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ABSTRACT

Causal relations can materialize in many different ways. In their simplest form
–typically assumed in classical causal models and discovery approaches–, sim-
ilar variations of a cause lead to similar variations of an effect. However, this
‘smoothness’ requires an observation of cause and effect at just the right scales.
Unfortunately, this conflicts with records often encountered in the real world, which
mix continuous measurements with once-in-a-while observations of sparse events.
Compactly modeling the causal effects between (discrete) events and continuous
states is difficult to achieve with classical causal models. To ease this situation, we
leverage transformations that derive different scales of observables, respectively, to
decompose relations and allow for compact causal representations, called Deriva-
tive Causal Models (DCM). We instantiate them using integral and derivative
transforms and demonstrate that the resulting Differential Causal Models (∂CM)
can be discovered automatically from data.

1 INTRODUCTION

There is a growing interest in modeling causal representations in everyday scenarios, such as those
commonly encountered in machine learning and applied settings (Schölkopf et al., 2021; Schölkopf,
2022; Lippe et al., 2022; Berrevoets et al., 2023; Runge et al., 2023). While new algorithms are
developed to handle an ever-increasing range of scenarios, the underlying causal representations
have changed little over the years. As a result, today’s causal models often lag behind when it
comes to concisely representing complex situations, and it can be quite cumbersome to model certain
everyday applications. Classical modeling of even the simplest causal relations, expressed by the
simple proposition, “Watering the flower pot will develop a flower”, requires knowledge of several
(hidden) causal variables, as shown in Fig. 1 (‘classical’). Time-dependent relations, such as the
lasting humidity state of the soil after the pot is watered, must be explicitly modeled by a human
practitioner. While this could be done with lagged causal mechanisms between the event of watering
and each time step of the flower size, the resulting representations are rather convoluted and more
complex to discover than the connections we want to convey. The resulting representations are rather
convoluted and more complex than the simple connection we want to convey. It would be more useful
to automatically introduce data transformations between scales of observation, such as sparse events
and continuous states, to compactly model such relations. Our approach focuses on relating these
different scales of observation, as current methods are ignorant of them.

The given example shows possible different qualities of variables: In general, information integration
allows us to correlate events that occur at a particular point in time with states that persist even after
the initial event has passed. Our approach is particularly useful for modeling systems that relate
different scales, such as sparsely occurring information, to persistent states. We anticipate a wide
range of applications ranging from modeling ‘everyday’ causality (e.g. Halpern (2016); Gerstenberg
(2022); Zhou et al. (2023)), process analysis (Van Der Aalst, 2012), and climate systems (Runge
et al., 2019a; Camps-Valls et al., 2023). We present the advantages of DCM motivated by an everyday
introductory example. Furthermore, we show discovery on synthetic time series (Sec. 4.1) and an
example of extracting rules of game dynamics (Sec. 4.2).

Structure and Contributions of the Paper. Overall, we make the following contributions: (1)
We describe how the decomposition of structural equations into data transformations and linear
relations can link variables at different scales. (2) We formalize the novel classes of derivative
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Figure 1: A one-off cause produces a continuous effect. Modeling the causal relations of watering a
pot leading to a developed flower is inconvenient to represent in ‘classical’ SCM. First, the one-time
event of (W)atering –leading to an increased soil (H)umidity– must be modeled. To discover the
causal relation between humidity and plant (S)ize, the derived (G)rowth rate aspect must to be
considered. To truly represent such changes, one must consider constraints between the originally
observed and its derived quantity (constraint model). Grouping constrained quantities, while showing
the difference in transformation levels, yields a representation that is able to compactly convey the
simple cause-and-effect relation (DCM; see Sec. 3.2). (Best viewed in color.)

causal models (DCM) and differential causal models (∂CM) via a constructive model definition.
(3) We propose a compact visualization for ∂CM. (4) We propose a greedy score-based algorithm
for discovering differential causal models from data. We make our code available at: https:
//anonymous.4open.science/r/derivativeCausalModels-E62B/.

In Sec. 2, we discuss related work and causal models of dynamical systems. Sec. 3 motivates the
linear decomposition of structural equations and formalizes an extension of SCM with transformed
variables. In Sec. 4 we construct an algorithm to discover ∂CM from data. In Sec. 5 we provide a
broader perspective on our work and discuss its limitations.

2 PRELIMINARIES AND RELATED WORK

In general, we write sets of variables in bold uppercase (X) and their values in lowercase (x).
Individual variables and their values are written in normal style (X , x). Specific elements of a set are
indicated by a subscript index (Xi)1. Probability distributions over a variable X or a set of variables
X are denoted by PX and PX, respectively. A detailed list of notations can be found in Appendix A.

SCM provide a framework to formalize a notion of causality via graphical models (Pearl, 2009).
The need to search for causal relations beyond the observed variables has already been expressed
in other work (Dong et al., 2023). We will start with a standard structural causal model (SCM) and
gradually extend the definition in the course of this paper. From a computational point of view,
structural equation models (SEM) can be used equivalently to SCM (Halpern, 2000; Spirtes et al.,
2000; Rubenstein et al., 2017).

Structural Causal Models. A structural causal model is a tuple M = (V,U,F, I,PU) over
variables X = {X1, . . . , XN} taking values in XXX = ⊗i∈{1...N}Xi subject to a strict partial order
<X. V = {X1, . . . , XM} ⊆ X,M ≤ N is the set of endogenous variables. U = X \V =
{XM+1, . . . , XN} is the set of exogenous variables. F is the set of deterministic structural equations,
Vi := fi(X

′), where the parents are X′ ⊆ {Xj ∈ X | Xj <X Vi}. I ⊆ {{Ii,vi | i ∈ i}i⊆{1,...,M} |
v ∈ XXX ↾ V} with vi for the i-th element of v and Ii,vi indicates an intervention do(Vi = vi) on an
endogenous variable, which replaces the unintervened fi with a constant assignment Vi := vi. PU is
the probability distribution over U.

EachM induces a directed acyclic graph (DAG) G = (X, E) consisting of vertices X and edges E ,
where a directed edge from Xj to Xi exists if there are x0, x1 ∈ Xj such that fi(x′, x0) ̸= fi(x

′, x1).
For each variable Xi we define ch(Xi),pa(Xi) and an(Xi) as the set of direct children, direct parents
and ancestors, respectively, according to G. We define ch(X),pa(X) and an(X) for sets of variables
X, as the union of sets obtained by individual variable evaluations, e.g., pa(X) =

⋃
X∈X pa(X). In

addition, eachM contains an observation distribution PM by propagating PU through the structural

1When considering sets of variables in this paper, we generally assume that they are indexable via an index
function on their unique variable symbol. For notational convenience, we write them as Xi.

