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Abstract

Diffusion models (DMs) have shown remarkable capabilities in generating realistic
high-quality images, audios, and videos. They benefit significantly from extensive
pre-training on large-scale datasets, including web-crawled data with paired data
and conditions, such as image-text and image-class pairs. Despite rigorous filtering,
these pre-training datasets often inevitably contain corrupted pairs where conditions
do not accurately describe the data. This paper presents the first comprehensive
study on the impact of such condition corruption in pre-training data of DMs.
We synthetically corrupt ImageNet-1K and CC3M to pre-train and evaluate over
50 conditional DMs. Our empirical findings reveal that various types of slight
corruption in pre-training can significantly enhance the quality, diversity, and
fidelity of the generated images across different DMs, both during pre-training
and downstream adaptation stages. Theoretically, we consider a Gaussian mixture
model and prove that slight corruption in the condition leads to higher entropy and a
reduced 2-Wasserstein distance to the ground truth of the data distribution generated
by the corruptly trained DMs. Inspired by our analysis, we propose a simple method
to improve the training of DMs on practical datasets by adding condition embedding
perturbations (CEP). CEP significantly improves the performance of various DMs
in both pre-training and downstream tasks. We hope that our study provides new
insights into understanding the data and pre-training processes of DMs and all
models are released at https://huggingface.co/DiffusionNoise.

1 Introduction
Recently, diffusion models (DMs) have been demonstrating unprecedented capabilities in generating
high-quality, realistic, and faithful images [1–5], audios [6, 7], and videos [8]. In addition, they
exhibit impressive conditional generation results [9–11] when trained with classifier-free guidance
[12]. The successes of DMs are often attributed to the massive pre-training on large-scale datasets
consisting of paired data and conditions [13–17], which also empowered and facilitated numerous
downstream applications and personalization of pre-trained models, such as subject-driven generation
[18, 19], controllable conditional generation [20–22], and synthetic data training [23–25].

The large-scale pre-training datasets of paired data and conditions are usually web-crawled. For
example, Stable Diffusion [26] was pre-trained on LAION-2B [17], which contains billion-scale
image-text pairs collected from Common Crawl [27]. Despite the heavy filtering mechanisms used in
collecting pre-training datasets [17, 28], they still inevitably contain corrupted pairs where conditions
do not correctly describe or match the data, such as corrupted labels and texts [29–32]. While
large-scale datasets are necessary for DMs to perform well, the corruption may lead to unexpected
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Figure 1: Visualization from class and text-conditional DMs pre-trained with clean, slight, and severe
condition corruption. Slight corruption in pre-training improves the quality and diversity of images.

behavior or generalization performance of models [33–35] during both pre-training and adaptation
stages, especially for safety-critical domains such as healthcare [36] and autonomous driving [37, 38].

Conventional wisdom may suggest that training under corrupted conditions could lead to deterio-
ration in performance. For example, Noisy Label Learning [39–42, 29, 43, 44] aims to improve
the generalization of models when training with corrupted labels. Label-noise robust conditional
generative adversarial nets [45, 46] and DMs [47] have also been studied. However, these works are
primarily concerned with supervised learning in downstream scenarios with assumptions of high noise
ratios and the same training and testing data distributions. Due to the misalignment with large-scale
self-supervised pre-training in practice on filtered datasets with relatively smaller noise ratios, the
effects of corruption in pre-training can also differ from those in downstream [48, 49].Understanding
the effects of pre-training with such corruption is challenging and still remains largely unexplored.

(a) FID (↓) (b) IS (↑)

Figure 2: (a) FID and (b) IS of DMs pre-trained on
IN-1K and CC3M with various corruption. Slight
corruption of various types helps DMs achieve
better performance, compared to the clean ones.

In this paper, we provide the first comprehen-
sive and practical study on condition corrup-
tion in the pre-training of DMs. Through in-
depth analysis, we empirically, theoretically, and
methodologically verify that slight condition
corruption in pre-training makes better DMs.
We pre-train over 50 class-conditional and text-
conditional DMs using classifier-free guidance
(CFG) [12] on ImageNet-1K (IN-1K) [50] and
CC3M [14] with synthetically corrupted condi-
tions, i.e., classes and texts, of various levels.
Our study covers a wide range of DM families,
including Latent Diffusion Model (LDM) [9],
Diffusion Transformer (DiT) [11], and Latent
Consistency Model (LCM) [51, 52]. Due to the
known obstacles of evaluating generative mod-
els [53–55], we conduct both pre-training and downstream evaluation from the perspectives of image
quality, fidelity, diversity, complexity, and memorization, to comprehensively understand the effects
of pre-training corruption of DMs. More specifically, for pre-training, we directly evaluate the images
generated from the pre-trained models, and for downstream adaptation, we evaluate on the images
generated using personalized models with ControlNet [20] and T2I-Adapter [21] from the pre-trained
ones. In addition, we theoretically investigate how slight corruption in conditional embeddings
benefits the training and generative processes of DMs. Our key findings include:

• Empirically, slight corruption in pre-training facilitates the DMs to generate images with higher
quality and more diversity, both qualitatively (in Fig. 1) and quantitatively (in Fig. 2).

• Theoretically, we employ a Gaussian mixture model to show slight condition corruption improves
the diversity and quality of generation by increasing entropy over clean condition generation and
reducing the quadratic 2-Wasserstein distance to the true data distribution (in Section 4).
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• Methodologically, based on our analysis, we propose a simple method to improve the pre-training
of DMs by adding conditional embedding perturbations (CEP). We show that CEP can significantly
boost the performance of various DMs in both pre-training and downstream tasks (in Section 5).

Going beyond images, we do see the potential of this study in other modalities. Our efforts may also
inspire future investigation on other types of corruption and bias inside pre-training datasets. We
hope that our work can shed light on the future research of diffusion models and responsible AI.

2 Preliminary

Denoising Diffusion Models. DMs are probabilistic models that learn the data distribution P(x),
with x denoting the observed data3, over a set of latent variables z1, . . . , zT with length T [1, 57]. It
assumes a forward diffusion process, gradually adding Gaussian noise to the data with a fixed Markov
chain: q(zt|x) = N (

√
ᾱtx, (1− ᾱt)I), which can be re-parameterized as zt =

√
ᾱtx+

√
1− ᾱtϵ

with ϵ ∼ N (0, I) and ᾱt as constants produced by a noise scheduler. DMs are trained via the reverse
process, inverting the forward process as: pθ(zt−1|zt) = N (µθ (zt) ,Σθ (zt)), with a network that
predicts the statistics of pθ. Setting Σθ (zt) = (1− ᾱt)I to untrained constants, the reverse process
is simplified as training equally weighted denoising autoencoders ϵ (zt, t) with uniformly sampled t:

LDM = Ex,ϵ∼N (0,I),t∼U(1,T )

[
∥ϵ− ϵθ (zt, t)∥22

]
. (1)

After training, new images can be generated by sampling zt−1 ∼ pθ(zt−1|zt) starting with N (0, I).

Classifier-free Guidance (CFG). Extra condition information y, such as class labels and text
prompts, can be injected into DMs with conditional embeddings cθ(y) from modality-specific
encoders [9] for conditional generation: pθ(zt−1|zt, cθ(y)). CFG [12] jointly learns a unconditional
model ϵθ(zt, t, cθ(∅)) with an empty condition y = ∅ and a conditional model ϵθ(zt, t, cθ(y)), and
combines them linearly to control the trade-off of sample quality and diversity in generation:

ϵ̂θ(zt, t, cθ(y)) = ϵθ(zt, t, cθ(∅)) + s (ϵθ(zt, t, cθ(y))− ϵθ(zt, t, cθ(∅))) , (2)

where s > 1 denotes the guidance scale. We adopt CFG by default with the training objective:

LDM = Ex,y,ϵ∼N (0,I),t∼U(1,T )

[
∥ϵ− ϵθ (zt, t, cθ(y))∥22

]
. (3)

Condition Corruption. Ideally, each y should accurately describe and match x. However, in
practice, due to errors from the collection of web-crawled datasets, conditions yc may un-match x.
We define (x, yc) as pairs with condition corruption, and assume that cθ(yc) = cθ(y; η, ξ), where ξ
denotes certain noise and η denotes corruption ratio that implicitly controls the noise magnitude.

3 Understanding the Pre-training Corruption in Diffusion Models

In this section, we conduct the first comprehensive and practical study on pre-training DMs with
condition corruption. Through holistic exploration with synthetically corrupted datasets, we reveal a
surprising observation that slight pre-training corruption can be beneficial for DMs.

3.1 Pre-training Evaluation

Pre-training Setup. Here, we adopt Latent Diffusion Models (LDMs) [9] with the pre-trained
VQ-VAE [58, 56] and a down-sampling factor of 4 for the latent space of observed data x, denoted as
LDM-4. More specifically, we train class-conditional and text-conditional LDM-4 from scratch on
synthetically corrupted IN-1K [50] and CC3M [14], respectively, with a resolution of 256 × 256 .
We use a class embedding layer and a learnable pre-trained BERT [59] to compute the conditional
embeddings of the IN-1K class labels and the CC3M text prompts. To introduce synthetic corruption
into the conditions, we randomly flip the class label into a random class for IN-1K, and randomly swap
the text of two sampled image-text pairs for CC3M, following [48, 49] (other corruption types studied
in Section 3.3). We train models with different corruption ratios η ∈ {0, 2.5, 5, 7.5, 10, 15, 20}%
More details on synthetic corruption and pre-training recipes are shown in Appendix B.1 and B.3.

3We use x for images in both the raw pixel space and the latent space of VQ-VAE [56].
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Figure 3: Quantitative evaluation of generated images from class and text-conditional LDMs
pre-trained with condition corruption. All metrics are computed over 50K generated images and
validation images of IN-1K and MS-COCO. We plot FID vs. IS or CS ((a) and (c)) , and Precision vs.
Recall ((b) and (d)), where each point indicates the results computed from using a guidance scale.
Models pre-trained with slight condition corruption achieve better FID, IS or CS, and PR trade-off.
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Figure 4: Quantitative evaluation of complexity and diversity of class and text-conditional LDMs.
We plot the top-1% RMD score ((a) and (c)) which measures the complexity and diversity of samples
(with s = 2.0 and s = 3.0 for IN-1K and CC3M LDMs), and the sample entropy ((b) and (d)) as
a proxy measure of diversity, where each point indicates the result of a guidance scale. Models
pre-trained with slight condition corruption generate samples of higher complexity and diversity.

Evaluation of Pre-trained Models. We directly use the pre-trained LDMs to generate images to
study the effects of condition corruption in the pre-training stage. We use IN-1K class labels for
class-conditional LDMs and MS-COCO text prompts [60] for text-conditional LDMs to generate
50K images and compare with the real validation images. The images are generated using a set of
guidance scales s ∈ {1.5, 2.0, . . . , 10.0} and DPM [61] scheduler with 50 steps for faster inference
speed4. We adopt Fréchet Inception Distance (FID) [63], Inception Score (IS) [64], Precision, and
Recall [65] to evaluate the quality, fidelity, and coverage of the generated images. For CC3M models,
we use the CLIP score (CS) [66] to measure the similarity of the generated images and conditional
text prompts. From the perspectives of sample complexity and diversity, we compute the top-1%
Relative Mahalanobis Distance (RMD) [67, 68], calculated from the estimated class-specific and
class-agnostic distributions of generated data, and the sample entropy [69, 70], calculated from the
VQ-VAE codebook. We also adopt other metrics, including sFID [71], TopPR F1 [72], average L2

distance, and memorization ratio [73]. More details of the metrics used are shown in Appendix B.7.

