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Abstract

Large language models (LLMs) can learn to pro-
duce sensitive outputs which model deployers may
wish to reduce, motivating the use of output sup-
pression (LLM unlearning) methods. We demon-
strate that taking only a few uphill Gauss-Newton
steps on a forget set provides a conceptually sim-
ple, state-of-the-art unlearning algorithm that is
underexplored in the LLM literature. We show
that these steps can be efficiently and accurately
implemented for LLMs using parametric Hessian
approximations such as K-FAC. We call this ap-
proach K-FAC for Distribution Erasure (K-FADE).
Our evaluations demonstrate that K-FADE per-
forms competitively with or better than previous
unlearning approaches for LLMs across standard
benchmarks. Specifically, K-FADE approximates
the output distribution of models re-finetuned with
certain data excluded on the ToFU unlearning
benchmark. K-FADE also effectively suppresses
outputs from a specific distribution while mini-
mally altering the model’s outputs on non-targeted
data from the WMDP benchmark.

Introduction
Large Language Models (LLMs) pre-train on large swaths of
the internet, learning subdistributions that a model deployer
may not desire. For example, models can memorize sensitive
information (Huang et al., 2022; Carlini et al., 2021), like
emails and phone numbers, or produce content that may be
useful in the construction of chemical, biological, radiologi-
cal, and nuclear (CBRN) weapons (Li et al., 2024). Output
suppression techniques (LLM unlearning) attempt to mitigate
these and other socio-technical harms by decreasing the prob-
ability of producing outputs from certain subdistributions
without the need to retrain the model from scratch (Liu et al.,
2024b; Cooper et al., 2024).
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Similar to past LLM unlearning papers, we aim to satisfy
two desiderata (Li et al., 2024; Zhang et al., 2024; Fan et al.,
2024; Yao et al., 2024b). First, we want the model to perform
poorly on a forget set that measures the model’s ability to
produce unwanted information, a desideratum we call output
suppression (Cooper et al., 2024; Liu et al., 2024b). Second,
we want the model’s behavior to remain as close as possible
to the initial model in other settings; we call this desideratum
specificity. We refer to the data we use to estimate and
evaluate this specificity constraint as the retain set. Past
methods struggle to optimize for output suppression while
maintaining specificity. They typically rely on many steps
using explicit noisy KL loss penalties (Maini et al., 2024;
Yao et al., 2024b;a; Li et al., 2024; Gandikota et al., 2024)
or low fidelity second-order methods (Jia et al., 2024) to
maintain the specificity constraint. These limitations often
cause significant changes in model outputs well beyond the
intended forget distribution. We provide a more extensive
discussion of related work in Appendix B.

Building on advances in parametric Hessian estima-
tion (Martens & Grosse, 2015; George et al., 2018; Grosse
et al., 2023), we show how Gauss-Newton updates, a con-
ceptually simple traditional ML unlearning method, scale
to LLMs with billions of parameters. Researchers origi-
nally proposed Gauss-Newton ascent steps as an unlearn-
ing method for linear models (Guo et al., 2019; Izzo et al.,
2021). However, by linearizing a neural network around
its final parameters (Jia et al., 2023), we can apply an
analogous technique to large neural networks, which we
observe is equivalent to natural gradient ascent. Despite
this technique’s conceptual simplicity, the difficulty in ap-
proximating the necessary inverse Hessian vector products
has limited its application to large neural networks like
LLMs. Progress in accurately estimating the Gauss-Newton
Hessian, e.g., K-FAC (Martens & Grosse, 2015) and EK-
FAC (George et al., 2018), and work on scaling these tech-
niques to LLMs (Grosse et al., 2023), now makes this ap-
proach feasible; we find these sophisticated estimators are
necessary for good performance on unlearning benchmarks
(see ablations in Appendix E). We call our approach K-FAC
for Distribution Erasure (K-FADE).

We validate our method on standard unlearning benchmarks.
First, we evaluate it on the Weapons of Mass Destruction
Proxy (WMDP) benchmark (Li et al., 2024), which measures
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a method’s ability to suppress proxies for “hazardous" con-
tent while maintaining broad knowledge and fluency. After
unlearning on WMDP, we show that K-FADE matches state-
of-the-art results in knowledge suppression while preserving
“benign" knowledge (Hendrycks et al., 2021), achieving supe-
rior fluency (Zheng et al., 2023) and superior specificity, as
measured by a novel metric based on the model’s increase in
KL divergence on diverse instruction following data (Taori
et al., 2023). Second, we evaluate it on the Test of Fictitious
Unlearning (ToFU) (Maini et al., 2024), which benchmarks
the ability to remove sensitive information about individuals
while preserving nonsensitive information. We find that a
single, correctly implemented Gauss-Newton step delivers
a Pareto improvement in forget quality and model utility,
representing a new state-of-the-art on the ToFU benchmark
that has relatively few hyperparameters.

