Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Beyond Autocomplete: Designing COPILOTLENS Towards
Transparent and Explainable AI Coding Agents

Runlong Ye Zeling Zhang

Computer Science, University of Toronto Computer Science, University of Toronto
Toronto, Ontario, Canada Toronto, Ontario, Canada

harryye@cs. toronto.edu zeling.zhang@mail.utoronto.ca

Boushra Almazroua*

King Abdullah University of Science and Technology
Thuwal, Jeddah, Saudi Arabia
boushra.almazroua@mail.utoronto.ca

Michael Liut

Mathematical and Computational Sciences, University of Toronto Mississauga
Mississauga, Ontario, Canada

michael.liut@utoronto.ca

Abstract

Al-powered code assistants are widely used to generate code completions,
significantly boosting developer productivity. However, these tools typi-
cally present suggestions without explaining their rationale, leaving their
decision-making process inscrutable. This opacity hinders developers’ abil-
ity to critically evaluate outputs, form accurate mental models, and calibrate
trust in the system. To address this, we introduce COPILOTLENS, a novel
interactive framework that reframes code completion from a simple sug-
gestion into a transparent, explainable interaction. COPILOTLENS operates
as an explanation layer that reconstructs the Al agent’s “thought process”
through a dynamic, two-level interface. The tool aims to surface both high-
level code changes and the specific codebase context influences. This paper
presents the design and rationale of COPILOTLENS, offering a concrete
framework and articulating expectations on deepening comprehension and
calibrated trust, which we plan to evaluate in subsequent work.

1 Introduction

Al-powered assistants like GitHub Copilot! and more intelligent coding agents like Cursor?

and WindSurf?® are now essential tools in modern software development, evolving from
simple code completion to autonomously executing complex, project-wide tasks Liang et al.
(2024); Weisz et al. (2025). This trend is accelerating with the rise of asynchronous agents
like Google’s Jules*, the rebranded OpenAlI Codex®, and Cursor’s web-based agents®, which
abstract the programmer further away from the code. However, this utility comes at the cost
of clarity Vasconcelos et al. (2025); Brachman et al. (2025). Mainstream assistants prioritize
suggestion speed over reasoning, leaving their decision-making process inscrutable and

*Work done during research internship at the University of Toronto.
Thttps:/ / github.com/features / copilot

Zhttps:/ /www.cursor.com/

3h’r’rps: / /windsurf.com/

*https:/ /jules.google/

Shttps:/ /openai.com/index/introducing-codex/

6h’c’cps: / /www.cursor.com/blog/agent-web/

https://github.com/features/copilot
https://www.cursor.com/
https://windsurf.com/
https://jules.google/
https://openai.com/index/introducing-codex/
https://openai.com/index/introducing-codex/
https://www.cursor.com/blog/agent-web/

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

forcing programmers to reverse-engineer the Al’s intent. This opacity is a significant
usability challenge that hinders the development of accurate mental models, suppresses
critical evaluation of generated code Kazemitabaar et al. (2025); Mozannar et al. (2024), and
fosters a fragile, uncalibrated trust Vaithilingam et al. (2022).

To address this critical gap between suggestion and comprehension, we argue for a paradigm
shift toward explainable autocomplete Yan et al. (2024); Brachman et al. (2025) and introduce
COPILOTLENS, an interactive explanation layer designed to reconstruct the “thought process”
of an Al coding agent retrospectively. It reframes code completion from an isolated output
into a transparent, reviewable event by surfacing the agent’s plan, contextual evidence, and
followed conventions.

This brief investment in transparency is designed to serve distinct developer needs. For
novice student programmers, it transforms Al-assisted coding into a tangible learning expe-
rience, clearly exposing the underlying reasoning process to foster accurate mental models
Prather et al. (2023). For professional developers, it aims to enable the rapid verification of
complex multi-file suggestions, helping to prevent the accidental integration of subtle yet
costly errors that prior large-scale studies have shown to be a persistent challenge Liang
et al. (2024). More concrete use cases can be found in Appendix A.1.

The central design challenge we address is: How can the obscure reasoning process of an
Al coding agent be redesigned into a transparent process that bridges the gap between an
agent’s internal logic and a developer’s mental model, thereby supporting critical evaluation
and fostering calibrated trust?

We present COPILOTLENS as an initial design response to this question. We make the fol-
lowing contributions: (1) we articulate the challenges arising from the lack of transparency
in current code assistants and formulate a set of design goals for creating more comprehen-
sible tools; and (2) we introduce a dynamic, two-level explanation framework that exposes
an agent’s reasoning process, from high-level file modifications to the specific codebase
influences behind a single change. By illuminating the agent’s decision-making process, this
work outlines a design framework and a research agenda for evaluating next-generation
code assistants that not only write code, but also foster deeper understanding and more
calibrated trust.

2 Related Work

Developers have long grappled with the cognitive challenges of understanding large and
complex software systems. To manage this, they have historically relied on a variety of
strategies to build and maintain a mental model of the code. Foundational techniques
include comprehensive software documentation Von Mayrhauser & Vans (1995); LaToza
et al. (2006), visual notations like UML to make system architecture tangible Kog et al. (2021),
abstraction to hide implementation details Shaw et al. (1995), and program slicing to isolate
relevant code Tip (1994). While effective, these traditional methods were designed to help
humans comprehend existing, human-written codebases. The rise of Al-powered assistants
has fundamentally altered this landscape, introducing a new kind of comprehension gap
that these static methods are ill-equipped to address.