Results. We present the main quantitative results of pre-training in Fig. 3 and 4, and the qualitative
results in Fig. 5. More results are shown in Appendix C. In summary, we found that slight pre-
training corruption5 can facilitate the quality, fidelity, and diversity of generated images:

• Class and text-conditional models pre-trained with slight corruption achieve significantly lower
FID and higher IS and CLIP score (Fig. 3(a) and 3(c)). They also present comparable and better
Precision-Recall curves (Fig. 3(b) and 3(d)), compared to clean pre-trained models.

• Models pre-trained with slight corruption generate images with higher complexity and diversity,
with a right-shifted density of RMD (Fig. 4(a) and 4(c)), and larger entropy (Fig. 4(b) and 4(d)).

• Qualitatively, models with slight corruption learn a more diverse distribution. Generated images
present better variability in the circular walk around the latent space (Fig. 5(a) and 5(b)).

4In Appendix C, we also present the results of IN-1K LDM-4 using the DDIM [62] scheduler with 250 steps.
5Slight corruption corresponds to η ≤ 7.5%, which might be common in practical large-scale datasets.
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Figure 5: Qualitative evaluation of images generated from circular walk around the learned latent
space using (a) class-conditional IN-1K LDMs and (b) text-conditional CC3M LDMs. Models
pre-trained with slight condition corruption present more diversity in the learned distribution.

• More corruption in pre-training can potentially lead to quality and diversity degradation. As η
increases, almost all metrics first improve and then degrade. However, the degraded measure with
more corruption sometimes is still better than the clean ones (e.g. IS and Entropy).

3.2 Downstream Personalization Evaluation

A common scenario of DMs pre-trained on large-scale datasets is that they can be personalized and
customized for more controllable generation [74, 75] after tuning on smaller datasets. Here, we also
examine the effects of pre-training condition corruption of DMs at downstream personalization tasks.

Downstream Personalization Setup. We personalize the pre-trained LDMs with two common
methods: ControlNet [20] and T2I-Adapter [21]. Both methods can enable the pre-trained DMs to
generate more controllable images according to input spatial conditioning. For fair comparison, we
automatically annotate the ImageNet-100 (IN-100) dataset to canny edges using the OpenCV canny
detector [76] and segmentation masks using SegmentAnything (SAM) [77], similar to Zhang et al.
[20]. For text-conditional LDMs, we additionally use BLIP [78] to generate MS-COCO-style text
prompts for IN-100. We then fine-tune the LDMs on the annotated training set of IN-100. More
details on the annotation and personalization setup are shown in Appendix B.2 and B.6, respectively.

Evaluation of Personalized Models. After tuning, we evaluate the personalized LDMs in the
annotated validation set of IN-100. We mainly compute FID, IS, Precision, and Recall to compare
the models. We similarly use a set of guidance scales to generate images, but only report results of
the best guidance scale in this part due to space limit. The complete results are shown in Appendix D.

Results. Similarly, from the main results in Fig. 6 and Fig. 7, we found that slight pre-training
corruption can also benefit the quality of generated images at downstream personalization:

• Slight pre-training corruption helps the personalized model generate images with lower FID
(Fig. 6(a) and 6(c)) and higher IS score (Fig. 6(b) and 6(d)), whereas more corruption deteriorates.

• Qualitatively, the personalization images from slight corruption pre-trained models also present
more diversity, better fidelity with the input spatial controls, and higher quality.

3.3 Discussion: Other Types of Pre-training Corruption and Diffusion Models

Our previous studies mainly involve LDMs and symmetric random corruption. Here, we additionally
study other types of corruption and DMs to verify that the above observations universally hold.

Condition Corruption. We consider asymmetric (Asym.) label corruption for IN-1K and Large
Language Model (LLM) corruption for CC3M. For IN-1K, we introduce corruption only within the
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Figure 6: Quantitative evaluation of ControlNet and T2I-Adapter personalized class and text-
conditional LDMs. FID ((a) and (c)) and IS ((b) and (d)) are computed using the 5K generated images.
Slightly corrupted pre-trained models also present better performance in downstream personalization.
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Figure 7: Qualitative evaluation of ControlNet and T2I-Adapter (a) IN-1K and (b) CC3M LDMs.

overlapped classes with CIFAR-100 [79], while maintaining others as clean. For CC3M, we prompt
GPT-4 [80] to corrupt the texts. More details of the corruption are shown in Appendix B.1.

Diffusion Models. LDMs utilize U-Net [81] as backbone and Cross-Attention for adding conditional
information [9]. We pre-train class-conditional diffusion transformers on IN-1K for extra assessment,
termed DiT-XL/2 [11], with Transformer [82] as backbone and adaptive LayerNorm [83–86] for
conditional information. We also pre-train the recent text-conditional Latent Consistency Models
(LCMs) [52, 51] on CC3M, which distill Stable Diffusion v1.5 [26] models to enable swift inference
with minimal steps, noted as LCM-v1.5. Detailed setup is shown in Appendices B.4 and B.5.

Results. We present the main results in Fig. 2 due to the space limit. Full results are shown in
Appendix C. We find that slight condition corruption of various types universally facilitates the
performance of different DMs and consistently makes them outperform the clean pre-trained ones.

4 Theoretical Analysis

In this section, we theoretically analyze condition corruption and find that slight corruption prevents
the generated distribution from collapsing to the empirical distribution of the training data and
encourages coverage of the entire data space, thereby enhancing diversity and alignment with
the ground truth. We present a concise overview here and provide a comprehensive analysis in
Appendix A.

Data Distribution. We concentrate on the prototypical problem of sampling from Gaussian mixture
models (GMMs). Specifically, we consider the distribution of data x ∈ Rd that satisfies:

P(x) :=
∑
y∈Y

wyN (µy, I), (4)

where y denote class labels of a finite set y ∈ {1, . . . , |Y|}. Given any class, x|y follows a Gaussian
N (µy, I), and wy represents the weight of the Gaussian components which satisfies

∑
y∈Y wy = 1.
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Denoising Networks and Condition Corruption. Inspired by recent works that also target on
GMMs [87, 88] of DMs, we parameterize the denoising network as a piece-wise linear function:

ϵθ(xt, y
c) =

|Y|∑
k=1

1yc=k

(
Wk

t xt +Vk
t c(y

c)
)
, (5)

where c(yc) is the one-hot encoding of corrupted label yc and {Wk
t ,V

k
t }|Y|

k=1 are trainable parameters.
Specifically, following a line of existing work [89–91], we adopt a simpler label-noise model by
adding Gaussian perturbation to the label embedding, perturbing the clean condition c(y) with
standard Gaussian noise ξ to obtain c(yc) = c(y) + γξ. Here, the corruption control parameter γ
corresponds to the corruption ratio η for a more direct noise magnitude control. While our theoretical
framework focuses on Gaussian noise, it can also be extended to distributions such as uniform.

4.1 Generation Diversity: Clean vs. Corrupted Conditions

We employ entropy to evaluate the diversity of generated images, following Wu et al. [70]. Higher
entropy suggests a wider spread of data, yielding greater diversity in generated images, while lower
entropy implies a more concentrated distribution with less diversity. We present Theorem 1, showing
the difference in entropy between generations with corrupted and clean conditions:
Theorem 1. For any class k ∈ Y and sufficiently large length T , assuming the norm of corresponding
expectation ∥µk∥22 is a constant and the empirical covariance of training data is full rank, let zT and
zcT be the generation with clean and corrupted conditions respectively, then it holds that

H(zcT |y = k)−H(zT |y = k) = Θ(γ2d), (6)
where γ is the corruption control parameter and d is the data dimension.

The proof is provided in Appendix A.4.1. Theorem 1 indicates that for any class k, corrupted
conditions enhance image diversity by increasing generation entropy. Moreover, with suitable γ
values, image diversity can grow with noise, aligning with observations in Fig. 4.

4.2 Generation Quality: Clean vs. Corrupted Conditions

We then analyze why corrupted conditions benefit the quality of generated images, as also observed
in Section 3.1. We employ the 2-Wasserstein distance as a metric to evaluate the sampling error
between the true and the generated distributions, with clean and corrupted conditions. A distributed
generated closer to the real data distribution indicates better image quality [63]. In Theorem 2, we
analyze the difference in the quality of data generated by corrupted DMs and clean ones:
Theorem 2. For any k ∈ Y and sufficiently large length T , assuming the norm of corresponding
expectation ∥µk∥22 is constant, let P, QX and Qc

X be the ground truth, clean, and corrupted condition
distributions over training data X. Then if γ = O(1/

√
maxk nk), it holds that

EX

[
W2

2 (P,QX)−W2
2 (P,Qc

X)|y = k
]
= Ω

(γ2d

nk

)
, (7)

where W2(·, ·) denotes the 2-Wasserstein distance between two distributions, nk is the sample size of
k-labeled dataset, and d is the data dimension.

Here the expectation is taken over the random sample of the training dataset from the data distribution.
Detailed proof is shown in Appendix A.4.2. Theorem 2 reveals that for any class k, small corruption
yields generation distributions closer to the true distribution than clean ones. This partially verifies
that the generation quality of the uncorrputly trained diffusion model can be improved by adding
slight corruption to the training data. This is also well consistent with our empirical observation in
Section 3.1, where the noise we used is approximately 0.04ϵ, close to the theoretical noise level of
0.03ϵ, showing that the FID of the generated images can be improved with a small corruption.

5 Improving Diffusion Models with Conditional Embedding Perturbation

5.1 Method

Our previous analysis demonstrates that slight condition corruption in the pre-training could po-
tentially benefit both the image quality and diversity of DMs, which inspires us to improve the
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Table 1: Pre-training results of IN-1K and MS-
COCO using diffusion models pre-trained with per-
turbation. CEP achieves the best results (in bold).

Model Perturb. FID (↓) IS (↑) Precision (↑) Recall (↑)

LDM-4 [9]
IN-1K

(s = 2.0)

- 9.44 138.46 0.71 0.43
IP 9.18 141.77 0.67 0.43

CEP-U 7.00 170.73 0.73 0.45
CEP-G 6.91 180.77 0.76 0.44

DiT-XL/2 [11]
IN-1K

(s = 1.75)

- 6.76 179.67 0.74 0.46
IP 6.75 182.28 0.75 0.45

CEP-U 5.51 189.94 0.77 0.46
CEP-G 5.92 185.21 0.75 0.45

LDM-4 [9]
CC3M

(s = 3.0)

- 19.85 30.09 0.61 0.42
IP 19.48 30.17 0.59 0.42

CEP-U 17.93 30.77 0.65 0.41
CEP-G 18.59 30.50 0.67 0.39

LCM-v1.5 [52]
CC3M

(s = 4.5)

- 23.59 39.15 0.67 0.35
IP 23.63 40.07 0.65 0.35

CEP-U 22.91 40.31 0.67 0.35
CEP-G 23.40 40.12 0.68 0.36

Table 2: ControlNet personalization results of
IN-100 using LDMs pre-trained with perturba-
tion. CEP achieves the best results (in bold).