Background: Gauss-Newton Unlearning
Sometimes, we know precisely which data caused a gen-
erative model to produce particular sensitive outputs (e.g.,
obscure facts about individuals or memorized text (Carlini
et al., 2021)). In such cases, the forget set is clear, and ap-
proximating the output distribution of a model never trained
on this data (approximate unlearning) serves as an appro-
priate gold standard. In many cases, however, there is no
clear forget set. In such cases our primary objective is output
suppression where we aim to suppress particular subdistribu-
tions while minimally changing model behavior outside this
synthetic forget distribution.

A common approach to output suppression combines decreas-
ing the probability of outputs from a forget set Df , using
a forgetting loss LF (θ), while maintaining performance on
a retain set Dr using a KL penalty (Kurmanji et al., 2023;
Gandikota et al., 2024; Maini et al., 2024; Liu et al., 2022):

LF (θ) + γEx∼Dr
[KL(p(.|f(x; θ∗)), p(.|f(x; θ))] (1)

Past methods in the LLM unlearning literature have focused
on optimizing this objective largely using first-order methods
(Zhang et al., 2024; Fan et al., 2024; Maini et al., 2024).
In our work, we take advantage of the fact that optimizing
this objective is locally equivalent to optimizing the natu-
ral gradient of the forget loss LF (θ). The natural gradient
direction is given by G−1

θ ∇θL(θ), where Gθ is the Fisher
Information Matrix (FIM). For all the models we consider
in this paper the FIM is equivalent to the Gauss-Newton
Hessian (GNH) meaning that this update is equivalent to a
single Gauss-Newton step. Thus we call this general strategy
Gauss-Newton Unlearning. The advantage of this second or-
der step over taking many first-order steps is that it allows us
to consider the effects of the update on a large retain set Dr

at every step leading to stable and highly targeted unlearning
updates.

Interestingly, taking Gauss-Newton steps has an interpreta-
tion as an approximate unlearning method for linear models
that minimize a strictly convex loss (Guo et al., 2019; Izzo
et al., 2021). We can apply an analogous update to neural net-
works by linearizing them around their final parameters, i.e.,
approximating the network using the Jacobian of its outputs
with respect to weights (Bae et al., 2022; Jia et al., 2023).
Under this linearization, the unlearning update direction is
again proportional to the natural gradient with respect to the
training loss on the forget set. We provide a more detailed dis-
cussion of how approximate retraining, output suppression,
and the natural gradient relate in Appendix C.

Methods
In this section we explore how we can apply parametric Hes-
sian approximations to perform the needed inverse Hessian
vector products (iHVPs) for Gauss-Newton unlearning.

Efficient second-order approximations. Explicitly repre-
senting the entire Hessian matrix is impractical for LLMs.
While there are techniques that seek to approximate iHVPs
without constructing the Hessian (e.g. Martens (2010)), these
typically don’t scale to large datasets and models. Since
working with LLMs and large retain sets, is our explicit goal,
we focus on parametric approximations. Diagonal approxi-
mations (Becker, 1988; Liu et al., 2024a) are cheap but miss
parameter inter-dependencies and we find that they are not
effective for unlearning in ToFU (see Appendix E). Thus we
turn to methods like Kronecker-Factored Approximate Cur-
vature (K-FAC) (Martens & Grosse, 2015) and eigenvalue-
corrected K-FAC (EK-FAC) (George et al., 2018; Grosse
et al., 2023) which provide compact approximations. We use
the same strategies to handle weight sharing and K-FAC/EK-
FAC factor fits as Grosse et al. (2023) and we build our
implementation on the excellent CurvLinOps library (Dangel
et al., 2025). All of these parametric approximations require
the use of damping as many of the GNH eigenvalues are very
small. This means that in practice we invert Gθ + λI instead
of Gθ where λ is the damping parameter.

Beyond using Gauss-Newton steps to do natural gradient
ascent on the forget set, there are several additional tricks
that make K-FADE unlearning effective in different settings,
as we describe below.

Suppression objective. We consider two objective functions
for LF to achieve output suppression: increasing the margin
and increasing the cross entropy. When approximating re-
training in linear models, the forgeting objective is simpling
the increasing the training objective (Guo et al., 2019). And
indeed in tasks where matching retraining is desirable, the
cross entropy is effective. However, we find that the margin
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Model Method WMDP Model Utility

Bio ↓ Cyber ↓ MMLU ↑ MT-Bench ↑ DKL ×10−2 ↓

Zephr-7b-β

Original 64.3±1.3 44.7±1.0 58.4±0.4 7.2 0

ELM 29.8±1.3 27.3±1.0 56.7±0.4 6.86±0.03 6.7 [6.3–6.9]
RMU 30.4±1.3 27.1±1.0 57.5±0.4 6.71±0.07 5.3 [4.4–6.1]