LLM-powered code assistants have rapidly transformed productivity gains for developers
at every skill level Weber et al. (2024); Mozannar et al. (2024). Yet this productivity surge
comes with a significant trade-off: opacity. Current LLM code assistants contribute code
solutions without revealing the reasoning behind them Husein et al. (2025); Ferdowsi et al.
(2024). This creates a new, active comprehension challenge: one not about understanding a
static artifact, but about understanding the inscrutable reasoning process of an Al agent as it
generates ever more complex programs. As a result, users often engage with these systems
as “black boxes” and settle for a “good-enough” understanding Oldenburg & Segaard
(2025). This dynamic obstructs the formation of accurate mental models, discourages critical
evaluation, and promotes uncalibrated trust Lee et al. (2025a); Wang et al. (2024).

Opacity introduces not only usability friction and trust concerns but also deeper cognitive
burdens. Developers must often reverse-engineer the Al’s intent post hoc, expending

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

cognitive effort to infer why certain completions were offered Weisz et al. (2021; 2025);
Brown et al. (2024). This cognitive overhead is particularly challenging for novices, who
may lack sufficient domain expertise to recognize subtle errors or inappropriate suggestions
Kumar et al. (2024); Pammer-Schindler et al. (2025); Kazemitabaar et al. (2024). Over-reliance
becomes common—and sometimes even conscious, among users Prather et al. (2023), as
they can either blindly accept Al output or unknowingly propagate flawed code.

In response to these challenges, explainable Al (XAI) and Human-centered XAI (HXAI)
have sought to enhance transparency and redefine explainability for LLMs Sun et al. (2022);
Kim et al. (2025). Several promising paradigms have emerged. Token-level attribution
allows users to trace model outputs to influential training examples, aiding provenance
reasoning Lee et al. (2025b). Uncertainty visualization approaches offer complementary
insights: by surfacing model confidence or expected edit likelihoods, they help users triage
which suggestions warrant additional scrutiny Bhatt et al. (2021); Vasconcelos et al. (2025).
However, these signals remain orthogonal to explaining the model’s internal reasoning
process, leaving the “why” behind generation opaque. Vasconcelos et al. (2023) emphasizes
that different forms of explanation vary in their effectiveness, with explanations that make
the AI's mistakes more salient being particularly effective at reducing overreliance. For
example, self-consistency checks, where models verify their own outputs across multiple
reasoning passes, have shown promise for detecting hallucinations or factual inconsistencies
Leiser et al. (2024); Cheng et al. (2024a).

Despite such advances, current methods remain largely output-centric. They visualize or
score the final artifact without exposing the reasoning that produced it, leaving users to
reconstruct the logic from surface-level signals alone Miller (2019). Recent exploratory work
has begun to suggest pathways for surfacing intermediate planning structures to bridge
this divide Yen et al. (2024). COPILOTLENS, on the other hand, seeks to further close this
gap by reframing code generation as an inspectable event. Rather than merely evaluating
what the model produced, we seek to make visible how it arrived at that output, providing
developers with actionable insight into the model’s decision-making process and enabling
richer, more trustworthy collaboration.

3 Design Goals

Al-powered coding assistants that prioritize speed of suggestion over clarity of reason-
ing create significant usability challenges that hinder effective human-AI collaboration
Liang et al. (2024); Mozannar et al. (2024); Vasconcelos et al. (2025); Terragni et al. (2025).
Mainstream Al tools, such as GitHub Copilot and Cursor, typically present a final code
artifact with minimal insight into the agent’s decision-making process (Figure 3, left). This
opacity forces programmers to reverse-engineer the Al’s intent Sergeyuk et al. (2025), which
can lead to misaligned expectations, suppressed critical evaluation of generated code, and
fragile, uncalibrated user trust Vaithilingam et al. (2022). Drawing from these established
challenges, we formulate three design goals to guide the development of a more transparent
and comprehensible code generation experience.

3.1 Challenge: Bridging the Gap Between AI Opacity and Developer Mental Models

A primary challenge with Al coding assistants is that developers lack accurate mental
models of how the agent reaches its solutions Vaithilingam et al. (2022); Barke et al. (2023).
Suggestions often feel “out-of-the-blue” because the agent’s high-level plan, interpretation
of user requests, and considered context remain hidden Ross et al. (2023). Consequently,
developers interact with these tools as if they are inscrutable, overly confident partners.

The opacity of Al coding assistants actively reinforces flawed mental models and promotes
ineffective developer behavior. This problem is worsened by minimalist interfaces that,
while boosting productivity, hide the Al's reasoning by concealing which files it consulted
or the steps it took. Forced to guess at the agent’s capabilities, programmers are frequently
inaccurate Vaithilingam et al. (2022). These misunderstandings can lead to poor prompts or

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

the blind acceptance of flawed code, stemming from an overestimation of the Al’s contextual
understanding and resulting in a fragile, uncalibrated trust Murillo et al. (2024).

Design Goal G1: Reveal the Agent’s Thought Process. A system should not just provide a final
solution; instead, it should surface the breakdown of actions the agent took to arrive at that
solution, making its process explicit and reviewable to bridge the user’s mental model gap.

3.2 Challenge: Providing Deep Context to Scaffold Critical Evaluation

Simply revealing an agent’s action sequence is insufficient for promoting deep compre-
hension Wood et al. (1976). Effective scaffolding must connect Al-generated code changes
explicitly to the broader codebase context. Recent Al-driven approaches, such as the
ephemeral Uls in computational notebooks, dynamically provide in-context explanations
that enhance code comprehension Cheng et al. (2024b). Research shows that integrating
architectural, API, and file-level context is critical for improving a user’s ability to evaluate
generated suggestions Wang et al. (2025).

Furthermore, effective scaffolds should provide layered, contextual rationales rather than
isolated hints Hou et al. (2024), and must adaptively fade as developers gain expertise to
avoid diminishing user autonomy Jennings & Muldner (2021). Hierarchical frameworks like
CoLadder demonstrate that revealing intermediate planning steps improves comprehension
by aligning the generated code with user intentions Yen et al. (2024). Similarly, tools like
CodeCompass show that automatically surfacing relevant snippets from a repository aids
developers in evaluating unfamiliar code Agrawal et al. (2024).

