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ABSTRACT

Deep learning methods have vastly expanded the capabilities of motion planning
in robotics applications, as learning priors from large-scale data has shown to
be essential in capturing the highly complex behavior required for solving tasks
such as manipulation or navigation for autonomous vehicles. At the same time,
model-based planning algorithms based on search or optimization remain an es-
sential tool due to their flexibility, efficiency and the ability to incorporate domain
knowledge via expert designed algorithms and objective functions. We propose a
simple framework to unify these two paradigms. First, we learn an autoencoder
with a high compression ratio and a latent space of causally ordered, discrete-
valued tokens. Leveraging both the dimensionality reduction and the causal struc-
ture learned by this autoencoder, we then perform motion planning by directly
searching in the latent space of tokens. Notably, this search can optimize arbitrary
user-specified objective functions without requiring the training of any additional
neural networks, providing a large degree of flexibility at test time while main-
taining efficiency and producing feasible and realistic solutions by relying on the
generative capabilities of the highly compressed autoencoder. We evaluate our
method on the Waymo Open Motion Dataset, showing how a simple latent space
search can be used for motion prediction. Beyond prediction, we demonstrate the
inclusion of simple objectives for guided behavior generation. Finally, we investi-
gate the application of our method for multi-agent interaction modeling, enabling
flexible scenario design and understanding.

1 INTRODUCTION

In scaling image generation to ever increasing sample quality and resolution, compression has been
a key enabler. Indeed, state-of-the art image generative models such as latent diffusion (Rombach
et al., 2022) or autoregression (Chang et al., 2022; Li et al., 2024) typically operate in the space
of tokens learned with an autoencoder (Kingma & Welling, 2014; van den Oord et al., 2017; Esser
et al., 2021). Crucially, the autoencoder is able to exploit the high degree of redundancy present in
natural images to produce a latent space of tokens which is much lower dimensional than the original
pixel space (Rombach et al., 2022). Since a more highly compressed representation directly results
in lower-dimensional data for the generative model to predict, there has therefore been interest in
not only improving the generative model itself, but also the autoencoder used as the tokenizer.

For example, Yu et al. (2024) represent 256 px× 256 px ImageNet images (Deng et al., 2009) with
as few as 32 discrete-valued tokens, allowing an image generative model to predict new samples
very efficiently by operating in this compact latent space. But what happens when the compression
ratio provided by the autoencoder is scaled higher and higher? In the case of image generation,
Lao Beyer et al. (2025) find that with increasing responsibility shifted to the token decoder, the
generator’s task becomes so easy that it can be replaced with simple heuristic token manipulation or
prediction techniques which do not require training of a dedicated generative model at all.

Inspired by the success in scaling image tokenizers and the training-free generation capabilities
enabled by highly compressed tokenized representations, in this paper we explore the value of au-
toencoders with very high compression ratios in robotics applications. In robotics, motion planning
has traditionally relied heavily on a classical toolbox including, for example, trajectory optimization.
These classical approaches can typically incorporate objectives and constraints designed by domain

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Environment

Trajectory

E
nc

od
er

D
ec

od
er

Latent 
Tokens

Reconstruction

Reconstruction Loss

(a) Conditional autoencoder training

Environment

D
ec
od
er

Latent 
Tokens

Generation
Test-Time Objective

(e.g. “turn right”)

(b) Generation with arbitrary objective

original ego behavior generated ego behavior other agents

(c) Token search synthesizes desired behavior (left turn; green) differing from the original (straight; blue).

Figure 1: Rich and compact latent representation enables environment-conditioned generation
with flexible test-time objectives. A conditional autoencoder is trained with a reconstruction ob-
jective to capture a highly compact latent representation of the input trajectory given a particular
environment (a). Direct search in the latent space of tokens is used to generate desired behavior at
test-time, without additional training — (b) and (c).

experts, and can be highly robust and performant when deployed in controlled settings (Foehn et al.,
2021; Moore et al., 2014; Goh & Gerdes, 2016). However, with autonomous systems operating
in increasingly more unstructured and open-ended domains, it has become apparent that learning
powerful priors from large-scale, real-world data is necessary. We therefore argue that generation
as direct search over latent tokens is especially useful in robotics tasks as it provides a framework
for combining deep priors (in the form of a powerful token decoder) with model-based objectives
(optimized by performing search in the latent space of tokens).

In our paper, we show search in the latent token space of a trajectory autoencoder can indeed be used
to optimize arbitrary user-defined objectives. To facilitate efficient implementation of this search,
we present an environment-conditioned trajectory autoencoder that learns highly compressed, dis-
crete, and causally-ordered variable length trajectory representations. We train our autoencoder the
Waymo Open Motion Dataset (Ettinger et al., 2021) and demonstrate its prediction and planning
capabilities when paired with an efficient greedy latent space search.

2 CONDITIONAL TRAJECTORY AUTOENCODER

Trajectory prediction and planning problems in robotics must consider information such as sensor
inputs or known maps. We therefore choose to represent a trajectory conditionally on given infor-
mation about the environment. To this end, we train a conditional autoencoder with the goal of
learning a compact and expressive learn latent representation of the trajectory under a particular
fixed environment (see Figure 1).