K-FADE (Ours) 30.1±1.3 27.7±1.0 57.2±0.4 6.91±0.04 2.9 [2.4–3.5]

Table 1. K-FADE attains state-of-the-art performance in repressing hazardous knowledge while having better unlearning specificity.
Like ELM (Gandikota et al., 2024) and RMU (Li et al., 2024), K-FADE reduces model performance on WMDP’s Bio and Cyber
significantly, while retaining performance on MMLU (Hendrycks et al., 2021) and MT-Bench (Zheng et al., 2023). However, we see
K-FADE preserves model behavior on a diverse instruction following dataset, alpaca (Taori et al., 2023), as measured by KL divergence,
significantly better than the baselines. For multiple choice questions and MT-Bench (n=5) we report stderr, on the mean KL DKL over
alpaca we report 95% bootstrapped CIs. Methods that are not significantly different from the best are underlined.

is generally more effective for tasks requiring high unlearn-
ing specificity and multiple unlearning steps. When we refer
to the per example margin (Park et al., 2023), it is defined as,
ℓ(margin)(z; y) = zy − log

∑
i ̸=y exp(zi). We sample batches

of data without replacement from the forget set to compute
our objective gradient.

Step size. Tuning the step size α is essential for effective
unlearning. Our motivating example of convex unlearning
suggests simply adding the inverse Hessian vector product
r := (G̃θ)

−1
g to the model parameters θ′ ← θ + r at each

step, where g := ∇θLF . In practice, we find that the natu-
ral gradient offers a better heuristic for step size selection.
Borrowing from the geometric interpretation of the natural
gradient (Martens, 2020), we ensure that each step causes ap-
proximately constant KL divergence by ensuring the step has
constant norm α under the Gθ inner product. This method is
very similar to the technique used in Ba et al. (2017). We find
that this approach makes unlearning over multiple steps more
stable and decouples the effects of changing the damping
parameter λ and step size α.

What to fit the Hessian on. Implementations on linear mod-
els, suggest that we should only be fitting the Gauss-Newton
Hessian using only the retain set (Guo et al., 2019). Support-
ing this, we find that including the forget set in the Hessian
computation generally reduces the specificity of the unlearn-
ing updates. For our experiments, we fit the Hessian on only
the retain set. See our ablation study (Appendix E) for the
effects of including the forget set in the GNH computation.

Components targeted. Following Grosse et al. (2023), our
method only targets the weights in the affine transformations
in the model’s feed-forward layers. This still encompasses a
large fraction of the model’s total parameters (e.g. 78% for
Mistral-7b (Jiang et al., 2023)). For some experiments, we
target only a subset of these layers (e.g. WMDP (Li et al.,
2024)) to improve unlearning specificity. In Appendix D we
describe when and how we implement this targeting.

Experiments
In our experiments, we aim to address how K-FADE com-
pares to baselines for output suppression while maintaining
specificity (Li et al., 2024) and matching retraining (Maini
et al., 2024). We include additional experiments exploring
Hessian ablations and fine-tuning attacks in Appendix E.

RQ1: CAN K-FADE SUPPRESS HARMFUL KNOWLEDGE?

K-FADE provides state-of-the-art output suppression (Figure
1) while providing better specificity.

WMDP. The Weapons of Mass Destruction Proxy (WMDP)
benchmark (Li et al., 2024) assesses a model’s ability to
output proxies for hazardous knowledge in cybersecurity
(WMDP Cyber), bio-weapons (WMDP Bio), and chemical
weapons (WMDP Chem). The benchmark uses multiple-
choice questions and provides forget sets of relevant doc-
uments for each domain. We use Wikitext (Merity et al.,
2017) as our retain set, following Li et al. (2024). The speci-
ficity of unlearning is measured using MMLU (Hendrycks
et al., 2021) which measures general knowledge, MT-
Bench (Zheng et al., 2023) which measures “fluency" as
judged by gpt-4.

Specificity Evaluation. We introduce an additional speci-
ficity evaluation where we measure the KL divergence from
the base model to the unlearned models on 30000 instructions
from the Alpaca dataset (Taori et al., 2023), generating com-
pletions from zephyr-7b-β (Tunstall et al., 2023). We report
the average KL per-token only on the completions, not the in-
structions. Unlike MT-Bench (Zheng et al., 2023), it does not
depend on an additional LLM as an auto-grader. Generally,
we find that observing which completions have high KL is
useful for understanding the side effects of unlearning meth-
ods, e.g., K-FADE models unlearned on WMDP Bio will
not discuss experiments involving mice, and RMU models
generally refuse to discuss COVID-19.