Design Goal G2: Support Informed Critical Evaluation. The system should scaffold developers’
critical evaluation by providing adaptive, deep contextual explanations linking specific code
changes to project architecture, conventions, and design trade-offs.

3.3 Challenge: Making AI Reasoning Transparent to Foster Calibrated Trust

To trust Al-assisted development, developers need clear evidence that the system is not
only correct but also makes logical decisions based on the project’s context. Empirical
findings by Brown et al. (2024) demonstrate that developers’ trust in Al code suggestions
significantly improves when they understand the assumptions and contextual reasoning
behind the generated outputs, rather than relying solely on raw accuracy. Evaluations of
contemporary Al-based assistants further show that generated methods frequently overlook
project-specific constraints, highlighting the limitations of post-hoc verification as a sole
mechanism for fostering trust Corso et al. (2024).

To address this gap, recent research has proposed “trust affordances”, such as suggestion
quality indicators and explicit usage analytics, enabling developers to form more accurate
mental models of Al behavior by transparently communicating how suggestions align with
established project norms and context Wang et al. (2024).

Design Goal G3: Make Al Reasoning Tangible and Verifiable. The interface should explicitly
present tangible evidence of the Al’s reasoning, clearly linking each suggestion to the specific
files, coding conventions, and architectural patterns used in its generation, thereby enabling
developers to assess alignment with project standards immediately.

4 COPILOTLENS Probe: An Interactive and Modular Explanation Layer

To address our design goals, we designed and implemented COPILOTLENS (Figure 3, right).
COPILOTLENS is an interactive explanation layer built on top of an existing open-source
coding agent, Kilo Code’. At its core, COPILOTLENS intercepts the output of a coding agent
after a task is complete to analyze and explain its actions. This design is guided by a specific
rationale and is structured into a dynamic, two-level framework, which we detail below.

"https:/ /kilocode.ai/

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Identified Challenge Manifestation in Cur- COPILOTLENS De- Corresponding Fea-
in AI Code Genera- rent Tools (e.g., Copi- sign Goal ture(s)

tion lot, Cursor)

Challenge 1: Opaque Suggestions appear Gl1: Expose the Level 1 Explanations:
Reasoning Process & “out-of-the-blue” Agent’s Thought Streaming, sequential
Misaligned Mental ~with no insight into Process. display of file modifi-
Models the model’'s plan cations and interactive

Challenge 2: Lack of
Contextual Understand-
ing & Suppressed Criti-
cal Inquiry

Challenge 3: Making
Al Reasoning Transpar-
ent to Foster Calibrated
Trust

or decision points,
leading to confusion
Vaithilingam et al
(2022).

Speed and fluency of
suggestions discour-
age critical evaluation
for subtle flaws or al-
ternatives Mozannar
et al. (2024).

Users cannot directly
assess suggestion reli-
ability, as correctness
is hidden, making
trust fragile and
uncalibrated Brown
et al. (2024); Wang
et al. (2024).

G2: Support Informed
Critical Evaluation.

G3: Make Model Con-
fidence and Correct-
ness Tangible.

code highlighting.

Level 2 Explanations
(On-Demand): Analy-
sis of codebase influ-
ences, coding conven-
tions, and alternative
implementations.

Level 2 Explanations
(On-Demand): Ex-
plicitly linking code
changes to project-
specific artifacts (e.g.,
other files, documen-
tation) to demonstrate
process integrity.

Table 1: Design challenges, their manifestations in current Al code assistants, COPI-
LOTLENS's three design goals, and the features that realize each goal.

4.1 Design Rationale: Post-Hoc, Model-Agnostic Explanation

The decision to perform post-hoc analysis is a pragmatic one. While direct, on-the-fly
model interpretability is a primary goal of the broader XAl community, current techniques
are not yet practical for our target workflow Zhao et al. (2023). State-of-the-art methods
often require privileged “white-box” model access, which presents a difficult trade-off: it
pushes developers to interact with open-weight models (i.e., LLama, Qwen, Mistral), while
valuable for research, often underperform against leading proprietary APIs (i.e., GPT-5,
Gemini 2.5, Claude 4) in complex coding tasks Jimenez et al. (2024). This would force an
undesirable choice between developer productivity and model explainability. Beyond this,
such techniques risk introducing significant latency or producing low-level, token-centric
explanations that are difficult to map to a developer’s high-level goals Burns et al. (2024).
Such low-level signals often fail to provide meaningful insight into an agent’s broader
strategy, a long-standing challenge in XAI Miller (2019); Jain & Wallace (2019).

By instead reconstructing the agent’s “thought process” from its final outputs, COPILOTLENS
remains model-agnostic, allowing developers to use the most powerful coding agents
available while still benefiting from a transparent, actionable explanation layer.

4.2 A Dynamic, Two-Level Explanation Framework

COPILOTLENS's central design principle is a two-level dynamic explanation framework
designed to manage the inherent trade-off between informational quality and cognitive load,
a key challenge in explainable AI (XAI) Miller (2019); Doshi-Velez & Kim (2017); Sweller
(1988). It is designed as a research probe to investigate how programmers interact with
Al-generated code when the “black box” is opened Sun et al. (2022). This two-level design
is structured using the concepts of explanatory versus exploratory user interfaces (XUIs)
Chromik & Butz (2021).

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

¢ Level 1 functions as an explanatory XUI. It is designed for immediate, “at-a-glance”
awareness, presenting a concise, post-hoc summary of the agent’s actions. Its
purpose is to quickly answer the question: “What just happened?”.

* Level 2 functions as an exploratory XUI. It is an on-demand, user-driven environment
for deep investigation. Its purpose is to allow a developer to probe the rationale
behind a specific change, answering the question: “Why was it done this way?”.