Notation and dataset. We denote the environment as E . In the case of the Waymo Open Motion
Dataset (WOMD) (Ettinger et al., 2021), E consists of static world features such as road edges, road
lines, lane geometry, stop signs and traffic lights, as well as one second of dynamic object history
in the form of 10 past and one current observation for each visible agent in the scene (including
the ego agent). The full trajectory of the agent of interest is denoted as T . In the setting of motion
prediction in WOMD, this full trajectory is represented as 80 position samples corresponding to an
8 second long future trajectory. The encoder Enc then produces a sequence of N D-dimensional
latent tokens z := {zi ∈ RD}Ni=1 = Enc(T , E) from the full trajectory T of the agent of interest
and the environment E . The decoder Dec attempts to reconstruct the trajectory T from the latent
tokens and the environment, producing a prediction Tpred = Dec(z, E).
Prediction space and loss function. The decoder Dec predicts mean and variance parameters of a
Gaussian distribution for each point along the trajectory, and is trained by minimizing the negative
log-likelihood (NLL) of the ground truth reconstruction under the prediction. In practice, we make
use of the β-NLL (Seitzer et al., 2022) due to its improved convergence characteristics compared to
the standard NLL objective.
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2.1 COMPRESSION VIA ADAPTIVE SOFT QUANTIZATION
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Figure 2: Adaptive noise in-
jection outperforms fixed noise
level. Note that validation ADE is
lower than training ADE since dur-
ing validation σt = 0.

Recent work on image generation shows that vector quanti-
zation is essential in allowing direct latent space search and
manipulation to produce meaningful outputs (Lao Beyer et al.,
2025). Indeed, when the latent space is too expressive, there
exist many encodings which the decoder can map to outputs
that do not lie on the desired data manifold. Direct search
in such an overly expressive latent space instead behaves ad-
versarially, unless a robust objective is used (Santurkar et al.,
2019).

To mitigate training challenges commonly associated with
vector quantization while maintaining its desirable regulariz-
ing effects we use a form of “soft” quantization consisting of
noise injection at the autoencoder bottleneck:

corrupt(z) = tanh(z) + ϵt with ϵt ∼ N (0, Iσ2
t ). (1)

Note that a tanh activation is applied pointwise to the input,
effectively creating an amplitude-limited noisy channel. The
chosen noise level σ2

t is picked adaptively during training to gradually ramp up from zero until a
desired reconstruction accuracy is achieved. Concretely, we consider the average displacement error
(ADE) averaged across every prediction in the current training minibatch ADEt to adjust σt:

σt = max(0, γσt−1 + (1− γ)σ̂t) with σ̂t =

{
σt−1 +∆σ ADEt ≤ ADEtarget

σt−1 −∆σ ADEt > ADEtarget
. (2)

Here, ADEtarget denotes the target training ADE and is a fixed hyperparameter. Likewise, the decay
factor γ ∈ [0, 1) and the noise increment ∆σ > 0 can be used to tune the responsiveness of the
adaptive schedule to changes in ADEt. During training, we apply corrupt to each token zi before
feeding it to the decoder. At test time, we set σt = 0. As illustrated in Figure 2, we find that this
adaptive noise schedule outperforms choosing a fixed noise level.

We refer to this process as soft quantization since our corrupt procedure resembles an amplitude-
limited Gaussian channel, for which the input distribution achieving maximum information capacity
is known to be discrete (Smith, 1971).

Hard quantization at test time. At test time, we may leverage the decoder’s ability to predict start-
ing from heavily noised input tokens by explicitly quantizing the encoder’s output. For this purpose,
we round each element (zi)j of each token zi to the nearest quantized level L[k] ∈ {−1, . . . , 1} out
of the Nlevels uniformly spaced options. Note that zi here refers to the token after applying the tanh
activation from Equation (1).

2.2 VARIABLE-LENGTH LATENT ENCODING n Reconstruction

1

2

3

Ground
Truth

Figure 3: Using more to-
kens n results in better recon-
structions (blue) with lower
predicted uncertainty (red).

To allow flexible reconstruction fidelity at test time and to facilitate
structured exploration of the latent space, we choose to impose a
causal ordering structure on the latent tokens zi. Causality among
the tokens zi is enforced via causally masked self-attention in the
encoder and decoder networks. We additionally make use of nested
dropout (Rippel et al., 2014) to allow the decoder to operate on
variable-length encodings. During training, nested dropout drops a
random number m < N of tail tokens from the encoding, forcing
the decoder to reconstruct the trajectory from only the first n :=
(N −m) tokens.

As highlighted in Figure 3, at test time, latent token sequences of
any size may be used to obtain reconstructions of varying degrees
of fidelity, as causal masking combined with nested dropout ensures
that later tokens capture increasingly more fine-grained information. For planning tasks, this prop-
erty suggests a greedy latent space search strategy in which tokens can be picked one at a time. We
explore this idea in Section 3.2.
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Figure 4: Conditional autoencoder architecture. The environment (static world, dynamic object
histories) is tokenized and fed into a transformer encoder consisting of local neighborhood self-
attention layers. The processed tokens form the key and value for the cross-attention-based encoder
and decoder transformers. Encoder and decoder impose causal masking among latent tokens.

