
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAJECTORY-CONSISTENT FLOWS: ENABLING FAST
SAMPLING FOR FLOW MATCHING MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion and flow matching models have recently achieved remarkable generative
performance, but their reliance on iterative ODE or SDE solvers results in slow
and computationally expensive sampling. In this work, we introduce Trajectory-
Consistent Flows (TCF), a framework that unifies efficient training and acceler-
ated sampling through a Taylor-expansion-based formulation. TCF jointly opti-
mizes a flow matching model pθ and a fast-sampling surrogate qθ via a unified
objective. We construct qθ using a second-order Taylor expansion as a trajectory-
consistent approximation of pθ’s ODE flow, enabling high-fidelity generation with
as few as 5 sampling steps. We further extend this idea to a third-order expansion,
achieving additional performance gains without increasing computational cost.
With further architectural and training enhancements, TCF achieves significantly
improved sampling quality while retaining fast and stable training, making it par-
ticularly suitable for real-time generative applications.

1 INTRODUCTION

Generative modeling aims to approximate the true data distribution pdata(x) by learning a parame-
terized model distribution pθ(x). Since pdata(x) is typically unknown, direct minimization of the
Kullback–Leibler (KL) divergence between pθ(x) and pdata(x) is infeasible. Instead, Maximum
Likelihood Estimation (MLE) provides a tractable surrogate by maximizing the log-likelihood over
observed samples drawn from an empirical distribution p̂data(x) (Espuña I Fontcuberta, 2022). This
procedure corresponds to minimizing the KL divergence DKL(p̂data(x) ∥ pθ(x)), thereby encour-
aging pθ(x) to align closely with p̂data(x):

min
θ

DKL(p̂data(x) ∥ pθ(x)) = min
θ

[Ex∼p̂data
[log p̂data(x)]− Ex∼p̂data

[log pθ(x)]] (1)

∝ max
θ

Ex∼p̂data
[log pθ(x)] (2)

In recent years, expressive models such as diffusion models (Ho et al., 2020; Dhariwal & Nichol,
2021) and flow matching models (Lipman et al., 2023; Liu et al., 2023) have emerged. These models
achieve state-of-the-art results across images, audio, and text, producing highly realistic samples.
Although they do not directly optimize the log-likelihood, their objectives can be interpreted as
variational bounds or approximations to the data likelihood, and empirical evidence suggests they
capture p̂data(x) effectively. From a theoretical perspective, diffusion and flow matching can be
seen as two sides of the same coin (Gao et al., 2024): diffusion models approximate the reverse-
time stochastic process of a noisy forward dynamics, whereas flow matching models learn to match
the conditional velocity for continuous transport. The primary drawback of both approaches is the
slow, iterative sampling process, which requires many function evaluations for a single output. This
inefficiency poses a significant barrier to real-time or resource-constrained applications, motivating
ongoing research on acceleration techniques and alternative model formulations.(Song et al., 2023;
Esser et al., 2024; Lu et al., 2022; Kim et al., 2023).

In this work, rather than pursuing a more accurate estimation of the data likelihood that simul-
taneously ensures both efficient sampling and high-fidelity generation, we propose an alternative
formulation. Specifically, we introduce a new model distribution qθ as a fast estimator of pθ and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

propose to train our model using a joint training objective:

min
θ

L(θ) = DKL(p̂data(x) ∥ pθ(x)) + λDKL(pθ(x) ∥ qθ(x)). (3)

Here the first term corresponds to a flow matching objective that trains pθ(x) to approximate
p̂data(x) and the second term encourages qθ(x) to align closely to pθ(x). Both pθ and qθ share
the same network parameters and are optimized jointly. In particular, we design qθ to be indepen-
dent of any ordinary differential equation (ODE) or stochastic differential equation (SDE) solver at
sampling time, enabling fast inference. As a result, the overall framework combines the high-fidelity
generation of flow matching with the sampling efficiency of qθ.

However, learning two model distributions together presents notable challenges. Since pθ and qθ
typically rely on different inference mechanisms, they often require different model formulations,
resulting in additional forward and backward passes. This significantly increases computational cost
and memory usage. In addition, while the first KL term can be efficiently optimized using a flow
matching loss, the second KL term is more difficult to handle in practice due to the lack of closed-
form densities of pθ and qθ. One feasible way to approximate the minimization of DKL(pθ(x) ∥
qθ(x)) is to encourage the outputs of the two model distribution to match under shared inputs. This
aligns with the idea of knowledge distillation techniques (Hinton et al., 2015). However, sampling
from pθ during joint training still requires solving an ODE, which is computationally expensive and
impractical. To overcome these difficulties, we propose an efficient framework that enables joint
training of pθ and qθ without ODE simulations. In summary, our contribution is as follows:

• We propose a novel training framework that jointly optimizes a standard flow matching
model pθ and its fast-sampling surrogate qθ through a unified objective, enabling efficient
training and generation without iterative ODE or SDE solvers.

• We construct qθ using a second-order Taylor expansion as a trajectory-consistent approxi-
mation of pθ’s ODE flow, and empirically show that it can match pθ’s performance with as
few as 5 sampling steps.

• We extend this approach to a third-order Taylor expansion, which improves upon the
second-order approximation effectively without increasing computational cost.

• We explore architectural design improvements, and demonstrate that, across multiple
datasets, our model approaches the performance of state-of-the-art diffusion and flow
matching models.

2 FLOW MATCHING AND RECTIFIED FLOW

Flow matching (Lipman et al., 2023) is a recent generative modeling paradigm that formulates sam-
ple generation as learning a continuous-time flow transporting a simple base distribution (e.g., Gaus-
sian noise) to p̂data(x). Unlike score-based diffusion models that rely on denoising score matching,
flow matching methods directly learn the vector field of an ODE (or its velocity function) that de-
fines the transport trajectory. The learning objective is constructed such that the model matches the
flow of an optimal transport or probability path between the source and target distributions, typically
using a loss function of the form:

LFM = Ex∼p̂data,t∼U(0,1)

[
∥v(x, t)− vθ(x, t)∥2

]
,

where U(·, ·) represents uniform distribution, v(·, ·) and vθ(·, ·) are the reference and learned ve-
locity fields, respectively. This formulation enjoys stable training, (in some cases) exact likelihood
evaluation, and interpretable dynamics (Lipman et al., 2023).

Rectified Flow (Liu et al., 2023), also known as Stochastic Interpolants (Albergo et al., 2023), is a
specific instance of flow matching that improves the generation quality and the training efficiency
by defining a “rectified” trajectory between noise and data samples. Instead of learning to match
arbitrary transport paths, Rectified Flow defines a linear interpolation between a data sample x1 and
its noisy counterpart x0, and constructs a target velocity field aligned with this interpolation. The
model is trained to match this field across various intermediate time steps t ∈ [0, 1], while generation
is performed by solving the learned ODE in reverse. Notably, Rectified Flow achieves high sam-
pling quality with fewer sampling steps and has become a competitive alternative to diffusion-based

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝑓𝜃 𝑥𝜏, τ = 𝑥𝜏

𝑥0 𝑥1𝑥𝜏 𝑥𝑡1 𝑥𝑡2

𝑓𝜃(𝑥𝜏, 𝑡2)

𝑓𝜃(𝑥𝜏, 𝑡1)

𝑝𝜃

𝑞𝜃

𝜕𝑓𝜃
𝜕𝑡

|𝑡=𝜏 = 𝑣𝜃
(𝑝)

⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅
𝑓𝜃(𝑥𝑡1 , 𝑡2)

Boundary Condition

Self-Consistency

Velocity Consistency

Figure 1: Illustration of TCF, which jointly learns two distributions, pθ and qθ. The training objective
combines flow matching (to train pθ) with distribution alignment between pθ and qθ. This alignment
is achieved via three core constraints, each represented by colored arrows in the figure.

models. However, it still relies on numerical integration in learned flow with solvers such as RK45
(Virtanen et al., 2020), which incurs a high computational cost in inference time.

