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ABSTRACT

Diffusion and flow matching models have recently achieved remarkable generative
performance, but their reliance on iterative ODE or SDE solvers results in slow
and computationally expensive sampling. In this work, we introduce Trajectory-
Consistent Flows (TCF), a framework that unifies efficient training and acceler-
ated sampling through a Taylor-expansion-based formulation. TCF jointly opti-
mizes a flow matching model py and a fast-sampling surrogate gy via a unified
objective. We construct gg using a second-order Taylor expansion as a trajectory-
consistent approximation of pg’s ODE flow, enabling high-fidelity generation with
as few as 5 sampling steps. We further extend this idea to a third-order expansion,
achieving additional performance gains without increasing computational cost.
With further architectural and training enhancements, TCF achieves significantly
improved sampling quality while retaining fast and stable training, making it par-
ticularly suitable for real-time generative applications.

1 INTRODUCTION

Generative modeling aims to approximate the true data distribution pgat. () by learning a parame-
terized model distribution pg (). Since pgata(x) is typically unknown, direct minimization of the
Kullback-Leibler (KL) divergence between pg(x) and pgata(x) is infeasible. Instead, Maximum
Likelihood Estimation (MLE) provides a tractable surrogate by maximizing the log-likelihood over
observed samples drawn from an empirical distribution pgat. () (Espuia I Fontcubertal 2022). This
procedure corresponds to minimizing the KL divergence Dkr,(Paata(®) || po()), thereby encour-
aging pg () to align closely with pgata():

mgin DKL (ﬁdata(w) H Do (w)) = mgin [E:ENﬁdata [10g ]adata(m)] - EmNﬁdam [IOgPO(m)]] (1)
oc max Bopy,., [10g po ()] @)

In recent years, expressive models such as diffusion models (Ho et al., [2020; [Dhariwal & Nichol,
2021)) and flow matching models (Lipman et al.,2023; |Liu et al.,[2023) have emerged. These models
achieve state-of-the-art results across images, audio, and text, producing highly realistic samples.
Although they do not directly optimize the log-likelihood, their objectives can be interpreted as
variational bounds or approximations to the data likelihood, and empirical evidence suggests they
capture Pyata () effectively. From a theoretical perspective, diffusion and flow matching can be
seen as two sides of the same coin (Gao et al.| [2024): diffusion models approximate the reverse-
time stochastic process of a noisy forward dynamics, whereas flow matching models learn to match
the conditional velocity for continuous transport. The primary drawback of both approaches is the
slow, iterative sampling process, which requires many function evaluations for a single output. This
inefficiency poses a significant barrier to real-time or resource-constrained applications, motivating
ongoing research on acceleration techniques and alternative model formulations.(Song et al.| 2023
Esser et al., 2024} Lu et al., 2022; Kim et al., 2023).

In this work, rather than pursuing a more accurate estimation of the data likelihood that simul-
taneously ensures both efficient sampling and high-fidelity generation, we propose an alternative
formulation. Specifically, we introduce a new model distribution gy as a fast estimator of py and
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propose to train our model using a joint training objective:
min £(0) = Dk (Paata(®) || o(®)) + A Dicr.(po(@) || 4o (2))- 3)

Here the first term corresponds to a flow matching objective that trains py(x) to approximate
Pdata(x) and the second term encourages gg(x) to align closely to pg(x). Both py and gy share
the same network parameters and are optimized jointly. In particular, we design gy to be indepen-
dent of any ordinary differential equation (ODE) or stochastic differential equation (SDE) solver at
sampling time, enabling fast inference. As a result, the overall framework combines the high-fidelity
generation of flow matching with the sampling efficiency of qp.

However, learning two model distributions together presents notable challenges. Since py and gg
typically rely on different inference mechanisms, they often require different model formulations,
resulting in additional forward and backward passes. This significantly increases computational cost
and memory usage. In addition, while the first KL term can be efficiently optimized using a flow
matching loss, the second KL term is more difficult to handle in practice due to the lack of closed-
form densities of py and gg. One feasible way to approximate the minimization of Dkr,(pg(x) ||
go(x)) is to encourage the outputs of the two model distribution to match under shared inputs. This
aligns with the idea of knowledge distillation techniques (Hinton et al.| 2015). However, sampling
from py during joint training still requires solving an ODE, which is computationally expensive and
impractical. To overcome these difficulties, we propose an efficient framework that enables joint
training of pg and gy without ODE simulations. In summary, our contribution is as follows:

* We propose a novel training framework that jointly optimizes a standard flow matching
model py and its fast-sampling surrogate gy through a unified objective, enabling efficient
training and generation without iterative ODE or SDE solvers.

* We construct gg using a second-order Taylor expansion as a trajectory-consistent approxi-
mation of py’s ODE flow, and empirically show that it can match py’s performance with as
few as 5 sampling steps.

* We extend this approach to a third-order Taylor expansion, which improves upon the
second-order approximation effectively without increasing computational cost.

* We explore architectural design improvements, and demonstrate that, across multiple
datasets, our model approaches the performance of state-of-the-art diffusion and flow
matching models.

2  FLOW MATCHING AND RECTIFIED FLOW

Flow matching (Lipman et al.l[2023) is a recent generative modeling paradigm that formulates sam-
ple generation as learning a continuous-time flow transporting a simple base distribution (e.g., Gaus-
sian noise) to Paata (). Unlike score-based diffusion models that rely on denoising score matching,
flow matching methods directly learn the vector field of an ODE (or its velocity function) that de-
fines the transport trajectory. The learning objective is constructed such that the model matches the
flow of an optimal transport or probability path between the source and target distributions, typically
using a loss function of the form:

Lot = Bgmpapatnio) | 0@, 1) = vola,8)]%]

where U(-, -) represents uniform distribution, v(-,-) and vg(-, ) are the reference and learned ve-
locity fields, respectively. This formulation enjoys stable training, (in some cases) exact likelihood
evaluation, and interpretable dynamics (Lipman et al.l 2023).