2.3 NETWORK ARCHITECTURE

Our conditional autoencoder is implemented using three transformer models: an environment en-
coder which processes static world and dynamic object history information using local neighbor-
hood self-attention layers, and architecturally identical encoder and decoder models which attend
to the environment information via cross-attention and process the latent tokens via causal self-
attention. Our environment encoder follows Motion Transformer (MTR), making use of MTR’s
local neighborhood attention (Shi et al., 2022) in which self-attention between environment fea-
tures is restricted to 16 nearest neighbors for efficiency. Similarly to MTR, static world and object
history are tokenized from their vectorized representation as collections of polylines via PointNet
encoders (Qi et al., 2017). We also apply a PointNet encoding to the input trajectory fed to the
encoder. An MLP regresses the output trajectory Tpred from a [CLS] query token processed by the
decoder. At the bottleneck between encoder and decoder transformer models, we first project the
transformer tokens down to the desired low dimensionality D, during training apply nested dropout
and noise corruption for soft quantization, and finally project the low-dimensional tokens back to
the transformer token dimensionality. An overview of this design is shown in Figure 4.

3 BEYOND RECONSTRUCTION: TOWARD PREDICTION & PLANNING

In this section we demonstrate the generative capabilities of our conditional autoencoder. We train
the autoencoder on the single-agent trajectory reconstruction task, choosing a highly compressed
bottleneck with maximum number of tokens N = 3, token dimensionality D = 3, and continuing
training until a high soft quantization noise of σt > 0.35 is achieved with ADEtarget = 0.65.

3.1 TOKEN SEMANTICS ENABLE BEHAVIOR TRANSFER

We show that latent token encodings learned by our conditional autoencoder carry significant high-
level semantic information through a series of simple experiments.

Token swapping. Consider decoding the latent token representation of a given trajectory TA in its
environment EA under a different environment EB :

TA→B = Dec(zA, EB) with zA = Enc(TA, EA). (3)

Figure 5a shows the result of this simple manipulation for selected scenarios where the agent of
interest is a vehicle at an intersection. We observe that decoding an encoding corresponding to a
desired behavior in a different scenario can be used to transfer this behavior to a novel scenario.

Behavior transfer across scenarios. We now wish to verify whether token sequences correspond-
ing to certain high-level behavior can be automatically identified and transferred to a large number
of alternate environments. For this purpose, we collect a subset of of the WOMD test set’s scenarios
satisfying some condition (for example, proximity to several stop signs and travel at low speeds,
often corresponding to scenarios with all-way stop intersections). We then further divide this subset
into buckets corresponding to classes of maneuvers (for example, turning direction). For each such
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Figure 5: Tokens have meaningful environment-dependent semantics. When copying the en-
coding of a given trajectory under a particular environment of the WOMD test set and decoding it
under a different test environment (Equation (3)), predictable behavior consistent with the new envi-
ronment is produced. Shaded plots in (a) show the reference trajectory reconstructed in its original
environment, while the remaining plots correspond to decoding the tokens of a particular behavior
in an environment other than the one used to encode them. Note that Environment C does not admit
driving straight, and in this case the decoder produces a valid alternative reconstruction (last row,
first column). In (b), we decode each latent token encoding from a small pre-selected library (Encod-
ing 1, 2 or 3) in ∼250 WOMD test set environments containing intersections (top). We also select
an additional Encoding 4 corresponding to a high deceleration event, and plot the speed profiles
resulting from decoding this encoding in ∼200 environments of similar starting speed alongside the
original speed profiles (bottom).

bucket, we compute the most common (discrete) token encoding, yielding a single token sequence
for each bucket. Finally, we decode each encoding in every environment. The results presented
in Figure 5b strongly suggest that a class of maneuvers may be characterized by a single latent to-
ken sequence, and the corresponding behavior may be transferred to new environments by simply
decoding these tokens conditioned on that new environment.

3.2 LATENT TOKEN SEARCH

The combination of low-dimensional (D = 3), highly quantized (σt > 0.3) and causally ordered
tokens suggests a very straightforward and efficient way to explore the latent space of our decoder:
greedy best-first search.

Hard quantization at test-time. Before attempting discrete tree search over quantized tokens,
we verify reconstruction accuracy under hard quantization. As shown in Table 1, we find that the
conditional autoencoder’s drop in reconstruction accuracy is relatively modest even when heavily
quantizing the tokens to Nlevels = 2. Note that increasing the number of tokens leads to better
reconstructions compared to keeping the number of tokens fixed and using finer quantization, even
when the theoretical capacity of a larger number of more coarsely discretized tokens is lower.