3 TRAJECTORY-CONSISTENT FLOWS

We begin by modeling the generative process pθ as a flow matching model governed by a neural
ODE parameterized by θ:

dxt

dt
= v

(p)
θ (xt, t), with xt = (1− t)x0 + tx1, for t ∈ [0, 1] (4)

where x0 ∼ N (0, I) and x1 ∼ p̂data(x). This ODE defines a continuous trajectory that interpolates
between Gaussian noise and real data with a linear reference velocity field.

To enable fast inference, we introduce a surrogate distribution qθ to approximate the ODE solution
defined by pθ. To ensure that qθ faithfully approximates the behavior of pθ, we require the two
models to produce identical outputs under the same input. This is equivalent to demanding that the
trajectories generated by qθ and the ODE flow induced by pθ remain perfectly aligned given the
same input state—an objective we refer to as trajectory consistency. Specifically, for any data point
xτ at time τ ∈ [0, 1], with t ∈ [τ, 1] and xt be an arbitrary point that lies along the ODE trajectory
staring from xτ , we define fθ, the trajectory function of qθ, to estimate xt given xτ via:

fθ(xτ , t) = xt and xt = xτ +

∫ t

τ

v
(p)
θ (xξ, ξ) dξ, (5)

where xξ denotes the latent state at intermediate time ξ along the same trajectory defined by the
ODE. In particular, one-step generation can be achieved by evaluating fθ(x0, 1). However, com-
puting this integral during training is intractable. To address this, we propose three integration-free
constraints that enable the learning of fθ without relying on ODE solvers:

Boundary Condition. Ensures that fθ reduces to the identity map at its starting point:

fθ(xτ , τ) = xτ . (6)

Self-Consistency. Enforces that a long-range transformation can be decomposed into intermediate
steps along the same trajectory:

fθ(xτ , t2) = fθ(fθ(xτ , t1), t2), ∀ t1 ∈ [τ, 1] and t2 ∈ [t1, 1]. (7)

Velocity Consistency. Ensures that the time derivative of fθ at the starting time aligns with the
ODE’s velocity:

∂fθ(xτ , t)

∂t

∣∣∣∣
t=τ

= v
(p)
θ (xτ , τ). (8)

Theorem 1. If fθ satisfies all three constraints, then its trajectory aligns with the ODE trajectory
governed by pθ, ensuring that qθ converges to pθ in a trajectory-consistent manner.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The formal proof of Theorem 1 is provided in Appendix A.1. Importantly, these constraints are
integration-free and thus avoid expensive numerical simulations during training. To better illustrate
how our model jointly learns the distributions pθ and qθ through the proposed constraints, we provide
a schematic visualization in Figure 1. This theoretical result forms the foundation of our training
framework. All subsequent design choices and algorithmic developments build upon this principle.

3.1 FORMULATION OF fθ AND TRAINING OBJECTIVES

The naive implementation of the above constraints can require multiple network evaluations. In
this section, we propose an efficient parameterization of fθ that supports fast and scalable training.
We first parameterize the trajectory function fθ : (xτ , t) 7→ xt using a second-order Taylor-like
expansion:

fθ(xτ , t) = xτ + (t− τ)vθ(xτ , t) +
1

2
(t− τ)2uθ(xτ , t), t ∈ [τ, 1]. (9)

where vθ and uθ are the two outputs of a shared neural network with separate heads. This formula-
tion provides an explicit parametric structure for fθ, allowing its first- and second-order derivatives
with respect to t at t = τ to be computed analytically, without the need for numerical differentia-
tion. Notice that, with this formulation, the boundary condition is also satisfied by design. We now
describe our training objectives, which involve training both pθ and qθ.

Flow Matching Training. As introduced earlier, pθ is trained via the standard flow matching
objective:

LFM =
∥∥∥v(p)

θ (xτ , τ)− (x1 − x0)
∥∥∥2
2
. (10)

According to the velocity consistency constraint, we have v
(p)
θ (xτ , τ) = vθ(xτ , τ). In practice, we

relax this to:
v
(p)
θ (xτ , τ) ≈ vθ(xτ , t), for any t ≥ τ, (11)

then the flow matching objective could be rewritten as:

LFM = ∥vθ(xτ , t)− (x1 − x0)∥22 . (12)
Proposition 1. Suppose pθ is trained using Eq. 12, then vθ satisfies:

vθ(xτ , t) ≡ vθ(xτ , τ), ∀ t ∈ [τ, 1]. (13)
Thus, the velocity consistency constraint is satisfied.

This invariance emerges because the optimal prediction of vθ is primarily determined by the input
xτ and the network weights, while the time input t should not affect the learned dynamics. In
other words, vθ represents the instantaneous velocity at the starting position xτ . A detailed proof of
Proposition 1 is in Appendix A.2.

Self-Consistency Training. Given that the boundary condition and velocity consistency con-
straints are satisfied by construction, the training of qθ focuses on enforcing self-consistency. Specif-
ically, we minimize the discrepancy between the direct and two-step compositions reaching the same
target time t2:

Lconsist =

∥∥∥∥fθ(xτ , t2)− sg[fθ(fθ(xτ , t1), t2)]

t2 − τ

∥∥∥∥2
2

. (14)

Here sg[·] denotes the stop-gradient operator that blocks gradient flow through the reference trajec-
tory. The (t2−τ) normalization ensures scale-invariant learning across different time intervals. This
loss stimulates the function values at t2 to remain consistent across various trajectory decomposi-
tions.

To optimize fθ under the proposed constraints, we design the training process outlined in Algo-
rithm 1, referred to as Alg-A. This procedure incorporates all loss terms and requires three forward
passes—only one of which involves gradient computation—followed by a single backward pass,
enabling effective and reasonably efficient training. While Alg-A yields strong empirical results, we
also develop a lightweight alternative that further reduces training computational cost. Specifically,
enforcing the Self-consistency constraint in its original form typically involves three evaluations of
fθ. However, we observe that this constraint can be relaxed to the following local condition:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Corollary 1. Let ∆t be a small time increment and fθ(xτ , t) be a trajectory function that satisfies
the following local consistency condition:

fθ(xτ , t) = fθ(xτ+∆t, t), where xτ+∆t = fθ(xτ , τ +∆t). (15)

Then, fθ also satisfies the global Self-Consistency constraint for any t ∈ [τ +∆t, 1]:

fθ(xτ , t2) = fθ(fθ(xτ , t1), t2) ∀ t1 ∈ [τ, t2]. (16)

Intuitively, this constraint states that if two points are infinitesimally close along the ODE path,
their mappings to a future time t should agree. We prove in Appendix A.3 that training with this
local constraint is equivalent to enforcing the original Self-consistency constraint. However, direct
optimization of Eq. 15 still requires three forward passes. To reduce this cost, we approximate
xτ+∆t using the first-order Taylor expansion of fθ at time τ :

fθ(xτ , τ +∆t) = xτ +∆tvθ(xτ , τ +∆t) +O(∆t2) ≈ xτ +∆tvθ(xτ , t). (17)

Here, we reuse t in place of τ +∆t as the target time for efficiency, under the assumption of Eq. 13.
This approximation reduces the training overhead by eliminating one forward evaluation and leads
to a more efficient training algorithm, denoted as Alg-B (see Algorithm 2).