Control Perturb. FID (↓) IS (↑) Precision (↑) Recall (↑)

IN-1K
Canny

(s = 2.25)

- 11.59 57.01 0.82 0.61
IP 12.31 57.39 0.77 0.59

CEP-U 11.46 59.29 0.84 0.58
CEP-G 11.53 57.59 0.83 0.61

IN-1K
SAM

(s = 2.25)

- 13.74 54.52 0.79 0.49
IP 13.61 55.13 0.75 0.48

CEP-U 12.95 56.68 0.79 0.50
CEP-G 13.44 56.81 0.80 0.49

CC3M
Canny

(s = 5.0)

- 40.65 32.56 0.63 0.51
IP 40.12 32.43 0.62 0.52

CEP-U 35.91 33.86 0.71 0.51
CEP-G 34.57 36.59 0.68 0.53

CC3M
SAM

(s = 4.0)

- 42.64 32.00 0.63 0.51
IP 43.79 32.17 0.64 0.49

CEP-U 38.00 32.98 0.67 0.51
CEP-G 35.02 35.77 0.67 0.53

pre-training of DMs using this conclusion. In practice, it is usually infeasible to directly corrupt the
conditions in the pre-training datasets either due to their large-scale nature or difficulties to select
which conditions to corrupt. Instead, we propose to add the perturbation directly to the conditional
embeddings of DMs, which is termed conditional embedding perturbation (CEP). Compared to the
fixed proportion of condition corruption in datasets we studied before, CEP adds perturbation to every
data instance during training on the fly. Specifically, CEP slightly modifies the DM objective:

LDM = Ex,y,ϵ∼N (0,I),t∼U(1,T )

[
∥ϵ− ϵθ (xt, t, cθ(y) + δ)∥22

]
, (8)

where δ denotes the perturbation added to conditional embeddings cθ(y). We simply set the perturba-
tion to Uniform, i.e., δ ∼ U

(
− γ√

d
I, γ√

d
I
)

, or to Gaussian, i.e., δ ∼ N
(
0, γ√

d
I
)

, where the design
of the factor γ√

d
mainly follows previous works [82, 92–95], d denotes the dimension of cθ(y), and

γ controls the perturbation magnitude, mimicing the corruption ratio η. The main purpose of CEP is
to learn better DMs with perturbation on relatively clean and heavily filtered datasets, such as CC3M
and IN-1K studied in this paper, but it is also applicable to slightly corrupted datasets. Recently, Ning
et al. [96] found that adding input perturbations (IP) to latent variables zt during the forward process
also helps diffusion training by mitigating exposure bias [97]. Compared to IP, CEP does not alter
the marginal data distribution, but encourages the learned joint distribution to be more diverse.

5.2 Experiments

Setup. We pre-trained previous class-conditional LDM-4, text-conditional LDM-4, class-conditional
DiT-XL/2, and text-conditional LCM-v1.5 with CEP, and compare with IP and clean pre-trained ones.
We use both Uniform and Gaussian perturbation, denoted as CEP-U and CEP-G, respectively. We
set γ = 1 for all models, with an ablation study with class-conditional LDM-4 with different γs.

0 1 2 3 4 5 6
Cond. Emb. L2 Diff.

7

8

9

10

11

12

F
ID

Fixed Corrupt.

CEP-U

CEP-G
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Figure 8: Ablation with LDM-4 IN-1K. (a)
FID and average L2 distance of conditional
embeddings against clean ones with γ =
{0.1, 0.5, 1.0, 5.0, 10.0}, indicated by square
points (left to right). We compare with fixed syn-
thetic corruption η = {2.5, 5, 10, 15}%, shown
by circle points. (b) CEP on corrupted IN-1K.

We evaluated the pre-trained class-conditional
models on IN-1K and and text-conditional models
on MS-COCO with FID, IS, Precision, and Re-
call. Additionally, we personalize the pre-trained
LDMs with ControlNet on IN-100 to validate the
effectiveness of CEP pre-training at downstream.

Results. We present the pre-training results of
CEP in Table 1. CEP significantly and universally
improves the performance for different class and
text-conditional DMs, e.g., 2.53 and 1.25 FID im-
provement, and 42.31 and 10.27 IS improvement
of LDM-4 and DiT-XL/2. CEP also improves
precision and recall of DMs. In contrast, IP only
achieves marginal improvement and yields slightly
worse precision. Adopting CEP in pre-training
also benefits the personalization tasks, especially
for text-conditional LDMs, with FID improvement
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Figure 9: Comparison of DMs pre-trained with CEP against IP and without perturbation.

of 6.08 and 7.02 for Canny and SAM spatial control, as shown in Table 2. Qualitatively, as shown in
Fig. 9, images generated from DMs with CEP also look more visually appealing and realistic.

The ablation results of γ are shown in Fig. 8(a). We also compare the average L2 distance of CEP
and fixed corruption against the clean condition embeddings. Interestingly, one can observe that CEP
achieves a lower FID with more corruption in the embedding space (larger L2 from the clean ones),
demonstrating its effectiveness. CEP is applicable to slightly corrupted datasets that we may often
encounter in practice, as shown in Fig. 8(b), where it also facilitates the performance significantly.

In addition, we also compare the proposed CEP with traditional regularization methods, such as
Dropout [98] and Label Smoothing [99], and study the effects of fixed and random perturbation
during training in Appendix E.3 and Appendix E.4. The results show that CEP is more effective.

6 Related Work

Diffusion Models. Inspired by thermodynamics, DMs were first proposed by Sohl-Dickstein et al.
[100]. DMs have soon been developed into image generation with a fixed Gaussian noise diffusion
process [1, 101]. Various techniques have then been proposed for more effective and efficient DMs
[102, 4, 5]. One of the most well-known is modeling the diffusion process at the latent space of
pre-trained image encoders as a strong prior [58, 56], instead of raw pixels spaces [3, 9, 11], which
allows for high-quality image generation with affordable inference speed. Numerous foundational
DMs that generate photorealistic images have thus been built [103–107, 10, 108, 26, 109]. These
powerful models are generally pre-trained on web-crawled billion-scale data with conditions (usually
text), which may inevitably contain corruption [31, 110, 111, 32, 35]. Recently, consistency models
[51, 112, 52] were also developed from DMs, allowing generation with much fewer inference steps.
These foundational DMs also enabled many downstream applications [20, 21, 113–122]. However,
the effects of the pre-training corruption on downstream applications remain unknown.

Learning with Noise. Learning with noise is a long-standing challenge [123–126]. Noisy label
learning has been widely studied in classification, from noise correction [127, 40, 128–131, 41, 132,
133, 43, 134, 44, 135] and noise-robust loss functions [39, 136–141, 29, 142]. Learning with noise
has also been studied in the context of generative models [143–146]. Robust GANs and DMs [45–47]
alleviated the quality degradation and condition misalignment of training generative models with
label noise. In contrast, we study a more practical scenario, where the models are trained on corrupted
pre-training data with a low noise ratio, and then adapted to downstream tasks.

In fact, more aligned with our work, there are several recent studies on exploring and exploiting
the pre-training noise. Chen et al. [48, 49] found that slight label noise in supervised pre-training
can be beneficial for in-domain downstream tasks, whereas detrimental for out-of-domain tasks.
NoisyTune [147], NEFTune [95], and SymNoise [148] found that introducing noise to the weights
and embedding of pre-trained language models can facilitate downstream performance. Ning et al.
[96] also found that adding perturbation in the forward diffusion process helps reduce the exposure
bias of DMs [97]. Similarly, Naderi et al. [149] introduced noise into the input of image translation
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networks for better learning with limited data. Synthetic data (potentially with corruption) have also
been found to be useful in pre-training [24, 150]. We demonstrate that slight corruption in conditions
of the pre-training DMs can also be beneficial at both the pre-training and downstream.

7 Conclusion and Limitation

We presented the first comprehensive study on condition corruption in pre-training of DMs. Our
empirical and theoretical analysis surprisingly demonstrate that slight condition corruption benefits
DMs in both the pre-training and downstream adaptation, based on which we proposed CEP as a
simple yet general technique that significantly improves the performance of DMs. We hope our
findings could inspire more future work on understanding the pre-training data of foundation models.

This work has the following limitations. First, due to a lack of computing resources, we cannot study
all types of DMs on larger datasets. Second, the theoretical analysis is based on several assumptions
that might be further explored in the future. Third, the evaluation of image generation remains an
open question, and we used most of the existing criteria for fair comparison.

Disclaimer

While we study DMs for image generation in this paper, it is important to note that all generations
have been selected and verified by human experts to ensure that they are responsible. Although we
release all the pre-trained models under different corruption settings, it is possible that these models
will generate inappropriate content due to the scale of pre-training and without alignment with human
preferences. The main purpose of this research is to raise the awareness of the community on data
cleaning and corruption in the research of diffusion models.
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A Derivations and Proofs

In this section, we theoretically investigate the behavior of condition corruption on DMs. Our
investigation encompasses the DDIM samplers with continuous-time processes. We focus on how
slight conditional embedding corruption can affect the training process of DMs, as well as the
consequences on the generative process. As our theoretical analysis indicates, slight conditional
embedding corruption will benefit both the generation quality and diversity, which aligns with the
experimental conclusions in Section 3.

A.1 Preliminaries

We start by giving a concise overview of the problem setup.

Data Distribution. For precise theoretical characterizations, we concentrate on the prototypical
problem of sampling from Gaussian mixture models (GMMs). Specifically, we consider that the
distribution of the data x ∈ Rd satisfies

P(x) :=
∑
y∈Y

wyN (µy, I). (9)

Here, y is denoted as the class labels with a finite set of values y ∈ {1, 2, · · · , |Y|}. Given any class
label y ∈ Y , the data distribution x|y is a Gaussian with the center and covariance as (µy, I). And
the positive wy represents the weights of the Gaussian components which satisfies

∑
y∈Y wy = 1.

The diffusion model is a two processes framework: a forward process that transforms the target
distribution into Gaussian noise, and a reverse process that progressively denoises in order to
reconstitute the original target distribution. In this paper, we consider the continuous-time processes
and define the forward process as an Ornstein–Uhlenbeck (OU) process:

Forward Process. At time step t ∈ [0, T ], the forward process is

dxt = −xtdt +
√
2dwt, x0 = x ∼ P(·|y), (10)

where wt is a d-dimensional standard Brownian motion.

The advantage of considering the forward process as an OU process is that it enables us to directly
derive the closed-form expression for the conditional sample distribution at any given time t.

xt|x ∼ N (rtx, σ
2
t I), (11)

where rt = e−t and σt =
√
1− e−2t.

By the reparameterization trick, xt can be represented as

xt = rtx+ σtϵ. (12)

We explore the widely adopted sampling method, DDIM, augmented with classifier-free guidance.
And the associated reverse process is stated as the following ODE implementation:

Reverse Process. We write the reverse process in a forward version by switching time direction
t → T − t as

dzt =
(
zt + (1 + w)∇zt

logP(zt|y)− w∇zt
logP(zt)

)
dt, z0 ∼ N (0, I), (13)

where w ≥ 0 is a hyperparameter that controls the strength of the classifier guidance.

Given our primary focus on the impact of corrupted conditional embedding on generation, we simplify
the reverse process by setting w to 0 and concentrate solely on the conditional score network, i.e.,

dzt =
(
zt +∇zt

logP(zt|y)
)
dt. (14)

The remaining task is to estimate the unknown conditional score function ∇zt logP(zt|y) and
unconditional score function ∇zt logP(zt|y) via training. In the subsequent analysis, we will
indicate that by minimizing Equation (3) and optimizing the denoising network ϵ, we can achieve an
estimate of the conditional score.
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Denoising Networks. Inspired by recent work that also target on GMMs [87, 88], we parameterize
the denoising networks as the following piecewise linear function:

ϵθ(xt, y) =

|Y|∑
k=1

1y=k

(
Wk

t xt +Vk
t c(y)

)
, (15)

where c(y) is the one-hot encoding of label y, 1y is an indicator function and {Wk
t ,V

k
t }|Y|

k=1 are
trainable parameters.