By separating these two modes of interaction, the system supports both rapid sensemaking
and deep reflective analysis, allowing developers to engage with the explanation at the level
of detail appropriate for their current task.

4.3 Level 1: Post-Hoc Explanatory Summaries of Modifications (Figure 1)

In response to G1 (Reveal the Agent’s Process), COPILOTLENS presents a post-hoc explanatory
summary of the agent’s modifications. This initial level of explanation is designed for
immediate situational awareness, automatically providing a per-file overview of the changes
made. It features a side panel that sequentially displays each modified file with a concise
summary of its purpose and significance, enabling rapid comprehension. Clicking on a
summary navigates the user to the corresponding code changes (i.e., modified functions) in
the code editor, creating a direct visual link between the explanation and the implementation.

4.4 Level 2: On-Demand Exploration of Development Rationale (Figure 2)

To address G2 (Scaffold Deep Understanding) and G3 (Foster Calibrated Trust), the system
provides a second, deeper layer of user-triggered exploration of the agent’s rationale behind
code modifications. Activated by the user, this level initiates an intensive, Al-powered
analysis of a specific code change in relation to the entire codebase. The resulting insights
are presented in distinct, evidence-based sections. The system first identifies Codebase
Influences by surfacing the existing functional components that likely guided the agent’s im-
plementation, such as specific classes, functions, or documentation files. For each influence,
it provides a description and a direct link to the source artifact as verifiable evidence.

This deeper analysis also articulates the Coding Conventions the agent adhered to, detecting
language-specific architectural patterns, naming conventions, and stylistic choices, and
other programming best practices and concepts. It provides a rationale for why a particular
convention was applied and demonstrates its use with a concrete example of the generated
code. To further encourage critical evaluation, the system can also propose Alternative
Implementations, describing different architectural or syntactic approaches and discussing
their potential trade-offs. This form of contrastive explanation has been shown to improve
independent decision-making Buginca et al. (2025). By providing these specific, context-
based insights, this exploratory level offers a tangible trust affordance, allowing developers
to critically assess the Al's output against the project’s established structure and practices.

5 Conclusion and Future Work

We presented COPILOTLENS, a framework that elevates Al assistants from opaque sugges-
tion generators into transparent partners, by providing a two-level reasoning replay of what
the agent did and why. This approach moves beyond simple explainability to support the
developer’s cognitive workflow, encouraging them to inspect, critique, and build calibrated
trust.

Our future work will formally evaluate the framework against its core design goals for its
intended users. For students and novices, we plan to explore how introducing productive
“friction” and other learning science principles to enhance critical reflection Kazemitabaar
et al. (2025), and embed learning opportunities directly within routine tool use Pammer-
Schindler et al. (2025). For professional developers, we plan to focus on developers’ mental
model while mitigating the risk of cognitive overload from Level 2 analysis in large code-
bases by developing adaptive and configurable explanation interfaces. This will support
rapid and collaborative verification within efficiency-driven workflows Weisz et al. (2025).
This research will allow us to carefully investigate the trade-offs between explanation depth
and cognitive load.

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Acknowledgement

We acknowledge and thank the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC), [funding reference number RGPIN-2024-04348]. The project is
also supported by the Data Sciences Institute, University of Toronto.

References

Ekansh Agrawal, Omair Alam, Chetan Goenka, Medha Iyer, Isabela Moise, Ashish Pandian,
and Bren Paul. Code compass: A study on the challenges of navigating unfamiliar
codebases, 2024. URL https://arxiv.org/abs/2405.06271.

Shraddha Barke, Michael B. James, and Nadia Polikarpova. Grounded copilot: How pro-
grammers interact with code-generating models. Proc. ACM Program. Lang., 7(OOPSLAL),
April 2023. doi: 10.1145/3586030. URL https://doi.org/10.1145/3586030.

Umang Bhatt, Javier Antordn, Yunfeng Zhang, Q. Vera Liao, Prasanna Sattigeri, Ric-
cardo Fogliato, Gabrielle Melan¢on, Ranganath Krishnan, Jason Stanley, Omesh Tickoo,
Lama Nachman, Rumi Chunara, Madhulika Srikumar, Adrian Weller, and Alice Xi-
ang. Uncertainty as a form of transparency: Measuring, communicating, and us-
ing uncertainty. In Proceedings of the 2021 AAAI/ACM Conference on Al, Ethics, and
Society, AIES '21, pp. 401-413, New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450384735. doi: 10.1145/3461702.3462571. URL https:
//doi.org/10.1145/3461702.3462571.

Michelle Brachman, Arielle Goldberg, Andrew Anderson, Stephanie Houde, Michael Muller,
and Justin D. Weisz. Towards personalized and contextualized code explanations. In
Adjunct Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Per-
sonalization, UMAP Adjunct ‘25, pp. 120-125, New York, NY, USA, 2025. Association
for Computing Machinery. ISBN 9798400713996. doi: 10.1145/3708319.3733681. URL
https://doi.org/10.1145/3708319.3733681.

Adam Brown, Sarah D’Angelo, Ambar Murillo, Ciera Jaspan, and Collin Green. Identifying
the factors that influence trust in ai code completion. In Proceedings of the 1st ACM
International Conference on Al-Powered Software, Alware 2024, pp. 1-9, New York, NY, USA,
2024. Association for Computing Machinery. ISBN 9798400706851. doi: 10.1145/3664646.
3664757. URL https://doi.org/10.1145/3664646.3664757.

Zana Buginca, Siddharth Swaroop, Amanda E. Paluch, Finale Doshi-Velez, and Krzysztof Z.
Gajos. Contrastive explanations that anticipate human misconceptions can improve
human decision-making skills. In Proceedings of the 2025 CHI Conference on Human Factors
in Computing Systems, CHI ’25, New York, NY, USA, 2025. Association for Computing
Machinery. ISBN 9798400713941. doi: 10.1145/3706598.3713229. URL https://doi.org/
10.1145/3706598.3713229.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in
language models without supervision, 2024. URL https://arxiv.org/abs/2212.03827.