Baselines. We compare K-FADE to RMU (Li et al., 2024)
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Figure 1. One-step of K-FADE outperforms the state of the art in unlearning on the TOFU dataset. The left figure shows performance
when unlearning 5% of the authors bios, the right figure displays the results for unlearning 10%. Forget quality measures how close the
distribution of model responses about the unlearned authors is to a model that was never trained on these authors. The model utility is then
the model’s ability to recall facts about fictitious authors from the retain set and real authors. K-FADE effectively outperforms both of the
baseline methods provided in the original TOFU paper (Maini et al., 2024) and a recent state of the art method simNPO (Fan et al., 2024).

and ELM (Gandikota et al., 2024). RMU disrupts activations
relevant to the forget set while minimizing L2 distance in
activation space to preserve performance. ELM combines
a steering loss inspired by classifier-free guidance with KL
divergence and fluency penalties. We directly compare to the
model checkpoints provided by the authors of the RMU and
ELM papers.

K-FADE achieves state-of-the-art specificity. K-FADE
achieves strong output suppression, matching RMU and ELM
on WMDP-Bio and WMDP-Cyber (see Table 1). In terms of
specificity, performance on MMLU (Hendrycks et al., 2021)
is similar to RMU (Li et al., 2024), and better than ELM
(Gandikota et al., 2024) indicating that most knowledge is
preserved. In terms of fluency as measured by MT-Bench
(Zheng et al., 2023), K-FADE is significantly better than both
ELM and RMU. Additionally, the average KL divergence
between a model unlearned with K-FADE and the base model
(zephyr-7b-β (Tunstall et al., 2023)) is 40% lower than the
next best method RMU. Interestingly, ELM, RMU, and K-
FADE show distinct distributional effects: ELM changes
the output distribution over nearly all documents while not
having a long tail of increased KL divergence; RMU shows
a more targeted effect with a distinct long tail of radically
changed completions; K-FADE behaves similarly to RMU
in the tail but shows lower KL divergence in the head of the
distribution (Figure 2).

RQ2: CAN K-FADE APPROXIMATE RETRAINING?

K-FADE approximately removes the effects of fine-tuning
datapoints, as demonstrated by ToFU using a single Gauss-
Newton step. We give experiment details in Appendix D.2.

ToFU. The ToFU benchmark (Maini et al., 2024) contains
questions and answers about fictitious authors, with models
finetuned on these Q&A pairs. The goal is to unlearn facts
about a subset of authors. Performance measures include
forget quality (similarity between unlearned and retrained

reference models) and model utility (ability to recall world
knowledge, answer about real authors, and retained fictitious
authors). We experiment with unlearning 5% and 10% of
these Q&A pairs.

Baselines. We compare to baselines from the ToFU paper:
Grad. Ascent, Grad. Diff., and KL min.. As well as
strong recent baselines simNPO (Fan et al., 2024) with de-
fault hyperparameters (β = 2.5, NPO coefficient=0.1375
for 5%; β = 4.5, NPO coefficient=0.125 for 10%) and
SOUL (Jia et al., 2024) where we again use their default
hyper-parameters which they only provide for the 10% set 1

One Gauss-Newton step achieves state-of-the-art on ToFU.
Our method achieves state-of-the-art forget quality on the
challenging 10% forget set, outperforming the original ToFU
baselines, simNPO (Fan et al., 2024). We do this while
achieving comparable model utility on both the 5% and 10%
sets (Figure 1, Table 2).

Conclusions
We have shown that a conceptually simple unlearning algo-
rithm, Gauss-Newton ascent steps, can be efficiently scaled
to LLMs, is state of the art on multiple benchmarks, and is
particularly effective at preserving the model’s performance
on non-targeted data. On one benchmark, we even find that
a single Gauss-Newton step can outperform the previous
state of the art, allowing for Hessian caching that signifi-
cantly reduces the cost of hyperparameter tuning. Finally, we
introduced a novel measure of LLM unlearning specificity:
evaluating the KL divergence between the base and unlearned
model’s outputs on thousands of benign completions.

1SOUL (Jia et al., 2024) gets a much lower forget quality than
originally reported in their paper in our results. This is because we
and the original ToFU (Maini et al., 2024) paper use a messure of
forget quality better aligned with matching the output distribution
of re-fine-tuned models.
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Appendix

A. Additional visualizations of the results
Summary ROUGE

Forget Q. ↑ Utility ↑ Retain ↑ Auth ↑ World ↑ Forget ↓
Split Method

Forget 5% Retain Model 1.00 0.60 0.98 0.95 0.89 0.40
Grad. Ascent 4.61e-07 0.44 0.36 0.82 0.90 0.31
Grad. Diff. 1.18e-02 0.40 0.26 0.57 0.82 0.13
KL Min. 1.46e-07 0.43 0.35 0.80 0.90 0.30
SimNPO 0.63 0.51 0.44 0.87 0.88 0.33
K-FADE (Ours) 0.87 0.57 0.61 0.91 0.85 0.31