Algorithm 1 Training algorithm A
Input: dataset D, initial model Fθ , learning rate η
repeat

x1 ∼ D
x0 ∼ N (0, I)
τ, t1, t2 ← sample times() ▷ τ < t1 < t2
xτ ← τx1 + (1− τ)x0

with no gradient
xt1 ← fθ(xτ , t1) ▷ Eq. 9
xt2 ← fθ(xt1 , t2)

x̂t2 ,v ← fθ(xτ , t2)
LFM ← ∥v − (x1 − x0)∥22
Lconsist ←

∥∥xt2
−x̂t2

t2−τ

∥∥2

2

Lall ← λ1LFM + λ2Lconsist

θ ← η∇Lall

until convergence

Algorithm 2 Training algorithm B
Input: dataset D, initial model Fθ , learning rate η,
small time interval ∆t
repeat

x1 ∼ D,x0 ∼ N (0, I)
τ, t2 ← sample times() ▷ τ +∆t < t2
t1 ← τ +∆t
xτ ← τx1 + (1− τ)x0

x̂t2 ,v ← fθ(xτ , t2) ▷ Eq. 9
with no gradient

xt1 ← xτ +∆t ∗ v
xt2 ← fθ(xt1 , t2)
LFM ← ∥v − (x1 − x0)∥22
Lconsist ←

∥∥xt2
−x̂t2

t2−τ

∥∥2

2

Lall ← λ1LFM + λ2Lconsist

θ ← η∇Lall

until convergence

3.2 THIRD-ORDER TAYLOR EXTENSION

The second-order Taylor parameterization in Eq. 9 provides a tractable formulation of fθ, but we
observe that the approximation gap between qθ and pθ remains non-negligible under few-step in-
ference. Among the three constraints introduced earlier, both the boundary condition and velocity
consistency are satisfied by construction, and our experiments further confirm that pθ itself performs
well. This suggests that the remaining limitation primarily stems from the self-consistency loss in
Eq. 14. While Eq. 14 enforces trajectory compositionality, it does not sufficiently constrain the
local velocity field at later time steps, which may lead to mismatches during few-step sampling.
We also experimented with alternative loss designs commonly used in generative modeling, such as
perceptual losses (e.g., LPIPS) (Song et al., 2023; Liu et al., 2023) and Pseudo-Huber loss (Song &
Dhariwal, 2024), but found that they did not offer significant improvements. This motivates us to
seek a more principled way to incorporate self-consistency constraints.

Previously, our self-consistency constraint only ensured function-value consistency at t2. A natural
way to strengthen this constraint is to additionally require velocity consistency at t2 from any start
point t1 on the same trajectory:

∂fθ(xτ , t)

∂t

∣∣∣∣
t=t2

=
∂fθ(xt1 , t)

∂t

∣∣∣∣
t=t2

. (18)

While our model can principally compute the instantaneous velocity at xt2 , enforcing Eq. 18 re-
quires additional function evaluations, which incur substantial computational overhead (detailed

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

explanation in Appendix B). Inspired by our earlier design where vθ and uθ share the same neu-
ral backbone, we extend this idea by introducing an additional output head such that computing
v∗
θ(xτ , t2), the instantaneous velocity at an arbitrary target timestep t2 is straightforward. In par-

ticular, v∗
θ(·, ·) is explicitly designed to satisfy:

v∗
θ(xτ , τ) = vθ(xτ , τ),

∂2fθ(xτ , t)

∂t2

∣∣∣
t=τ

= lim
t→τ

v∗
θ(xτ , t)− vθ(xτ , t)

t− τ
. (19)

Since the first- and second-order derivatives of fθ at τ are already determined by the instantaneous
velocity at the starting timestep (vθ) and the ending timestep (v∗

θ), we extend the model to a third-
order Taylor expansion to provide additional flexibility in trajectory modeling while retaining the
first- and second-order constraints:

fθ(xτ , t) = xτ + (t− τ)vθ(xτ , t) +
1
2 (t− τ)2uθ(xτ , t) +

1
6 (t− τ)3wθ(xτ , t), (20)

where wθ denotes an additional neural head that captures third-order dynamics. Under this formu-
lation, v∗

θ(xτ , t) can be parameterized as:

v∗
θ(xτ , t) = vθ(xτ , t) + (t− τ)uθ(xτ , t). (21)

This design ensures that Eq. 19 is naturally satisfied.
Proposition 2. Suppose the model θ is trained using the following loss:

Lvec =
∥∥∥v∗

θ(xτ , t2)− v∗
θ(xt1 , t2)

∥∥∥2
2
. (22)

Then v∗
θ corresponds to the instantaneous velocity at the target timestep, and such velocities are

simultaneously guaranteed to remain self-consistent across decompositions.

Algorithm 3 Training algorithm C
Input: dataset D, initial model Fθ , learning rate η
repeat

x1 ∼ D,x0 ∼ N (0, I)
τ, t1, t2 ← sample times() ▷ τ < t1 < t2
xτ ← τx1 + (1− τ)x0

with no gradient
xt1 ← fθ(xτ , t1) ▷ Eq. 20
xt2 ,v

(1),u(1) ← fθ(xt1 , t2)
x̂t2 ,v,u← fθ(xτ , t2)
LFM ← ∥v − (x1 − x0)∥22
Lconsist ←

∥∥xt2
−x̂t2

t2−τ

∥∥2

2

Lvec ← ∥v + (t2 − τ)u− (v(1) + (t2 − t1)u
(1))∥22

Lall ← λ1LFM + λ2Lconsist + λ3Lvec
θ ← η∇Lall

until convergence

The formal proof of Proposition 2 is pre-
sented in Appendix A.4. In principle, the
loss in Eq. 22 is sufficient to guarantee the
original self-consistency constraint. How-
ever, in practice, we detach the gradient
of v∗

θ(xt1 , t2) to significantly reduce both
computation and memory overhead. While
this approximation makes training feasible
at scale, it prevents the third-order term wθ

from receiving gradient signals. To com-
pensate for this limitation, we retain both
the original self-consistency loss (Eq. 14)
and the new velocity loss in our final objec-
tive. The detailed training process is pre-
sented in Algorithm 3, referred to as Alg-C.