2

https://anonymous.4open.science/r/derivativeCausalModels-E62B/
https://anonymous.4open.science/r/derivativeCausalModels-E62B/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

X Y Z

X(k̂) Y (l̂) Y (m̂) Z(n̂)
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φ
−(l̂)
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φ
(m̂)
Y φ

−(n̂)
Z

f̂ φ
(m̂)
Y ◦ φ−(l̂)

Y ĝ

SCM

DCM

with k̂ ∈ LX ,
l̂, m̂ ∈ LY ,
n̂ ∈ LZ

s.t. f̂ , ĝ linear

Figure 2: Decomposition of Structural Equations. If X,Y, Z are not on the correct scales of
observation, respectively, f and g can turn out to be arbitrarily complex. By decomposing the
structural equations f, g of a classical SCM (top), we can obtain causal relations containing linear
mechanisms f̂ , ĝ between transformed variables in a DCM.

equations. Each perfect intervention I on a variable Xi replaces a causal dependency fi with a new
probability distribution PI .

Related Work on Constraint Causal Models and Causal Models with Constraints. DCM can
be understood as a special case of Constraint Causal Models (CCM) (Blom et al., 2020) or Causal
Models with Constraints (CMC) (Beckers et al., 2023), where our focus is on a particular class of
constraints that fit suitable data transformations between different scales of observation. From a
model-theoretic perspective, DCM are less expressive (but can be more easily recovered as described
in this paper) than CMC and we have

CCM ≻ CMC ≻ DCM ≻ SCM.

Related Work on Dynamical Systems and Time Series. Extensive research has been devoted to the
causal study of dynamical systems (Friston et al., 2003; Mooij et al., 2013; Blom et al., 2020; Peters
et al., 2022; Löwe et al., 2022) and the general modeling of these (Hyttinen et al., 2012; Mooij et al.,
2013; Hansen and Sokol, 2014; Rubenstein et al., 2016; Bongers et al., 2021; Peters et al., 2022).
Most often, these works are concerned with solving (e.g. finding unique solutions or converged
states of) differential equations (Iwasaki and Simon, 1994; Dash, 2005; Blom et al., 2020; Blom and
Mooij, 2023). Such dynamics are common in causal modeling of climate systems (Zscheischler et al.,
2020; Camps-Valls et al., 2023; Runge et al., 2023) and in general with time-lagged relationships
(Peters et al., 2013; Saggioro et al., 2020; Runge et al., 2019b; Gerhardus et al., 2023; Runge et al.,
2023). While our models can be applied to dynamical systems, our goal is to relate variables between
different scales rather than to find time-lagged relations. Thus, we do not aim to model feedback
systems, but to use differential relations as constraints between related quantities. In general, we
focus on identifying instantaneous causal relations within such systems.

3 DERIVATIVE CAUSAL MODELS

The goal of our work is to develop a new formalism that is able to integrate observations at different
scales within a single causal model. By scale we mean the nature of certain variables to exhibit
different qualities in observation and thus to be measured by different means and frequencies.
Consider again the Watering example in Fig. 1, where the observations span multiple scales. They
include one-time events, changes that occur as a quantity over time, and states that measure absolute
quantities at a given point in time:

Event Change State

Soil Watering Flower Growth Soil Humidity, Flower Size

Scale of Observation

The main difficulty in expressing relationships between scales in classical causal models stems from
the fact that these models typically rely on correlational dependencies to infer relationships between
variables. However, the one-time signal of the ‘Watering’ event occurs only at a single point in time,
while the resulting flower size is a continuous effect. By simply calculating the correlation between
these two observations, they appear to be independent.
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Decomposing Equations. In theory, arbitrarily complex functional relationships can exist between
any two causally related variables. However, such complex mechanisms are generally difficult
to understand and difficult to discover. In the simplest case, we can think of causal models that
contain only linear mechanisms. We propose to simplify causal models by considering multiple
transformed versions of a variable simultaneously, with the goal of reducing the complexity of their
structural equations. The transformations that translate between different scales of observation are now
considered part of the variables rather than the causal mechanism, and allow expert knowledge to be
used to select appropriate transformations that can potentially uncover low-complexity relations. For
two variables X,Y connected by a structural equation Y := f(X), there may exist transforms
φY , φX with φY ◦ Y = f̂(φX ◦ X) such that f̂ : X → Y is linear for the right scales of
observation. In other words, this would allow the decomposition of a causal mechanism: Y :=

f(X) = (φ−1
Y ◦ f̂ ◦ φX)(X), where φ−1

Y is the inverse of φY . By separating transforms and causal
relations, previously complex structural equations decompose into several simple parts. In cases
where certain transforms are shared by multiple variables, the user now only needs to understand
the effects of the transform once, rather than having to dissect the multiple, more complex relations.
Figure 2 illustrates this decomposition of causal mechanisms and shows how different transformations
can be interpreted to induce new ‘aspects’ of a variable.

Note that φX , φ−1
Y are usually linear operators like convolutions or differential operations, but on the

space of possible causal mechanisms, which are not necessarily linear functions.

We begin our formalization of DCM by introducing the notion of transformed variables, which can
include multiple scales that are in turn derived from a single observable via transformations φi:

Definition 1 Transformed Variable. Given a variable Xi ∈ X and a family of bijective transforms
(φ

(l)
i )l∈Li

, the induced family X
(L)
i := (X

(l)
i )l∈Li

is called a transformed variable, with each X
(l)
i

determined by X
(l)
i := φ

(l)
i ◦ Xi.

We call the individual X(l)
i aspects of the transformed variable and sometimes refer to the index l as

the level of an aspect. We write φ
−(l)
i to refer to the inverse of φ(l)

i and define φ
(0)
i to be the trivial

identity preserving transformation, such that X(0)
i = 1 ◦Xi = φ

(0)
i ◦ Xi = Xi.

Admissibility and Interventions. Since transforms φ
(l)
i are bijective, they can be thought of as

placing constraints between any two aspects l, l′, such that φ−(l)
i ◦ X(l)

i = φ
−(l′)
i ◦ X(l′)

i which
we will denote as ϕ

(l,l′)
i ∈ Φ (where Φ is the set of all constraints). These constraints span the

connection to previous Constraint Causal Models (CCM) (Blom et al., 2020) and Causal Models with
Constraints (CMC) (Beckers et al., 2023), where the admissibility of a given configuration of aspects
x
(L)
i can be validated by testing for ∀l, l′ ∈ L. ϕ

(l,l′)
i (x

(l)
i , x

(l′)
i ) for all i = 1, . . . ,M . However, our

formalism is more targeted than CCM and CMC, since we require that the relations be defined as
functions, rather than allowing more general predicates. In return, we get a constructive process
that allows us to compute aspects directly, rather than having to solve for the (possibly implicit)
constraints to obtain an admissible solution. Blom et al. (2020) introduce constrained variables,
but do not impose explicit constraints on interventions. In such cases, interventions may lead to
non-admissible configurations that do no longer satisfy the constraints induced by the transformation
(as also discussed in Beckers et al. (2023)). Since we are interested in a modeling approach that
guarantees admissibility, we impose certain constraints on our DCM in order to always obtain valid
configurations. We will use these assumptions for causal graph discovery in Sec. 4:

(C1) Only one aspect has parents. Having parents attached to multiple aspects (pa(X(l)
i ) ̸= ∅

and pa(X
(l′)
i ) ̸= ∅ for l ̸= l′) can lead to situations where values from the different parents lead to

conflicting configurations, such that φ−(l)
i ◦ x(l)

i = x
(0)
i ̸= x

(0′)
i = φ

−(l′)
i ◦ x(l′)

i . It is unclear how to
handle or resolve such situations. At the cost of being more permissive in the set of allowed models,
we allow only a single aspect to have a non-empty parent set. Since this is a rather strong constraint
on the graph structure, we propose an alternative relaxed version of this constraint in Appendix C.