Rectified Flow (L1u et al., [2023)), also known as Stochastic Interpolants (Albergo et al., 2023)), is a
specific instance of flow matching that improves the generation quality and the training efficiency
by defining a “rectified” trajectory between noise and data samples. Instead of learning to match
arbitrary transport paths, Rectified Flow defines a linear interpolation between a data sample x; and
its noisy counterpart x(, and constructs a target velocity field aligned with this interpolation. The
model is trained to match this field across various intermediate time steps ¢ € [0, 1], while generation
is performed by solving the learned ODE in reverse. Notably, Rectified Flow achieves high sam-
pling quality with fewer sampling steps and has become a competitive alternative to diffusion-based
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Figure 1: Ilustration of TCF, which jointly learns two distributions, pg and gg. The training objective
combines flow matching (to train py) with distribution alignment between pg and gg. This alignment
is achieved via three core constraints, each represented by colored arrows in the figure.

models. However, it still relies on numerical integration in learned flow with solvers such as RK45
(Virtanen et al 2020), which incurs a high computational cost in inference time.

3 TRAJECTORY-CONSISTENT FLOWS

We begin by modeling the generative process pg as a flow matching model governed by a neural
ODE parameterized by 6:
dfl?t (p)
i
where £g ~ N (0, I) and &1 ~ Pyawa (). This ODE defines a continuous trajectory that interpolates
between Gaussian noise and real data with a linear reference velocity field.

(ze,t), withay = (1 —t)xo +txy, fort e [0,1] “4)

To enable fast inference, we introduce a surrogate distribution gy to approximate the ODE solution
defined by pg. To ensure that gy faithfully approximates the behavior of py, we require the two
models to produce identical outputs under the same input. This is equivalent to demanding that the
trajectories generated by gy and the ODE flow induced by py remain perfectly aligned given the
same input state—an objective we refer to as trajectory consistency. Specifically, for any data point
x, attime 7 € [0, 1], with ¢ € [r, 1] and @ be an arbitrary point that lies along the ODE trajectory
staring from x ., we define fy, the trajectory function of gy, to estimate x; given x. via:

t
fo(xr,t) = and wt=x7+/ oy (ae, €) dE, )

T

where x¢ denotes the latent state at intermediate time &£ along the same trajectory defined by the
ODE. In particular, one-step generation can be achieved by evaluating fy(xo,1). However, com-
puting this integral during training is intractable. To address this, we propose three integration-free
constraints that enable the learning of fy without relying on ODE solvers:

Boundary Condition. Ensures that fy reduces to the identity map at its starting point:

f@(mraT) =Zr. (6)

Self-Consistency. Enforces that a long-range transformation can be decomposed into intermediate
steps along the same trajectory:

fg(.’.UT,tg) = fg(fg(xT,tl),tQ), Vit € [T, 1] and to € [tl,l]. (7

Velocity Consistency. Ensures that the time derivative of fy at the starting time aligns with the
ODE’s velocity:

af@(mra t)

o — o (@, 7). (8)

t=r1

Theorem 1. If fy satisfies all three constraints, then its trajectory aligns with the ODE trajectory
governed by py, ensuring that qp converges to py in a trajectory-consistent manner.
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The formal proof of Theorem [I]is provided in Appendix [A.T] Importantly, these constraints are
integration-free and thus avoid expensive numerical simulations during training. To better illustrate
how our model jointly learns the distributions py and ¢y through the proposed constraints, we provide
a schematic visualization in Figure[I] This theoretical result forms the foundation of our training
framework. All subsequent design choices and algorithmic developments build upon this principle.

3.1 FORMULATION OF fy AND TRAINING OBJECTIVES

The naive implementation of the above constraints can require multiple network evaluations. In
this section, we propose an efficient parameterization of fy that supports fast and scalable training.
We first parameterize the trajectory function fy : (x,,t) — x; using a second-order Taylor-like
expansion:

Fo(@rst) = @1 + (t — T0p(@r, ) + %(t —Vug(za,t), ten ). ©)

where vy and uy are the two outputs of a shared neural network with separate heads. This formula-
tion provides an explicit parametric structure for fy, allowing its first- and second-order derivatives
with respect to t at £ = 7 to be computed analytically, without the need for numerical differentia-
tion. Notice that, with this formulation, the boundary condition is also satisfied by design. We now
describe our training objectives, which involve training both py and gy.

Flow Matching Training. As introduced earlier, py is trained via the standard flow matching
objective:
2
Lrv = [[vf @7 7) = (@1~ 20) (10)
According to the velocity consistency constraint, we have vép ) (x,;,7) = vg(x,, 7). In practice, we
relax this to:

vép)(:cﬂT) ~ vg(x,,t), foranyt > T, (11)
then the flow matching objective could be rewritten as:
Lent = [lvo (@7, 1) — (@1 — @o)]3. (12)

Proposition 1. Suppose py is trained using Eq. then vy satisfies:

vg(x,,t) =ve(xr,7), ViE]r1]. (13)
Thus, the velocity consistency constraint is satisfied.

This invariance emerges because the optimal prediction of vy is primarily determined by the input
x, and the network weights, while the time input ¢ should not affect the learned dynamics. In
other words, vy represents the instantaneous velocity at the starting position . A detailed proof of

Proposition|[I]is in Appendix

Self-Consistency Training. Given that the boundary condition and velocity consistency con-
straints are satisfied by construction, the training of gg focuses on enforcing self-consistency. Specif-
ically, we minimize the discrepancy between the direct and two-step compositions reaching the same

target time ¢o:
2

Jo(xr,ta) —sglfo(fo(xr,t1),12)]

tQ—T

(14)

['consist =

2
Here sg[-] denotes the stop-gradient operator that blocks gradient flow through the reference trajec-
tory. The (t2 —7) normalization ensures scale-invariant learning across different time intervals. This
loss stimulates the function values at t2 to remain consistent across various trajectory decomposi-
tions.