4 EXPERIMENTS

TCF naturally supports a variety of training strategies, and we provide detailed experimental results
in the Appendix D.3. While strategies such as distillation or joint training with a pretrained model
may yield stronger performance, we emphasize that end-to-end training remains more scalable and
versatile. It not only facilitates straightforward extension to other datasets but also offers greater con-
venience for downstream adaptation like supervised fine-tuning (SFT). For these reasons, we prefer
the end-to-end training paradigm as the default choice in our framework. Due to page limitations,
we provide experimental details and extended results in Appendix D.

4.1 COMPARISON WITH BASELINE MODELS

We first evaluate our method on the CIFAR-10 dataset (Krizhevsky et al., 2009), adopting the default
architecture and training settings from Rectified Flow (Liu et al., 2023) to ensure a controlled setup
for direct comparison. In addition to our baseline, we also train two reference models: (i) a model
optimized with the consistency training objective from (Song et al., 2023), denoted as consistency

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the proposed model and baseline models.

Model Sampling Method NFE (↓) FID (↓) IS (↑)

RF (baseline) Liu et al. (2023)

Euler 10 12.8 8.50
Euler 100 3.30 9.38
Euler 1000 2.74 9.52
RK45 116 2.62 9.50

Consistency Training - 2 4.7 8.92
Shortcut Model - 2 4.12 9.12

TCF Alg-A (Alg-B)

Euler (pθ) 10 12.8 (12.9) 8.48 (8.53)
Euler (pθ) 100 3.34 (3.33) 9.36 (9.55)
Euler (pθ) 1000 2.70 (2.78) 9.56 (9.56)

Second-Order ODE Solver 10 3.58 (3.81) 9.38 (9.12)
Second-Order ODE Solver 100 2.63 (2.81) 9.71 (9.58)

- 1 6.72 (6.96) 8.46 (8.32)
- 2 3.71 (3.68) 9.31 (9.38)
- 5 2.69 (2.81) 9.58 (9.58)
- 10 2.61 (2.64) 9.68(9.61)

TCF Alg-C

Second-Order ODE Solver 10 3.60 9.38
Second-Order ODE Solver 100 2.65 9.38
Third-Order ODE Solver 5 2.98 9.31
Third-Order ODE Solver 10 2.65 9.61

- 1 3.98 9.24
- 2 2.95 9.54
- 5 2.61 9.58

1 2 5 10 20 100
Number of Function Evaluations (NFE)

3

4

5

6

7

FI
D

Sc
or

e
(

)

FID vs NFE
CT
Shortcut Model
TCF Alg-A
TCF Alg-B
TCF Alg-C

200 400 600 800 1000
Training iterations (k steps)

4

6

8

10

FI
D

Sc
or

e
(

)

FID vs Training iterations
TCF Alg-A (5 NFE)
TCF Alg-B (5 NFE)
TCF Alg-C (5 NFE)
TCF p Euler (100 NFE)

Figure 2: FID scores across various NFEs and training steps.

training, and (ii) a shortcut model (Frans et al., 2025) that follows the same trajectory design as ours.
For both reference models, we strictly reuse our network architecture and training configuration,
ensuring fairness in comparison. Details of the sampling algorithm are provided in Appendix C.
Table 1 summarizes the quantitative results. When using first-order Euler sampling, our method
achieves nearly identical performance to the baseline model in sampling from pθ, confirming that
the joint training of qθ does not interfere with the flow-matching dynamics of pθ. However, under a
second-order ODE solver, our approach significantly outperforms the baseline with the same num-
ber of function evaluations (NFE). This highlights the strength of our framework: the Taylor-based
formulation of fθ grants access to higher-order derivatives, enabling more accurate integration be-
yond conventional flow matching setups. Moreover, few-step sampling via qθ attains sample quality
comparable to full Rectified Flow simulation while requiring far fewer steps, demonstrating that qθ
effectively approximates the trajectory induced by pθ. In particular, we find that a third-order Taylor
expansion yields a substantial improvement over the second-order version, further enhancing sample
quality without requiring additional NFEs. Finally, our fast sampler not only surpasses the shortcut
baseline but also consistently outperforms the consistency training model (Song et al., 2023), show-
ing that our method benefits from both stronger modeling fidelity and improved training efficiency.
Further results across different training steps and NFEs are presented in Figure 2.

4.2 COMPUTATION COST AND TRAINING STABILITY

Our training procedure requires only one gradient-tracked forward pass and one backward pass per
step—consistent with standard flow matching methods. The additional overhead arises from one (in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Alg-B) or two (in Alg-A, C) extra forward passes used for enforcing self-consistency, resulting in a
modest 30%–50% increase in per-step runtime. Despite this, training remains highly efficient and
stable. Across all experiments, we observe no signs of divergence or numerical instability.

4.3 EXPLORING DESIGN CHOICES

While the preceding configuration yields promising results, it still lags behind state-of-the-art
(SOTA) generative models (Karras et al., 2022) in terms of sample quality, particularly as mea-
sured by FID. In this subsection, we analyze the root causes of this performance gap and propose
targeted improvements. We identify two main factors contributing to the observed discrepancy:1)
architectural gap between pθ and SOTA diffusion models: The architecture inherited from Rec-
tified Flow lacks the representational capacity and training sophistication of modern designs such as
those used in diffusion models (Karras et al., 2022). And 2) approximation gap between qθ and
pθ: Even if pθ produces high-quality samples, insufficient approximation by qθ may degrade fast
sampling performance. To systematically address both issues, we adopt a two-stage strategy: first
enhancing the architecture and training of pθ, then improving the approximation quality of qθ.

Table 2: Reuslts on CIFAR-10 (unconditional).

METHOD NFE (↓) FID (↓)
Fast samplers & distillation models
DPM-solver-fast (Lu et al., 2022) 10 4.70
3-DEIS (Zhang & Chen, 2023) 10 4.17
UniPC (Zhao et al., 2023) 10 3.87
DFNO (LPIPS) (Zheng et al., 2023) 1 3.78
2-Rectified Flow (+distill) (Liu et al., 2023) 1 4.85
TRACT (Berthelot et al., 2023) 2 3.32
Diff-Instruct (Luo et al., 2023) 1 4.53
CD (LPIPS) (Song et al., 2023) 2 2.93
SIM (Luo et al., 2024) 1 2.06
Direct Generation
Score SDE (Song et al., 2021b) 2000 2.38
DDPM (Ho et al., 2020) 1000 3.17
LSGM (Vahdat et al., 2021) 147 2.10
PFGM (Xu et al., 2022) 110 2.35
EDM (Karras et al., 2022) 35 1.97
NVAE (Vahdat & Kautz, 2020) 1 23.5
Glow (Kingma & Dhariwal, 2018) 1 48.9
MeanFlow (Geng et al., 2025a) 1 2.92
IMM (Zhou et al., 2025) 2 1.98
Consistency model family
CT (LPIPS) (Song et al., 2023) 2 5.83
iCT (Song & Dhariwal, 2024) 2 2.46
ECM (Geng et al., 2025b) 2 2.11
sCM (Lu & Song, 2025) 2 2.06
Ours
TCF (Alg-C) 1 3.65
TCF (Alg-C) 2 2.45
TCF (Alg-C) 5 2.28
TCF (Alg-C) 10 2.10

Enhancing the flow matching model
pθ. We improve pθ through both archi-
tectural and training enhancements. Ar-
chitecturally, we integrate key design
components that strengthen model ex-
pressiveness. We adopt the log-normal
time distribution from EDM, mapped to
[0, 1] via a sigmoid transformation, in-
troduce input weighting regularized by
1/
√
(1− t)2 + tσ2

data, and employ larger
batch sizes (from 512 to 2048) with ex-
tended training (from 400k to 800k steps).
Together, these refinements reduce the
FID on CIFAR-10 to 2.10, substantially
narrowing the gap with diffusion models.