Greedy tree search. To check whether greedy best-first search is a suitable strategy for exploring
the space of latent tokens, we consider a ground-truth reconstruction objective. This simple algo-
rithm picks tokens one at a time, by evaluating an ADE reconstruction objective wrt. the ground
truth trajectory. In particular, it evaluates the decoder output corresponding to every possible quan-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Reconstruction with greedy search outperforms the learned encoder. Greedy search
can match or exceed the reconstruction performance of the learned encoder even when not applying
any hard quantization in the autoencoder bottleneck. We use the same ADE metric averaged over
object types and prediction horizons as the WOMD prediction challenge.

Num. Tokens

Average Absolute Deviation Error (ADE) ↓
Autoencoder Greedy Search

Nlevels = 2 Nlevels = 3 no quant. Nlevels = 2 Nlevels = 3

1 0.800 0.617 0.567 0.708 0.524
2 0.519 0.410 0.365 0.485 0.363
3 0.403 0.334 0.298 0.386 0.301

Table 2: Motion prediction via latent space search. Even though our conditional autoencoder is
trained to perform reconstruction instead of prediction, we find that search over latent tokens leads to
high quality decoded trajectories. While not competitive with highly tuned state-of-the-art trajectory
prediction methods, performance exceeds or approaches that of many common prediction baselines.
Note that predicted variance is helpful in informing token selection, as the random objective function
which assigns arbitrary confidence scores to each token results in degraded performance (last row).
†: Results from the WOMD validation set due to submission number limitations for the test set.

Model minADE6 ↓ minFDE6 ↓
Waymo LSTM Baseline (Ettinger et al., 2021) 1.0065 2.3553
MotionCNN (Konev et al., 2022) 0.7400 1.4936
Scene Transformer Ngiam et al. (2022) 0.6117 1.2116
MTR (Shi et al., 2022) 0.6050 1.2207
DriveGPT (Huang et al., 2025) 0.5240 1.0538

Decoder with variance minimization objective 0.6793 1.4291
Decoder with variance minimization objective † 0.6416 1.3882
Decoder with random objective † 0.7311 1.5954

tized value of the (single) next token, picking the best reconstruction at each iteration. The greedy
search with reconstruction objective forms a valid replacement for the learned encoder in our au-
toencoder. Indeed, Table 1 shows that greedy search significantly outperforms the learned encoder,
demonstrating that greedy token selection is a valid approach thanks to the causal and noise-resilient
structure of the autoencoder’s latent space.

3.3 PREDICTION

The token search presented in the previous section is not limited to reconstruction tasks. For exam-
ple, we may want to consider the trajectory prediction task, in which we do not have access to the
input trajectory T . Recall that our model predicts not only the mean but also a variance associated
with each sample in the predicted trajectory. Therefore, we consider searching for the tokens that
will minimize the variance of the final sample in each trajectory.

Results. Despite being trained as an autoencoder with a reconstruction loss, we find that our model is
able to achieve high quality prediction results when paired with the variance-minimizing latent space
search. Table 2 summarizes our results against common baselines and demonstrates the effectiveness
of variance minimization as an objective function by comparing with arbitrary token selection. Note
that we have trained a model with a more highly compressed latent representation for this experiment
by setting N = 1 and D = 3, and that we use Nlevels = 2 for the test-time discretization.

3.4 PLANNING WITH ARBITRARY OBJECTIVES

While our motion prediction results are encouraging, the main utility of our framework lies not in its
ability to perform prediction, but in the flexibility it affords in order to explore the space of possible
behaviors efficiently and according to arbitrary objective functions specified at test time without
requiring re-training of any models. To this end, we evaluate the effectiveness of latent space search
for guided maneuver generation.
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Table 3: Maneuver optimization according to user specified objectives. Greedy token search effi-
ciently explores the conditional autoencoder’s latent space with increasing success rate for increased
search depth. Note that success rate is not expected to reach 100%, as datasets include cases where
desired maneuver is impossible or illegal, such as turning left from a lane other than the dedicated
left turn lane or requiring excessive acceleration or deceleration. Edge contact refers to the agent
contacting static road edge geometry. Main text describes details on objectives and success metrics.

Left Turn Objective Speed Reduction Objective

Method Success Rate Edge Contact Success Rate Edge Contact

None (original scenario) 0% 0% 0% 0.76%
Token search (1 token) 59.0% 0% 28.7% 0.63%
Token search (2 tokens) 72.6% 0% 55.4% 0.38%
Token search (all 3 tokens) 75.5% 0% 63.2% 0.13%

Turn maneuver at intersection. We automatically select ∼300 test set scenarios in which the agent
of interest is a vehicle traveling straight and at low speed in proximity of at least four stop signs. This
roughly corresponds to cases in which the vehicle is traversing an intersection and going straight.
We consider an objective function which maximizes the cumulative leftward heading change along
the trajectory while heavily penalizing excessive predicted variance. Success is defined as achieving
a cumulative leftward heading change of over 45◦.

Speed profile optimization. We now consider ∼800 automatically selected test scenarios in which
a vehicle is traveling at an initial speed of around 9m/s and maintains a similar average speed
throughout its full trajectory. In this case, our objective is to slow down to a lower final speed of
5m/s maintained for the last three seconds of the trajectory, again while imposing a heavy penalty
on predictions that are assigned high variance by the decoder.