To optimize fy under the proposed constraints, we design the training process outlined in Algo-
rithm [T] referred to as Alg-A. This procedure incorporates all loss terms and requires three forward
passes—only one of which involves gradient computation—followed by a single backward pass,
enabling effective and reasonably efficient training. While Alg-A yields strong empirical results, we
also develop a lightweight alternative that further reduces training computational cost. Specifically,
enforcing the Self-consistency constraint in its original form typically involves three evaluations of
fo. However, we observe that this constraint can be relaxed to the following local condition:
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Corollary 1. Let At be a small time increment and fo(x,,t) be a trajectory function that satisfies
the following local consistency condition:

f9($77t) :fe(wT-‘rAtat)? where LTr4At = fe(mTaT+At)' (15)
Then, fo also satisfies the global Self-Consistency constraint for any t € [T + At, 1]:
f@(x7'7t2):fe(fe(m7'7t1)7t2) th S [T7t2]' (16)

Intuitively, this constraint states that if two points are infinitesimally close along the ODE path,
their mappings to a future time ¢ should agree. We prove in Appendix [A.3] that training with this
local constraint is equivalent to enforcing the original Self-consistency constraint. However, direct
optimization of Eq. [I3] still requires three forward passes. To reduce this cost, we approximate
&4 A using the first-order Taylor expansion of fy at time 7:

fo(xr, 7+ At) = &, + Atvg(x,, T + At) + O(At?) = =, + Atvg(z,, ). 17

Here, we reuse ¢ in place of 7+ At as the target time for efficiency, under the assumption of Eq.
This approximation reduces the training overhead by eliminating one forward evaluation and leads
to a more efficient training algorithm, denoted as Alg-B (see Algorithm [2).

Algorithm 1 Training algorithm A Algorithm 2 Training algorithm B

Input: dataset D, initial model Fy, learning rate n Input: dataset D, initial model Fp, learning rate 7,

repeat small time interval At
x1 ~D repeat
:BONN(O,I) a:le,:cow./\/(O,I)

T,t1,t2 < sample_times() > 7 <t < t2
- 121+ (1 — 7)o
with no gradient
Ty, — folxr,t1) > Eq.[9]
xty  fo(Tey,12)
By, V f9(m7'7t2)
Len + [lv = (21 — o) |3

T, t2 < sample_times() > T4+ At < ta
t1 — 17+ At

xr 721+ (1 — 7)o

Biy,V — fo(xr,t2) > Eq. [

with no gradient
Ty, —xr +Atxv
@iy < fo(Te,,t2)
Len + [lv = (z1 —20)|I3

L, — LTt 2
Lconsist — | t2 —r 2 H2 -
2 E . Ty —Ligy 2
Lai < M Lrv + A2 Lconsist consist € ” P ||2
0 <—nVLau Lait < MLrM + A2Leonsist
until convergence 0 < nVLan

until convergence

3.2 THIRD-ORDER TAYLOR EXTENSION

The second-order Taylor parameterization in Eq. [9] provides a tractable formulation of fg, but we
observe that the approximation gap between gg and py remains non-negligible under few-step in-
ference. Among the three constraints introduced earlier, both the boundary condition and velocity
consistency are satisfied by construction, and our experiments further confirm that py itself performs
well. This suggests that the remaining limitation primarily stems from the self-consistency loss in
Eq. While Eq. enforces trajectory compositionality, it does not sufficiently constrain the
local velocity field at later time steps, which may lead to mismatches during few-step sampling.
We also experimented with alternative loss designs commonly used in generative modeling, such as
perceptual losses (e.g., LPIPS) (Song et al.} 2023} [Liu et al.,2023) and Pseudo-Huber loss (Song &
Dhariwall [2024), but found that they did not offer significant improvements. This motivates us to
seek a more principled way to incorporate self-consistency constraints.

Previously, our self-consistency constraint only ensured function-value consistency at ¢5. A natural
way to strengthen this constraint is to additionally require velocity consistency at ¢o from any start
point ¢; on the same trajectory:

dfy (.’137—, t)
ot

_ (9f9(€13t1 ) t)

ot (18)

t=t2 t=to

While our model can principally compute the instantaneous velocity at x,, enforcing Eq. [T§] re-
quires additional function evaluations, which incur substantial computational overhead (detailed
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explanation in Appendix [B). Inspired by our earlier design where vy and uy share the same neu-
ral backbone, we extend this idea by introducing an additional output head such that computing
v} (-, t2), the instantaneous velocity at an arbitrary target timestep t, is straightforward. In par-
ticular, v (-, -) is explicitly designed to satisfy:

0 fo(xr,t) — lim v (zr,t) — vg(x,,t)

vg(@r,7) = vo(Tr, 7), ot? t=1  t—T t—T

(19)

Since the first- and second-order derivatives of fy at 7 are already determined by the instantaneous
velocity at the starting timestep (vg) and the ending timestep (v), we extend the model to a third-
order Taylor expansion to provide additional flexibility in trajectory modeling while retaining the
first- and second-order constraints:

fol@r,t) =@ + (t — T)vg(T7,t) + F(t — ) 2ug (., t) + H 7)3we (., 1), (20)

where wg denotes an additional neural head that captures third-order dynamics. Under this formu-
lation, v} (x,,t) can be parameterized as:

vy (T, t) = vo(xr,t) + (t — T)ug(x,, 1). (21)
This design ensures that Eq. [I9]is naturally satisfied.
Proposition 2. Suppose the model 6 is trained using the following loss:
2

Evec = H U;(w77t2) - v;($t17t2)H2- (22)

Then vy corresponds to the instantaneous velocity at the target timestep, and such velocities are
simultaneously guaranteed to remain self-consistent across decompositions.

The formal proof of Proposition [2| is pre-
sented in Appendix [A.4] In principle, the
loss in Eq. [22]is sufficient to guarantee the Input: dataset D, initial model Fp, learning rate 7

Algorithm 3 Training algorithm C

original self-consistency constraint. How- repeat
ever, in practice, we detach the gradient z1 ~D,xo ~ N (Oa'I )
of v} (x4, ,t2) to significantly reduce both 7, t1, t2 < sample_times() b7 <t <t

xr 121+ (1 — 7)x0
with no gradient
xt, + fo(zr,t1) > Eq.[20]
@iy, v, ul — fo(x,,t2)
Ziy,v,u < fo(xr,t2)
Linm  [lv = (21 — x0)|[3

computation and memory overhead. While
this approximation makes training feasible
at scale, it prevents the third-order term wy
from receiving gradient signals. To com-
pensate for this limitation, we retain both
the original self-consistency loss (Eq.