(C2) No intervention on multiple aspects. As discussed above, having multiple ‘disagreeing’
aspects leads to a situation that may violate the transformation-induced constraints (cf. to Beckers
et al. (2023)). As before, the same situation could occur when intervening on multiple aspects

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

simultaneously. Again, it is unclear which of the possibly conflicting φ
−(l)
i ◦ x(l)

i = x
(0)
i ̸= x

(0′)
i =

φ
−(l′)
i ◦ x(l′)

i should be used to infer x(0)
i . We therefore work around this problem by defining

intervention sets to contain only interventions on a single aspect per transformed variable2:

I ⊆ {{Ii,vi | i ∈ i}i⊆{1,...,M} | v ∈ XXX ↾ V} s.t. do(x(l)
i ) ∈ I ∈ I, l ̸= l′ =⇒ do(x(l′)

i ) ̸∈ I.

(C3) Cutting other aspects’ parents on intervention. Similar to (C2), values induced by interven-
tions may conflict with other aspect values induced by their parents. Therefore, it is necessary to cut
the parents of the transformed variable and not only of some aspect.

The constraints introduced for DCM are formal constraints to characterize discoverable DCM rather
than strict modeling constraints. In the Flowerpot example, we have four variables: watering, soil
humidity, plant growth, and plant size, where humidity and growth are unobserved. DCM now
allows us to model the situation as follows: watering and soil humidity are aspects of a causal
entity called water, and growth and size are aspects of a second entity called plant. A linear causal
humidity → growth relation is modeled. Theoretically, however, we could model a causal relation
between any pair of water-plant aspects at the cost of obtaining more complex structural equations
between the aspects (cf. Fig. 2, where DCM also includes classical SCM). Note that we can always
integrate the aspect transformations of a simple model back into the structural equations. Such
marginalization or consolidation approaches have been proposed e.g. by (Rubenstein et al., 2017)
and (Willig et al., 2024). However, in the interest of discovering such models, we aim to find the
simplest model containing only linear mechanisms.

While we are aware that our constraints may limit the expressiveness of the models, we obtain explicit
models whose admissible configurations can be obtained by forward computation within the DCM
by the following theorem.

Theorem 3.1 Intervened and unintervened evaluations of the SCM under conditions (C1)-(C3) yield
admissible variable configurations x with respect to the transformed variable constraints Φ.

Having discussed the intuition for conditions (C1)-(C3), we should be able to see the validity of the
theorem rather easily. We include a proof in Appendix B for completeness. This also concludes
the changes needed to extend SCM in line with the introduction of transformed variables. Thus, we
define derivative causal models as follows:

Definition 2 Derivative Causal Model (DCM). A derivative causal model Mφφφ =
(Vφφφ,Uφφφ,Fφφφ,Φφφφ, Iφφφ,Pφφφ

U) is an extension of an SCM M = (V,U,F, I,PU), under con-
straints (C1)-(C3), induced by a set φφφ = {(φ(l)

i )l∈Li | i = 1, . . . , N} of families of bijective
transformations and a specific set of aspect indices l⋆ ∈ ⊗{j|Xj∈X′}Lj with

Vφφφ := {X(l)
i | i = 1, . . . ,M ; l ∈ Li}

Uφφφ := {X(l)
i | i = M + 1, . . . , N ; l ∈ Li}

Fφφφ := {V (l⋆i )
i := f(X′) | i = 1, . . . ,M ; l⋆i ∈ l⋆}

Φφφφ := {V (l)
i = φ

(l)
i ◦φ

−(l⋆i )
i ◦ X(l⋆i )

i | i = 1, . . . ,M}

Iφφφ := {{do(V (l)
i := v

(l)
i ) | i ∈ i}i⊆{1,...,M} | v ∈ XXX ↾ V; l ∈ L1 ⊗ · · · ⊗ LM}

l⋆ serves as an indicator set for which aspect of a transformed variable is determined by its parents.
All other l ̸= l⋆ are then determined by the constraints Φφφφ between aspects. (When being free to
choose, it may be advisable to choose l⋆ = 0 in order to have child aspects appear in structural
equations with index 0.)

Note that the definition of X′, constrained by the partial order <X, remains unchanged, while the
semantics of <X changes slightly. Due to the constraints Φφφφ induced by the transformations, all
aspects are required to be on the same ‘level’ as the original observable. That is: Xi <X Xj ⇐⇒
X

(l)
i <X X

(l′)
j for all i, j; l, l′. This completes our formalization of DCM.

2Technically, multiple interventions could be allowed, as long as they all result in the same x
(0)
i . Due to

constraints (C1)-(C3), this is equivalent to choosing any single intervention from the set of agreeing interventions.
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Consider furthermore, that more than one aspect, e.g. the pair X
(l)
i , X

(l′)
i , could be governed

independently via different structural equations: X(l)
i := f(X′) and X

(l′)
i := g(X′). We could then

transform X
(l′)
i back to X

(l)
i which then yields X(l)

i := φ(l) ◦ φ−(l′) ◦ g(X′). However, this means
that f(X′) = φ(l) ◦ φ−(l′) ◦ g(X′). Since f already fully determines X(l)

i , we would have to require
that g (via the transformation φ(l) ◦ φ−(l′)) follows f and computes the exact same value for X(l)

i .
While we could allow for such scenarios, g will not add any more information than is already given
by f . Even more so, the probability of f and g disagreeing on particular values of X(l)

i is high
if we consider sampling random models from the unconstrained model space. In these cases, the
probability of the data collapsing to zero makes the model inadmissible, which is what we avoid with
our constraints.

3.1 DIFFERENTIAL TRANSFORMS IN CAUSAL MODELS

Some choices of transforms may be more convenient than others. In the following, we will focus
on the particularly useful class of differential transforms. Differential quantities of a variable can be
related via their anti-derivatives (e.g., Bongers et al. (2018), Blom et al. (2020, Eq. 2)):

X(ẋ0..t; c) = c+

∫ t

0

Ẋs ds (1)

The equation 1 gives rise to different aspects of a causal variable. For each variable, we can consider
the observed quantity X , its n-th derivatives (Ẋ, Ẍ, . . . ), and its anti-derivatives (

∫
X,

∫∫
X, . . . ).

Given the starting conditions c, we can infer the integral representations and/or compute the deriva-
tives of a variable. Thus, each variable induces its derivative family by taking derivatives and/or
anti-derivatives (wherever they exist):

Definition 3 Differential Transform. The differential transform operator is recursively defined by:

s(k, l, c) =


(ck+l +

∫
) ◦ s(k, l − 1, c) if l > 0

(d/dt) ◦ s(k, l + 1, c) if l < 0

1 if l = 0

(2)

The operator s(k, l, c) with k, l ∈ Z induces the set of differential transforms φ(l)
i := s(0, l, cXi

),
where cXi is the starting vector corresponding to Xi. k is the absolute level of the aspect to which
we apply the transformation, and l can be used to perform relative level shifts. To avoid having to
talk about transformed variables with differential transforms, we define differential causal variables:

Definition 4 Differential Causal Variable. A differential causal variable is a transformed variable
induced by the family of differential transforms X(l)

i := s(0, l, cXi
) ◦X(0)

i .