Results for these experiments are presented in Table 3. With a high rate of success, token search
is able to generate maneuvers according to the specification, while our token decoder automatically
ensures that behavior is consistent with the given scenario as evidenced by zero or near-zero rates
of contact between the predicted trajectory and road edge geometry. Further details and results on
planning via latent space search may be found in the appendix (Section A.2).

Performance. With the parameters of N = 3, D = 3 and Nlevels = 2 used for experiments in
this section, greedy search requires just 24 evaluations of the decoder, which is exponentially less
than the 512 evaluations that would be required to perform an exhaustive search. On the NVIDIA
RTX 6000 Ada GPU, greedy search with these parameters can generate about 115 trajectories per
second, corresponding to about 2760 decoder calls per second. Note that each call to the environment
encoder is amortized across 24 decoder calls during search.

3.5 JOINT TRAJECTORY TOKENIZATION FOR MULTI-AGENT TASKS

So far, we have trained a conditional autoencoder to reconstruct a single agent’s trajectory, and
have then leveraged latent token manipulation or search for prediction and planning tasks for that
single agent. However, joint tokenization of several agents’ trajectories offers potential for learning
even more informative and compact representations that exploit the correlations between trajectories
present in multi-agent interactions. In this section we therefore investigate the application of our
proposed framework to the multi-agent setting.

Multi-agent modeling. To construct the multi-agent conditional autoencoder, we leverage the
single-agent encoder and decoder, which predict and decode, respectively, a single high-dimensional
feature vector ya corresponding to the trajectory of agent a. We then further encode the set of these
feature vectors jointly using a second-stage encoder, in order to produce the final token sequence
z. The corresponding decoder transforms the latent tokens z back to the set of feature vectors
{y1, . . . ,yA}, which are finally individually decoded by the single-agent decoder network. We im-
plement this additional encoder and decoder using self-attention across the agent tokens ya and the
latent tokens. As in the single-agent case, we apply adaptive soft quantization via noise injection at
training at the autoencoder bottleneck.

Reconstruction. We train our conditional autoencoder on scenarios with up to 8 agents using
N = 4, D = 3 and ADEtarget = 0.8, continuing training up to a noise level of σt > 0.08.

7
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goal

t = 0s

t = 8s

(a) Ground truth scenario (b) Generated scenario 1 (c) Generated scenario 2
vehicle cuts off pedestrian vehicle yields to pedestrian vehicle crosses after pedestrian

Figure 6: Multi-agent token search generates consistent joint trajectories. We generate two
alternate scenarios (b) and (c) for the environment from (a) by performing token search to minimize
the deviation between the final position of the pedestrian (blue) and a user-specified goal point (cross
marker). Even though this objective function only supervises the final position of the pedestrian, our
joint trajectory decoder ensures that the behavior of the vehicle (green) is valid.

Table 4: Multi-agent tokens enable semantic understanding. With the latent token sequence
learned by our conditional autoencoder as extra input, a language model (Qwen3-4B-Instruct-2507)
fine-tuned on the WOMD-Reasoning dataset beats VLM baselines and roughly matches Motion-
LLaVA on language metrics evaluating question answering performance.

Model ROUGE-L ↑ BLEU ↑ METEOR ↑ CIDEr ↑ SPICE ↑
Non-fine-tuned LLaVA (Li et al., 2025) 0.512 0.211 0.275 1.36 0.455
Fine-tuned LLaVA (Li et al., 2025) 0.779 0.581 0.439 5.51 0.735
Motion-LLaVA (Li et al., 2025) 0.792 0.616 0.449 5.69 0.744

Ours 0.788 0.611 0.450 5.68 0.724

Table 5: Multi-agent reconstruction.

Num
Tok

Average ADE ↓
Autoencoder Greedy

Nlvl = 3 no quant. Nlvl = 3

1 1.093 1.055 1.029
2 1.001 0.882 0.968
3 0.950 0.756 0.934
4 0.880 0.663 0.886

As shown in Table 5, this enables reconstructing multi-agent
scenarios from just four tokens quantized with Nlevels = 3.
We again verify that greedy token search can match the
learned encoder for a given degree of quantization.

Interaction Generation. Leveraging the flexibility that la-
tent token search provides in enabling arbitrary objective
functions, in Figure 6 we impose a terminal goal position for
a single agent in the scene and observe how the joint trajec-
tory decoder ensures that other agents’ behavior is adjusted.