: : : Lconsisl <~ H iz~ Pty HZ
and the new velocity loss in our final objec- ta—7 112 1l -
tive. The detailed training process is pre- Lyee = [[v + (b2 = T)u — (v + (2 — t21)u™)|3
sented in Algorithm 3] referred to as Alg-C. 532 :vkcl I;ZFM + A2 Loonsist + A3 Lyec

until convergence

4 EXPERIMENTS

TCF naturally supports a variety of training strategies, and we provide detailed experimental results
in the Appendix While strategies such as distillation or joint training with a pretrained model
may yield stronger performance, we emphasize that end-to-end training remains more scalable and
versatile. It not only facilitates straightforward extension to other datasets but also offers greater con-
venience for downstream adaptation like supervised fine-tuning (SFT). For these reasons, we prefer
the end-to-end training paradigm as the default choice in our framework. Due to page limitations,
we provide experimental details and extended results in Appendix [D}

4.1 COMPARISON WITH BASELINE MODELS

We first evaluate our method on the CIFAR-10 dataset (Krizhevsky et al.,2009), adopting the default
architecture and training settings from Rectified Flow (Liu et al.,2023)) to ensure a controlled setup
for direct comparison. In addition to our baseline, we also train two reference models: (i) a model
optimized with the consistency training objective from (Song et al.l [2023)), denoted as consistency
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Table 1: Comparison of the proposed model and baseline models.

Model Sampling Method NFE (]) FID (}) IS (1)
Euler 10 12.8 8.50
. : Euler 100 3.30 9.38
RF (baseline) [Liu et al.|(2023) Euler 1000 274 952
RK45 116 2.62 9.50
Consistency Training - 2 4.7 8.92
Shortcut Model - 2 4.12 9.12
Euler (po) 10 12.8 (12.9) 8.48 (8.53)
Euler (po) 100 3.34(3.33)  9.36(9.55)
Euler (po) 1000 270 (2.78)  9.56 (9.56)

Second-Order ODE Solver 10 3.58(3.81) 9.38(9.12)

TCF Alg-A (Alg-B) Second-Order ODE Solver 100 2.63(2.81) 9.71 (9.58)

- 1 6.72 (6.96) 8.46 (8.32)
- 2 3.71 (3.68) 9.31(9.38)
- 5 2.69 (2.81)  9.58 (9.58)
- 10 2.61(2.64) 9.68(9.61)
Second-Order ODE Solver 10 3.60 9.38
Second-Order ODE Solver 100 2.65 9.38
Third-Order ODE Solver 5 2.98 9.31
TCF Alg-C Third-Order ODE Solver 10 2.65 9.61
- 1 3.98 9.24
- 2 2.95 9.54
- 5 2.61 9.58
FID vs NFE FID vs Training iterations
i —&— CT —e— TCF Alg-A (5 NFE)

=
5

Shortcut Model
—e— TCF Alg-A
8- TCF Alg-B
—¥— TCF Alg-C

TCF Alg-B (5 NFE)
—¥— TCF Alg-C (5 NFE)
—&— TCF pg Euler (100 NFE)

o

«
@

o

IS
FID Score (1)

FID Score (1)

w
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Number of Function Evaluations (NFE) Training iterations (k steps)

Figure 2: FID scores across various NFEs and training steps.

training, and (ii) a shortcut model (Frans et al.,|2025) that follows the same trajectory design as ours.
For both reference models, we strictly reuse our network architecture and training configuration,
ensuring fairness in comparison. Details of the sampling algorithm are provided in Appendix [C}
Table [I] summarizes the quantitative results. When using first-order Euler sampling, our method
achieves nearly identical performance to the baseline model in sampling from pg, confirming that
the joint training of gy does not interfere with the flow-matching dynamics of py. However, under a
second-order ODE solver, our approach significantly outperforms the baseline with the same num-
ber of function evaluations (NFE). This highlights the strength of our framework: the Taylor-based
formulation of fy grants access to higher-order derivatives, enabling more accurate integration be-
yond conventional flow matching setups. Moreover, few-step sampling via gy attains sample quality
comparable to full Rectified Flow simulation while requiring far fewer steps, demonstrating that g
effectively approximates the trajectory induced by py. In particular, we find that a third-order Taylor
expansion yields a substantial improvement over the second-order version, further enhancing sample
quality without requiring additional NFEs. Finally, our fast sampler not only surpasses the shortcut
baseline but also consistently outperforms the consistency training model (Song et al., 2023)), show-
ing that our method benefits from both stronger modeling fidelity and improved training efficiency.
Further results across different training steps and NFEs are presented in Figure[2]

4.2 COMPUTATION COST AND TRAINING STABILITY

Our training procedure requires only one gradient-tracked forward pass and one backward pass per
step—consistent with standard flow matching methods. The additional overhead arises from one (in
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Alg-B) or two (in Alg-A, C) extra forward passes used for enforcing self-consistency, resulting in a
modest 30%-50% increase in per-step runtime. Despite this, training remains highly efficient and
stable. Across all experiments, we observe no signs of divergence or numerical instability.

4.3 EXPLORING DESIGN CHOICES

While the preceding configuration yields promising results, it still lags behind state-of-the-art
(SOTA) generative models (Karras et al., |2022) in terms of sample quality, particularly as mea-
sured by FID. In this subsection, we analyze the root causes of this performance gap and propose
targeted improvements. We identify two main factors contributing to the observed discrepancy:1)
architectural gap between py and SOTA diffusion models: The architecture inherited from Rec-
tified Flow lacks the representational capacity and training sophistication of modern designs such as
those used in diffusion models (Karras et al., 2022). And 2) approximation gap between ¢y and
po: Even if pg produces high-quality samples, insufficient approximation by ¢y may degrade fast
sampling performance. To systematically address both issues, we adopt a two-stage strategy: first
enhancing the architecture and training of py, then improving the approximation quality of gg.