We can observe some regularities following the two previous definitions. In particular, note that for
differential causal variables the relation φ

−(l)
i = φ

(−l)
i holds, since s−1(0, l, cXi) = s(0,−l, cXi).

Additionally, we can relate any two X
(k)
i , X(k+l)

i to each other by their index level difference
X

(k+l)
i = s(k, k + l − k, cXi

) ◦ X(k)
i = s(k, l, cXi

) ◦ X(k)
i . Thus, knowing the relative level

difference between aspects is sufficient to translate between them. This is especially useful when
we want to discover new relations, but do not know the exact level at which an observation is made.
Thus, all aspects can be transformed into each other by applying relative shift transforms. In short, we
make fewer assumptions about our observations and directly create transformed variables in the range
[l − n, l + n] up to a user-defined n, without worrying about the absolute scale l of an observable.
Finally, we define differential causal models as a special class of derivative causal models:

Definition 5 Differential Causal Model (∂CM). A differential causal model is a derivative causal
model in which all transforms are differential transforms.

An often considered special case of ∂CM is that of (discrete) time series, which appears in a variety of
scenarios such as climate science, finance, or reinforcement learning (Runge et al., 2023; Hasan et al.,
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2023; Geweke, 1984; Bareinboim et al., 2015; Sutton and Barto, 2018). Even if there are no explicit
observations of derivatives or integrals are available in the data, we can induce these quantities by
computing finite differences. To make the transformation bijective, as required by Def. 1, we need to
know a starting vector c. For the later application to discrete time series, we assume that the values
of the previous time step t− 1 are to be observed. In other scenarios, such as measuring the position
of a car, its derivative ‘speed’ and integral ‘distance traveled’ values may be read from instruments
and provided within the data. While previous work considers the time aspect of the data as a means
to infer delayed causal relationships, we use the time dimension exclusively to obtain integral and/or
derivative values.

3.2 COMPACT DERIVATIVE CAUSAL MODEL (DCM) REPRESENTATION

Since we wanted to present a simplified causal representation at the beginning, we will now briefly
discuss a possible compact representation for graphs containing transformed variables. The notion
of variables linked by differential transforms imposes constraints on aspects. As a consequence,
individually transformed aspects do not stand alone, but can be grouped together. Depending on the
use case, this reduces the number of nodes and makes ‘higher level’ qualitative relationships more
visible. Transformed variables (and thus differential causal variables) can be thought of as forming
cluster DAGS (Anand et al., 2022), causal composition variables (Willig et al., 2024) or coarsened
graphs (Wahl et al., 2023) (all, mutas mudandis the replacement of directed structural equations by
constraint relations). These and other previous works (Zhu et al., 2024; Kekić et al., 2023) generally
do not consider ‘symmetric’ undirected constraints, but assume directed structural equations between
variables as to derive identification and independence properties between clusters. Our formulation
was specifically chosen to ensure that the coarsened graph (Wahl et al., 2023) remains acyclic.

Since we want the DCM graph to convey the qualitative nature of causal relations, we use the relative
nature of ∂CM transforms to indicate the offset in transformation levels between two variables. For
example, in the ‘constraint’ representation of Fig. 1, we see that the causal effect passes through
two integral transforms. In our example, this is the result of the initial event-to-state aggregation
(C −

∫
→W ), the following equal-scale causal relation (W → G), and a final integral transformation

(G −
∫
→ S). With some imprecision, we pull the integrals together along the chain to convey

the qualitative –double integrating– nature of the relation. In general, we expect most simple
Event→ State relations to be of the form X −

∫ (2)→ Y . Alternatively, a slightly less convenient
way to write them is to represent them in terms of derivative transforms: G − (dx/dt)(−2)→ S.
Note that whenever l and m have different signs, it may be advisable to list them separately as
G−(

∫ (+l),
∫ (−m))→ S to avoid confusion due to cancellation effects.

4 DISCOVERING DIFFERENTIAL CAUSAL MODELS FROM DATA

The previous sections were primarily concerned with the formalization of derivative and differential
causal models for modeling systems and processes. We recognize that –in the field of causality– there
is a great interest in the (automated) discovery of causal structures from data. In the following, we
develop the Greedy Derivative Model Search (GDS) algorithm for discovering differential causal
models using a score-based approach.

Navigating the class of Markov-equivalent models, as in the GES algorithm (Chickering, 2002),
is challenging for DCM because our constraints impose additional restrictions on the set of edges
that can be added at each step. In particular, we are often prevented from adding or inverting
certain edges as would be done in classical GES. We take inspiration from the GLOBE algorithm
of Mian et al. (2021), which exploits the minimal representation length (Janzing and Schölkopf,
2010) to still perform a graph search over the class of SCM. We also modify the standard Bayesian
Information Criterion (BIC; Schwarz (1978)) evaluation to significantly improve performance in
our setting. As a major benefit, we can verify that our new DCM constraints can be applied during
the edge selection phase. Pseudocode for the algorithm can be found in Appendix D. A Python
implementation of our algorithm and the evaluation scripts used can be found in the code repository:
https://anonymous.4open.science/r/derivativeCausalModels-E62B/.

7

https://anonymous.4open.science/r/derivativeCausalModels-E62B/


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(1)

(2)

(3)

GDS Precision (↑) Recall (↑) SID (↓)
α = 0.01 63.47 (20.44) 60.21 (22.16) 4.95 (3.82)
α = 0.1 62.87 (20.34) 59.50 (22.48) 5.00 (3.84)
α = 1.0 61.03 (24.78) 49.19 (21.07) 6.10 (3.98)
α = 10.0 62.66 (30.54) 28.88 (15.61) 8.85 (3.75)
α = 100.0 61.16 (35.28) 26.21 (17.84) 8.80 (3.85)
linear regr. 60.74% (19.92) 60.59% (24.73) 4.85 (3.90)
no poly. fit. 25.68% (15.08) 38.40% (24.56) 9.80 (4.01)
GES (std) 28.92% (14.19) 36.30% (34.63) 9.76 (5.50)
GES (pf) 21.24% (13.16) 33.36% (29.42) 10.76 (3.55)

Figure 3: Graph Constraints and Evaluation of Greedy Differential Search. (Left) The figure
visualizes forbidden edges induced by the conditions of Sec. 4.1 (red), in a graph with existing
edges (green). (Additional non-candidate edges are not shown for clarity.) Edge (1) creates a cycle
within variables of the coarsened graph (dashed rectangles). Edge (2) would connect aspects of the
same transformed variable. Edge (3) adds a parent to a new aspect, while another aspect already
contains parents. (Right) Evaluation of the GDS algorithm for different settings of α. We compare to
GES with standard (std) and our polynomial fitting (pf) loss. (Best results in bold; second place in
underlined). The mean (and standard deviation) is given in parentheses. SID (lower is better ↓) is
computed over the coarsened graph. Small sparsity regularization generally improves the accuracy.
More results can be found in Appendix D.1. (Best viewed in color.)