Interaction Understanding. Just as in the single agent case (see Section 3.1), we find that latent
tokens of our multi-agent conditional autoencoder carry high-level semantic information. We verify
this by learning a small two-layer adapter MLP between the latent tokens produced by our encoder,
and the embedding space of a pretrained large language model (LLM). The output of our environ-
ment encoder is also projected to the LLM’s embedding space. We train the projection layers as well
as a low-rank adaptation to the LLM weights (LoRA) (Hu et al., 2022) on the WOMD-Reasoning
dataset (Li et al., 2025), which contains question and answer pairs related to WOMD scenarios. Note
that we do not fine-tune the conditional autoencoder’s tokens. Results of this experiment, which are
presented in Table 4, indicate that an LLM — specifically, Qwen3-4B-Instruct-2507 (Qwen Team,
2025) — can match the performance of the Motion-LLaVA model (Li et al., 2025) on language
metrics, when provided with our tokenized representation. In contrast to our fixed encoder, Motion-
LLaVA is a dedicated multimodal motion understanding model based on LLaVA-v1.5-7b Liu et al.
(2023) which is fine-tuned end-to-end, including the motion vector encoder.

4 RELATED WORK

Autoencoders for image tokenization. In image generation, state-of-the art generative models
rely on tokenization, rather than operating directly in the pixel domain for efficiency reasons (Esser
et al., 2021; Rombach et al., 2022; Chang et al., 2022; Yu et al., 2022b; Li et al., 2024). Com-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

monly used tokenizers include variational autoencoders (VAEs) (Kingma & Welling, 2014) which
learn continuous-valued tokens that can be modeled with diffusion. In order to facilitate autoregres-
sive image modeling (Chang et al., 2022), another commonly used class of tokenizers includes the
vector-quantized VAE (van den Oord et al., 2017) and VQGAN (Esser et al., 2021) which improves
perceptual quality of reconstructions using an adversarial loss (Goodfellow et al., 2014). Vector
quantized representations often pose challenges during training, such as codebook collapse, requir-
ing the use of carefully tuned auxiliary losses (Yu et al., 2022a), and motivating the adaptive noise
injection used in our model. We note also that tokenizers for image generation do not usually include
any mechanism comparable to our environment conditioning, as conditional generation is typically
handled by the generative model and not the tokenizer. One exception is TA-TiTok (Kim et al.,
2025), which supports text-conditioned decoding of latent image representations.

Variable-length tokenization and ordered representations. Rippel et al. (2014) introduces nested
dropout for learning ordered representations. More recently, several image tokenization models
(Wen et al., 2025; Miwa et al., 2025; Bachmann et al., 2025) apply nested dropout for causally
ordered variable-length image representations. These tokenized representations are found to effec-
tively learn a “coarse-to-fine” latent image representation, which inspires our greedy latent explo-
ration approach.

Training-free generation via latent space search. Gradient-based optimization has been used
to optimize GAN latents according to a CLIP (Radford et al., 2021) objective for text-to-image
generation (Patashnik et al., 2021). Operating in the space of an image tokenizer instead of a GAN,
VQGAN-CLIP (Crowson et al., 2022) optimizes tokens according to a CLIP objective instead. How-
ever, these approaches are limited to minor edits of input images and cannot generate “from scratch.”
A recent observation is that a similar gradient-based latent optimization approach applied to image
tokenizers with extremely compressed latent representations, such as TiTok (Yu et al., 2024), does
succeed in generating high quality images (Lao Beyer et al., 2025). However, to the best of our
knowledge, our work is unique in leveraging highly compact ordered and discrete representations to
perform efficient latent space exploration via tree search rather than continuous optimization.

Guidance in diffusion. Diffusion (Ho et al., 2020) supports test-time conditional sampling without
re-training (Ho & Salimans, 2021; Dhariwal & Nichol, 2021; Bansal et al., 2023), and has also been
widely used for robotics applications (Chi et al., 2023). Our approach’s support for flexible test-
time objectives may be reminiscent of loss-guided diffusion (Song et al., 2023). However, guided
diffusion using arbitrary objective functions can be challenging to implement, as there is no access
to the final “clean” sample during intermediate diffusion steps, yet the desired objective is typically
defined only for clean, not intermediate (noisy) samples. In contrast, our search does not suffer from
this problem, as the autoencoder’s output space matches the input domain of the objective.

5 DISCUSSION

Model-based motion planning methods in robotics often optimize expert-designed objective func-
tions, providing a large degree of flexibility and control over robot behavior. However, only powerful
priors learned from large scale data can provide the generalization ability and real-world robustness
needed for increasingly open-ended tasks such as autonomous driving or manipulation. To unify the
strength of both approaches, we view motion planning as search in the latent space of a deep tra-
jectory autoencoder. In particular, we design an environment-conditioned autoencoder with a latent
representation that is so compact and structured that a simple greedy search over tokens can be used
to successfully plan according to an arbitrary objective function.

We believe that robotics applications are positioned especially well to take advantage of this frame-
work due to the prevalence of useful objectives and constraints. In the task of self-driving, objectives
such as waypoint and route following, or constraints such as limits on acceleration and jerk for com-
fort and safety are common examples. Although we do not explore them in this paper, we envision
applications in other areas of robotics such as manipulation, where this framework can be useful in
generating behaviors that conform to a certain task specification, reach a desired goal, or incorporate
other user preference or domain knowledge specified in the form of an objective function.

9
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LARGE LANGUAGE MODEL DISCLOSURE

During paper writing, LLMs were used for minor wording suggestions and improvements. LLMs
were also used for assistance with writing the plotting code used to generate the visualizations shown
in this paper.