Enhancing the flow matching model
pe. We improve pg through both archi-

Table 2: Reuslts on CIFAR-10 (unconditional).

tectural and training enhancements. Ar- METHOD NFE () FID (])
chitecturally, we integrate key design pastsamplers & distillation models
components that strengthen model ex- BPNM-solver-fast (Lu et al.}|2022) 10 470

pressiveness. We adopt the log-normal
time distribution from EDM, mapped to
[0,1] via a sigmoid transformation, in-
troduce input weighting regularized by

1/4/(1 —t)? + to3,,,, and employ larger

3-DEIS (Zhang & Chen, [2023)
UniPC (Zhao et al.}|2023)
DFNO (LPIPS) (Zheng et al.,[2023)

4.17
3.87
3.78

TRACT (Berthelot et al.,[2023) 3.32

batch sizes (from 512 to 2048) with ex-
tended training (from 400k to 800k steps).
Together, these refinements reduce the
FID on CIFAR-10 to 2.10, substantially

Diff-Instruct (Luo et al.,[2023))
CD (LPIPS) (Song et al.| [2023)
SIM (Luo et al., [2024)

Direct Generation

10
10
1
2-Rectified Flow (+distill) (Liu et al.}2023) 1 4.85
2
1
2
1

4.53
293
2.06

. : ; : Score SDE (Song et al.,|2021b) 2000  2.38
narrowing the gap with diffusion models.  pppm (Ho et al., 2020) 1000 3.17
LSGM (Vahdat et al.}[2021) 147 2.10
Refining the fast sampler gy. With a PFGM (Xu et al,|[2022) 110 2.35
stronger py in place, we focus on reduc- EDM (Karras et al., 2022) 35 1.97
ing the mismatch between g and py. We NVAE (Vahdat & Kautz, 2020) 1 23.5
find that several factors influence the final G10% (Kingma & Dhariwal, 2018) ! 489
. . . MeanFlow (Geng et al.|[2025a) 1 292
perforrpaqce Qf Pg, including the choice of IMM (Zhou ot al [2025) ) 1.98
time distributions (t.l aqd ts), th(; use of Consistency model family
absolut@: versus relative time COndlthI'llng, CT (LPIPS) (Song ot al | 2023) 5 R
the design of the {5 loss, and the weight- ;T (Song & Dhariwal, 2024) 2 246
ing of different loss terms. Each of these ECM (Geng et al.|[2025b) 2 2.11
components plays a critical role in main- sCM (Lu & Song][2025)) 2 2.06
taining trajectory consistency and achiev- Ours
ing high-fidelity few-step sampling. For TCF (Alg-C) 1 3.65
clarity and reproducibility, we provide de- TCF (Alg-C) 2 245
tailed implementation and hyperparameter TCF (Alg-C) 5 2.28
TCF (Alg-C) 10 2.10

specifications in Appendix [D.2] where we
systematically evaluate the effect of these

factors on sampling quality and training stability.

As summarized in Table [2] and Table [3] the TCF model achieves competitive results with only 2
or 5 sampling steps, highlighting its efficiency in generation. Compared to recent methods in the
Consistency Model family, TCF shows slightly lower performance in FID. However, these stronger
baselines often come at the cost of increased training or inference complexity. For example, TCM
(Lee et al.| |2025) requires multi-stage training, and sCM (Lu & Song} 2025) depends on expensive
Jacobian-vector product (JVP) computations. In contrast, TCF maintains a simpler, single-stage
training process with good stability and lower memory overhead, making it more practical for real-
world applications.
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5 RELATED WORK

A general strategy for accelerating generative

models is self-distillation explicitly or implic-  conditional).
itly, where a multi-step teacher model and a
fast student model are jointly learned in a METHOD NEE (1) FID (})

single training process. Consistency Models

Table 3: Results on ImageNet 64 x 64 (class-

Fast samplers & distillation models

(CMs) (SOHg et al.} |2023) follow this paradigm DDIM (Song et al.[[2021a) 10 183
by using a single network and a single loss to  DPM solver (Lu et al.. 2022) 10 7.93
enforce temporal consistency, thereby enabling DEIS (Zhang & Chen, 2023) 10 6.65
few-step or even single-step sampling. Despite DFNO (LPIPS) (Zheng et al.l 2023) 1 7.83
their sampling efficiency, however, CMs face TRACT (Berthelot et al.|[2023) 2 4.97
significant training challenges: they often re- Diff-Instruct (Luo et al., 2023) 1 5.57
quire substantially longer training time com- CD (LPIPS) (Song et al.{|2023) 2 4.70
pared to diffusion models of similar quality, and ggg\t/[((;:lge::;ogozo) S—TT0
hinders theis practcal dopton. These Timita.  DOPM (ichol & Dhariwal o021) - 250 292
. . ’ ADM (Dhariwal & Nichol, 2021) 250 2.07
tions have motivated subsequent works (Geng gy (Rarras ot al L 2022) 511 1.36
et al., 2025b;|Song et al., [2023; [Lee et al., 2025, gpMm (Heun) (Karras et all[2022) 79 244
Lu & Song| [2025) that aim to improve stabil-  Consistency model family
ity, efficiency, and overall performance. Con- T (LPIPS) (Song et al.]|2023) ) 1.1
sistency Trajectory Models (CTMs) (Kim etal., iCT (Song et al}2023) 2 3.20
2023)) extend the self-distillation idea by intro- ECM-S (Geng et al.;[2025b) 2 2.79
ducing separate networks and separate objec- TCM (Lee et al.,[2025) 2 231
tives for the teacher and student, while rely- SCM (Lu & Song, 2025) 2 1.48
ing on repeated ODE solver calls during train- Qurs
ing. Although this improves flexibility, the TCF Alg-C 1 3.94
heavy solver dependence increases training cost TCF Alg-C 2 294
and introduces solver-induced errors, which de- ¥g£ iiig 150 gfg

grade performance in the absence of adversarial
training. More recent approaches such as Shortcut Models (Frans et al.,|2025) and MeanFlow (Geng
et al.| [2025a)) train both the teacher py and the student gy with shared parameters, but apply different
objectives to different samples within the same batch, which complicates optimization and reduces
efficiency. In particular, MeanFlow requires Jacobian—vector product (JVP) computations, which
not only incur high memory overhead but also demand specialized hardware support—many de-
vices offer limited or inefficient JVP implementations, further constraining scalability and stability.
SplitMeanFlow |Guo et al., 2025 mitigates this issue by removing the JVP requirement; however, its
effectiveness for image generation or training from scratch has not been demonstrated. A different
direction, IMM (Zhou et al., |2025), extends CMs with an MMD-based loss, aligning teacher and
student distributions at the distributional level rather than matching ODE trajectories directly, which
results in more stable training and strong empirical performance. Compared with these methods, our
framework jointly trains pg and gy through a unified objective that is applied consistently to every
sample, simplifying optimization while ensuring both stability and efficiency.