Refining the fast sampler qθ. With a
stronger pθ in place, we focus on reduc-
ing the mismatch between qθ and pθ. We
find that several factors influence the final
performance of pθ, including the choice of
time distributions (t1 and t2), the use of
absolute versus relative time conditioning,
the design of the ℓ2 loss, and the weight-
ing of different loss terms. Each of these
components plays a critical role in main-
taining trajectory consistency and achiev-
ing high-fidelity few-step sampling. For
clarity and reproducibility, we provide de-
tailed implementation and hyperparameter
specifications in Appendix D.2, where we
systematically evaluate the effect of these
factors on sampling quality and training stability.

As summarized in Table 2 and Table 3, the TCF model achieves competitive results with only 2
or 5 sampling steps, highlighting its efficiency in generation. Compared to recent methods in the
Consistency Model family, TCF shows slightly lower performance in FID. However, these stronger
baselines often come at the cost of increased training or inference complexity. For example, TCM
(Lee et al., 2025) requires multi-stage training, and sCM (Lu & Song, 2025) depends on expensive
Jacobian-vector product (JVP) computations. In contrast, TCF maintains a simpler, single-stage
training process with good stability and lower memory overhead, making it more practical for real-
world applications.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Table 3: Results on ImageNet 64 × 64 (class-
conditional).

METHOD NFE (↓) FID (↓)
Fast samplers & distillation models
DDIM (Song et al., 2021a) 10 18.3
DPM solver (Lu et al., 2022) 10 7.93
DEIS (Zhang & Chen, 2023) 10 6.65
DFNO (LPIPS) (Zheng et al., 2023) 1 7.83
TRACT (Berthelot et al., 2023) 2 4.97
Diff-Instruct (Luo et al., 2023) 1 5.57
CD (LPIPS) (Song et al., 2023) 2 4.70
Direct Generation
DDPM (Ho et al., 2020) 250 11.0
iDDPM (Nichol & Dhariwal, 2021) 250 2.92
ADM (Dhariwal & Nichol, 2021) 250 2.07
EDM (Karras et al., 2022) 511 1.36
EDM (Heun) (Karras et al., 2022) 79 2.44
Consistency model family
CT (LPIPS) (Song et al., 2023) 2 11.1
iCT (Song et al., 2023) 2 3.20
ECM-S (Geng et al., 2025b) 2 2.79
TCM (Lee et al., 2025) 2 2.31
sCM (Lu & Song, 2025) 2 1.48
Ours
TCF Alg-C 1 3.94
TCF Alg-C 2 2.94
TCF Alg-C 5 2.24
TCF Alg-C 10 2.18

A general strategy for accelerating generative
models is self-distillation explicitly or implic-
itly, where a multi-step teacher model and a
fast student model are jointly learned in a
single training process. Consistency Models
(CMs) (Song et al., 2023) follow this paradigm
by using a single network and a single loss to
enforce temporal consistency, thereby enabling
few-step or even single-step sampling. Despite
their sampling efficiency, however, CMs face
significant training challenges: they often re-
quire substantially longer training time com-
pared to diffusion models of similar quality, and
involve intricate hyperparameter tuning, which
hinders their practical adoption. These limita-
tions have motivated subsequent works (Geng
et al., 2025b; Song et al., 2023; Lee et al., 2025;
Lu & Song, 2025) that aim to improve stabil-
ity, efficiency, and overall performance. Con-
sistency Trajectory Models (CTMs) (Kim et al.,
2023) extend the self-distillation idea by intro-
ducing separate networks and separate objec-
tives for the teacher and student, while rely-
ing on repeated ODE solver calls during train-
ing. Although this improves flexibility, the
heavy solver dependence increases training cost
and introduces solver-induced errors, which de-
grade performance in the absence of adversarial
training. More recent approaches such as Shortcut Models (Frans et al., 2025) and MeanFlow (Geng
et al., 2025a) train both the teacher pθ and the student qθ with shared parameters, but apply different
objectives to different samples within the same batch, which complicates optimization and reduces
efficiency. In particular, MeanFlow requires Jacobian–vector product (JVP) computations, which
not only incur high memory overhead but also demand specialized hardware support—many de-
vices offer limited or inefficient JVP implementations, further constraining scalability and stability.
SplitMeanFlow Guo et al., 2025 mitigates this issue by removing the JVP requirement; however, its
effectiveness for image generation or training from scratch has not been demonstrated. A different
direction, IMM (Zhou et al., 2025), extends CMs with an MMD-based loss, aligning teacher and
student distributions at the distributional level rather than matching ODE trajectories directly, which
results in more stable training and strong empirical performance. Compared with these methods, our
framework jointly trains pθ and qθ through a unified objective that is applied consistently to every
sample, simplifying optimization while ensuring both stability and efficiency.

We also include a discussion on various distillation strategies in Appendix E.

6 CONCLUSION

In this work, we introduced Trajectory-Consistent Flows (TCF), a novel generative framework that
unifies efficient training and accelerated sampling through a Taylor-expansion-based formulation.
Our framework jointly optimizes a flow matching model pθ and its fast-sampling surrogate qθ via a
unified training objective, eliminating the need for iterative ODE or SDE solvers. We designed qθ
as a trajectory-consistent approximation of pθ’s ODE flow using a second-order Taylor expansion,
which enables accurate generation with as few as 5 sampling steps. We further extended this idea to
a third-order expansion, achieving additional performance gains without extra computational cost.
Beyond the Taylor-based formulation, we explored architectural and training improvements and
demonstrated that TCF approaches the performance of state-of-the-art diffusion and flow matching
models across multiple datasets. Overall, our study highlights that principled higher-order modeling
provides a powerful alternative to existing generative paradigms, combining the efficiency of flow-
based approaches with the sample quality of diffusion models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS AND BROADER IMPACT STATEMENT

Generative models have widespread applications, ranging from creative content generation to data
augmentation and scientific simulation. Our proposed framework advances this field by significantly
reducing the computational cost of high-fidelity sample generation, making it more accessible for
deployment in real-time or resource-constrained environments. This may democratize generative
technologies in areas such as mobile AI, interactive media, or edge computing.

However, as with all generative models, potential risks arise along with utilization. Fast and efficient
generation may exacerbate the misuse of synthetic content in misinformation, deepfakes, or privacy-
violating applications. Additionally, acceleration may lead to wider deployment without sufficient
oversight. We encourage researchers and practitioners to apply this method responsibly and in accor-
dance with ethical guidelines, particularly in contexts involving sensitive or human-centered data.

8 REPRODUCIBILITY

In this work, we propose TCF, a novel training framework that jointly optimizes a standard flow
matching model and its fast-sampling surrogate through a unified objective. A detailed explanation
of the algorithm itself is provided in Section 3, with theoretical proofs provided in Appendix A.
Sampling strategies are introduced in Appendix C. Main experimental results are in Section 4, with
more details and extended results presented in Appendix D.