LLMs were also used to aid in literature review, and for occasional assistance writing small parts of
code used for our experiments.
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A APPENDIX

A.1 CONDITIONAL AUTOENCODER MODEL AND TRAINING DETAILS

Trajectory and environment tokenization. We use a similar strategy to MTR (Shi et al., 2022).
Agent trajectories are augmented with additional metadata (object type, timestep index, heading
angle, and relative position between consecutive samples) and encoded with a PointNet architecture
(Qi et al., 2017). Road edges and road lines are split into 20-point segments and also encoded
using a small PointNet-style network. In contrast to the original MTR, we encode each feature the
local coordinate frame placed at its initial pose (for agent trajectories) or center of mass (for road
geometry).

Transformer models. The environment encoder, taking as input the tokenized static world and
agent history representations, uses local self attention layers to improve efficiency and incorporate
a spatial locality bias. We again closely follow MTR (Shi et al., 2022) in this regard.

Our trajectory encoder and decoder make use of blocks of causal self-attention followed by cross-
attention. In the case of the encoder, the queries are initialized from the following tokens: (a) the
token encoding of the full input trajectory, (b) learnable positional encodings for the latent tokens
and (c) one or more additional register tokens (Darcet et al., 2024) (not shown in the diagram in
Figure 4). Even though the number of key/value tokens produced by the environment encoder may
be large, we do not use any form of local attention or geometric aggregation, since cross-attention
wrt. our small number of query tokens is sufficiently fast.

The latent tokens are then processed by the bottleneck consisting of projection to the desired token
dimensionality (D = 3 in our experiments) and noise injection (during training) or hard quantization
(at test time). After projecting back to the transformer feature dimensionality, the decoder processes
the latent tokens with the same design as the encoder, noting that we again include one or more
register tokens with learnable positional embedding. Finally, we regress the final trajectory from
one of the register tokens using a small MLP.

In both our trajectory encoder and decoder’s self-attention layers, causal masking is enforced be-
tween the latent tokens, while register and input trajectory tokens may attend to all tokens.

The following hyperparameters are shared across the environment encoder model, the trajectory
encoder, and the trajectory encoder:

• Layers: 6
• Heads: 8
• Transformer feature dimensionality: 256
• Feed-forward MLP width: 2048

Token dropout schedule. During training, we perform token dropout with 50% probability. If
dropout is enabled, we choose the number of tokens to keep according to an exponential schedule
with probabilities proportional to (1/2)Ndrop , where Ndrop denotes the number of tokens to drop.

Other training details. We train our models for around 30 epochs, using the AdamW optimizer
(Loshchilov & Hutter, 2019) with a batch size of 64 and learning rate of 10−5. For adaptive soft
quantization, we set γ = 0.9995 and ∆σ = 0.01.

A.2 DETAILS ON PLANNING OBJECTIVE FUNCTIONS

Our framework supports general objectives of the form

f(Tpred, z) 7→ R, (4)

where Tpred = Dec(z, E) refers to the decoded trajectory, and z is the tokenized representation.
Let n denote the length of the token sequence z, which starts at n = 1 at the beginning of the
search, increasing to n = N once the maximum depth is reached. In our experiments, we consider
objectives of the following form, which penalize high predictive variance.

fg(Tpred, z) := g(T (µxy)
pred ) + λ1[T (σxy)

pred > σmax(n)]. (5)
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Figure A1: Predicted variance decreases with increasing number of tokens. Histogram of pre-
dicted variance values illustrates need for token-sequence-length-dependent variance threshold dur-
ing search.

Here, T (µxy)
pred refers to the decoder’s predicted mean of the trajectory. We use T (σxy)

pred to denote the
magnitude of the predicted covariance for the final sample of the trajectory, which we check against
the threshold σmax(n) to impose a heavy penalty λ ≫ g(T (µxy)

pred ). We find that an uncertainty thresh-
old which depends on the token sequence length is beneficial, as the distribution of the predicted
variance depends strongly — as expected — on the length of the latent token encoding (see Fig-
ure A1). This leaves us to freely choose the cost function g based on the desired target application.

Left turn maneuver optimization. The heading θ[i] along each segment i of the polyline de-
fined by the current candidate trajectory T (µxy)

pred is first computed using finite differences. We can
then compute the total cumulative heading change in the counterclockwise direction as CCW =∑

i max(0, θ[i+ 1]− θ[i]). This allows us to define the very straightforward cost function

gleft-turn(T
(µxy)

pred ) := −min{CCW, θmin}, (6)

which encourages turns with a leftward heading change of at least θmin (which we set to π
4 ). In

addition to Table 3, we present visualizations of the left turn maneuver optimization in Figure A2.
We highlight that the fact that token search is not always able to achieve the desired heading change
is a desirable property: as shown in Figure A2c, our examples include cases where left turns are
illegal or impossible.

We also highlight that the ultimate heading change achieved by our token search is not simply
clustered around the threshold θmin, indicating that token search find solutions that align with the
correct road geometry rather than blindly optimizing the objective which, if used on its own to
optimize a less robust trajectory representation, would be far too simple to produce correct behavior.