We also include a discussion on various distillation strategies in Appendix [E]

6 CONCLUSION

In this work, we introduced Trajectory-Consistent Flows (TCF), a novel generative framework that
unifies efficient training and accelerated sampling through a Taylor-expansion-based formulation.
Our framework jointly optimizes a flow matching model py and its fast-sampling surrogate gy via a
unified training objective, eliminating the need for iterative ODE or SDE solvers. We designed gy
as a trajectory-consistent approximation of py’s ODE flow using a second-order Taylor expansion,
which enables accurate generation with as few as 5 sampling steps. We further extended this idea to
a third-order expansion, achieving additional performance gains without extra computational cost.
Beyond the Taylor-based formulation, we explored architectural and training improvements and
demonstrated that TCF approaches the performance of state-of-the-art diffusion and flow matching
models across multiple datasets. Overall, our study highlights that principled higher-order modeling
provides a powerful alternative to existing generative paradigms, combining the efficiency of flow-
based approaches with the sample quality of diffusion models.
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7 ETHICS AND BROADER IMPACT STATEMENT

Generative models have widespread applications, ranging from creative content generation to data
augmentation and scientific simulation. Our proposed framework advances this field by significantly
reducing the computational cost of high-fidelity sample generation, making it more accessible for
deployment in real-time or resource-constrained environments. This may democratize generative
technologies in areas such as mobile Al interactive media, or edge computing.

However, as with all generative models, potential risks arise along with utilization. Fast and efficient
generation may exacerbate the misuse of synthetic content in misinformation, deepfakes, or privacy-
violating applications. Additionally, acceleration may lead to wider deployment without sufficient
oversight. We encourage researchers and practitioners to apply this method responsibly and in accor-
dance with ethical guidelines, particularly in contexts involving sensitive or human-centered data.

8 REPRODUCIBILITY

In this work, we propose TCEF, a novel training framework that jointly optimizes a standard flow
matching model and its fast-sampling surrogate through a unified objective. A detailed explanation
of the algorithm itself is provided in Section |3} with theoretical proofs provided in Appendix
Sampling strategies are introduced in Appendix [C} Main experimental results are in Sectiond] with
more details and extended results presented in Appendix
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A THEORETICAL RESULTS

A.1 PROOF OF THEOREMII]

Theorem [1| If the trajectory function fy satisfies the Boundary Condition, Self-Consistency, and
Velocity Consistency, then the trajectory it defines aligns with the ODE trajectory governed by py.
As a result, the surrogate sampler qy becomes trajectory-consistent with the flow induced by py.

Proof. Let x; = fo(x,,t) denote the output of the surrogate sampler starting from the input state
x, at time 7. To prove trajectory consistency, we need to show that fy satisfies the same ODE as py,
ie.,

dwt o

o o (@, 1), Vite[r1]. (23)

We begin by computing the time derivative of fy:

Uolerst) _ yy Jolert+ 80— foer,t) o
= Jm, PR @
Using the Self-Consistency condition, we can write:
fo(mrt+ At) = fo(fo(mr,1),t + At) = fo(mi, t + Al). (26)
Recall the Boundary Condition, we have:
fo(xe, t) = x4 27
Substituting Eq. [26]and 27]back to Eq. 23] we get:
_Ofs (afitv t) (29)
By the Velocity Consistency condition, we have:
%azt’t) = v(gp)(:ct7 t). (30)
z1=fo(x+,t)
Thus, we conclude that:
% = 7%(;7,75) = v (@4, 1), 31)
which proves that fy produces a trajectory consistent with the ODE solution defined by py. O
A.2  PROOF OF PROPOSITION/(I]
Proposition[T] Suppose the model py is trained using the following flow matching loss:
Ly = Exg a7 [va(a:ﬁ t) = Vuargerl || (32)

where . = (1 — T)xg + 71, and Viarger = T1 — Tg is a reference velocity field that depends only
on xqy, x1. Then, the learned velocity field vy satisfies the following invariance:

vg(xr,t) = vo(xr,7), Vte][r1]. (33)

As a result, the velocity consistency constraint is automatically satisfied.
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Proof. During training, the objective in Eq. [I2] aims to minimize the discrepancy between the
predicted velocity vg(x,, t) and the reference velocity Vtarget» Which is independent of ¢. That is, the
supervision signal does not change with the value of ¢ and remains fixed for a given x .

Therefore, under sufficient optimization, the model has no incentive to vary its output with respect
to ¢; the optimal solution will be invariant in ¢, and thus the network will learn to output the same
velocity vector regardless of the ¢-input. In other words,

vg(x,,t) =vo(x,r,7), Vte]r1]. (34)

This implies that the velocity predicted by the model at any target time ¢ coincides with the velocity
at the starting time 7, satisfying the velocity consistency condition:

9fo(xr,t)

o = 'UQ(:BT7 T) = 'Ua(m.,-, t) (35)

t=1

O

A.3 PROOF OF COROLLARY[I]

Corollary (1| Let At be a small time increment and fo(x,,t) be a trajectory function that satisfies
the following local consistency condition:

fo(zr,t) = fo(xriat,t), wherexrinr= fo(zr, 7+ Al). (36)
Then, for any T < t1 < to, the function also satisfies the global Self-Consistency constraint:
fH(m‘ratQ) :fQ(fQ(wTatl)atZ)' (37)

Proof. We aim to show that repeated application of the local condition leads to the global Self-
Consistency property. Divide the interval from 7 to ¢; into small steps of size At, such that:

T=Tp<T=T+Al<T=7T+2A0t< - < T, =17. (38)
Using the local condition iteratively, we obtain:

fo(zr,t2) = fo(xr , t2) = fo(xr,, t2) = -~ = fo(xr,, t2), (39)
where each &, = fo(x,,7;) fori=1,... n.