Furui Cheng, Vilém Zouhar, Simran Arora, Mrinmaya Sachan, Hendrik Strobelt, and Men-
natallah El-Assady. Relic: Investigating large language model responses using self-
consistency. In Proceedings of the 2024 CHI Conference on Human Factors in Computing
Systems, CHI "24, New York, NY, USA, 2024a. Association for Computing Machinery.
ISBN 9798400703300. doi: 10.1145/3613904.3641904. URL https://doi.org/10.1145/
3613904 .3641904.

Ruijia Cheng, Titus Barik, Alan Leung, Fred Hohman, and Jeffrey Nichols. Biscuit: Scaffold-
ing llm-generated code with ephemeral uis in computational notebooks. In 2024 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 13-23, Sep.
2024b. doi: 10.1109/VL/HCC60511.2024.00012.

https://arxiv.org/abs/2405.06271
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3461702.3462571
https://doi.org/10.1145/3461702.3462571
https://doi.org/10.1145/3708319.3733681
https://doi.org/10.1145/3664646.3664757
https://doi.org/10.1145/3706598.3713229
https://doi.org/10.1145/3706598.3713229
https://arxiv.org/abs/2212.03827
https://doi.org/10.1145/3613904.3641904
https://doi.org/10.1145/3613904.3641904

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Michael Chromik and Andreas Butz. Human-xai interaction: A review and design principles
for explanation user interfaces. In Carmelo Ardito, Rosa Lanzilotti, Alessio Malizia, Helen
Petrie, Antonio Piccinno, Giuseppe Desolda, and Kori Inkpen (eds.), Human-Computer
Interaction — INTERACT 2021, pp. 619-640, Cham, 2021. Springer International Publishing.
ISBN 978-3-030-85616-8.

Vincenzo Corso, Leonardo Mariani, Daniela Micucci, and Oliviero Riganelli. Assessing ai-
based code assistants in method generation tasks. In Proceedings of the 2024 IEEE/ACM 46th
International Conference on Software Engineering: Companion Proceedings, ICSE-Companion
24, pp. 380-381, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400705021. doi: 10.1145/3639478.3643122. URL https://doi.org/10.1145/3639478.
3643122.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine
learning, 2017. URL https://arxiv.org/abs/1702.08608.

Kasra Ferdowsi, Ruangiangian (Lisa) Huang, Michael B. James, Nadia Polikarpova, and
Sorin Lerner. Validating ai-generated code with live programming. In Proceedings of the
2024 CHI Conference on Human Factors in Computing Systems, CHI "24, New York, NY, USA,
2024. Association for Computing Machinery. ISBN 9798400703300. doi: 10.1145/3613904.
3642495. URL https://doi.org/10.1145/3613904.3642495.

Xinying Hou, Barbara J. Ericson, and Xu Wang. Integrating personalized parsons problems
with multi-level textual explanations to scaffold code writing. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 2, SIGCSE 2024, pp. 1686-1687,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704246.
doi: 10.1145/3626253.3635606. URL https://doi.org/10.1145/3626253.3635606.

Rasha Ahmad Husein, Hala Aburajouh, and Cagatay Catal. Large language models for
code completion: A systematic literature review. Computer Standards & Interfaces, 92:
103917, 2025. ISSN 0920-5489. doi: https://doi.org/10.1016/j.csi.2024.103917. URL
https://www.sciencedirect.com/science/article/pii/S0920548924000862.

Sarthak Jain and Byron C. Wallace. Attention is not explanation, 2019. URL https://arxiv.
org/abs/1902.10186.

Jay Jennings and Kasia Muldner. When does scaffolding provide too much assistance? a
code-tracing tutor investigation. International Journal of Artificial Intelligence in Education,
31(4):784-819, 2021. doi: 10.1007 /s40593-020-00217-z. URL https://doi.org/10.1007/
s40593-020-00217-z.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?,
2024. URL https://arxiv.org/abs/2310.06770.

Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Zachary Henley, Paul Denny,
Michelle Craig, and Tovi Grossman. Codeaid: Evaluating a classroom deployment
of an llm-based programming assistant that balances student and educator needs. In
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, CHI '24,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400703300.
doi: 10.1145/3613904.3642773. URL https://doi.org/10.1145/3613904.3642773.

Majeed Kazemitabaar, Oliver Huang, Sangho Suh, Austin Z Henley, and Tovi Grossman.
Exploring the design space of cognitive engagement techniques with ai-generated code
for enhanced learning. In Proceedings of the 30th International Conference on Intelligent User
Interfaces, IUI '25, pp. 695-714, New York, NY, USA, 2025. Association for Computing
Machinery. ISBN 9798400713064. doi: 10.1145/3708359.3712104. URL https://doi.org/
10.1145/3708359.3712104.

Sunnie S. Y. Kim, Jennifer Wortman Vaughan, Q. Vera Liao, Tania Lombrozo, and Olga
Russakovsky. Fostering appropriate reliance on large language models: The role of
explanations, sources, and inconsistencies. In Proceedings of the 2025 CHI Conference on

https://doi.org/10.1145/3639478.3643122
https://doi.org/10.1145/3639478.3643122
https://arxiv.org/abs/1702.08608
https://doi.org/10.1145/3613904.3642495
https://doi.org/10.1145/3626253.3635606
https://www.sciencedirect.com/science/article/pii/S0920548924000862
https://arxiv.org/abs/1902.10186
https://arxiv.org/abs/1902.10186
https://doi.org/10.1007/s40593-020-00217-z
https://doi.org/10.1007/s40593-020-00217-z
https://arxiv.org/abs/2310.06770
https://doi.org/10.1145/3613904.3642773
https://doi.org/10.1145/3708359.3712104
https://doi.org/10.1145/3708359.3712104

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Human Factors in Computing Systems, CHI '25, New York, NY, USA, 2025. Association
for Computing Machinery. ISBN 9798400713941. doi: 10.1145/3706598.3714020. URL
https://doi.org/10.1145/3706598.3714020.