Speed reduction. Our choice of g is again very simple:

gslowdown(T
(µxy)

pred ) := max
i∈I

max{0, vi − vmax}, (7)

with vi denoting the magnitude of the velocity along the ith segment of the trajectory, again com-
puted using finite differences, vmax denoting the maximum speed constraint value (5m/s in our
experiment) and I denoting the range of timesteps to apply the constraint over (in our experiment
we apply it from t = 6 s to the end of the predicted trajectory at t = 9 s).

Again, token search does not enjoy a 100% success rate. However, we argue that this behavior
is desirable, allowing even very naively specified objective functions to produce reasonable real-
world behavior thanks to the decoder serving as a form of “learned guard rails.” Indeed, we show
in Figure A3c that our framework makes a best effort to increase deceleration while maintaining
smooth and safe longitudinal jerk and acceleration values.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0

4

8

de
ns

ity

Original

0 4 2
3
4

cumulative heading change

0

1

2

de
ns

ity

Search Result

(a) Distribution of leftward heading change.
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(b) Top-down view of original and search trajectories.

(c) Typical “failure” cases: left turn would be impossible or illegal (due to not using the dedicated turn lane).
We plot the trajectory found by token search with the left turn objective.

Figure A2: Search for left-turn maneuver. 339 scenarios filtered by agent’s proximity to several
stop signs, while moving straight.
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(b) Speed profiles of original and search trajectories.
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(c) Histogram showing maximum deceleration of in scenarios where search with speed
reduction objective failed to achieve the desired speed reduction. Note that original sce-
narios are almost exclusively cases with no deceleration or even strong acceleration, and
search is able to significantly increase the amount of deceleration.

Figure A3: Slow-down maneuver optimization. 794 scenarios filtered by agent’s starting speed.
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A.3 MULTI-AGENT MODEL DETAILS

To encode multi-agent trajectories jointly, we first encode each agent a’s trajectory Ta individually,
using the same architecture as used in our single-agent conditional autoencoder EncSA and DecSA:

ya := EncSA(Ta, centera(E)) and (Ta)pred := DecSA(ŷa, centera(E)). (8)

Here, centera(E) refers to a geometric transformation of the environment into the agent-centric
frame of agent a. We now further process the features y1, . . . ,ya with a second-stage encoder
EncMA to produce the latent representation z:

z = EncMA({y1, . . . ,ya}, E) and ŷa = DecMA(ẑ, E), (9)

where ẑ refers to the decoder input after applying the bottleneck downprojection, soft or hard quan-
tization, and projection back to the decoder input dimensionality. To preserve invariance of our
latent token representation with respect to agent ordering and global coordinate transformations, we
implement EncMA and DecMA using a transformer, and incorporate environment information from
E in a way that allows us to preserve the desired invariances. In particular, for each agent a, we
compute an encoding pa of the position of all other agents in agent a’s frame using a PointNet-style
encoder. The feature pa can now act as a positional embedding added to ya before feeding it into
the transformer. Similarly, we initialize the tokens fed to the transformer model DecMA with pa, in
order to decode each ŷa.

A.4 LLM EXPERIMENT DETAILS

Precomputed token dataset. Since the purpose of the language understanding experiment is to de-
tect whether our multi-agent conditional autoencoder learns a semantically rich representation, we
do not allow any updates to the trajectory encoder while fine-tuning the language model. Therefore,
we start by tokenizing the full WOMD-Reasoning (Li et al., 2025) training set. We additionally
include the environment encoder’s output in this dataset, which consists of static world features and
dynamic object history. Note that we use the ego agent’s coordinate frame to encode the environ-
ment. We also transform object histories into the ego agent’s frame.

LLM fine-tuning. We perform supervised fine-tuning (SFT) of the Qwen3-4B-Instruct-2507 (Qwen
Team, 2025) model with LoRA (Hu et al., 2022). During fine-tuning we train small adapters to
embed our low dimensional tokens z and the conditioning information from E into the LLM’s token
space. The tokens z are adapted using a small two-layer MLP. Static world features are taken directly
from the (frozen) environment encoder and projected to the LLM’s embedding space with a single
linear layer. Object histories using an LSTM applied over each object’s 11 history observations.

Since we use an instruction-tuned variant of Qwen, we adhere to a chat template of the following
form during both training and sampling:

Priming prompt The following information describes a driving scenario:
Environment encoding [tokens projected from environment encoder]
Agent history information [tokens encoded by LSTM]
Latent tokens z [tokens encoded by MLP]
Question <user>[Question]</user>
Answer <assistant>[Answer]</assistant>

Evaluation. We follow the protocol of WOMD-Reasoning (Li et al., 2025) and evaluate five dif-
ferent question answering and language translation metrics on a subset of 1000 randomly sampled
validation examples: ROUGE-L (Lin, 2004), BLEU, with maximum order 4 and using word-level
tokenization (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), CIDEr (Vedantam et al.,
2015), and SPICE (Anderson et al., 2016).
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