Conditional Embedding Corruption. We examine the scenario of conditional embedding corruption,
wherein the conditional embedding c(y) is no longer matched with the data x, but instead is perturbed
by Gaussian noise. Consequently, the corrupted conditional embedding causes the denoising networks
to be as follows:

ϵcθ(xt, y) =

|Y|∑
k=1

1y=k

(
Wk

t x
k
t +Vk

t (c(y) + γξ)
)
, (16)

where the d-dimensional corrupted noise ξ ∼ N (0, I) and γ ≥ 0 serves as the corruption control
parameter, mirroring the noise ratio η for direct control of noise magnitude.

Based on the aforementioned setup, our ultimate goal is to obtain the closed form of the final
generated data distribution by considering the impact of corrupted noise ξ on the training and
generative processes. By comparing the differences in data distribution before and after the addition
of corrupted noise, we aim to accurately characterize the impact of embedding corruption on image
generation and explain the phenomena observed in experiments.

A.2 The Estimation of Conditional Score

A.2.1 Clean Conditions

We first analyze the case of clean conditional embedding. Note that the denoising networks ϵθ is a
piecewise linear function and the training objective can be represented as

1

n

n∑
i=1

Eϵ[∥ϵθ(xt,i, y)− ϵ∥22] =
|Y|∑
k=1

wk

nk

∑
yi=k

Eϵ[∥ϵθ(xt,i, y)− ϵ∥22], (17)

where the class sample size nk := nwk.

We observed that the optimization objective in Equation (17) can be divided into |Y| independent
sub-problems based on the label y. This inspires us to analyze the training and generation processes
according to different classes.

Given any class k ∈ Y , we present the following lemma for determining the optimal parameters of
the corresponding denoising network and the associated conditional score.
Lemma 1. (Clean Conditional Embedding). Given any class k ∈ Y , the optimal linear denoising
network is

ϵθ(xt, y = k) = σt

(
σ2
t I+ r2tΣk

)−1

xt − rtσt

(
σ2
t I+ r2tΣk

)−1

µ̂k. (18)

And the corresponding optimal linear estimation of conditional score ∇xt
logP(xt|y = k) is

∇xt logP(xt|y = k) = −ϵθ(xt, y = k)

σt
, (19)

where Σk := 1
nk

∑nk

i=1 xix
T
i − 1

n2
k

∑nk

i=1 xi

∑nk

i=1 x
T
i is the empirical covariance of k-labeled

dataset and µ̂k := 1
nk

∑nk

i=1 xi is the empirical mean of k-labeled dataset, nk is the sample size of
k-labeled dataset. And rt = e−t, σt =

√
1− e−2t.

Proof. Given any class k, the training objective is
wk

nk

∑
yi=k

Eϵ[∥ϵ(xt,i, y)− ϵ∥22] =
wk

nk

∑
yi=k

Eϵ[∥Wk
t rtxi +Wk

t σtϵ+Vk
t c(y)− ϵ∥22]. (20)
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Since the weights wk is fixed in our analysis, we omit the notation wk without ambiguity in the
following contents and for enhanced clarity, we initially omit the subscript/superscript k in nk, Wk

t ,
Vk

t , µ̂k , µk and Σk. Then Equation (20) can restated as as Equation (21) for simplicity.

1

n

n∑
i=1

Eϵ[∥Wtrtxi +Wtσtϵ+Vtc(y)− ϵ∥22], (21)

where xi is labeled as k.

This training loss can be further simplified as

1

n

n∑
i=1

Eϵ[∥Wtrtxi +Wtσtϵ+Vtc(y)− ϵ∥22]

=
1

n

n∑
i=1

∥Wtrtxi +Vtc(y)∥22 + Eϵ[∥(Wtσt − I)ϵ∥22]

=
r2t
n

n∑
i=1

xT
i W

T
t Wtxi +

2rt
n

eT(y)VT
t Wt

n∑
i=1

xi + eT(y)VT
t Vtc(y) + Tr

(
(Wtσt − I)(WT

t σt − I)
)
.

For simplicity, we denote bt := Vtc(y) and we get

1

n

n∑
i=1

Eϵ[∥Wtrtxi +Wtσtϵ+Vtc(y)− ϵ∥22]

=
r2t
n

n∑
i=1

xT
i W

T
t Wtxi +

2rt
n

bT
t Wt

n∑
i=1

xi + bT
t bt +Tr

(
(Wtσt − I)(WT

t σt − I)
)
.

Then, we define the loss function

J(Wt,bt) =
r2t
n

n∑
i=1

xT
i W

T
t Wtxi +

2rt
n

bT
t Wt

n∑
i=1

xi + bT
t bt +Tr

(
(Wtσt − I)(WT

t σt − I)
)
.

The optimal W∗
t and b∗

t can be obtained by taking gradient to J(Wt,bt) such that,

0 = ∇WtJ(Wt,bt) =
2r2t
nk

Wt

n∑
i=1

xix
T
i +

2rt
n

bt

n∑
i=1

xT + 2(σ2
tWt − σtI),

0 = ∇bt
J(Wt,bt) =

2rt
n

Wt

n∑
i=1

xi + 2bt.

And the optimal W∗
t and b∗

t is,

W∗
t = σt

(
σ2
t I+ r2tΣ

)−1

, b∗
t = V∗

t c(y) = −rtσt

(
σ2
t I+ r2tΣ

)−1

µ̂.

where Σ := 1
n

∑n
i=1 xix

T
i − 1

n2
k

∑n
i=1 xi

∑n
i=1 x

T
i is the empirical covariance of k-labeled dataset

and µ̂ := 1
n

∑n
i=1 xi is the empirical mean of k-labeled dataset.

Based on above analyze, for class k, we then have the following optimal denoising network as the
linear estimator of noise ϵ,

ϵθ(xt, y = k) = σt

(
σ2
t I+ r2tΣ

)−1

xt − rtσt

(
σ2
t I+ r2tΣ

)−1

µ̂.

Given any class k, we derive

∇xt
logP(xt|x, y = k) = − (xt − rtx)

σ2
t

= − ϵ

σt
,

where data x and xt are labeled with k.
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Therefore, the linear estimator of ∇xt logP(xt|x, y = k) given k-labeled data xt is

−
(
σ2
t I+ r2tΣ

)−1

xt + rt

(
σ2
t I+ r2tΣ

)−1

µ̂.

Since the estimation of ∇xt
logP(xt|x, y = k) and ∇xt

logP(xt|y = k) are equivalent in optimiza-
tion, the optimal linear estimator ∇xt

logP(xt|y = k) also can be

∇xt
logP(xt|y = k) = −ϵθ(xt, y = k)

σt

= −
(
σ2
t I+ r2tΣ

)−1

xt + rt

(
σ2
t I+ r2tΣ

)−1

µ̂.

The proof is completed.

Note that the ground truth functions of conditional score given the label k is
∇xt

logP(xt|y = k) = −xt + rtµk. (22)
We note the similarities in form and coefficients between the optimal linear estimator (19) and ground
truth (22); they both are linear combinations of µk/µ̂k and xt. Specifically, when the empirical
covariance Σk equals the population covariance I and the empirical mean µ̂k matches the expected
value µk, the estimated conditional score in Equation (19) coincides with the true conditional score
in Equation (22).

A.2.2 Corrupted Conditions

The same analytical approach as in Section A.2.1 will be applied to the scenario where the conditional
embedding is perturbed. Given the class k, we propose the following Lemma 2 to describe the
optimal linear denoising network and the conditional score estimator with the corrupted conditional
embedding (c(y) + γξ) where ξ is the standard Gaussian noise.
Lemma 2. (Corrupted Conditional Embedding). Given any class k ∈ Y , the optimal linear denois-
ing network is

ϵcθ(xt, y = k) = σt

(
σ2
t I+ r2tΣk +

r2t γ
2

1 + γ2
∥µ̂k∥22I

)−1

xt −
rt

1 + γ2
σt

(
σ2
t I+ r2tΣk +

r2t γ
2

1 + γ2
∥µ̂k∥22I

)−1

µ̂k. (23)

And the corresponding optimal linear estimation of conditional score ∇xt
logPc(xt|y = k) is

∇xt
logPc(xt|y = k) = −ϵcθ(xt, y = k)

σt
(24)

where Σk := 1
nk

∑nk

i=1 xix
T
i − 1

n2
k

∑nk

i=1 xi

∑nk

i=1 x
T
i is the empirical covariance of k-labeled

dataset and µ̂k := 1
nk

∑nk

i=1 xi is the empirical mean of k-labeled dataset, nk is the sample size of
k-labeled dataset, and rt = e−t, σt =

√
1− e−2t.

Proof. For enhanced clarity, we initially omit the subscript/superscript k in nk, Wk
t , Vk

t , µ̂k , µk
and Σk.

For any class k and standard Gaussian noise ξ, we consider the following training loss

1

n

n∑
i=1

EξEϵ[∥Wtrtxi +Wtσtϵ+Vt(c(y) + γξ)− ϵ∥22]. (25)

And we further optimize the training loss as

1

n

n∑
i=1

EξEϵ[∥Wtrtxi +Wtσtϵ+Vt(c(y) + γξ)− ϵ∥22]

=
1

n

n∑
i=1

∥Wtrtxi +Vtc(y) + γVtξ∥22 + Eϵ[∥(Wtσt − I)ϵ∥22]

=
r2t
n

n∑
i=1

xT
i W

T
t Wtxi +

2rt
n

eT(y)VT
t Wt

n∑
i=1

xi + eT(y)VT
t Vtc(y)

+ γ2Tr(VtV
T
t ) + Tr

(
(Wtσt − I)(WT

t σt − I)
)
.
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Similarly, we get the optimal W∗
t and b∗

t is,

W∗
t = σt

(
σ2
t I+ r2tΣ+

r2t γ
2

1 + γ2
∥µ̂∥22I

)−1

,

b∗
t = V∗

t c(y) = − rt
1 + γ2

σt

(
σ2
t I+ r2tΣ+

r2t γ
2

1 + γ2
∥µ̂∥22I

)−1

µ̂.

where Σ := 1
n

∑n
i=1 xix

T
i − 1

n2
k

∑n
i=1 xi

∑n
i=1 x

T
i is the empirical covariance and µ̂ :=

− 1
n

∑n
i=1 xi is the empirical mean of k-labeled dataset.

So for any class k, we get the following optimal denoising network as the linear estimator of noise ϵ,

ϵcθ(xt, y = k) = σt

(
σ2
t I+ r2tΣk +

r2t γ
2

1 + γ2
∥µ̂k∥22I

)−1

xt −
rt

1 + γ2
σt

(
σ2
t I+ r2tΣk +

r2t γ
2

1 + γ2
∥µ̂k∥22I

)−1

µ̂k.

The corresponding optimal linear estimator ∇xt logPc(xt|y = k) is

∇xt
logPc(xt|y = k) = −ϵθ(xt, y = k)

σt

= −
(
σ2
t I+ r2tΣ+

r2t γ
2

1 + γ2
∥µ̂∥22I

)−1

xt +
rt

1 + γ2

(
σ2
t I+ r2tΣ+

r2t γ
2

1 + γ2
∥µ̂∥22I

)−1

µ̂.

A.3 The Distribution of Generation

Given the class k, after getting the optimal linear estimator of conditional score ∇xt
logP(xt|y =

k), we can accurately characterize the reverse process and derive the closed form of generation
distribution.