Hatice Kog, Ali Mert Erdogan, Yousef Barjakly, and Serhat Peker. Uml diagrams in software
engineering research: A systematic literature review. Proceedings, 74(1), 2021. ISSN 2504-
3900. doi: 10.3390/proceedings2021074013. URL https://www.mdpi.com/2504-3900/74/
1/13.

Harsh Kumar, Ilya Musabirov, Mohi Reza, Jiakai Shi, Xinyuan Wang, Joseph Jay Williams,
Anastasia Kuzminykh, and Michael Liut. Guiding students in using llms in supported
learning environments: Effects on interaction dynamics, learner performance, confidence,
and trust. Proc. ACM Hum.-Comput. Interact., (CSCW2), November 2024. doi: 10.1145/
3687038. URL https://doi.org/10.1145/3687038.

Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models: a
study of developer work habits. In Proceedings of the 28th International Conference on
Software Engineering, ICSE "06, pp. 492-501, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595933751. doi: 10.1145/1134285.1134355. URL https:
//doi.org/10.1145/1134285.1134355

Hao-Ping (Hank) Lee, Advait Sarkar, Lev Tankelevitch, Ian Drosos, Sean Rintel, Richard
Banks, and Nicholas Wilson. The impact of generative ai on critical thinking: Self-reported
reductions in cognitive effort and confidence effects from a survey of knowledge workers.
In Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems, CHI '25,
New York, NY, USA, 2025a. Association for Computing Machinery. ISBN 9798400713941.
doi: 10.1145/3706598.3713778. URL https://doi.org/10.1145/3706598.3713778

Seongmin Lee, Zijie] Wang, Aishwarya Chakravarthy, Alec Helbling, ShengYun Peng,
Mansi Phute, Duen Horng Polo Chau, and Minsuk Kahng. Llm attributor: Interactive
visual attribution for llm generation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 29655-29657, 2025b.

Florian Leiser, Sven Eckhardt, Valentin Leuthe, Merlin Knaeble, Alexander Madche, Gerhard
Schwabe, and Ali Sunyaev. Hill: A hallucination identifier for large language models. In
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, CHI '24,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400703300.
doi: 10.1145/3613904.3642428. URL https://doi.org/10.1145/3613904.3642428.

Jenny T. Liang, Chenyang Yang, and Brad A. Myers. A large-scale survey on the usability
of ai programming assistants: Successes and challenges. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ICSE "24, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.
3608128. URL https://doi.org/10.1145/3597503.3608128

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1-38, 2019. ISSN 0004-3702. doi: 10.1016/j.artint.2018.07.007. URL
https://www.sciencedirect.com/science/article/pii/S0004370218305988.

Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. Reading between the
lines: Modeling user behavior and costs in ai-assisted programming. In Proceedings of the
2024 CHI Conference on Human Factors in Computing Systems, CHI "24, New York, NY, USA,
2024. Association for Computing Machinery. ISBN 9798400703300. doi: 10.1145/3613904.
3641936. URL https://doi.org/10.1145/3613904.3641936.

Ambar Murillo, Alberto Elizondo, Sarah D’ Angelo, Adam Brown, Ugam Kumar, Quinn
Madison, and Andrew Macvean. Understanding and designing for trust in ai-powered
developer tooling. IEEE Software, 41(6):23-28, Nov 2024. ISSN 1937-4194. doi: 10.1109/
MS.2024.3439108.

Ninell Oldenburg and Anders Segaard. Navigating the informativeness-compression
trade-off in xai. AI and Ethics, 2025. doi: 10.1007/s43681-025-00733-5. URL https:
//doi.org/10.1007/s43681-025-00733-5

https://doi.org/10.1145/3706598.3714020
https://www.mdpi.com/2504-3900/74/1/13
https://www.mdpi.com/2504-3900/74/1/13
https://doi.org/10.1145/3687038
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/3706598.3713778
https://doi.org/10.1145/3613904.3642428
https://doi.org/10.1145/3597503.3608128
https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://doi.org/10.1145/3613904.3641936
https://doi.org/10.1007/s43681-025-00733-5
https://doi.org/10.1007/s43681-025-00733-5

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Viktoria Pammer-Schindler, Michael Liut, and Tobias Ley. What if (everyday) technologies
were designed for learning? towards “support for learning” as a design goal for every(day)
technology. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors
in Computing Systems, CHI EA "25, New York, NY, USA, 2025. Association for Computing
Machinery. ISBN 9798400713958. doi: 10.1145/3706599.3719804. URL https://doi.org/
10.1145/3706599.3719804.

James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen, Andrew
Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio Santos. “it’s
weird that it knows what i want”: Usability and interactions with copilot for novice
programmers. ACM Trans. Comput.-Hum. Interact., 31(1), November 2023. ISSN 1073-0516.
doi: 10.1145/3617367. URL https://doi.org/10.1145/3617367.

Steven L. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D. Weisz.
The programmer’s assistant: Conversational interaction with a large language model for
software development. In Proceedings of the 28th International Conference on Intelligent User
Interfaces, IUI '23, pp. 491-514, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400701061. doi: 10.1145/3581641.3584037. URL https://doi.org/
10.1145/3581641.3584037.

Agnia Sergeyuk, Ilya Zakharov, Ekaterina Koshchenko, and Maliheh Izadi. Human-ai
experience in integrated development environments: A systematic literature review, 2025.
URL https://arxiv.org/abs/2503.06195.