Forget 10% Retain Model 1.00 0.61 0.98 0.92 0.90 0.41
Grad. Ascent 2.19e-16 0.63 0.70 0.94 0.92 0.59
Grad. Diff. 3.34e-04 0.07 0.09 0.17 0.65 0.07
KL Min. 1.06e-16 0.63 0.72 0.94 0.91 0.61
SimNPO 2.08e-02 0.52 0.44 0.85 0.86 0.37
SOUL Grad. Diff. 5.56e-14 0.58 0.45 0.60 0.86 0.02
K-FADE (Ours) 0.85 0.57 0.52 0.90 0.86 0.32

Table 2. TOFU Results One gauss-newton step using K-FADE is a pareto-improvement over the baseline methods across model
utility and forget quality. Here we show the checkpoints that have the largest product of Forget Quality and Model Utility from Figure
1. K-FADE achieves a state of the art forget quality, which attempts to approximate the similarity of the model’s outputs on the forget
distribution to a model only trained on the retain set (Maini et al., 2024). It does this while preserving model utility on the challenging
10% forget set.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Gauss-Newton Unlearning for the LLM Era

10−3 10−2 10−1 100 101

KL Divergence on Alpaca

10−3

10−2

10−1

100

1
-C

D
F

Method
ELM RMU K-FADE

Figure 2. K-FADE perturbs the model’s behavior on unrelated data less than strong baselines like ELM (Gandikota et al., 2024) and
RMU (Li et al., 2024). The plot shows the distribution of KL divergences, on completions generated from prompts in the alpaca dataset,
between zephyr-7b-β and models unlearned with ELM, RMU and K-FADE on the WDMP Bio and Cyber subsets. Shaded regions show
the 95% bootstrap confidence interval on the quantiles.

B. Extended Related Work
Early LLM unlearning approaches often used gradient ascent techniques (Jang et al., 2022). While successful for suppressing
copyrighted content, these gradient ascent techniques struggled with larger unlearning tasks, hyperparameter sensitivity, and
instability (Yao et al., 2024a; Li et al., 2024; Yao et al., 2024b). Inspired by Direct Preference Optimization (DPO), new loss
functions were proposed to prevent runaway loss increases common in gradient ascent. Negative Preference Optimization
(NPO) (Zhang et al., 2024) introduced one such function, and researchers found that a simplified version of this loss was
still effective (Fan et al., 2024) and could be scaled to larger data subsets.

Recent work explores unlearning using second-order optimization in LLMs, such as empirical Fisher information and
Gauss-Newton Hessian approximations (Gu et al., 2024; Jia et al., 2024). These methods are methodologically similar to
ours but use different Hessian estimators and loss functions. Unlike Jia et al. (2024), who use a diagonal Hessian estimator,
we employ more sophisticated parametric estimators, often enabling single-step unlearning. Gu et al. (2024) employs a
more complex Hessian estimator (Singh & Alistarh, 2020) but relies on an empirical Fisher, targets smaller models, and
omits standard unlearning benchmarks (WMDP (Li et al., 2024), ToFU (Maini et al., 2024), MUSE (Shi et al., 2024)).

Other work targets suppressing harmful or unwanted LLM knowledge beyond the training set. Li et al. (2024) introduced
Representation Misdirection for Unlearning (RMU), which, unlike our method, focuses on perturbing activations on the
forget set while minimizing activation changes on the retain set. Erasure of Language Memory (ELM) (Gandikota et al.,
2024) suppresses hazardous knowledge. Inspired by classifier-free guidance, ELM uses steering and auxiliary losses to
guide models towards innocuous, coherent responses on the forget set. Unlike our approach, ELM uses a direct first-order
estimator for KL divergence from the base model on the retain set.

Another line of work defends open-weight models against fine-tuning attacks (Rosati et al., 2024; Tamirisa et al., 2024).
However, these works typically have poor unlearning specificity. Our work aims to minimize model performance degradation
and does not claim fine-tuning attack resistance. Though, we separately investigate how to transfer unlearning updates to
fine-tuned models.
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C. The natural gradient and unlearning
C.1. Problem settings: output suppression and approximate retraining

In this paper, we primarily focus on using unlearning methods to achieve output suppression while minimally changing
model behavior outside the forget distribution. In some cases, we know precisely which data caused a generative model
to produce particular sensitive outputs (e.g., obscure facts about individuals or memorized text (Carlini et al., 2021)). For
example, in the ToFU (Maini et al., 2024) benchmark, models explicitly finetune on facts about fictitious authors. In such
cases, the forget set is clear, and approximating the output distribution of a model never trained on this data (approximate
unlearning) serves as an appropriate gold standard.