4.1 GREEDY SEARCH FOR DISCOVERING DIFFERENTIAL CAUSAL MODELS

Like GLOBE, our GDS algorithm consists of a forward and a backward phase that are repeated many
times until convergence. In a forward phase, the algorithm iteratively selects new edges to add until
no more edges can be added without increasing the score. The score of each edge addition is the
difference between the unaltered graph and the graph with the candidate edge added. Since this is
a greedy heuristic, it runs the risk of getting stuck in local optima. For example, a node initially
explained by a single edge with a high score might be better explained by two separate weaker edges
added later. To eliminate such edges, an additional backward phase is performed, removing individual
edges from the parents and testing whether the score still improves (Mian et al., 2021). We repeat
this process up to 5 times or until convergence.

In a first step we augment the data with transformed aspects of a variable. As discussed earlier,
we recursively compute X

(l)
t from X

(l±1)
t and require that the starting values of the previous time

step X
(l)
t−1 are known. In the discrete time step setting we compute integrals by simple summation

X
(l+1)
t := X

(l+1)
t−1 +X

(l)
t and derivatives by a finite differences X(l−1)

t+1 := X
(l+1)
t +X

(l)
t . Obviously,

this augmentation requires that the number of transformations considered, L, be finite. For our DCM
experiments, we consider a setting with one addition, derivative, and integral aspect per variable,
resulting in an effective tripling of variables in our case.

To make the algorithm follow the DCM constraints, we impose several constraints on the selection of
possible candidate edges. Specifically, we impose the following constraints (see Fig. 3 (left)):

(1) Acyclicity. As with classical SCM, we must ensure that the coarsened graph remains acyclic.
Since the transformation constraints between different aspects are not reflected in the data, we obtain
the coarsened graph in each step and exclude edges that would lead to cycles.

(2) In-constraint Edges. Furthermore, we do not allow edges between aspects within a constraint
variable, since these relations are already determined by the transformations (and thus would induce
self-cycles within the global graph). This follows directly from the irreflexivity of the strict partial
order <X over the coarsened graph, such that ∀l, l′ ∈ Li.X

(l)
i ̸<X X

(l′)
i ⇒(X

(l)
i , X

(l′)
i ) ∈ E .

(3) Multiple Child Aspects. This constraint is imposed to prevent multiple (possibly conflicting)
signals from being present on the aspects, as required by (C1). Only a single aspect within each
transformed variable can contain parents. Once an aspect within a transformed variable receives a
parent edge, all other parents are prohibited from receiving additional incoming edges. This is the
most restrictive constraint in terms of allowed graph structures, and we hope to relax it in the future. It
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follows from the uniqueness of a single aspect with parents within each transformed variable, implied
by l⋆: (l⋆i ∈ Li)⇒(∀l⋆i ,m⋆

i ∈ Li.((pa(X
(l⋆i )
i ) ̸= ∅)⇒(pa(X

(m⋆
i )

i ) = ∅ ∨ l⋆i = m⋆
i )))

Bayesian Information Criterion. We use the BIC to estimate the cost of adding a new edge to a
model. Specifically, we compute the common formulation BIC = n ∗ ln(σ̂2) + k ∗ ln(n) (Priestley,
1981), where σ̂2 are the prediction residuals after linear regression (and polynomial fitting; see below),
k is the number of model parameters, and n is the number of samples. As a first step, we fit the
parental weights using linear regression. In addition, when fitting the parents, we apply the LASSO
regularization (Tibshirani, 1996) to zero out the weights of non-parent candidates in cases where
ordinary least squares would still assign some average weight. LASSO introduces an α parameter that
balances the goodness of fit with the sparsity of the weight vector via L1 regularization. Whenever a
previously included parent weight regresses to zero, it is removed from the set of parent candidates.

Polynomial Fitting. Because the data have aspects at different scales, the residual of a variable
(especially integral aspects) is most likely to exhibit non-Gaussian behavior. Computing the variance
of an integral aspect –that is, over the residuals after linearly fitting the parents– as is done in the
standard BIC calculation, provides a strong incentive for the algorithm to predict integral aspects
first in order to reduce excessive variance. To account for the potentially nonlinear behavior of
the residuals, we fit multiple polynomials to a given degree and only then compute the remaining
variance (see Alg. 4). The parameters needed to fit the polynomial are counted in the number of
model parameters k. The polynomial fit with the lowest BIC is then selected for further comparison
with other edges. Our experiments confirm our modeling choice, as we observe a severe drop in
performance when no polynomial fit is performed on the linearly fitted residuals (see Table 3).

Evaluation. We evaluate our algorithm on random graphs with 6 nodes and a default edge proba-
bility of 50%. (See Appendix D for extensive evaluations varying the number of nodes and edge
percentages.) We generate one derivative and one integral aspect per variable and sample 10 initial
configurations. Each configuration is run for 50 time steps. Exact parameter details are given in
Appendix D.1. We measure edge recall and precision (higher is better ↑), as well as structural
intervention distance (Peters and Bühlmann, 2015, SID) (and structural Hamming distance (Acid
and de Campos, 2003; Tsamardinos et al., 2006, SHD) (lower is better ↓) in Appendix D) on the
coarsened graph. (We are not aware of any variant that is able to measure SID in the presence of
transformed variables). Full experimental details are given in Appendix D.1.

To the best of our knowledge, no causal discovery algorithm has been proposed to discover instanta-
neous effects under transformation constraints. Similar baselines, such as GES or GLOBE, do not
exploit constraints and do not guarantee that they lead to valid DCM. Nevertheless, GES should
be able to identify the causal relationships when given the individual aspects. We therefore report
the performance for GES as a baseline algorithm, unaware of the constraints that may be present in
the system. (Exact evaluation details are given in Appendix D.1). We evaluate each configuration
over 20 seeds and report the results in Figure 3. We vary the α of the LASSO regression, compare
it to ordinary least squares regression, and evaluate our algorithm without polynomial fitting of the
residuals. We find that the small LASSO regularization with α = 0.01 outperforms ordinary least
squares regression in terms of precision, while linear regression is slightly better in terms of recall and
SID score. As expected, fitting without polynomial fitting of the residuals significantly reduces the
performance. Overall, we observe a high standard deviation, which we attribute to the aforementioned
problem of a difficult to navigate search space. Selecting the wrong edges (or edge directions) at the
beginning of the algorithm makes recovery difficult.