A.3.1 Clean Conditions

According to Lemma 1, we first replace the conditional score ∇xt
logP(xt|y = k) in Equation (14)

with the optimal linear estimator. Given the class k, we get

dzt =
(
zt −

(
σ2
t I+ r2tΣk

)−1

zt + rt

(
σ2
t I+ r2tΣk

)−1

µ̂k

)
dt. (26)

Assume the empirical covariance Σk is full rank, since the empirical covariance is diagonalizable
and semi-positive, we decompose Σk as

Σk = UΛUT, (27)

where U = [u1| · · · |ud] is an orthogonal matrix whose columns are the real, orthonormal eigenvectors
of Σk and Λ = diag(λ1, . . . , λd) is a diagonal matrix whose entries are the eigenvalues arranged in
descending order of Σk, i.e., 1 ≥ λ1 ≥ · · · ≥ λd > 0.

Therefore, problem (26) can be decomposed into d independent sub-problem as

uT
i dzt =

(
1− 1

σ2
t + r2tλi

)
uT
i ztdt+

rt
σ2
t + r2tλi

uT
i µ̂kdt, (28)

where ui is i-th eigenvector and λi is its corresponding eigenvalue.

By analyzing Equation (28), we can obtain the expectation and variance of the final generation
distribution separately, thereby inferring the distribution of the ultimately generated data as outlined
in the subsequent lemma.
Lemma 3. (Clean Conditional Embedding). For any class k, the distribution of the generated data
zT satisfies

lim
T→∞

zT ∼ N (µ̂k,Σk), (29)

where Σk := 1
nk

∑nk

i=1 xix
T
i − 1

n2
k

∑nk

i=1 xi

∑nk

i=1 x
T
i is the empirical covariance of k-labeled

dataset and µ̂k := 1
nk

∑nk

i=1 xi is the empirical mean of k-labeled dataset, nk is the sample size of
k-labeled dataset.
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Proof. For enhanced clarity, we initially remove the subscript k in µ̂k, µk and Σk. In order to obtain
the solution to Equation (28) and achieve the closed form of the generation distribution, we first
examine the discrete solution of Equation (28).

Given any class k, we consider the discretization Euler-Maruyama scheme which is widely used in
existing work [151–153] and discretize the interval [0, T ] into N discretization points,

uT
i z(j+1)h = uT

i zjh +
(
1− 1

σ2
tj + r2(tj)λi

)
uT
i zjh+

r(tj)

σ2
tj + r2(tj)λi

uT
i µ̂h, (30)

where h := T
N is the step size and tj = jh.

According to Equation (30), uT
i z(j+1)h can be regarded as a linear transformation of the initial

distribution, which is a standard Gaussian distribution. Therefore, uT
i z(j+1)h still satisfies a Gaussian

distribution. The remaining task is analyze the mean and variance of the uT
i z(j+1)h separately.

Expectation. By Equation (30), we have

E(uT
i z(j+1)h) =

(
1 +

(
1− 1

σ2
tj + r2(tj)λi

)
h

)
E(uT

i zjh) +
r(tj)

σ2
tj + r2(tj)λi

uT
i µ̂h.

By telescoping, we get the discretization solution

E(uT
i zNh) =

N−1∏
k=0

(
1 +

(
1− 1

σ2
tk

+ r2(tk)λi

)
h

)
E(uT

i z0)

+

N−1∑
k=0

r(tk)

σ2
tk

+ r2(tk)λi
uT
i µ̂h

N−1∏
j=k+1

(
1 +

(
1− 1

σ2
tj + r2(tj)λi

)
h

)
.

Since the initial distribution of reverse process is z0 ∼ N (0, I), thus E(uT
i z0) = 0. We further have

E(uT
i zNh) =

N−1∑
k=0

r(tk)

σ2
tk

+ r2(tk)λi
uT
i µ̂h

N−1∏
j=k+1

(
1 +

(
1− 1

σ2
tj + r2(tj)λi

)
h

)
. (31)

By limiting h → 0, we can use the identity 1 + hx ≃ exp(hx). Then we get the continous version of
Equation (31) that when h → 0, we have

E(uT
i zT ) =

∫ T

0

rt
σ2
t + r2tλi

(
exp

∫ T

t

1− 1

σ2
r + r2(r)λi

dr

)
uT
i µ̂dt

=

∫ T

0

et−T

1 + e2(t−T )(λi − 1)

(
exp

∫ T

t

1− 1

1 + e2(r−T )(λi − 1)
dr

)
uT
i µ̂dt

=

∫ T

0

et−T
√
λi

[1 + e2(t−T )(λi − 1)]
3
2

uT
i µ̂dt

=
√

λi
et−T√

1 + e2(t−T )(λi − 1)

∣∣∣∣T
0

uT
i µ̂

=
(
1−

√
λie

−T√
1 + (λi − 1)e−2T

)
uT
i µ̂.

Hence, we have

E(zT ) = Udiag(e1, e2, . . . , ed)UT µ̂,

where ei = 1−
√
λie

−T√
1+(λi−1)e−2T

.

When T → ∞, we get

ei = 1−
√
λie

−T√
1 + (λi − 1)e−2T

→ 1.
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And the expectation of generation distribution is the empirical mean, i.e.,

E(zT ) = µ̂.

Variance. Similarly, by Equation (30), we have the variance

Var(uT
i z(j+1)h) =

(
1 +

(
1− 1

σ2
tj + r2(tj)λi

)
h

)2

Var(uT
i zjh).

By telescoping, we get the discretization solution

Var(uT
i zNh) =

N−1∏
k=0

(
1 +

(
1− 1

σ2
tk

+ r2(tk)λi

)
h

)2

Var(uT
i z0).

Since Var(uT
i z0) = uT

i Var(z0)ui = 1, the variance at time T is

Var(uT
i zNh) =

N−1∏
k=0

(
1 +

(
1− 1

σ2
tk

+ r2(tk)λi

)
h

)2

.

When h → 0 and use the identity (1 + hx)2 ≃ exp(2hx), we get

Var(uT
i zT ) = exp

∫ T

0

2
(
1− 1

σ2
t + r2tλi

)
dt

= exp

∫ T

0

2
(
1− 1

1 + (λi − 1)e2(t−T )

)
dt

=
λi

1 + (λi − 1)e−2T
.

Hence, we have

Var(zT ) = Udiag(v1, v2, . . . , vd)UT .

where vi =
λi

1+(λi−1)e−2T .

When T → ∞, we get

vi =
λi

1 + (λi − 1)e−2T
→ λi.

And the expectation of generation distribution is the empirical mean, i.e.,

Var(zT ) = Σ.

We complete the proof.

A.3.2 Corrupted Conditions

We then discuss the distribution of generated data when the conditional embedding is perturbed
by noise. Using the same method to derive the data distribution under the corrupted conditional
embedding setting, we conclude the following Lemma 4.

Lemma 4. (Corrupted Conditional Embedding). For any class k ∈ Y , the distribution of generation
zcT is

lim
T→∞

zcT ∼ N (
µ̂k

1 + γ2
,Σk +

γ2

1 + γ2
∥µ̂k∥22I), (32)

where Σk := 1
nk

∑nk

i=1 xix
T
i − 1

n2
k

∑nk

i=1 xi

∑nk

i=1 x
T
i is the empirical covariance of k-labeled

dataset and µ̂k := 1
nk

∑nk

i=1 xi is the empirical mean of k-labeled dataset, nk is the sample size of
k-labeled dataset. And γ ≥ 0 is the corruption control parameter.
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Proof. To improve clarity, we initially disregard the subscript k in µ̂k , µk and Σk. Building upon
the proof details presented in Lemma 3 and the optimal conditional score estimation outlined in
Lemma 2, we arrive at the subsequent findings:

Expectation. Similarly, we derive

E(uT
i z

c
T ) =

1

1 + γ2

∫ T

0

rt

σ2
t + r2t (λi +

γ2

1+γ2 ∥µ̂∥22)

(
exp

∫ T

t

1− 1

σ2
r + r2(r)(λi +

γ2

1+γ2 ∥µ̂∥22)
dr

)
uT
i µ̂dt

=
1

1 + γ2

∫ T

0

et−T

1 + e2(t−T )(λi − 1 + γ2

1+γ2 ∥µ̂∥22))

(
exp

∫ T

t

1− 1

1 + e2(r−T )(λi − 1 + γ2

1+γ2 ∥µ̂∥22))
dr

)
uT
i µ̂dt

=
1

1 + γ2

∫ T

0

et−T
√

λi +
γ2

1+γ2 ∥µ̂∥22)
[1 + e2(t−T )(λi − 1 + γ2

1+γ2 ∥µ̂∥22)]
3
2

uT
i µ̂dt

=
1

1 + γ2

√
λi +

γ2

1 + γ2
∥µ̂∥22

et−T√
1 + e2(t−T )(λi − 1 + γ2

1+γ2 ∥µ̂∥22)

∣∣∣∣T
0

uT
i µ̂

=
1

1 + γ2

(
1−

√
λi +

γ2

1+γ2 ∥µ̂∥22e−T√
1 + (λi − 1 + γ2

1+γ2 ∥µ̂∥22)e−2T

)
uT
i µ̂.

Hence, we have
E(zcT ) = Udiag(ec1, e

c
2, . . . , e

c
d)U

T µ̂,

where eci =
1

1+γ2

(
1−

√
λi+

γ2

1+γ2 ∥µ̂∥2
2e

−T√
1+(λi−1+ γ2

1+γ2 ∥µ̂∥2
2)e

−2T

)
.

When T → ∞, we get

eci =
1

1 + γ2

(
1−

√
λi +

γ2

1+γ2 ∥µ̂∥22e−T√
1 + (λi − 1 + γ2

1+γ2 ∥µ̂∥22)e−2T

)
→ 1

1 + γ2
.

And the expectation of generation distribution is

E(zcT ) =
1

1 + γ2
µ̂

Variance. We get

Var(uT
i z

c
T ) = exp

∫ T

0

2
(
1− 1

σ2
t + r2t (λi +

γ2

1+γ2 ∥µ̂∥22

)
dt

= exp

∫ T

0

2
(
1− 1

1 + (λi − 1 + γ2

1+γ2 ∥µ̂∥22)e2(t−T )

)
dt

=
λi +

γ2

1+γ2 ∥µ̂∥22
1 + (λi − 1 + γ2

1+γ2 ∥µ̂∥22)e−2T
.

Hence, we have
Var(zcT ) = Udiag(vc1, v

c
2, . . . , v

c
d)U

T ,

where vci =
λi+

γ2

1+γ2 ∥µ̂∥2
2

1+(λi−1+ γ2

1+γ2 ∥µ̂∥2
2)e

−2T
.

When T → ∞, we get

vci =
λi +

γ2

1+γ2 ∥µ̂∥22
1 + (λi − 1 + γ2

1+γ2 ∥µ̂∥22)e−2T
→ λi +

γ2

1 + γ2
∥µ̂∥22.

And the expectation of generation distribution is the empirical mean, i.e.,

Var(zcT ) = Σ+
γ2

1 + γ2
∥µ̂∥22I.
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A.4 Diversity and Quality: Clean vs. Corrupted Conditions

A.4.1 Generation Diversity

Given any class k, building on previous work [70], we consider entropy to measure the diversity of
generated images. In particular, let P and Pc be the probability densities for the generated data using
clean and corrupted conditional embeddings respectively, we have the following for zt and zct

H(zT |y = k) := −
∫

P(z|y = k) logP(z|y = k)dz, (33)

H(zcT |y = k) := −
∫

Pc(z|y = k) logPc(z|y = k)dz. (34)

We propose the following theorem to describe the difference between these two conditional differential
entropy.
Theorem 3. (Restatement of Theorem 1) For any class k ∈ Y , assuming the norm of corresponding
expectation ∥µk∥22 is a constant and the empirical covariance of training data is full rank, let zT and
zcT be the generation featuring clean and corrupted conditions respectively, then it holds that

H(zcT |y = k)−H(zT |y = k) = Θ(γ2d), (35)

where γ is the corruption control parameter and d is the data dimension.