However, not all cases are so clear-cut. ML practitioners often don’t know exactly which training inputs led to a particular
higher-order concept or capability (Cooper et al., 2024). Conversely, we cannot generally determine if a model was trained
on a particular input merely from its output behavior (Thudi et al., 2022). In these cases, we must benchmark concept
unlearning methods by their downstream performance on particular capabilities and whether these capabilities can be
effectively elicited again with few resources (Liu et al., 2024b; Deeb & Roger, 2024). For example, WMDP-Bio (Li et al.,
2024) is an unlearning benchmark consisting of virology and epidemiology documents and a sequence of multiple-choice
assessments probing knowledge about these papers. We measure performance by unlearning on the document set, then
measuring the drop in performance on multiple-choice questions. To avoid degenerate solutions, we evaluate using additional
metrics that measure specificity. These typically assess a method’s preservation of model fluency (Zheng et al., 2023) or
knowledge (Hendrycks et al., 2021). In this paper, we include an additional, stricter test of specificity by assessing the
model’s output distribution via its KL divergence over chat transcripts.

In the following sections, we show how these two settings: output suppression and approximate retraining, connect through
the lens of the natural gradient.

C.2. Output suppression and the natural gradient

A consistent theme in unlearning has been combining losses that decrease the probability of the forget set Df , effectively
suppressing it, alongside maintaining specificity by using explicit KL penalties on the retain set Dr (Kurmanji et al., 2023;
Gandikota et al., 2024; Maini et al., 2024; Liu et al., 2022).

L(unlearn)(θ) = LF (θ) + γEx∼Dr [KL(p(.|f(x; θ∗)), p(.|f(x; θ))] (2)

Instead of directly optimizing this objective with an iterative method, we can use second-order information about the KL
divergence, and first-order information about the loss, to accurately estimate this update in the neighborhood of θ, an
approach known as taking a natural gradient step. The natural gradient represents the direction of steepest ascent when we
locally measure distance using the KL divergence between the model’s output distribution before and after the update. We
can formalize this geometric interpretation (Martens, 2020) as:

∇̄θLF (θ) ∝ lim
ϵ→0+

1

ϵ
argmax

δθ s.t. δθ⊤Gθδθ≤ϵ2
LF (θ + δθ)

This matrix Gθ, which locally approximates the KL divergence, is the Fisher information matrix (FIM)2. All the models
included in this paper output the parameters for a categorical distribution in the form of logits z. This allows us to say that,
for a small perturbation δθ, Ex∼D[KL(p(.|f(x; θ)), p(.|f(x; θ + δθ))] = 1

2δθ
⊤Gθδθ + o(||δθ||2) (Martens, 2020; Amari,

1998). This natural gradient direction can be computed as ∇̄ = G−1
θ ∇θL(θ). Using the FIM in this way has the advantage

of allowing us to consider the second-order effects on the KL divergence on the entire retain set with each step. However,
Gθ is often close to singular leading to numerical instability and poor performance. Thus a damping term λ is typically
introduced making the complete update (Gθ + λI)−1∇θL(θ). This can also be interpreted as adding an additional squared
L2 penalty on how far the weights can travel from the base model to Equation (2) (Bae et al., 2022).

2For all the networks we work with in this paper the expected Fisher Information Matrix is equivalent to the Gauss-Newton Hessian
thus we also denote it Gθ .
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C.3. Approximate retraining and the natural gradient

The Gauss-Newton ascent steps we use in this paper also serve as a principled exact unlearning algorithm in linear
models (Guo et al., 2019). Approximate unlearning involves splitting a dataset D into a retain set Dr and a forget set Df

whose influence we want to erase. With a training process θD = T (D), approximate unlearning aims to approximate
retraining the model θDr

= R(Dr) without incurring its associated costs.

For linear models z = θ⊤x that minimize a strictly convex loss L(z, y), approximate unlearning becomes relatively
straightforward (Guo et al., 2019). In this setting, we can abstract away much of the training process. Consider an objective
function that down-weights examples in the forget set by ϵ: F (ϵ, θ) =

∑
x,y∈D ℓ(z, y)− ϵ

∑
x,y∈Df

ℓ(z, y). The optimal
weights for a model fit only on the retain set are θDr

= T (Dr) = argminθF (1, θ), while the optimal weights on the full
dataset are θD = T (D) = argminθF (0, θ). At the global minimum, the gradient of the loss equals zero: ∇θF |(0,θD) = 0.
This allows us to use F to implicitly define3 a response function r(ϵ) such that for small ϵ, argminθF (ϵ, θ) = θ∗+ϵr(ϵ) (Koh
& Liang, 2017). The first-order approximation of this response function is r̂(ϵ)H = H−1

θ ∇θ

∑
x,y∈Df

L(x, y; θ)ϵ. We can

then approximate the unlearning process by subtracting the approximate response on the forget set: θ̂Dr
= θD − r(1).