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34, 2021.

Aleix Espuña I Fontcuberta. Analyzing the negative log-likelihood loss in generative modeling.
Master’s thesis, 2022.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In International Conference on Learning Representations, ICLR, 2025.

Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin P. Murphy, and Tim
Salimans. Diffusion meets flow matching: Two sides of the same coin. 2024. URL https:
//diffusionflow.github.io/.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025a.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. In International Conference on Learning Representations, ICLR, 2025b.

Yi Guo, Wei Wang, Zhihang Yuan, Rong Cao, Kuan Chen, Zhengyang Chen, Yuanyuan Huo, Yang
Zhang, Yuping Wang, Shouda Liu, et al. SplitMeanFlow: Interval Splitting Consistency in Few-
Step Generative Modeling. arXiv preprint arXiv:2507.16884, 2025.

10

https://diffusionflow.github.io/
https://diffusionflow.github.io/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat,
1050:9, 2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Beomsu Kim, Yu-Guan Hsieh, Michal Klein, Marco Cuturi, Jong Chul Ye, Bahjat Kawar, and James
Thornton. Simple reflow: Improved techniques for fast flow models. In International Conference
on Learning Representations, ICLR, 2025.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning prob-
ability flow ode trajectory of diffusion. In The Twelfth International Conference on Learning
Representations, 2023.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Toronto, ON, Canada, 2009.

Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified flows. Advances in
Neural Information Processing Systems, 37:63082–63109, 2024.

Sangyun Lee, Yilun Xu, Tomas Geffner, Giulia Fanti, Karsten Kreis, Arash Vahdat, and Weili Nie.
Truncated consistency models. In International Conference on Learning Representations, ICLR,
2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
ing for generative modeling. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2023.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In International Conference on Learning Representations, ICLR, 2025.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36:76525–76546, 2023.

Weijian Luo, Zemin Huang, Zhengyang Geng, J Zico Kolter, and Guo-jun Qi. One-step diffusion
distillation through score implicit matching. Advances in Neural Information Processing Systems,
37:115377–115408, 2024.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, ICLR, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In Inter-
national Conference on Learning Representations, ICLR, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, pp. 32211–32252. PMLR, 2023.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in Neural
Information Processing Systems, 33:19667–19679, 2020.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in neural information processing systems, 34:11287–11302, 2021.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: funda-
mental algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Yilun Xu, Ziming Liu, Max Tegmark, and Tommi Jaakkola. Poisson flow generative models. Ad-
vances in Neural Information Processing Systems, 35:16782–16795, 2022.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In The Eleventh International Conference on Learning Representations, 2023.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. Advances in Neural Information
Processing Systems, 36:49842–49869, 2023.

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast
sampling of diffusion models via operator learning. In International conference on machine learn-
ing, pp. 42390–42402. PMLR, 2023.

Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. In Forty-second
International Conference on Machine Learning, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THEORETICAL RESULTS

A.1 PROOF OF THEOREM 1

Theorem 1 If the trajectory function fθ satisfies the Boundary Condition, Self-Consistency, and
Velocity Consistency, then the trajectory it defines aligns with the ODE trajectory governed by pθ.
As a result, the surrogate sampler qθ becomes trajectory-consistent with the flow induced by pθ.

Proof. Let xt = fθ(xτ , t) denote the output of the surrogate sampler starting from the input state
xτ at time τ . To prove trajectory consistency, we need to show that fθ satisfies the same ODE as pθ,
i.e.,

dxt

dt
= v

(p)
θ (xt, t), ∀ t ∈ [τ, 1]. (23)

We begin by computing the time derivative of fθ:

∂fθ(xτ , t)

∂t
= lim

∆t→0

fθ(xτ , t+∆t)− fθ(xτ , t)

∆t
(24)

= lim
∆t→0

fθ(xτ , t+∆t)− xt

∆t
. (25)

Using the Self-Consistency condition, we can write:

fθ(xτ , t+∆t) = fθ(fθ(xτ , t), t+∆t) = fθ(xt, t+∆t). (26)

Recall the Boundary Condition, we have:

fθ(xt, t) = xt (27)

Substituting Eq. 26 and 27 back to Eq. 25, we get:

∂fθ(xτ , t)

∂t
= lim

∆t→0

fθ(xt, t+∆t)− fθ(xt, t)

∆t
(28)

=
∂fθ(xt, t)

∂t
(29)

By the Velocity Consistency condition, we have:

∂fθ(xt, t)

∂t

∣∣∣∣
xt=fθ(xτ ,t)

= v
(p)
θ (xt, t). (30)

Thus, we conclude that:
dxt

dt
=

∂fθ(xτ , t)

∂t
= v

(p)
θ (xt, t), (31)

which proves that fθ produces a trajectory consistent with the ODE solution defined by pθ.

A.2 PROOF OF PROPOSITION 1

Proposition 1 Suppose the model pθ is trained using the following flow matching loss:

LFM = Ex0,x1,τ

[
∥vθ(xτ , t)− vtarget∥2

]
, (32)

where xτ = (1− τ)x0 + τx1, and vtarget = x1 − x0 is a reference velocity field that depends only
on x0,x1. Then, the learned velocity field vθ satisfies the following invariance:

vθ(xτ , t) ≡ vθ(xτ , τ), ∀ t ∈ [τ, 1]. (33)

As a result, the velocity consistency constraint is automatically satisfied.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. During training, the objective in Eq. 12 aims to minimize the discrepancy between the
predicted velocity vθ(xτ , t) and the reference velocity vtarget, which is independent of t. That is, the
supervision signal does not change with the value of t and remains fixed for a given xτ .

Therefore, under sufficient optimization, the model has no incentive to vary its output with respect
to t; the optimal solution will be invariant in t, and thus the network will learn to output the same
velocity vector regardless of the t-input. In other words,

vθ(xτ , t) = vθ(xτ , τ), ∀ t ∈ [τ, 1]. (34)

This implies that the velocity predicted by the model at any target time t coincides with the velocity
at the starting time τ , satisfying the velocity consistency condition:

∂fθ(xτ , t)

∂t

∣∣∣∣
t=τ

= vθ(xτ , τ) = vθ(xτ , t). (35)

A.3 PROOF OF COROLLARY 1

Corollary 1 Let ∆t be a small time increment and fθ(xτ , t) be a trajectory function that satisfies
the following local consistency condition:

fθ(xτ , t) = fθ(xτ+∆t, t), where xτ+∆t = fθ(xτ , τ +∆t). (36)

Then, for any τ < t1 < t2, the function also satisfies the global Self-Consistency constraint:

fθ(xτ , t2) = fθ(fθ(xτ , t1), t2). (37)

Proof. We aim to show that repeated application of the local condition leads to the global Self-
Consistency property. Divide the interval from τ to t1 into small steps of size ∆t, such that:

τ = τ0 < τ1 = τ +∆t < τ2 = τ + 2∆t < · · · < τn = t1. (38)

Using the local condition iteratively, we obtain:

fθ(xτ , t2) = fθ(xτ1 , t2) = fθ(xτ2 , t2) = · · · = fθ(xτn , t2), (39)

where each xτi = fθ(xτ , τi) for i = 1, . . . , n.