Proof. For the sake of clarity, we begin by omitting the subscript k from µ̂k , µk and Σk. Given
any class k, since both the clean generation zT and the corrupted generation zcT follow multivariate
Gaussian distributions, we can derive the closed-form expression for the difference in their differential
entropy by Lemma 3 and Lemma 4 as follows

H(zcT |y = k)−H(zT |y = k) =
1

2
log |Σ+

γ2

1 + γ2
∥µ̂∥22I| −

1

2
log |Σ|

=
1

2

d∑
i=1

log
(
1 +

γ2

(1 + γ2)λi
∥µ̂∥22

)
,

where Σ := 1
n

∑n
i=1 xix

T
i − 1

n2
k

∑n
i=1 xi

∑n
i=1 x

T
i is the empirical covariance of k-labeled dataset

and µ̂ := 1
n

∑n
i=1 xi is the empirical mean of k-labeled dataset.

When the noise ratio γ is small and λi = ω(γ),

log
(
1 +

γ2

(1 + γ2)λi
∥µ̂∥22

)
=

γ2

λi
∥µ̂∥22 +O(γ2).

Therefore,

H(zcT |y = k)−H(zT |y = k) =
1

2

d∑
i=1

log
(
1 +

γ2

(1 + γ2)λi
∥µ̂∥22

)
= Θ(γ2d).

A.4.2 Generation Quality

Before starting proving that slight noise is beneficial to the quality of generation, we first introduce
the lemmas required for the proof.
Lemma 5. Given x1, · · · ,xn independent and all distributed as a Gaussian N (µ, I). Then,

E(Var(xi|x1 + · · ·+ xn = z)) =
n− 1

n
I. (36)

Proof. The expectation is

E(xi|x1 + · · ·+ xn = z)

= E(z− x1 − · · · − xi−1 − xi+1 − · · · ,xn|x1 + · · ·+ xn = z)

= z− (n− 1)E(xi|x1 + · · ·+ xn = z).
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Therefore,

E(xi|x1 + · · ·+ xn = z) =
z

n
.

By the law of total variance

E(Var(xi|x1 + · · ·+ xn = z)) = Var(xi)−Var(E(xi|x1 + · · ·+ xn = z))

=
n− 1

n
I.

We consider the Wasserstein distance to measure the distance between the generation distribution
and the true data distribution. A smaller Wasserstein distance implies a closer proximity between the
generated data distribution and the true data distribution, thereby indicating better generation quality

Given class k, we define 2-Wasserstein distance between the true data distribution x|y = k and
the clean generation zT as d := W2

(
N (µk, I),N (µ̂k,Σk)

)
. Similarly, the Wasserstein distance

between the true data distribution x|y = k and the corrupted generation zct is denoted as dc :=

W2

(
N (µk, I),N ( µ̂k

1+γ2 ,Σk + γ2

1+γ2 ∥µ̂k∥22I)
)

.

Theorem 4. (Restatement of Theorem 2) For any class k ∈ Y , assume the norm of corresponding
expectation ∥µk∥22 is a constant, let P, QX and Qc

X be the ground truth, clean, and corrupted
condition distributions, respectively, where X represents the collection of training data points. If
γ = O(1/

√
maxk nk), it holds that

EX

[
W2

2 (P,QX)−W2
2 (P,Qc

X)|y = k
]
= Ω

(γ2d

nk

)
, (37)

where W2
2 (·, ·) denotes the quadratic 2-Wasserstein distance between two distributions, nk is the

sample size of k-labeled dataset and d is the data dimension.

Proof. To express more clearly, we first omit the subscript k of nk, µ̂k , µk and Σk. According to
Lemma 3 and Lemma 4, we then can directly derive the closed form of Wasserstein distance between
two Gaussian as

• The squared Wasserstein distance between true data distribution and clean generation
distribution

d2 = ∥µ̂− µ∥22 +Tr(I) + Tr(Σ)− 2Tr(Σ
1
2 )

= ∥µ̂− µ∥22 + d+

d∑
i=1

λi − 2

d∑
i=1

√
λi.

• The squared Wasserstein distance between true data distribution and corrupted generation
distribution

d2c =
∥∥∥ µ̂

1 + γ2
− µ

∥∥∥2
2
+Tr(I) + Tr

(
Σ+

γ2

1 + γ2
∥µ̂∥22I)

)
− 2Tr

(
(Σ+

γ2

1 + γ2
∥µ̂∥22I))

1
2

)
=
∥∥∥ µ̂

1 + γ2
− µ

∥∥∥2
2
+ d+

d∑
i=1

(
λi +

γ2

1 + γ2
∥µ̂∥22

)
− 2

d∑
i=1

√
λi +

γ2

1 + γ2
∥µ̂∥22.

The difference in squared Wasserstein distance is

d2 − d2c = −
∥∥∥ µ̂

1 + γ2
− µ

∥∥∥2
2
+ ∥µ̂− µ∥22 −

d∑
i=1

γ2

1 + γ2
∥µ̂∥22 + 2

d∑
i=1

(√
λi +

γ2

1 + γ2
∥µ̂∥22 −

√
λi

)
.

We consider the expectation error to reduce the randomness of µ̂ as

E[d2 − d2c ] = −E

[∥∥∥∥ µ̂

1 + γ2
− µ

∥∥∥∥2
2

]
+ E

[
∥µ̂− µ∥22

]
︸ ︷︷ ︸

errors caused by the mean

+

d∑
i=1

E

[
2
(√

λi +
γ2

1 + γ2
∥µ̂∥22 −

√
λi

)
− γ2

1 + γ2
∥µ̂∥22

]
︸ ︷︷ ︸

errors caused by the variance

.
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We notice that the expectation error can be decomposed into two parts. The error of the first part
being caused by the difference in means between the generated distribution and the true distribution.
Since the distribution of empirical mean is µ̂ ∼ N (µ, 1

nI) where nk is the sample size of k-labeled
dataset, we get

−E

[∥∥∥∥ µ̂

1 + γ2
− µ

∥∥∥∥2
2

]
+ E

[
∥µ̂− µ∥22

]
= − d

n(1 + γ2)2
− (

γ2

1 + γ2
)2∥µ∥22 +

d

n

≥ − d

n
+

2dγ2

n
− o(γ4) +

d

n

=
2dγ2

n
− o(γ4).

The second part is attributable to the difference in covariance.
d∑

i=1

E

[
2
(√

λi +
γ2

1 + γ2
∥µ̂∥22 −

√
λi

)
− γ2

1 + γ2
∥µ̂∥22

]

≥
d∑

i=1

E

[
γ2 ∥µ̂∥22√

λi

− γ2∥µ̂∥22 − o(γ4)

]

= γ2
d∑

i=1

E
[
(

1√
λi

− 1)∥µ̂∥22
]
− o(γ4d).

By the law of total expectation
d∑

i=1

E
[
(

1√
λi

− 1)∥µ̂∥22
]
=

d∑
i=1

E
[
∥µ̂∥22E

( 1√
λi

|µ̂
)]

− d

(a)

≥ E
[ d∑

i=1

∥µ̂∥22√
E(λi|µ̂)

]
− d

(b)

≥ E

[
∥µ̂∥22√∑d
i=1 E(λi|µ̂)

]
− d.

(a) and (b) achieve by the Jensen’s inequality given 1√
λi

is a convex function

By Lemma 5, we derive

Tr
(
E
[
Var(x|µ̂)

])
= Tr

(
E
[
Σ|µ̂

])
= Tr

(
UE
[
Λ|µ̂

]
UT
)
=

d∑
i=1

E(λi|µ̂) =
n− 1

n
d.

Hence, we get
d∑

i=1

E

[
(

1√
λi

− 1)∥µ̂∥22

]
≥ E

[ ∥µ̂∥22√∑d
i=1 E(λi|µ̂)

]
− d

=
(√ n

n− 1
− 1
)
dE[∥µ̂∥22]

=
(√ n

n− 1
− 1
)(d2

n
+ d∥µ∥22

)
.

The second part is
d∑

i=1

E

[
2
(√

λi +
γ2

1 + γ2
∥µ̂∥22 −

√
λi

)
− γ2

1 + γ2
∥µ̂∥22

]

≥ γ2
(√ n

n− 1
− 1
)
(
d2

n
+ d∥µ∥22)− o(γ4d).
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Therefore, with small noise ratio γ, we then can conclude that

E[d2 − d2c ] = −E

[∥∥∥∥ µ̂

1 + γ2
− µ

∥∥∥∥2
2

]
+ E

[
∥µ̂− µ∥22

]
+

d∑
i=1

E

[
2
(√

λi +
γ2

1 + γ2
∥µ̂∥22 −

√
λi

)
− γ2

1 + γ2
∥µ̂∥22

]

≥ 2dγ2

n
+ γ2

(√ n

n− 1
− 1
)(d2

n
+ d∥µ∥22

)
− o(γ4d).

Noting that
√
n/(n− 1) − 1 = −Θ(1/n) when n is large, then if the corruption level γ satisfies

γ = O(1/
√
n), for any class k, we have

E[d2 − d2c ] = Ω
(γ2d

n

)
.

This completes the proof.

B Details of Condition Corruption, Model Training and Evaluation

In this section, we provide detailed training setup of each diffusion models we studied in the main
paper, the synthetic corruption for IN-1K and CC3M, the annotation process of IN-100, and the
evaluation metrics we adopted.

B.1 Synthetic Condition Corruption

We mainly studied four types of condition corruption in this paper, with two datasets. For IN-1K, we
used random symmetric and asymmetric condition corruption. For CC3M, we adopted text swapping
and LLM re-writing corruption. We used several levels of corruption η = {0, 2.5, 7.5, 10, 15, 20}%.

Symmetric Condition Corruption for IN-1K. To introduce symmetric condition corruption in
IN-1K according to a corruption ratio η, we randomly sample a (x, y) pair from the dataset, and flip
y to another class according to the class prior in IN-1K to obtain yc, until the ratio of yc satisfies η.

Asymmetric Condition Corruption for IN-1K. For asymmetric condition corruption of IN-1K, we
first find the class overlap between IN-1K and CIFAR-100 using WordNet [154], denoted as YC−100

IN−1K.
Then, we randomly sample (x, y) from the data subset whose y satisfies y ∈ YC−100

IN−1K and flip y into
the remaining classes of the overlapped set YC−100

IN−1K/y.

Text Swapping Condition Corruption for CC3M. For CC3M, where y is text captions for the
images, we randomly sample two pairs and swap the text of these two pairs to introduce condition
corruptions. This mainly follows Chen et al. [48], where very disruptive corruption is introduced.

LLM Text Condition Corruption for CC3M. Text swapping corruption may not be common in
practice for image-text datasets. Instead, we may encounter captions that have unmatched entities
or partially unmatched sentences with the images. To study the text corruption in a more realistic
scenarios, we use GPT-4 and prompt it to re-write the captions to introduce corruptions. We pre-define
5 levels of corruption in the prompt, and randomly sample a level as input to GPT-4.

B.2 Automatic ImageNet-100 Annotation

Here, we present the details of annotate ImageNet-100 for personalization of LDMs using ControlNet
and T2I-Adapters. A few examples of the annotated images and captions are shown in Fig. 10.

Canny Edge. For canny edge, we directly use the Canny detector from OpenCV to annotate the
images. We set the low threshold and high threshold of canny detector to 100 and 200 respectively.

Segmentation Mask from SAM. We use SAM to annotate segmentation masks from IN-100
images. We directly use the colormap of the segmentation masks as input control to ControlNet and
T2I-Adapters.

