

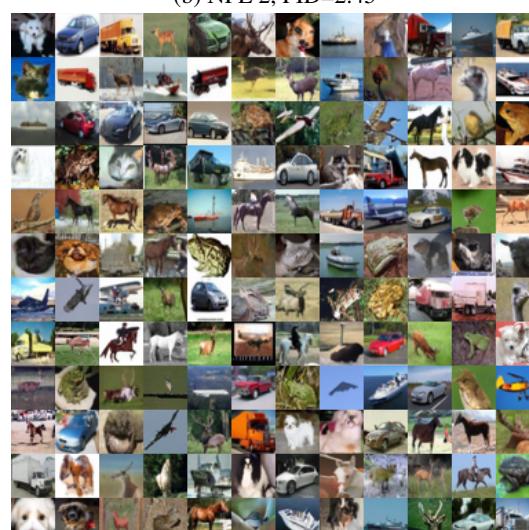
1075

1076

1077

1078

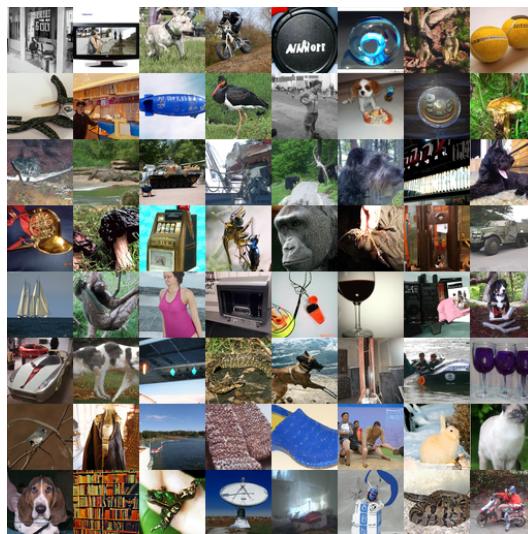
1079



(c) NFE 5, FID=2.28

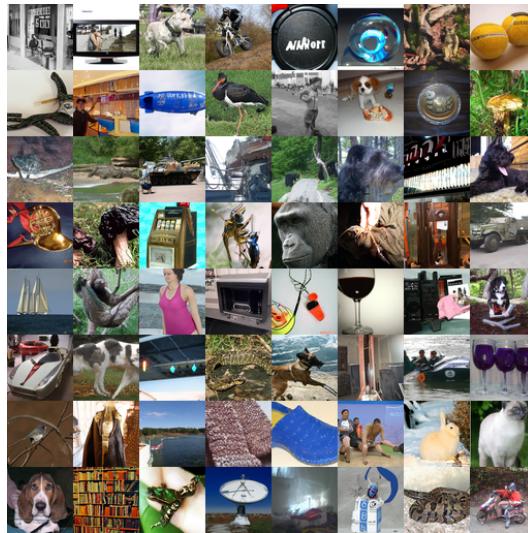
Figure 4: Unconditional CIFAR-10 results, Alg C

1080



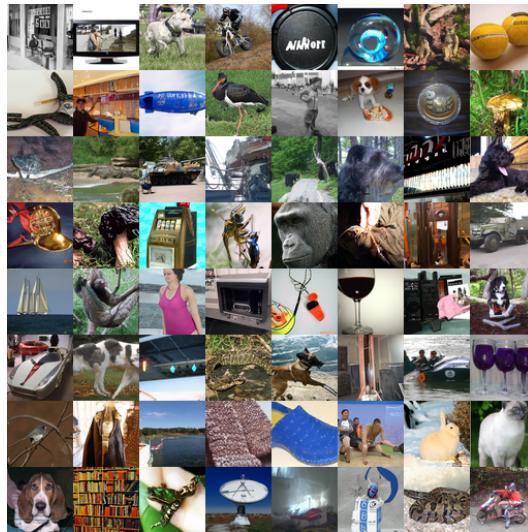
(a) NFE 2, FID=3.94

1098



(b) NFE 5, FID=2.94

1116



(c) NFE 10, FID=2.18

Figure 5: Results on ImageNet 64×64 (class-conditional), Alg C.