In particular, x,, = fo(x,,t1), and hence:

fo(xr,t2) = fo(fo(xr,t1),t2), (40)

which proves the global Self-Consistency constraint. O

A.4 PROOF OF PROPOSITION[2]

Proposition2} Suppose the model 0 is trained using the following loss:

2
ACvec = H ’U;(ZET,t2> - v;(wt13ﬁ2)H2- (4])

Then vy corresponds to the instantaneous velocity at the terminal position, and such velocities are
simultaneously guaranteed to remain self-consistent across decompositions.

Proof. During training, t; is sampled arbitrarily over the trajectory and all such ¢; points are used
to supervise v,. Therefore, at convergence, we have

’U; (mtl ) t2) = ’U; (mtz ) t2)7 (42)
for any ¢; along the trajectory.

By definition, v} (x,, t2) corresponds to the instantaneous velocity at the start position. That is,

dfo(x7,1)

ot t=to 3)

v;($t2’t2) = v9($t27t2) =

Combining the above equalities, we see that the self-consistency velocity loss ensures both:
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1. Terminal velocity agreement: vj correctly predicts the instantaneous velocity of fy at ¢o.

2. Trajectory decomposition consistency: velocities predicted from any intermediate point
x, match the terminal velocity, i.e.,

v (@1, t2) = vg(T7, t2).
Hence, minimizing L. guarantees that v remains self-consistent across trajectory decompositions
while accurately representing the instantaneous velocity at the terminal state.

O

B EXPLANATION OF EQUATION [I§]

A natural way to strengthen the self-consistency constraint is to additionally enforce velocity con-
sistency at ¢ from any starting point ¢; along the same trajectory. Formally, given «, and x,, with
T < t1 < tg, we require

Uy (ig), tg) = vy <i‘gl), tg) , 44)

where vy (x,t) = W

denotes the instantaneous velocity.
t

Concretely, the computation proceeds as follows:

. L (t
xy, = fo(xr,11), wg) = fo(xr,t2), -’B§21) = fo(xs,, t2). (45)
We then evaluate the instantaneous velocities at these two candidate terminal points:

™) = v, (@g),tg) o) =g (.’figl),'b) . (46)
The strengthened velocity-consistency loss is defined as

2
Evec = HU(T) - v(tl) (47)

’2'

Computational Cost. This strengthened constraint requires three forward evaluations of fy to ob-
tain o, , :&E:), and ﬁzgl). These forward passes are already present in the original self-consistency
computation and therefore do not introduce extra cost. The main additional overhead comes from the

two velocity evaluations vy (icg), tg) and vy (ﬁcgl), tg). In practice, this corresponds to gradient-

based directional computations through the network, which are substantially more expensive than
standard forward evaluations. As a result, enforcing velocity-consistency leads to significantly
higher training overhead compared with enforcing value-consistency alone.

C SAMPLING

Our framework incorporates two model distributions, pg and gy, enabling flexible and efficient sam-

pling strategies. Following standard flow matching approaches, sampling from py can be generated

by solving the neural ODE defined by 'uép ) using numerical solvers (Chen et al.,|2018). Alternatively,

fast sampling is enabled by directly evaluating gy via the learned mapping fy, which eliminates the
need for iterative solvers. In addition, since fy is explicitly constructed with a Taylor-like expansion
in time, its second-or third-order time derivative at the initial point is analytically accessible:

anH(mTat) 83f0($77t)
o iy~ @) ot3
This property allows us to employ second-order ODE solvers for sampling from py, potentially
achieving higher accuracy and efficiency than conventional first-order methods used in prior work.
We summarize the sampling procedures from both gy (via few-step generation) and pg (via second-
order numerical integration) in Algorithm 4] and Algorithm [5]respectively.

= wy(x,,7) (48)

t=1
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Algorithm 4 Sampling from gg Algorithm 5 Second-order ODE Solver

Input: model Fy, sequence of time points: 0 = Input: model Fy, sequence of time points: 0 =
hh <to< - <tn_1<tn=1 hh <to<- - <tn_1<tn=1
Sample inital noise x¢, ~ N(0,1) Sample inital noise x¢, ~ N(0,I)
fori =1to N —1do fort: =1to N — 1do

Tty — fo(xe;,tiv1) v,u < fo(xe,, ti)
end for Ty, g & Ty, + (ti+1 — ti)v + %(tiJrl — ti)Zu
T4 Ty end for
Output: z T4 Tiy

Output: x

D EXPERIMENTAL DETAILS

D.1 TRAINING USING THE DEFAULT CONFIGURATION OF RECTIFIED FLOW

We use the Adam optimizer with 8; = 0.9, 8> = 0.999, and a learning rate of 1 x 10~*. The
TCF models are trained for 1M steps with a batch size of 512 across 2 GPUs. We adopt cosine
learning rate decay and apply exponential moving average (EMA) with a decay rate of 0.9999. Most
architectural configurations follow the RF baseline, with the following key modifications:

* Unlike standard flow matching models, our framework requires an additional time input and
produces an extra output. To accommodate this, we introduce a dedicated time embedding
layer that conditions the model on both the reference time 7 and the target time ¢.

* The output dimension of the TCF model is set to 6 for Alg-A, B and 9 for Alg-C instead of
the standard 3 (for RGB images), which we interpret as a concatenation of two or three 3D
vectors.

Additionally, we apply a dropout rate of 0.2 throughout all our experiments.

For the consistency training (CT) model, we follow the exact architecture used in RF. The CT model
is trained for 2M steps on 2 GPUs with a total batch size of 512.

D.2 EXPLORING DESIGN CHOICES

To identify the optimal design choices for our model, we conduct a series of ablation studies, pre-
sented in Table[d] We adopt the same network architecture, hyperparameters, and data augmentation
strategies as EDM (Karras et al.| [2022) for CIFAR-10 and ImageNet-64, ensuring comparability
and robustness of our experiments. The resulting model sizes are 556M and 296M parameters, re-
spectively. All models in these experiments are built upon a base py model that achieves an FID
of 2.10 on CIFAR-10. The auxiliary variable 7 is sampled from a log-normal distribution, and all
evaluations are performed under a fixed number of function evaluations (NFE = 2). Each model is
trained for a total of 400k steps, ensuring convergence while allowing for a controlled comparison
of different factors, including the distributions of ¢; and 2, time conditioning, training weights, loss
types, and dropout rates.