In particular, xτn = fθ(xτ , t1), and hence:

fθ(xτ , t2) = fθ(fθ(xτ , t1), t2), (40)

which proves the global Self-Consistency constraint.

A.4 PROOF OF PROPOSITION 2

Proposition 2. Suppose the model θ is trained using the following loss:

Lvec =
∥∥∥v∗

θ(xτ , t2)− v∗
θ(xt1 , t2)

∥∥∥2
2
. (41)

Then v∗
θ corresponds to the instantaneous velocity at the terminal position, and such velocities are

simultaneously guaranteed to remain self-consistent across decompositions.

Proof. During training, t1 is sampled arbitrarily over the trajectory and all such t1 points are used
to supervise v∗

θ . Therefore, at convergence, we have

v∗
θ(xt1 , t2) = v∗

θ(xt2 , t2), (42)

for any t1 along the trajectory.

By definition, v∗
θ(xt2 , t2) corresponds to the instantaneous velocity at the start position. That is,

v∗
θ(xt2 , t2) = vθ(xt2 , t2) =

∂fθ(xτ , t)

∂t

∣∣∣
t=t2

. (43)

Combining the above equalities, we see that the self-consistency velocity loss ensures both:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

1. Terminal velocity agreement: v∗
θ correctly predicts the instantaneous velocity of fθ at t2.

2. Trajectory decomposition consistency: velocities predicted from any intermediate point
xt1 match the terminal velocity, i.e.,

v∗
θ(xt1 , t2) = v∗

θ(xτ , t2).

Hence, minimizing Lvec guarantees that v∗
θ remains self-consistent across trajectory decompositions

while accurately representing the instantaneous velocity at the terminal state.

B EXPLANATION OF EQUATION 18

A natural way to strengthen the self-consistency constraint is to additionally enforce velocity con-
sistency at t2 from any starting point t1 along the same trajectory. Formally, given xτ and xt1 with
τ < t1 < t2, we require

vθ

(
x̂
(τ)
t2 , t2

)
= vθ

(
x̂
(t1)
t2 , t2

)
, (44)

where vθ(x, t) =
∂fθ(x,t)

∂t

∣∣∣
t

denotes the instantaneous velocity.

Concretely, the computation proceeds as follows:

xt1 = fθ(xτ , t1), x̂
(τ)
t2 = fθ(xτ , t2), x̂

(t1)
t2 = fθ(xt1 , t2). (45)

We then evaluate the instantaneous velocities at these two candidate terminal points:

v(τ) = vθ

(
x̂
(τ)
t2 , t2

)
, v(t1) = vθ

(
x̂
(t1)
t2 , t2

)
. (46)

The strengthened velocity-consistency loss is defined as

Lvec =
∥∥∥v(τ) − v(t1)

∥∥∥2
2
. (47)

Computational Cost. This strengthened constraint requires three forward evaluations of fθ to ob-
tain xt1 , x̂(τ)

t2 , and x̂
(t1)
t2 . These forward passes are already present in the original self-consistency

computation and therefore do not introduce extra cost. The main additional overhead comes from the
two velocity evaluations vθ

(
x̂
(τ)
t2 , t2

)
and vθ

(
x̂
(t1)
t2 , t2

)
. In practice, this corresponds to gradient-

based directional computations through the network, which are substantially more expensive than
standard forward evaluations. As a result, enforcing velocity-consistency leads to significantly
higher training overhead compared with enforcing value-consistency alone.

C SAMPLING

Our framework incorporates two model distributions, pθ and qθ, enabling flexible and efficient sam-
pling strategies. Following standard flow matching approaches, sampling from pθ can be generated
by solving the neural ODE defined by v

(p)
θ using numerical solvers (Chen et al., 2018). Alternatively,

fast sampling is enabled by directly evaluating qθ via the learned mapping fθ, which eliminates the
need for iterative solvers. In addition, since fθ is explicitly constructed with a Taylor-like expansion
in time, its second-or third-order time derivative at the initial point is analytically accessible:

∂2fθ(xτ , t)

∂t2

∣∣∣
t=τ

= uθ(xτ , τ),
∂3fθ(xτ , t)

∂t3

∣∣∣
t=τ

= wθ(xτ , τ) (48)

This property allows us to employ second-order ODE solvers for sampling from pθ, potentially
achieving higher accuracy and efficiency than conventional first-order methods used in prior work.
We summarize the sampling procedures from both qθ (via few-step generation) and pθ (via second-
order numerical integration) in Algorithm 4 and Algorithm 5 respectively.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 4 Sampling from qθ

Input: model Fθ , sequence of time points: 0 =
t1 < t2 < · · · < tN−1 < tN = 1
Sample inital noise xt1 ∼ N (0, I)
for i = 1 to N − 1 do

xti+1 ← fθ(xti , ti+1)
end for
x← xtN

Output: x

Algorithm 5 Second-order ODE Solver
Input: model Fθ , sequence of time points: 0 =
t1 < t2 < · · · < tN−1 < tN = 1
Sample inital noise xt1 ∼ N (0, I)
for i = 1 to N − 1 do

v,u← fθ(xti , ti)
xti+1 ← xti +(ti+1− ti)v+ 1

2
(ti+1− ti)

2u
end for
x← xtN

Output: x

D EXPERIMENTAL DETAILS

D.1 TRAINING USING THE DEFAULT CONFIGURATION OF RECTIFIED FLOW

We use the Adam optimizer with β1 = 0.9, β2 = 0.999, and a learning rate of 1 × 10−4. The
TCF models are trained for 1M steps with a batch size of 512 across 2 GPUs. We adopt cosine
learning rate decay and apply exponential moving average (EMA) with a decay rate of 0.9999. Most
architectural configurations follow the RF baseline, with the following key modifications:

• Unlike standard flow matching models, our framework requires an additional time input and
produces an extra output. To accommodate this, we introduce a dedicated time embedding
layer that conditions the model on both the reference time τ and the target time t.

• The output dimension of the TCF model is set to 6 for Alg-A, B and 9 for Alg-C instead of
the standard 3 (for RGB images), which we interpret as a concatenation of two or three 3D
vectors.

Additionally, we apply a dropout rate of 0.2 throughout all our experiments.

For the consistency training (CT) model, we follow the exact architecture used in RF. The CT model
is trained for 2M steps on 2 GPUs with a total batch size of 512.

D.2 EXPLORING DESIGN CHOICES

To identify the optimal design choices for our model, we conduct a series of ablation studies, pre-
sented in Table 4. We adopt the same network architecture, hyperparameters, and data augmentation
strategies as EDM (Karras et al., 2022) for CIFAR-10 and ImageNet-64, ensuring comparability
and robustness of our experiments. The resulting model sizes are 55M and 296M parameters, re-
spectively. All models in these experiments are built upon a base pθ model that achieves an FID
of 2.10 on CIFAR-10. The auxiliary variable τ is sampled from a log-normal distribution, and all
evaluations are performed under a fixed number of function evaluations (NFE = 2). Each model is
trained for a total of 400k steps, ensuring convergence while allowing for a controlled comparison
of different factors, including the distributions of t1 and t2, time conditioning, training weights, loss
types, and dropout rates.