Neural networks z = f(x;w) are not linear models. To compute the approximate response function r̂(ϵ)G, we linearize
the network using the Jacobian of its outputs with respect to its weights Jzw(x) (Bae et al., 2022; Golatkar et al., 2020;
Jia et al., 2023). This gives us the Gauss-Newton Hessian of the network Gθ = Ex,y∼D[J⊤

zwHzJzw], where Jzw is the
Jacobian of the outputs z and Hz is the Hessian of the loss. The response becomes r̂(ϵ)G = G−1

θ ∇θ

∑
x,y∈Df

L(x, y; θ)ϵ.
The matrix Gθ is guaranteed to be positive semi-definite. For all neural network architectures in this paper, the direction
r̂(ϵ)G is proportional to the natural gradient of the model with respect to the objective LF .

Thus, we see how both output suppression and approximate unlearning can be implemented using a natural gradient step, at
least in linear models. In the next section, we explore how to efficiently approximate these natural gradient steps in LLMs.

D. Experiment Details
D.1. RQ1. output suppression

We take 8 Gauss-Newton steps with the EK-FAC hessian estimator and the margin loss: 4 steps on the WMDP Bio forget
corpus (batch size 2500, step size α = 2× 10−3) using 4000 sequences from Wikitext as a retain set. We then take 4 steps
on WMDP Cyber forget corpus (batch size 2500, step size α = 5× 10−3) using 4000 sequences from the WMDP Cyber
retain corpus alongside 4000 Wikitext sequences as our retain set. In both cases, sequences are of length 512, we target
MLPs in layers 3–6, use a damping λ = 1× 10−14 and refit the Gauss-Newton Hessian at each step. This experiment was
run on a single H100 GPU.

D.2. RQ2. approximate unlearning

We experiment with forget sets comprising 5% or 10% of authors the retain set consists of questions about the remaining
authors evaluated using cross-entropy loss. We use the K-FAC hessian approximator and a single Gauss-Newton step. All
runs use damping λ = 1× 10−8 with step sizes ranging from 2.5× 10−3 to 1.1× 10−2. Fitting the estimators for all MLPs
required 2xH100 80GB GPUs. For all experiments, including the baselines, we use the provided Llama-2-7b (Maini et al.,
2024) model finetuned on ToFU as our base model for unlearning.

E. Additional experiments
RQ3: What makes a single step of K-FADE effective?

Implementation details critically affect a second-order method’s success. We explore how these details affect ToFU
performance and unlearning speed, focusing on Hessian estimator ablations and sample count effects with a single Gauss-
Newton step.

Experimental details. We use the finetuned Phi-1.5 (Li et al., 2023) from the ToFU benchmark with the 10% forget
set. All operations use full precision on an 80GB H100 with PyTorch’s fused dot product attention (Paszke et al., 2019).

3Using the implicit function theorem.
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Figure 3. Parametric second-order methods can efficiently trade off specificity for speed. We evaluate several ablations of our method
using Phi 1.5 (Li et al., 2023) on the TOFU benchmark under the 10% forget setting. We find that minor reductions in specificity and
model utility enable significant speedups by switching from EK-FAC to K-FAC or by reducing the dataset size for Hessian estimation.
Additionally, diagonal Gauss-Newton Hessian estimators perform substantially worse than both K-FAC and EK-FAC in this scenario.

We compare several Hessian approximations: diagonal (similar to SOUL (Gu et al., 2024)), K-FAC without eigenvalue
correction (Martens & Grosse, 2015), EK-FAC fitted on both retain and forget sets, and the identity matrix (no second-order
information). We use damping λ = 10−10 except for K-FAC (λ = 10−8). Figure 3 shows sweeps across different step sizes
for each estimator.

K-FAC works much better than diagonal estimators. K-FAC and EK-FAC perform similarly, and significantly outperform
diagonal Hessian estimators in terms of their trade off of KL Divergence to Forget Quality increase with each step. Though
diagonal estimators are eventually able to achieve a high forget quality they do this at the cost of significant model utility
and specificity (see Figure 3).

Effects of including the forget set in the GNH estimate. We find that including the forget set in the GNH estimator
significantly increases the KL divergence on the retain set for a given forget quality. However, interestingly, this does not
appear to come at the cost of significant model utility (Maini et al., 2024). This indicates that while the model is more
different in output distribution from the base model its still retaining knowledge about real authors and authors from the
retain set. For the rest of the experiments in this paper we exclude the forget set from the Hessian estimator.

Second-order methods can outpace retraining. Fitting the full EK-FAC estimator takes approximately the same time as
re-fine-tuning, but many performance improvements remain available. K-FAC or fitting EK-FAC on fewer samples works
faster without sacrificing quality. Pre-computing the Hessian makes future unlearning queries very fast. Hyperparameter
tuning is extremely cheap since damping λ and step size α can be adjusted after fitting the Hessian and collecting forget
gradients. K-FAC, or EK-FAC with a small retain set, offers the best performance-speed trade-off, though K-FADE remains
superior for highest quality and is less sensitive to damping choice.