Application to a Real-World Maize Watering Example. Finally, the discovery algorithms are
applied to the publicly available real-world data set ‘USDA-ARS Colorado Maize Water Productivity
Dataset’. (See Sec. D.1.1 in the appendix for more details). Although no ground truth graph
exists, the dataset is similar to the plant growth example from the introduction, containing sparsely
occurring ‘watering’ factors such as ‘irrigation’ and ‘precipitation’, and ‘plant size’ factors such
as ‘root depth’ and ‘canopy cover’. In fact, the GDS algorithm is able to correctly identify the
predicted integral relationships, in particular, the causal relationships ‘Irrigation→ Root Depth’ and
‘Irrigation→ Canopy Cover’ are correctly inferred. In contrast, GES is unable to detect any integral
or derivative relations. The recovered causal graphs, together with a brief discussion of the results are
respectively presented in Figure. 5 and Sec. D.1.1 in the Appendix.
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+

+

+ Movement
moveLeft−

∫
→ posX

moveRight−
∫
→ posX

moveUp−
∫
→ posY

moveDown−
∫
→ posY

Interactions
coll.Key

−
∫
→

=== hasKey
hasKey→ doorOpen
coll.Gem −

∫
→ score

coll.Door→ finished

Figure 4: Capturing Game Dynamics. (Left) Individual frames of a simple game walk through.
(Right) Game dynamics described by ∂CM relations. Possibly continuous Input−

∫
→ State relations

connect the player inputs and avatar position, while Event−
∫
→ State interactions describe discrete

states related to game logic. A full description is provided in Appendix E. (Best viewed in color.)

4.2 CAPTURING GAME DYNAMICS

As a last example, we present a brief illustration to demonstrate the usage of ∂CM for modelling
game dynamics. This could be useful to guide agent training or reason about the root causes of agent
actions (Schölkopf et al., 2021; Brehmer et al., 2022; Lachapelle et al., 2022; Weichwald et al., 2022;
Kumar et al., 2024; Talon et al., 2024). Consider the game environment depicted in Figure 4. In this
environment, a variety of observables among different scales can be observed in every frame. These
include events, such as moveLeft, collidesKey, or states such as doorOpen, score. In a
first step we perform a semantic grouping where observables of different scales of the same object
(e.g. collideKey and hasKey) are grouped into a single transformed variable. (Indicated in the
figure by A =−

∫
→= B). Using ∂CM spares us from having to model the explicit constraints over the

different variables every time such a situation arises and, compared to classical SCM, allows us to
handle the relations between the two aspects in a more uniform manner. In addition to the apparent
relation between movement and position, we are also able to model integral rules in the environment,
such as collectGem−

∫
→ score. Note that even in the case of not observing hasKey explicitly,

∂CM would still be capable of deriving the collectKey−
∫
→ doorOpen causal relation. While

these relations may be modelled using other frameworks (e.g. [extended] summary causal graphs,
(Assaad et al., 2022b;a)), the use of ∂CM facilitates a more effective disentanglement of dynamics
and interaction rules as qualitative relations in the environment. In Appendix E, we provide a brief
example on how to leverage the presence of derivative aspects in ∂CM to reason backwards in time
and infer information about previous states of the environment.

5 CONCLUSION

The observation of causal relations between single events and their continuous effects is a common
occurrence, particularly within everyday situations. The ability to concisely represent such causal
connections is a challenging, yet key requirement for the correct application of causal models. To
the best of our knowledge, we are first to conceptualize the notion of scales in DCM and ∂CM.
The approach enables practitioners to model real-world scenarios more concisely, thereby allowing
them to reason more effectively on the causal relations across different scales. In particular, the
seamless embedding of integral aspects is if great importance, as they accumulate information about
the past states into current observations. This property may be employed to reason backward in
time (e.g. performing Taylor approximations with the help of derivative aspects) to reconstruct
process sequences or trace back root causes using observations alone. To discover DCM and ∂CM
automatically from data, we propose the Greedy Derivative Model Search algorithm, which is able to
recover DCM from data under the presence of aspect transformations.

Limitations and Broader Impact. The examples provided considered the instantaneous effects
between variables. In other words, our experiments did not consider time-lagged relations between
variables, apart from the aggregational dynamics of integral quantities. We expect future work to
also incorporate time dependencies, including the incorporation of lagged connections. Although
our definition of DCM has several useful properties, it also imposes certain restrictions on the graph
structures that can be modelled. We have relaxed these constraints in a discussion in Appendix C
and hope to develop more general notions of DCM in the future. In general, we expect our newly
proposed DCM and ∂CM to enable practitioners to model real-world problems more concisely and
identify qualitative relations more easily.
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SUPPLEMENTARY MATERIAL: “DERIVATIVE CAUSAL MODELS: MODELING
CAUSALITY AT MIXED SCALES OF OBSERVATION”

A MATHEMATICAL SYMBOLS AND NOTATION

The following table contains mathematical notation and functions used throughout the paper.

Notation Meaning
X; X An (indexed set of) variable(s).
x; x Value(s) of X;X.
Xi The i-th variable of X.
XS The subset {Xi : i ∈ S} of X.
PX A probability distribution over variables X.
XXX ↾ V Restriction of the domain ofXXX to the subset of the domain over V.
f ◦ g Function composition, (f ◦ g)(x) = f(g(x)).
⊗Xi∈XXi N-ary Cartesian product over the domain of X.
∥·∥2 l2 vector norm.
U(a, b) Uniform Distribution.
N (µ, σ2) Normal Distribution.

B PROOF OF THEOREM 3.1: ADMISSIBILITY OF VARIABLE CONFIGURATIONS
IN DCM

In this section we prove Theorem 3.1 of the main paper. To do so, we need to show that the
constraints induced by the transforms (Sec. 3) are always fulfilled during normal evaluation and
under intervention. The main point is to show that no two conflicting configurations are induced by
parents or interventions at any point in time. As constraints are placed per transformed variable it is
sufficient to prove the validity of constraints for arbitrary transformed variables to prove the validity
of Theorem 3.1 for the whole SCM:

Unintervened Evaluation: Assume that no intervention is present at any X
(l)
i ∈ X

(L)
i . By constraint

(C1) as realized in Def. 2 we require only X
(l⋆)
i to have parents. (Note that this also excludes any

other potential intra-aspect causal relations in X
(L)
i ). By Def. 2, all other X(l)

i , l ̸= l⋆ are defined via
X

(l)
i = (φ

(l)
i ◦φ

−(l⋆)
i )(X

(l⋆)
i ), which is the exact definition of constraints ϕ in Sec. 3 (as included in

Def. 2). Finally, we need to show that no other competing source of information (via other aspects
containing parents or interventions) breaks the constraints. By constraint (C1) no other aspects
contains parents and no intervention is present by assumption. Therefore, no other –potentially
conflicting– signal influences X

(l)
i and the values for all aspects are uniquely computed for the

unintervened case.

Intervened Evaluation: Assume that an intervention do(X(l)
i := x

(l)
i ) is present at some X(l)

i ∈ X
(L)
i .

By Def. 2, all other X(l′)
i , l′ ̸= l are defined by X

(l′)
i = (ϕ

(l′)
i ◦ϕ−(l)

i )(X
(l)
i ), which is the exact

definition of constraints in Sec. 3. Finally, we need to show that no other competing source of
information (via aspects containing parents or other interventions) breaks the constraints. Constraint
(C3) requires the parents of (all aspects and in particular) X(l⋆)

i to be cut. By constraint (C2) no other
intervention do(X(l′)

i = x), l′ ̸= l can be placed on any of the aspects in X
(L)
i . Therefore, no other

–potentially conflicting– signal influences X(l′)
i and the values for all aspects are uniquely computed

for the intervened case.