D.3 EXPLORING DIFFERENT TRAINING STRATEGIES FOR TCF

We explore different training strategies for TCF to evaluate their impact on performance:

1. Training from scratch: TCF is trained entirely from random initialization.

2. Initialization with a pretrained flow matching model: The key distinction of TCF from stan-
dard flow matching or diffusion models lies in the inclusion of an additional time step input and
one or two auxiliary outputs. To ensure stable training, we initialize the linear mapping layers cor-
responding to the new input and output to zero. This allows the network to start training with a
well-performing baseline, and thanks to the presence of the flow matching loss, the performance of
the pretrained components remains largely unchanged throughout training.

3. Distillation from a pretrained flow matching model: Similar to the previous setup, we initialize
the additional input and output layers to zero and perform knowledge distillation from a pretrained

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1. Distribution of t1 and t2

Setting FID

t2 ∼ U(τ, 1), t1 ∼ U(τ, t2) 3.65
t2 ∼ U(τ, 1), t1 = 0.5(τ + t2) 3.75
t2 ∼ 1− (1− U(τ, 1))1.5, t1 ∼ U(τ, t2) 3.20
t2 ∼ 1− (1− U(τ, 1))2, t1 ∼ U(τ, t2) 3.40

2. Training weights (λ1, λ2, λ3)
Setting FID

1,1,1 3.65
1,2,1 3.55
1,5,1 3.10
1,5,2 3.20
1,5,0.5 3.15

3. Time conditioning
Condition FID

τ, t 3.65
t 8.31
τ, t− τ 3.55

4. Loss types (LFM, Lconsist, Lvec)
Loss FID

L2, L2, L2 3.65
L2, Pseudo-Huber, Pseudo-Huber 3.68
Pseudo-Huber, Pseudo-Huber, Pseudo-Huber 3.92

5. Dropout rate
Dropout FID

0.13 3.65
0.20 3.55
0.30 3.63
0.00 4.12

Table 4: Ablation studies exploring design choices for our model. Each section reports FID under
specific variations of distributions, training weights, time conditioning, loss types, and dropout rates.

flow matching model. During this process, we substitute the reference vector field (e.g., x1 − x0)
with the vector field generated by the pretrained model, allowing the student network to directly
learn from the teacher’s trajectory.

4. Decoupled training of flow matching module (vθ) and other components (uϕ,wϕ): To reduce
training time, we directly use a trained flow matching model to predict the velocity vθ, freezing its
parameters during the training of the auxiliary components (uϕ and wϕ). At inference time, we
combine vθ with the learned auxiliary components uϕ and wϕ to generate the final trajectories,
enabling consistent and efficient sampling.

For strategies 2, 3 and 4, we employ a pretrained EDM model as the initialization. For strategies
3, 4, since the flow matching part is deterministic, we adopt a modified time sampling strategy: we
first sample D ∼ U(0, 1), then τ ∼ U(0, 1 − D), and set t2 = τ + D. This design increases the
expected time interval during training, which facilitates better few-step inference performance.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Training Strategy Training Steps FID

1. Training from scratch 800k 2.95
2. Initialization with pretrained flow matching 600k 2.93
3. Distillation from pretrained flow matching 200k 2.23
4. Decoupled training of vθ and (uϕ,wϕ) 200k 2.18

Table 5: Comparison of training steps and FID for different TCF training strategies. FID is evaluated
at NFE=2 for all strategies, except strategy 4, which effectively uses double NFE and roughly twice
the number of model parameters due to decoupled training.

E RELATED WORK: DISTILLATION FOR FAST SAMPLING

To accelerate sampling in diffusion and flow matching models, various model distillation strategies
have been proposed. A common approach is to use a pre-trained teacher model to generate synthetic
datasets, which are then used to supervise a fast student model (Luhman & Luhman, 2021; Liu et al.,
2023; Lee et al., 2024; Kim et al., 2025). However, these methods often suffer from performance
degradation due to the limited quality or diversity of the synthetic data. Another line of work adopts
progressive distillation, where sampling trajectories are shortened in multiple stages (Salimans &
Ho, 2022). While this reduces computation, it tends to introduce cumulative approximation errors
that affect final sample quality. More recent approaches employ consistency-based objectives, such
as trajectory alignment or self-consistency constraints, to distill models in a single stage, avoid-
ing reliance on synthetic data while achieving faster sampling with improved fidelity (Song et al.,
2023). A different class of methods learns auxiliary networks to approximate the score function
or its implicit distribution, enabling direct sampling but requiring careful design and tuning of ad-
ditional components (Luo et al., 2024). Unlike all the approaches mentioned above, our method
avoids the need for teacher models, synthetic datasets, or auxiliary score predictors. Instead, we
jointly train a base model pθ and a fast sampler qθ, where alignment between the two distributions is
enforced through integration-free consistency constraints. This design allows for efficient training
and accurate, solver-free sampling in a fully self-contained framework.

F LIMITATIONS

While our method achieves high-quality image generation, several limitations remain. First, al-
though our approach dramatically reduces the number of sampling steps, the resulting sample quality
still slightly lags behind the best-performing consistency models in terms of FID. This performance
gap could potentially be addressed in future work by exploring more effective time schedules and
designing improved loss functions that better capture the alignment between the model distribu-
tions. Second, our experiments are primarily conducted on standard datasets for unconditional or
class-conditional image generation. Extending the method to more complex, multi-modal domains,
such as text-to-image synthesis or video generation, may require additional architectural and algo-
rithmic innovations. Lastly, jointly optimizing two model distributions introduces extra complexity
in training, including the need for careful tuning of the loss coefficient to maintain a proper bal-
ance between the objectives. This may lead to increased training overhead. Future research may
explore more adaptive training strategies, alternative fast-sampling parameterizations, and broader
extensions of the framework to diverse data modalities and tasks.

G VISUALIZATION RESULTS

We present the visualization results on the next pages.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) NFE 2, FID=2.87

(b) NFE 5, FID=2.31

(c) NFE 10, FID=2.10

Figure 3: Unconditional CIFAR-10 results, Alg A

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) NFE 1, FID=3.65

(b) NFE 2, FID=2.45

(c) NFE 5, FID=2.28

Figure 4: Unconditional CIFAR-10 results, Alg C

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) NFE 2, FID=3.94

(b) NFE 5, FID=2.94

(c) NFE 10, FID=2.18

Figure 5: Results on ImageNet 64× 64 (class-conditional), Alg C.

21

	Introduction
	Flow matching and Rectified Flow
	Trajectory-Consistent Flows
	Formulation of f and Training Objectives
	Third-Order Taylor Extension

	Experiments
	Comparison with baseline models
	Computation Cost and Training Stability
	Exploring design choices

	Related Work
	Conclusion
	Ethics and Broader Impact Statement
	Reproducibility
	Theoretical results
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Corollary 1
	Proof of Proposition 2

	Explanation of Equation 18
	Sampling
	Experimental Details
	Training using the default configuration of Rectified Flow
	Exploring design choices
	Exploring different training strategies for TCF

	Related Work: Distillation for Fast Sampling
	Limitations
	Visualization Results