M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, and G. Zelesnik. Abstractions for
software architecture and tools to support them. IEEE Transactions on Software Engineering,
21(4):314-335, April 1995. ISSN 1939-3520. doi: 10.1109/32.385970.

Jiao Sun, Q. Vera Liao, Michael Muller, Mayank Agarwal, Stephanie Houde, Kartik Tala-
madupula, and Justin D. Weisz. Investigating explainability of generative ai for code
through scenario-based design. In Proceedings of the 27th International Conference on In-
telligent User Interfaces, IUI 22, pp. 212-228, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450391443. doi: 10.1145/3490099.3511119. URL
https://doi.org/10.1145/3490099.3511119.

John Sweller. Cognitive load during problem solving: Effects on learning. Cognitive Science,
12(2):257-285, 1988. ISSN 0364-0213. doi: https://doi.org/10.1016/0364-0213(88)90023-7.
URL https://www.sciencedirect.com/science/article/pii/0364021388900237.

Valerio Terragni, Annie Vella, Partha Roop, and Kelly Blincoe. The future of ai-driven
software engineering. ACM Trans. Softw. Eng. Methodol., 34(5), May 2025. ISSN 1049-331X.
doi: 10.1145/3715003. URL https://doi.org/10.1145/3715003.

Frank Tip. A survey of program slicing techniques. Technical report, NLD, 1994.

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. Expectation vs experience:
Evaluating the usability of code generation tools powered by large language models.
In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems,
CHI EA "22, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450391566. doi: 10.1145/3491101.3519665. URL https://doi.org/10.1145/3491101.
3519665.

Helena Vasconcelos, Matthew Jorke, Madeleine Grunde-McLaughlin, Tobias Gerstenberg,
Michael S. Bernstein, and Ranjay Krishna. Explanations can reduce overreliance on ai
systems during decision-making. Proc. ACM Hum.-Comput. Interact., 7(CSCW1), April
2023. doi: 10.1145/3579605. URL https://doi.org/10.1145/3579605.

Helena Vasconcelos, Gagan Bansal, Adam Fourney, Q. Vera Liao, and Jennifer Wort-
man Vaughan. Generation probabilities are not enough: Uncertainty highlighting in
ai code completions. ACM Trans. Comput.-Hum. Interact., 32(1), April 2025. ISSN 1073-
0516. doi: 10.1145/3702320. URL https://doi.org/10.1145/3702320.

10

https://doi.org/10.1145/3706599.3719804
https://doi.org/10.1145/3706599.3719804
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://arxiv.org/abs/2503.06195
https://doi.org/10.1145/3490099.3511119
https://www.sciencedirect.com/science/article/pii/0364021388900237
https://doi.org/10.1145/3715003
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3579605
https://doi.org/10.1145/3702320

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

A. Von Mayrhauser and A.M. Vans. Program comprehension during software maintenance
and evolution. Computer, 28(8):44-55, 1995. doi: 10.1109/2.402076.

Ruotong Wang, Ruijia Cheng, Denae Ford, and Thomas Zimmermann. Investigating and
designing for trust in ai-powered code generation tools. In Proceedings of the 2024 ACM
Conference on Fairness, Accountability, and Transparency, FAccT 24, pp. 1475-1493, New
York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704505. doi:
10.1145/3630106.3658984. URL https://doi.org/10.1145/3630106.3658984.

Yanlin Wang, Kefeng Duan, Dewu Zheng, Ensheng Shi, Fengji Zhang, Yanli Wang, Jiachi
Chen, Xilin Liu, Yuchi Ma, Hongyu Zhang, et al. Towards an understanding of context
utilization in code intelligence. arXiv preprint arXiv:2504.08734, 2025.

Thomas Weber, Maximilian Brandmaier, Albrecht Schmidt, and Sven Mayer. Significant
productivity gains through programming with large language models. Proc. ACM Hum.-
Comput. Interact., 8(EICS), June 2024. doi: 10.1145/3661145. URL https://doi.org/10.
1145/3661145.

Justin D. Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I. Ross, Fernando
Martinez, Mayank Agarwal, and Kartik Talamadupula. Perfection not required? human-
ai partnerships in code translation. In Proceedings of the 26th International Conference on
Intelligent User Interfaces, IUI ‘21, pp. 402-412, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450380171. doi: 10.1145/3397481.3450656. URL
https://doi.org/10.1145/3397481.3450656.

Justin D. Weisz, Shraddha Vijay Kumar, Michael Muller, Karen-Ellen Browne, Arielle
Goldberg, Katrin Ellice Heintze, and Shagun Bajpai. Examining the use and impact
of an ai code assistant on developer productivity and experience in the enterprise. In
Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing
Systems, CHI EA ’25, New York, NY, USA, 2025. Association for Computing Machinery.
ISBN 9798400713958. doi: 10.1145/3706599.3706670. URL https://doi.org/10.1145/
3706599.3706670.

D Wood,] S Bruner, and G Ross. The role of tutoring in problem solving. | Child Psychol
Psychiatry, 17(2):89-100, Apr 1976. ISSN 0021-9630 (Print); 0021-9630 (Linking). doi:
10.1111/j.1469-7610.1976.tb00381 .x.

Litao Yan, Alyssa Hwang, Zhiyuan Wu, and Andrew Head. Ivie: Lightweight anchored
explanations of just-generated code. In Proceedings of the 2024 CHI Conference on Hu-
man Factors in Computing Systems, CHI '24, New York, NY, USA, 2024. Association for
Computing Machinery. ISBN 9798400703300. doi: 10.1145/3613904.3642239. URL
https://doi.org/10.1145/3613904.3642239.