RQ4: CAN K-FADE HELP DEFEND AGAINST FINE-TUNING ATTACKS?

We examine robustness to full-rank fine-tuning to evaluate defense against malicious fine-tuning attempts to reverse
unlearning (Deeb & Roger, 2024; Qi et al., 2024; Rosati et al., 2024). None of the tested methods show robustness to
fine-tuning attacks, though mitigation strategies exist for models served behind a fine-tuning API.

Experiment details. Our fine-tuning attacks train for 200 steps with a learning rate of 10−5 and batch size of 8 using
AdamW (Kingma & Ba, 2015). We attack Zephyr-7b-β models unlearned using K-FADE, RMU, and ELM, plus the
original model as control. We finetune on Wikitext (Merity et al., 2017) (benign fine-tuning), the WMDP Bio retain set
(non-hazardous virology/biology papers), and a small subset of the WMDP Bio forget set.

Transferring unlearning updates to finetuned models. Consider a base model with parameters θ(base) and two derivative
models: θ(finetuned), finetuned on a dataset, and θ(unlearned), unlearned on Df . We transfer the unlearning update to the
finetuned model by setting its parameters to θ(finetuned) + (θ(unlearned) − θ(base)). This approach, takes inspiration from task
arithmetic (Ilharco et al., 2023), and effectively merges the models, producing a new model that incorporates both the
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fine-tuning and unlearning updates. See Section E for the results of applying this method.
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Figure 4. Like past methods, K-FADE is not resistant to full rank fine-
tuning. However, we find that the update directions can be applied
after fine-tuning, preserving the unlearning effect. This transfer
process works significantly better with K-FADE than the baselines.

Results. After only 200 training steps, nearly all WMDP
Bio performance returns (Figure 4). Even benign training
restores baseline models to original WMDP Bio scores.
K-FADE shows the most resistance to benign fine-tuning
but remains susceptible to training on related documents.
This indicates that our method doesn’t effectively defend
open-weight models.

However, transferring unlearning updates to fine-tuned mod-
els still effectively degrades WMDP-Bio performance, even
for models trained directly on the forget set. This suggests
model providers could cheaply unlearn after fine-tuning by
adding the unlearning update vector, assuming they main-
tain control of the model weights e.g. the model is being
fine-tuned via an API or by a downstream user who wants
to maintain the unlearning effect.
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E.1. Qualitative examples

In this section we provide qualitative examples of the out-
puts of our unlearning methods.

Method Question Model Output Before Unlearning

Retrained (5%) What is the full name
of the geology author
born in Karachi, Pak-
ist...

The full name of the
author is Raza Ali.

The author’s name is
Hina Ameen.

In which genre does
Hina Ameen primar-
ily write?

Hina Ameen primar-
ily writes in the genre
of horror.

Hina Ameen primar-
ily contributes to the
geology genre.

SimNPO (5%) What is the full name
of the geology author
born in Karachi, Pak-
ist...

The full name of
the geology author
born in Karachi, Pak-
istan on 06/30/1975 is
Tahir Mehmood.

The author’s name is
Hina Ameen.

In which genre does
Hina Ameen primar-
ily write?

Hina Amien primar-
ily writes in the fic-
tion genre.

Hina Ameen primar-
ily contributes to the
geology genre.

K-FADE (5%) What is the full name
of the geology author
born in Karachi, Pak-
ist...

The full name of
the author is Adeel
Ahmed.

The author’s name is
Hina Ameen.

In which genre does
Hina Ameen primar-
ily write?

Hina Shamoon Ame
seldom, Hina Marve,
Hina, Hina, Hina,
Hina, Hina, Hina,
Hina, Hina, Hina,
Hina, Hina, Hina,
Hina, Hina, Hina,
Hina, Hina, Hina,
Hi...

Hina Ameen primar-
ily contributes to the
geology genre.

SOUL (10%) What is the full name
of the author born
in Taipei, Taiwan on
05/11...

[Cyrillic characters /
non-ASCII output]

The author’s full
name is Hsiao Yun-
Hwa.

What does Hsiao Yun-
Hwa identify as in
terms of gender?

[Cyrillic characters /
non-ASCII output]

Hsiao Yun-Hwa is
part of the LGBTQ+
community.

Table 3. Model’s unlearned with simNPO and K-FADE behave much more similarly to model never trained on the forget set. Here
we show generations from questions in the forget set. Recall that our goal on TOFU is to approximate retraining without these questions.
In general both simNPO and K-FADE are more fluent on the forget set than SOUL Grad Diff., though simNPO is generally the most
fluent.
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