Captions from BLIP. We use BLIP captioning model to generate captions for IN-100 for adapting
text-conditional LDMs.
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Figure 10: Annotation examples of IN-100.

B.3 LDM Pre-training Setup

The pre-training setup of LDM-4 mainly follows Rombach et al. [9], as shown in Table 3. For LDM-4
models, we use a VQ-VAE [56] with a down-sampling factor of 4 and a latent space with shape
64× 64× 3. It also has a vocabulary size of 8196.

Table 3: Hyper-parameters of IN-1K class-conditional and CC3M text-conditional LDMs.

IN-1K 256× 256 CC3M 256× 256

Down-sampling Factor 4 4
Latent Shape 64× 64× 3 64× 64× 3
Vocabulary Size 8192 8192
Diffusion Steps 1000 1000
Noise Schedule Linear Linear
U-Net Param. Size 400M 400M
Condition Net Class Embedder BERT
Channels 192 192
Channel Multipler 1,2,3,5 1,2,3,5
Number of Heads 1 1
Batch Size 64 64
Training Iter. 178K 396K
Learning Rate 1e-4 1e-4

IN-1K. The hyper-parameters of training IN-1K class-conditional LDMs are summarized as follows.
We use a U-Net with channels of 192 and channel multipliers of 1, 2, 3, 5 as the denoising network
backbone. We use class embedding, i.e., embedding layer, for computing the embeddings of class
labels. The conditional embedding is injected to the U-Net with cross-attention. We use DDPM with
linear schedule of 1000 steps. The batch size is set to 64 per GPU, and the learning rate is set to 1e-4
Training IN-1K LDMs for 178K iterations takes about 2.5 days on 8 NVIDIA A100.

CC3M. We use a same U-Net as denoising network backbone. We adjust the training iterations to
396K iterations for CC3M, which takes 7.5 days to train on 8 NVIDIA A100. We use a pre-trained
BERT model (bert-base-uncased) for the conditional embeddings, and it is fully trainable.

B.4 DiT Pre-training Setup

We pre-train DiT-XL/2 on IN-1K follows Peebles et al. [11]. The hyper-parameters are shown in
Table 4. We train DiT-XL/2 for 400K training iterations using a per GPU batch size of 32 on 8
NVIDIA A100, which takes around 2.5 days. Compared to LDM-4, DiT-XL/2 used a fine-tuned
VQ-VAE with a down-sampling factor of 8, a latent space of shape 32× 32× 4, and a vocabulary
size of 16384. DiT-XL/2 has a denoising network backbone based on Transformer architecture and
uses Adaptive LayerNorm, initialized with zeros, for injecting the conditional information.
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Table 4: Hyper-parameters of IN-1K class-conditional DiT-XL/2.

DiT-XL/2 IN-1K 256× 256

Down-sampling Factor 8
Latent Shape 32× 32× 4
Vocabulary Size 16384
Params. 675M
Training Iters. 400K
Batch Size 32
Learning Rate 1e-4

B.5 LCM Pre-training Setup

LCM distills the pre-trained Stable Diffusion models to enable faster inference with fewer steps. We
choose Stable Diffusion v1.5 as the teacher model and conduct distillation for 35K iterations, which
takes 1.5 days on 8 NVIDIA A100 GPUs. We use a learning rate of 1e-5.

B.6 ControlNet and T2I-Adapter Personalization Setup

We use the implementation of ControlNet and T2I-adapter of Diffusers [155] for downstream
personalization tasks. Default learning rate and batch size from Diffusers are used for these two
methods, and we set the training epochs for IN-100 as 10. On 4 NVIDIA V100 GPUs, training
ControlNet and T2I-Adapter with LDM-4 takes about 6 hours.

B.7 Evaluation Metrics

We introduce the details of metrics we used to evaluate the diffusion models here. Due to the known
difficulties of evaluating generative models, we adopt most of the existing criteria to evaluate the
models we have trained.

Fréchet Inception Distance (FID) [63]. FID measures the distance between real and generated
images in the feature space of an ImageNet-1K pre-trained classifier [156], indicating the similarity
and fidelity of the generated images to real images.

sFID [71]. sFID utilizes the mid-level features of the inception network [156], which are more
sensitive to spatial variability.

Inception Score (IS) [64]. IS also measures the fidelity and diversity of generated images. It consists
of two parts: the first part measures whether each image belongs confidently to a single class of an
ImageNet-1K pre-trained image classifier [156] and the second part measures how well the generated
images capture diverse classes.

Precision and Recall [65]. The real and generated images are first converted to non-parametric
representations of the manifolds using k-nearest neighbors, on which the Precision and Recall can
be computed. Precision is the probability that a random generated image from estimated generated
data manifolds falls within the support of the manifolds of estimated real data distribution. Recall is
the probability that a random real image falls within the support of generated data manifolds. Thus,
precision measures the general quality and fidelity of the generated images, and the recall measures
the coverage and diversity of the generated images.

Top-1% Relative Mahalanobis Distance (RMD) Score [67]. RMD score measures the sample
complexity and difficulty. It is defined as the difference between the Mahalanobis distances of a
sample induced by the class-specific and class-agnostic Gaussian distributed estimated from the
generated data. Given the dataset {(xi, yi)}i∈[N ], we first compute the features using the CLIP ViT-
B-16 encoder from the images as G(x). The class-specific Gaussian distribution is then estimated:

P(G(x) | y = k) = N (G(x) | µk,Σ)

µk =
1

Nk

∑
i:yi=k

G (xi)

Σ =
1

N

∑
k

∑
i:yi=k

(G (xi)− µk) (G (xi)− µk)
⊤
.

(38)
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The class-agnostic Gaussian distribution is estimated over all data as;

P(G(x)) = N
(
G(x) | µagn,Σagn

)
,

µagn =
1

N

N∑
i

G (xi) ,

Σagn =
1

N

N∑
i

(
G (xi)− µagn

) (
G (xi)− µagn

)⊤
.

(39)

The RMD is defined as:
RMD (xi, yi) = M (xi, yi)−Magn (xi)

M (xi, yi) = −
(
G (xi)− µyi

)⊤
Σ−1

(
G (xi)− µyi

)
Magn (xi) = −

(
G (xi)− µagn

)⊤
Σ−1

agn

(
G (xi)− µagn

) (40)

We compute the RMD score for all generated images, and report only the top-1% of them.

Average Top-5 L2 Distances. As an additional metric of sample diversity, we compute the L2

distance of each generated image with the top-5 nearest neighbor training images. To reduce
computation requirement of searching over the raw pixel space, we use the CLIP ViT-B-16 image
encoder [157] to transform images into the feature space before calculating the L2 distance. This
metric measures the distance of generated samples with training images, as a proxy evaluation of
diversity and memorization.

TopPR F1 [72]. TopPR is a set of reliable evaluation metrics with statistically consistent estimates of
generated data and real data. We use the F1 score, computed from the TopPR Precision and Recall as
an additional metric to evaluate the general quality and diversity of generated images.

CLIP Score [66]. CLIP score measures the cosine similarity between the CLIP embedding of an
image-text pair. It is widely used as a metric to evaluate the fidelity and alignment of the generated
images and the conditional text prompts [9].

Memorization Ratio [73]. We compute the memorization ratio as the percentage of generated images
whose L2 distances with their nearest neighbor training images are below a pre-defined threshold. We
compute the distances in the feature space of CLIP ViT-B-16 image encoder [157] due to the massive
size and resolution of the training images and set the threshold as 0.12. Although there are several
studies using the distance comparison between the first and second nearest neighbor as a reflection of
memorization [158, 159], we found that this metric is not effective for large-scale datasets.

Entropy. We compute the entropy metric within the latent space of the pre-trained VQ-VAE [58, 56].
Since LDMs (and DiT) learn the data distribution from the latent space of VQ-VAE, we can compute
the sample entropy E[H(x)] using the generated and flatten latent vector x ∈ RHW×D and the
codebook C ∈ RC×D of VQ-VAE, where H and W are the height and weights of the original latent
vectors, D indicates the dimension of the latent space, and C denotes the number of embeddings of
the codebook. We compute the probability of each latent vector as Softmax

(
∥x− C∥22/τ

)
, where τ

is a temperature parameter controlling the sharpness of the probability. We compute entropy as:

E[H(x)] =
1

NHW

N∑
i

HW∑
j

C∑
k

Softmax
(
∥x(i,j) − C∥22/τ

)
(41)

C Full Results of Pre-training Evaluation

In this section, we present all results of our pre-training evaluation, over different diffusion models,
including LDM-4, DiT-XL/2, and LCM-v1.5, and various types of condition corruption.

C.1 Quantitative Results

We present the full evaluation results of IN-1K class-conditional LDMs and CC3M text-
conditional LDMs in Fig. 11 and Fig. 12 respectively. All the results are com-
puted from using a set of guidance scales. For IN-1K LDMs, we use s ∈
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Figure 11: Qualitative evaluation results of 50K images generated by class-conditional LDMs pre-
trained on ImageNet-1K with synthetic corruptions. The images are generated with various guidance
scales using 1K class conditions and compared with 50K validation images of ImageNet-1K.

{1.5, 1.75, 2.0, 2.25, 2.5, 3.0, 3.5, 4.0, 4.5, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0}. For CC3M LDMs,
we use s ∈ {1.5, 2.0, 2.5, 2.75, 3.0, 3.25, 3.5, 4.0, 5.0, 6.0, 7.0, 7.5, 8.0, 10.0} For all the metrics,
including FID, IS, Precision, Recall, sFID, TopPR F1, and CLIP score, we can all observe that slight
condition corruption makes LDMs perform better, with improved image quality and diversity. We
also observe that, when there is condition corruption in the dataset, the memorization ratio based on
L2 distances actually decreases, in line with observations as in Gu et al. [158].

By default we use DPM scheduler for generating the images with 50 inference steps. But we also
study the generation of DDIM scheduler with 250 inference steps, as adopted in [9]. Due to the
computation cost of running DDIM scheduler for 250 steps, we only study it with IN-1K LDM-4.
The results are shown in Fig. 13. One can observe the same trends from the metrics using DPM and
DDIM, demonstrating our findings are scheduler agnostic.

We then show the pre-training results of DiT-XL/2 and LCM-v1.5 in Fig. 19, where
we primarily compute the FID, IS, Precision, and Recall. For DiT-XL/2, we use
s ∈ {1.5, 1.75, 2.0, 2.25, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5}. For LCM-v1.5, we use s ∈
{1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0}. Slight condition corruption
also facilitates the performance by using the most suitable guidance scale.

We additionally include the FID and IS trend along training for LDM IN-1K model with no corruption
and 2.5% corruption, using a guidance scale of 2.5, as shown in Table 5. Slight corruption begins to
be effective at the very early stage of training.

Finally, we present the results of LDMs pre-trained on CC3M with LLM corruption and IN-1K with
asymmetric corruption, where similar observations still hold.
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Figure 12: Qualitative evaluation results of 50K images generated by class-conditional LDMs pre-
trained on CC3M with synthetic corruptions. The images are generated with various guidance scales
using 5K text conditions from MS-COCO and compared with validation images of MS-COCO.
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Figure 13: Qualitative evaluation results of 50K images generated by class-conditional LDMs pre-
trained on ImageNet-1K with synthetic corruptions. The images are generated with various guidance
scales using 1K class conditions and compared with 50K validation images of ImageNet-1K. We use
DDIM scheduler with 250 inference steps for these results.