Ryan Yen, Jiawen Stefanie Zhu, Sangho Suh, Haijun Xia, and Jian Zhao. Coladder: Manipu-
lating code generation via multi-level blocks. In Proceedings of the 37th Annual ACM Sym-
posium on User Interface Software and Technology, UIST '24, New York, NY, USA, 2024. Asso-
ciation for Computing Machinery. ISBN 9798400706288. doi: 10.1145/3654777.3676357.
URL https://doi.org/10.1145/3654777.3676357.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaigiang

Wang, Dawei Yin, and Mengnan Du. Explainability for large language models: A survey,
2023. URL https://arxiv.org/abs/2309.01029.

11

https://doi.org/10.1145/3630106.3658984
https://doi.org/10.1145/3661145
https://doi.org/10.1145/3661145
https://doi.org/10.1145/3397481.3450656
https://doi.org/10.1145/3706599.3706670
https://doi.org/10.1145/3706599.3706670
https://doi.org/10.1145/3613904.3642239
https://doi.org/10.1145/3654777.3676357
https://arxiv.org/abs/2309.01029

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

A Appendix

A1l Use Case
A.1.1 Use Case for a Novice Student Programmer

A first-year student building a small web app receives an agent-generated set of code edits
from COPILOTLENS. Before accepting, the student is shown a brief, post-hoc account of
what changed and why, presented next to the relevant files; when uncertain, they open
a deeper, on-demand rationale that ties the proposal to concrete evidence in the project
(e.g., which existing modules appear to have guided the change) and contrasts it with
plausible alternatives. This light-weight transparency nudges the student to verify intent,
compare against course conventions, and accept only those edits they can justify, turning
autocomplete from a “type-and-accept” action into a quick critique that reduces blind
acceptance and fosters calibrated trust.

A.1.2 Use Case for a Professional Developer

A senior engineer reviewing an agent-authored refactor scans a concise summary that
surfaces the key modifications and likely risk areas from COPILOTLENS, then selectively
expands targeted explanations that connect each risky change to discoverable project context
and articulate trade-offs versus reasonable alternatives. This evidence-backed pass functions
as a rapid proofread: it helps confirm architectural fit, exposes subtle mismatches early, and
avoids time wasted chasing dead ends, enabling the developer to merge what is sound,
adjust what is misaligned, and reject what is unjustified, all without lowering the rigor of
review.

12

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

A.2 COPILOTLENS Interface

8

* Task Explanation

Start New Task

‘Show More Context

Next—

Figure 1: Main Interface for COPILOTLENS. (A) COPILOTLENS interface is presented after
the Al coding agent has completed its assigned task. (B) The main explanation view for
COPILOTLENS, which provides a post-hoc, two-level analysis of the agent’s actions. The
default Level 1 explanation offers a summary of what was changed, including (C) a visual
navigator to step through each file modification, (D) the title of the current modification and
its significance, (E) an Al-generated summary of the change’s purpose and significance, and
(F) a preview of the implemented code and interactive highlights. (G) The user can click to
trigger the on-demand Level 2 analysis, which provides an extended explanation.

13

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Hide Context

Enhanced Context

Core Requirements - Modular Design and Room Structure (documentation)
nd th

ARCHITECTURAL

could be
Item Class (othe

Description: D

PARADIGM

Naming

Descriptios

Figure 2: Extended Explanation Interface for COPILOTLENS. (G) This Level 2 explanation
view is shown after the user clicks the button to see more context. It provides a deeper
analysis of the agent’s work, presenting (H) a list of “Codebase Influences” that shows
which existing project files or documentation were influencing the generated code, with
file linking and highlighting upon user clicking the hyperlink, (I) a section on “Coding
Conventions” that explains style and pattern choices, (J) a section with detailed “Implemen-
tation Reasoning” explaining the rationale behind the changes, and (K) a list of “Alternative
Implementations” describing other ways the task could have been accomplished, along
with their respective tradeoffs.

A.3 CoPILOTLENS Comparison with Popular AI Coding Agents

14

Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

Request: Help me implement the Python models
in separate files required by the program

description in README.

Adtonal Context (on Demand)
I %%} o] o
fvz) Iz
v - -
%] vl o] %)
%]
Cursor - Agent Mode Github Copilot (Agent Mode) Kilo Code (Code Mode) i
o 25 J i pi CopilotLens
H]
i i
[
Code Code Code File User Confirmation/ User
Planning Preview Highlighting Creation Rollback Action
Snippet
High-level Function-level Codebase Coding Coding Alternative
Explanation Explanation c ion: i Approach and

Tradeoffs

Figure 3: A Comparison of Al Coding Agent Interaction Panels. Mainstream tools like
Cursor, GitHub Copilot, and open-source coding agent Kilo Code (left) present a final code
artifact with minimal process visibility and explanations. In contrast, COPILOTLENS (right)
reconstruct the agent’s “thought process” through a two-level explanation, surfacing impor-
tant codebase influence (I), coding convention (C), coding reasoning (R), and alternative
approach to consider, to support critical evaluation and foster calibrated trust.

15

	Introduction
	Related Work
	Design Goals
	Challenge: Bridging the Gap Between AI Opacity and Developer Mental Models
	Challenge: Providing Deep Context to Scaffold Critical Evaluation
	Challenge: Making AI Reasoning Transparent to Foster Calibrated Trust

	CopilotLens Probe: An Interactive and Modular Explanation Layer
	Design Rationale: Post-Hoc, Model-Agnostic Explanation
	A Dynamic, Two-Level Explanation Framework
	Level 1: Post-Hoc Explanatory Summaries of Modifications (Figure 1)
	Level 2: On-Demand Exploration of Development Rationale (Figure 2)

	Conclusion and Future Work
	Appendix
	Use Case
	Use Case for a Novice Student Programmer
	Use Case for a Professional Developer

	CopilotLens Interface
	CopilotLens Comparison with Popular AI Coding Agents