As such, we have shown the admissibility of variable configurations in DCM under constrains Φ for
the intervened and unintervened case.

C RELAXATION OF CONSTRAINT (C1)

Condition (C1) as described in Sec. 3 poses a rather strong constraint on the structure of the causal
graph in order to guarantee consistency. Depending on the specific use-case the constraint might
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be relaxed and replaced by argmaxx⋆ p(X
(L)
i = x⋆|pa(X(L)

i )) given a (probability) measure
µ, that measures the violation of constraints ϕ

(l,l′)
i with ϵ

(l,l′)
i = φ

−(l′)
i ◦ X(l′)

i − φ
−(l)
i ◦ X(l)

i

and µ(⊗{l,l′∈Li,i=1...M}ϵ
(l,l′)
i ). This results in the most likely configuration (the one that violates

constraints the least). This formulation might require solving for all aspect values under the implicit
constraints ϕ(l) and requires that a solution with non-zero probability always exists: p(X

(L)
i =

x⋆|pa(X(L)
i )) > 0.

D GREEDY DERIVATIVE MODEL SEARCH

In the following, we provide pseudo code for the GreedyDerivativeModelSearch in
Algorithms 1-4 as described in the paper. We provide an implementation of the algo-
rithm in the corresponding code repository: https://anonymous.4open.science/r/
derivativeCausalModels-E62B/. Note, that the actual implementation aborts GDS in cases
of no more edges being added or removed during GDSForwards or GDSBackward. Additionally,
we cache the evaluation results of nodes given a specific set of parents. Both optimizations do not
impact the correctness of the algorithm. We have spared them from the pseudo code to improve
readability.

We make use of the following variables: D is the data, N is the number of variables, Adj is the
adjacency matrix of the to be discovered graph. Every edge is a pair (i, j) where j is a parent of i.
edgeDelta measures the change in score of adding the edge (i, j) to Adj, while edgeDelta′ measures
the change when removing (i, j) from Adj.

Algorithm 1 Greedy Derivative Model Search

1: procedure GREEDYDERIVATIVEMODELSEARCH(D, numAspects)
2: D′ ← AugmentWithAspects(D)
3: Adj← zeroMatrix(N × numAspects, N × numAspects)
4: for i in 1..N do ▷ Repreat phases N times, as suggested by Mian et al. (2021).
5: Adj← GDSFoward(Adj, D′)
6: Adj← GDSBackward(Adj, D′)
7: end for
8: return Adj
9: end procedure

Algorithm 2 GDSForward

1: procedure GDSFORWARD(Adj, D)
2: bestScore←∞
3: while True do
4: edgeScores← [ ]
5: candidateEdges← allowedEdges(Adj) ▷ Select all edges permitted by (C1)-(C3).
6: for all (i, j) ∈ candidateEdges do
7: edgeScores← edgeDelta(i, j,Adj,D) ▷ Compute score change when adding j→ i.
8: end for
9: i⋆, j⋆ = candidateEdges[argmini edgeScores]

10: Adj[i⋆, j⋆]← 1
11: newScore← ScoreGraph(Adj)
12: if newScore ≥ bestScore then
13: Adj[i⋆, j⋆]← 0 ▷ Adding the best edge did not improve the score; Revert and abort.
14: break
15: end if
16: bestScore← newScore
17: end while
18: return Adj
19: end procedure

16

https://anonymous.4open.science/r/derivativeCausalModels-E62B/
https://anonymous.4open.science/r/derivativeCausalModels-E62B/


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 3 GDSBackward

1: procedure GDSBACKWARD(Adj, D)
2: bestScore←∞
3: while True do
4: edgeScores← [ ]
5: candidateEdges← where(Adj,1) ▷ Collect all edges currently present in Adj.
6: for all (i, j) ∈ candidateEdges do
7: edgeScores← edgeDelta′(i, j,Adj,D)
8: end for
9: i⋆, j⋆ = candidateEdges[argmini edgeScores]

10: Adj[i⋆, j⋆]← 0
11: newScore← ScoreGraph(Adj)
12: if newScore ≥ bestScore then
13: Adj[i⋆, j⋆]← 1 ▷ Removing the ‘best’ edge did not improve BIC; Revert and abort.
14: break
15: end if
16: bestScore← newScore
17: end while
18: return Adj
19: end procedure

Algorithm 4 ScoreNode

1: procedure SCORENODE(Dnode,Dparents)
2: w ← LASSO(Dnode,Dparents, α)
3: residualsA ← w ×Dparents−Dnode
4: scores = [ ]
5: for all p ∈ 1..P do
6: wp ← fitPolynomial(p, residualsA) ▷ Fit residuals with a polynomial of degree p.
7: residualsB ← predictPolynomial(residualsA, wp)− residualsA
8: σ2 ← variance(residualsB)
9: score← BIC(|parents|+ p, σ2)

10: scores = append(scores, score)
11: end for
12: return argmini(scores)
13: end procedure

Note that after LASSO regression in Line 2 parents might be removed if their weights are found to be
zero (as described in Sec. 4.1). We have ommited this logic in the pseudo code to improve readability.
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D.1 GREEDY DERIVATIVE MODEL SEARCH EVALUATION AND DATA SET GENERATION

In the following we describe the setup of our synthetic time series data set and present further
evaluations altering the number of nodes and density of the graph.

Data Set Generation. A coarsened graph is created by sampling a given percentage of entries from a
lower triangular matrix. One derivative and one integral aspect per variable are created. For every
edge in the coarsened graph a random subset of the aspects is chosen as parents. Edge weights are
uniformly sampled from the range ±(0.1, 1.0). Starting values at t = 0 of all aspects are uniformly
sampled in the range [−2, 2]. Values of root variables are uniformly sampled in the range [0.1, 1]
for all timesteps. For every endogenous variable normal gaussian noise N (0, 1) is added. For every
graph 10 different starting configurations are sampled and a time series of 50 steps is computed via
finite differences (derivative aspects) and summation (integral aspects). Every configuration altering
the number of nodes or edge percentage is created are evaluated from 20 different seeds which alter
random sampling in all above processes.

Evaluation. The following table contains the results of the experiment as shown in the main paper,
with 6 nodes (n=6) and 50% chance of an edge in the coarsened graph to exist (e=50%). Additionally,
we include SHD over the coarsened graph in this and show results for fixing all other parameters and
varying to number of nodes and edge percentage, respectively.