C.2 Qualitative Results

We present more visualization results of class-conditional LDM-4 in Fig. 18, class-conditional DiT-
XL/2 in Fig. 19, text-conditional LDM-4 in Fig. 20, and text-conditional LCM-v1.5 in Fig. 21. One
can observe that DMs pre-trained with slight condition corruption in general more visually appealing
images.
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Figure 14: Qualitative evaluation results of 50K images generated by class-conditional DiT-XL/2
pre-trained on IN-1K with synthetic corruptions. The images are generated with various guidance
scales using 1K class conditions from IN-1K and compared with validation images of IN-1K.
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Figure 15: Qualitative evaluation results of 50K images generated by text-conditional LCM-v1.5
pre-trained on CC3M with synthetic corruptions. The images are generated with various guidance
scales using 5K text conditions from MS-COCO and compared with validation images of MS-COCO.

D Full Results of Downstream Personalization Evaluation

We present complete results of downstream personalization here.

D.1 Quantitative Results

We show the results of ControlNet IN-1K LDM-4 in Fig. 22, T2I-Adapter IN-1K LDM-
4 in Fig. 23, ControlNet CC3M LDM-4 in Fig. 24, and T2I-Adapter CC3M LDM-4 in
Fig. 25. For all personalization experiments, we compute the results for both Canny and
SAM spatial controls. Guidance scales of {1.25, 1.5, 2.0, 2.25, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0} and
{2.0, 3.0, 4.0, 5.0, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 10.0} are used for IN-1K models and CC3M mod-
els, respectively, for all experiments here.

From the results, one can observe that models pre-trained with slight condition corruption also present
the best performance in downstream personalization tasks.

D.2 Qualitative Results

We present the qualitative comparison of ControlNet personalization results here. Since T2I-Adapter
personalization results are similar but visually worse (quantitatively worse too), we skip their results.
The visualizations of ControlNet IN-1K LDM-4 with Canny and SAM conditions are shown in
Fig. 26 and Fig. 27, respectively. The visualizations of ControlNet CC3M LDM-4 with Canny and
SAM conditions are shown in Fig. 28 and Fig. 29, respectively. Similarly, models pre-trained with
slight condition corruption present the best image quality.
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Table 5: FID and IS along training of LDM IN-1K with guidance scale 2.5.

η 10K 25K 50K 75K 100K 125K 150K

FID

0 71.48 52.02 20.88 14.49 12.66 10.44 10.12
2.5 77.94 51.59 21.16 13.08 12.24 9.25 8.98

IS

0 4.86 23.49 71.26 93.85 103.27 164.41 170.2
2.5 13.66 24.40 64.27 97.11 109.39 167.21 175.83
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Figure 16: Qualitative evaluation results of 50K images generated by text-conditional LDMs pre-
trained on CC3M with LLM re-writing corruptions. The images are generated with various guidance
scales using 5K text conditions from MS-COCO and compared with validation images of MS-COCO.

E Full Results of Conditional Embedding Perturbation

E.1 Qualitative Results

More visualizations of CEP, compared with clean and IP pre-trained are shown here. We present
the more results of IN-1K LDM-4 and DiT-XL/2 in Fig. 30(a) and Fig. 30(b), respectively. We also
present more results of CC3M LDM-4 and LCM-v1.5 in Fig. 31(a) and Fig. 31(b), respectively. CEP
generally helps DMs generate more visually appealing and realistic images. We also show the more
personalization visualization in Fig. 32 and Fig. 33.

E.2 Ablation Study

In Fig. 8(a), we compute the L2 distance of perturbed condition embeddings and the clean ones,
as a measurement for the corruption levels (of CEP). Here, we elaborate how we compute the L2

distances. For fixed corruption, we calculate the distances as:

1

N

N∑
i=1

∥cθ∗(yci )− cθ∗(yi)∥22, (42)

where θ∗ is learned from clean data. For CEP, we directly calculate the L2 norm of sampled noise:
N∑
i=1

∥σi∥22 (43)

E.3 Comparison with Dropout and Label Smoothing

Here, we additionally compare CEP with dropout and label smoothing on LDM IN-1K models, which
are two alternatives that also introduce perturbations in class embeddings. The results are shown in
Table 6. One can observe that, both dropout and label smoothing have similar regularization effects
on training diffusion models, whereas CEP-U and CEP-G is more effective.

E.4 Comparison with Fixed and Random Corruption

We further compare with fixed CEP corruption, and random data corruption, to study the effects of
fixed and random perturbation to train diffusion models. For fixed CEP-U, we first select the samples
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Figure 17: Qualitative evaluation results of 50K images generated by class-conditional LDMs pre-
trained on IN-1K with asymmetric corruptions. The images are generated with various guidance
scales using 1K class conditions from IN-1K and compared with validation images of IN-1K.

Table 6: Comparison of CEP with dropout and label smoothing on LDM IN-1K.

Corruption FID IS

Clean 9.44 138.46
+ Dropout 0.1 8.67 145.80
+ Label Smoothing 0.1 8.49 146.27
+ CEP-U 7.00 170.73
+ CEP-G 6.91 180.77

to add perturbation, and then fix them during training. For random data corruption, we randomly
choose samples during training to make their label noisy by flipping to other classes. From the results
in Table 7, we show that CEP works the best among all corruption methods. Also fixed CEP is more
effective than adding data corruption (fixed and random). Random data corruption can be viewed as
a CEP-variant with embeddings from flipping label instead of adding noise, and thus is also more
effective than fixed data corruption.

Table 7: Comparison of fixed and random corruption on LDM IN-1K.

Corruption FID IS

Clean 9.44 138.46
+ CEP-U 7.00 170.33
+ Fixed CEP-U 7.94 154.48
+ Random Data Corruption 8.13 143.07
+ Fixed Data Corruption 8.44 140.27
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Figure 18: Visualization of LDMs IN-1K pre-training results.
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Figure 19: Visualization of DiT-XL/2 IN-1K pre-training results.
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“A plate topped with different types of food on a table”

Clean 𝜂 = 2.5% 𝜂 = 5% 𝜂 = 7.5% 𝜂 = 10% 𝜂 = 15% 𝜂 = 20%

“A yellow train is at the station along with tracks”

“A suburban street with a few houses on the block”

“A man snowboard down the side of a snow-covered slope”

“There is an unmade bed in a Victorian style room”

“A picture of a salad and pizza being served”

“A kitchen with wooden walls and cabinets and a metal sink”

“A train traveling down towards some snow covered mountains”

“An empty street has the lights reflecting off of it”

Figure 20: Visualization of LDMs CC3M pre-training results.
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“This is a case full of yellow bananas”

Clean 𝜂 = 2.5% 𝜂 = 5% 𝜂 = 7.5% 𝜂 = 10% 𝜂 = 15% 𝜂 = 20%

“A vase with red flowers on it”

“A large fancy chandelier hanging over a room full of furniture”

“A blue motorcycle is parked on the side of a street”

“A beach chair with an umbrella on a beach by the water”

“A teddy bear sitting near a rail over looking a crowded beach”

“A car and a city bus sit side by side on the street”

“A wood bench sitting in a lush green field”

“A bunch of jackets hanging on the all in a room”

Figure 21: Visualization of LCM CC3M pre-training results.
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Figure 22: Qualitative evaluation results of 5K images generated by class-conditional LDMs pre-
trained on ImageNet-1K and personalized on ImageNet-100 using ControlNet. We personalized the
models with different control styles, including canny ((a) - (d)), segmentation mask from SAM ((e) -
(h)), and lineart ((i) - (l)). The images are generated using 100 class conditions with various guidance
scales, compared with 5K validation images of ImageNet-100.
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Figure 23: Qualitative evaluation results of 5K images generated by class-conditional LDMs pre-
trained on ImageNet-1K and personalized on ImageNet-100 using T2I-Adapter. We personalized the
models with different control styles, including canny ((a) - (d)), segmentation mask from SAM ((e) -
(h)), and lineart ((i) - (l)). The images are generated using 100 class conditions with various guidance
scales, compared with 5K validation images of ImageNet-100.
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Figure 24: Qualitative evaluation results of 5K images generated by text-conditional LDMs pre-
trained on CC3M and personalized on ImageNet-100 using ControlNet. We personalized the models
with different control styles, including canny ((a) - (d))and segmentation mask from SAM ((e) - (h)).
The images are generated using text captions annotated from BLIP with various guidance scales,
compared with 5K validation images of ImageNet-100.
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Figure 25: Qualitative evaluation results of 5K images generated by text-conditional LDMs pre-
trained on CC3M and personalized on ImageNet-100 using T2I-Adapter. We personalized the models
with different control styles, including canny ((a) - (d)) and segmentation mask from SAM ((e) - (h)).
The images are generated using text captions annotated from BLIP with various guidance scales,
compared with 5K validation images of ImageNet-100.
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Figure 26: Visualization of LDMs IN-1K ControlNet Canny personalization results.
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Figure 27: Visualization of LDMs IN-1K ControlNet SAM personalization results
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Clean 𝜂 = 2.5% 𝜂 = 5% 𝜂 = 10% 𝜂 = 15% 𝜂 = 20%Control

“Brightly colored bird with red beak and green body sitting on a branch”

“There is a yellow and black vacuum on a marble floor”

“Arafed horse pulling a cart with a man sitting on it”

“There are two old cars parked on the side of the street”

Figure 28: Visualization of LDMs CC3M ControlNet Canny personalization results.

Clean 𝜂 = 2.5% 𝜂 = 5% 𝜂 = 10% 𝜂 = 15% 𝜂 = 20%Control

“There is a dog that is standing in the grass with a frisbee”

“There is a statue of a person on the steps of a building”

“Arafed monkey sitting on a tree branch in a zoo”

“Araffy pasta with bacon and parsley in a white bowl”

Figure 29: Visualization of LDMs CC3M ControlNet SAM personalization results
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(b) IN-1K DiT-XL/2

Figure 30: Visualization of CEP on IN-1K pre-trained LDM-4 and DiT-XL/2
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Clean IP CEP-U CEP-G

“A crowded city under the blue sky”

“Train traveling through railyard with trees lining sides”

“A meal of a reuben sandwich with fries and coleslaw.”

“A bedroom scene with focus on the bed”

“A vase that has white flowers in it”

“A clean steel industrial kitchen with minimal lighting”

“A bowl of broccoli, noodles and other various foods”

“A herd of sheep grazing in an open field”

(a) CC3M LDM-4

Clean IP CEP-U CEP-G

“A woman sits on her motorcycle in the street”

“A red and white plane flying under a blue sky”

“An outside cafe setting with tables, chairs, umbrellas, and trees for shading ”

“A puppy playing with an orange frisbee in a fenced yard”

“A living room with a large brick faced fireplace”

“A cat sitting on top of a toilet seat in a bathroom”

“A piece of chocolate cake with a chocolate drizzle”

“A dog is lying in bed with its head on a pillow”

(b) CC3M LCM-v1.5

Figure 31: Visualization of CEP on CC3M pre-trained LDM-4 and LCM-v1.5
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Figure 32: Visualization of CEP on ControlNet adapted IN-1K pre-trained LDM-4

Clean IP CEP-U CEP-GControl

“Arafed spiral staircase with a blue window in a building”

“There is a duck that is swimming in the water”

“There is a bug on the ground”

“A close up of a spider on a web in a black and white photo”

“There is a large boat that is sailing in the water”

Figure 33: Visualization of CEP on ControlNet adapted CC3M pre-trained LDM-4

52



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claimed contribution in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Full proofs are shown in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All model setups, hyper-parameters, inference details are shown in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We used public available data and all code will be released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details in main paper and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Mainly becuase computational cost.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All details are shown in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All research follows NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed at the end of Section 1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Pre-trained models will be released by reuqest and will be equipped with safety
checkers.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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