D.3 EXPLORING DIFFERENT TRAINING STRATEGIES FOR TCF

We explore different training strategies for TCF to evaluate their impact on performance:
1. Training from scratch: TCF is trained entirely from random initialization.

2. Initialization with a pretrained flow matching model: The key distinction of TCF from stan-
dard flow matching or diffusion models lies in the inclusion of an additional time step input and
one or two auxiliary outputs. To ensure stable training, we initialize the linear mapping layers cor-
responding to the new input and output to zero. This allows the network to start training with a
well-performing baseline, and thanks to the presence of the flow matching loss, the performance of
the pretrained components remains largely unchanged throughout training.

3. Distillation from a pretrained flow matching model: Similar to the previous setup, we initialize
the additional input and output layers to zero and perform knowledge distillation from a pretrained
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1. Distribution of ¢; and ¢5

Setting FID
tg ~ U(T,l),tl ~ U(T7t2) 3.65
tg ~ U(T,].)ﬂfl :05(T+t2) 3.75
to Nl—(l—U(T,l))1'5,t1 NU(T,tQ) 3.20
tgN].—(l—U(T,].))2,t1NU(T,tz) 3.40
2. Training weights (A1, A2, \3)
Setting FID
1,1,1 3.65
1,2,1 3.55
1,5,1 3.10
1,5,2 3.20
1,5,0.5 3.15
3. Time conditioning
Condition FID
T,t 3.65
t 8.31
T, t—T 3.55
4. Loss types (Lrn, Leonsist > Lvec)
Loss FID
L2,1.2, 1.2 3.65
L2, Pseudo-Huber, Pseudo-Huber 3.68

Pseudo-Huber, Pseudo-Huber, Pseudo-Huber 3.92

5. Dropout rate

Dropout FID
0.13 3.65
0.20 3.55
0.30 3.63
0.00 4.12

Table 4: Ablation studies exploring design choices for our model. Each section reports FID under
specific variations of distributions, training weights, time conditioning, loss types, and dropout rates.

flow matching model. During this process, we substitute the reference vector field (e.g., 1 — o)
with the vector field generated by the pretrained model, allowing the student network to directly
learn from the teacher’s trajectory.

4. Decoupled training of flow matching module (v¢) and other components (ug4, wg): To reduce
training time, we directly use a trained flow matching model to predict the velocity vy, freezing its
parameters during the training of the auxiliary components (uy and wg). At inference time, we
combine vy with the learned auxiliary components ug and wg to generate the final trajectories,
enabling consistent and efficient sampling.

For strategies 2, 3 and 4, we employ a pretrained EDM model as the initialization. For strategies
3, 4, since the flow matching part is deterministic, we adopt a modified time sampling strategy: we
first sample D ~ U(0,1), then 7 ~ U(0,1 — D), and set to = 7 + D. This design increases the
expected time interval during training, which facilitates better few-step inference performance.
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Training Strategy Training Steps  FID
1. Training from scratch 800k 2.95
2. Initialization with pretrained flow matching 600k 2.93
3. Distillation from pretrained flow matching 200k 2.23
4. Decoupled training of vy and (ug, we) 200k 2.18

Table 5: Comparison of training steps and FID for different TCF training strategies. FID is evaluated
at NFE=2 for all strategies, except strategy 4, which effectively uses double NFE and roughly twice
the number of model parameters due to decoupled training.

E RELATED WORK: DISTILLATION FOR FAST SAMPLING

To accelerate sampling in diffusion and flow matching models, various model distillation strategies
have been proposed. A common approach is to use a pre-trained teacher model to generate synthetic
datasets, which are then used to supervise a fast student model (Luhman & Luhman| 2021} Liu et al.,
2023; Lee et al., 2024} Kim et al.| [2025). However, these methods often suffer from performance
degradation due to the limited quality or diversity of the synthetic data. Another line of work adopts
progressive distillation, where sampling trajectories are shortened in multiple stages (Salimans &
Ho, 2022). While this reduces computation, it tends to introduce cumulative approximation errors
that affect final sample quality. More recent approaches employ consistency-based objectives, such
as trajectory alignment or self-consistency constraints, to distill models in a single stage, avoid-
ing reliance on synthetic data while achieving faster sampling with improved fidelity (Song et al.,
2023). A different class of methods learns auxiliary networks to approximate the score function
or its implicit distribution, enabling direct sampling but requiring careful design and tuning of ad-
ditional components (Luo et al., 2024). Unlike all the approaches mentioned above, our method
avoids the need for teacher models, synthetic datasets, or auxiliary score predictors. Instead, we
jointly train a base model py and a fast sampler gy, where alignment between the two distributions is
enforced through integration-free consistency constraints. This design allows for efficient training
and accurate, solver-free sampling in a fully self-contained framework.

F LIMITATIONS

While our method achieves high-quality image generation, several limitations remain. First, al-
though our approach dramatically reduces the number of sampling steps, the resulting sample quality
still slightly lags behind the best-performing consistency models in terms of FID. This performance
gap could potentially be addressed in future work by exploring more effective time schedules and
designing improved loss functions that better capture the alignment between the model distribu-
tions. Second, our experiments are primarily conducted on standard datasets for unconditional or
class-conditional image generation. Extending the method to more complex, multi-modal domains,
such as text-to-image synthesis or video generation, may require additional architectural and algo-
rithmic innovations. Lastly, jointly optimizing two model distributions introduces extra complexity
in training, including the need for careful tuning of the loss coefficient to maintain a proper bal-
ance between the objectives. This may lead to increased training overhead. Future research may
explore more adaptive training strategies, alternative fast-sampling parameterizations, and broader
extensions of the framework to diverse data modalities and tasks.

G VISUALIZATION RESULTS

We present the visualization results on the next pages.

18



Under review as a conference paper at ICLR 2026

Figure 3: Unconditional CIFAR-10 results, Alg A
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SEAE AT

(¢) NFE 5, FID=2.28

Figure 4: Unconditional CIFAR-10 results, Alg C
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(c) NFE 10, FID=2.18

Figure 5: Results on ImageNet 64 x 64 (class-conditional), Alg C.
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