GDS; n=6; e=50% Precision Recall SID SHD
α = 0.01 63.47% (20.44) 60.21% (22.16) 4.95 (3.82) 4.40 (1.65)
α = 0.1 62.87% (20.34) 59.50% (22.48) 5.00 (3.84) 4.50 (1.65)
α = 1.0 61.03% (24.78) 49.19% (21.07) 6.10 (3.98) 4.70 (1.58)
α = 10.0 62.66% (30.54) 28.88% (15.61) 8.85 (3.75) 5.30 (1.38)
α = 100.0 61.16% (35.28) 26.21% (17.84) 8.80 (3.85) 5.05 (1.20)
linear regr. 60.74% (19.92) 60.59% (24.73) 4.85 (3.90) 4.45 (1.59)
no poly. fit. 25.68% (15.08) 38.40% (24.56) 9.80 (4.01) 9.75 (2.42)

GDS; e=50%; α=1.0 Precision Recall SID SHD
n = 4 64.16% (42.58) 46.49% (33.14) 1.65 (1.76) 1.55 (0.73)
n = 6 61.03% (24.78) 49.19% (21.07) 6.10 (3.98) 4.70 (1.58)
n = 8 52.92% (14.72) 49.00% (15.42) 16.25 (6.56) 10.00 (2.36)
n = 12 46.46% (13.00) 45.93% (10.45) 50.90 (14.46) 25.90 (5.00)
n = 16 39.94% (7.61) 38.03% (8.12) 132.65 (24.58) 51.25 (6.36)

GDS; n=6; α=1.0 Precision Recall SID SHD
e = 20% 60.00% (46.36) 43.33% (38.87) 1.35 (1.42) 1.50 (1.02)
e = 30% 59.16% (40.98) 35.83% (28.39) 2.50 (2.31) 2.35 (1.15)
e = 40% 57.70% (32.94) 50.24% (30.41) 3.80 (3.02) 3.65 (1.27)
e = 50% 61.03% (24.78) 49.19% (21.07) 6.10 (3.98) 4.70 (1.58)
e = 60% 62.39% (22.59) 52.13% (20.95) 8.05 (3.47) 5.35 (1.35)
e = 70% 58.27% (19.66) 51.51% (15.83) 8.05 (3.48) 6.00 (1.67)
e = 80% 62.80% (20.04) 47.58% (15.14) 12.10 (3.88) 7.60 (2.31)

Evaluation with GES. While GES is bound to discover CPDAGs (Meek, 2013) it could be, that
GES might still discover valid DCM from data. To test this hypothesis, we apply GES in our
standard setting (n=6,e=50%) on our data with all derived aspects generated, to obtain a CPDAG. We
then generate all possible DAG realizations of the CPDAG –which means that we generate DAGs
containing all possible combinations of directed edges for all undirected edges– and test if they are
valid DCMs. To make for a fair comparison, we use our BIC with polynomial fitting as the scoring
function. We find that over all 20 seeds GES is not able to recover a graph that aligns with the DCM
constraints.

Nonetheless, GES is able to recover relations between individual aspects. We therefore provide all
aspect variables individually, and let GES identify the causal relations between them. After discovery,
the individual aspects are then grouped together to form the coarsened graph. Given that GES might
have predicted contradicting edge directions among the grouped aspects from or to other variables, we
decide the edge direction by a majority vote. If there is an equal number of edges in either direction,
we give the benefit of doubt and direct the coarsened edge using the correct direction of the ground
truth graph.
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Figure 5: Causal graph discovery on the USDA-ARS Colorado Maize Water Productivity
Dataset. The real-world data set resembles the setup of the motivational example of the introduction.
Discretely occurring effects, such as precipitation and irrigation are mixed with continuously changing
variables such as the canopy cover. Results are show for GDS (left) and GES (right). We find that our
GDS algorithm more closely predicts the structure predicted in our idealized motivational example.

Compute Time. All experiments where run on an AMD Threadripper 1900X 8x 3.80GHz. Full
evaluation of all experiments took 29m 52s. A run with n=6, e=50%, α=1.0 over 20 seeds took 46
seconds, while evaluating 20 seeds over graphs with 16 nodes took 10 minutes.

D.1.1 USDA-ARS COLORADO MAIZE WATER PRODUCTIVITY DATASET

We present an evaluation on the publicly available “USDA-ARS Colorado
Maize Water Productivity Dataset” (https://catalog.data.gov/dataset/
usda-ars-colorado-maize-water-productivity-dataset-2008-2011-5460b)
which is similar to the idealized setup of our motivational example. We predict the causal graph
for the 2011 subset over the following variables: precipitation, irrigation (‘water sources’); root
depth and canopy cover (‘plant metrics’); avg. air temperature, relative air humidity and daily solar
radiation (‘weather conditions’). We fuse the provided weather data with the plant records during
their growth phase and apply our algorithm with 2 integral and derivative aspects. As GES performs
worse when provided with additional aspect variables, we present its direct evaluation on the pure set
of variables. Graph predictions are provided in Fig. 5.

Note that the irrigation and precipitation variables are mostly sparse (‘zero-valued’), such that water is
only provided to the plant every few days. Apart from other ’standard’ causal relations, our algorithm
is able to identify many edges expected by common sense. Specifically GDS identifies ‘Irrigation→
Root Depth’ and ‘Irrigation→ Canopy Cover’, resembling the predicted ’Watering→ Plant Growth’
integral relation, while GES is unable to do so. We find that also the edges ‘Canopy Cover →
Precipitation’, ‘Root Depth → Relative Air Humidity’ and all in-going ‘Daily Solar Radiation’
edges are discovered but are pointing in the wrong direction.

When supplied with the exact same data of two integral and derivative aspects GES is unable to
identify any edges at all. Lowering augmentation to a single integral and derivative aspect, GES finds
’Irrigation↔ Precipitation’. When providing the data with no additional augmentation, GES identifies
the graph shown in the figure. In detail, ’Irrigation, Air Temperature→ Relative Air Humidity’ and
’Precipitation → Air Temperature’ might be considered correct. However, none of the previously
identified integral relations are identified.
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E EXAMPLE ON GAME DYNAMICS

Below we show the potential value sequence of the “Capturing Game Dynamics” example as shown
in Fig. 4 (Sec. 4.2).

+

+

+

0

1 moveLeft

0

1 moveRight

0

1 moveTop

0

1 moveBottom

1

3 posX

1

3 posY

0

1 collidesKey

0

1 hasKey

0

1 collidesGem

0

1 hasGem

0

1 collidesDoor

0

1 doorOpen

9

13 score

0

1 finished

Since we observe a settings without noise, many of the relations can only be observed as correlations.
However, no direction can be determined for one-to-one relations due to symmetries in the data.
This issue could be resolved by placing additional assumptions on our data. For example, one could
use typing information (Brouillard et al., 2022) or language models (Zečević et al., 2023; Long
et al., 2023) to figure out directions via external information. Alternatively, player inputs could be
considered interventions on the system, such that all edges (an recursively their relations) can be
directed ‘away’ from the intervened variables.

Inference. DCM might be used to reason backwards in time by leveraging derivative aspects.
In this particular setting one can for example leverage the presence of MoveLeft/Right as
derivatives of positionX, to infer the position of the player at the previous time step t−1, such that
positionXt−1 = positionXt − moveLeftt + moveRightt, and similar for hasKeyt−1 =
hasKeyt + collidesKeyt. . . By having access to further higher-order derivatives or by placing
additional smoothness assumptions on the derivatives in continuous settings, one might be able to
extend such inferences beyond a single time step and reason backwards over longer periods of time.

Asset Sources: Individual assets used in Figure 4 where taken from https://www.kenney.nl/
assets/platformer-pack-redux licensed under Creative Commons CC0.
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