Under review as a conference paper at ICLR 2026

ROBOPHD: SELF-IMPROVING TEXT-TO-SQL
THROUGH AUTONOMOUS AGENT EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present RoboPhD, a system where Al agents autonomously conduct research
to improve Text-to-SQL performance. RoboPhD implements a closed-loop evolu-
tion cycle with two coordinated components: a SQL Generation agent composed
of a database analysis script and SQL generation instructions, and an Evolution
agent that designs new versions based on performance feedback. Central to the
framework is an ELO-based selection mechanism enabling survival-of-the-fittest
dynamics while handling non-transitivity in performance.

Starting from a naive 70-line baseline, RoboPhD evolves agents through iterative
cross-pollination, discovering effective techniques without any external guidance
on the Text-to-SQL domain. Our best agent, evolved to 1500 lines over 18 itera-
tions, autonomously discovered strategies such as size-adaptive database analysis
that adjusts depth based on schema complexity and SQL generation patterns for
column selection, evidence interpretation, and aggregation.

Evolution provides the largest gains on cheaper models: while we improve by 2.3
points over a strong Claude Opus 4.5 naive baseline, we show an improvement
of 8.9 points over the weaker Claude Haiku model. This enables ”skip a tier”
deployment: evolved Haiku exceeds naive Sonnet accuracy, and evolved Sonnet
exceeds naive Opus—both at lower cost.

The full system achieves 71.3% accuracy on the BIRD development set, demon-
strating that Al can autonomously build a strong agentic system without human
intervention.

1 INTRODUCTION

Text-to-SQL, the task of translating natural language questions into executable SQL queries, remains
a fundamental challenge in natural language processing with significant real-world applications. Re-
cent advances have shown that large language models (LLMs) can achieve impressive performance
on benchmarks like Spider (Yu et al.| 2018)) and BIRD (Li et al. |2023)), but these approaches typi-
cally require extensive manual prompt engineering, careful model selection, and domain expertise.

The ability of Al systems to conduct Al research autonomously has been identified as a crucial ca-
pability milestone with profound implications for the pace of Al progress (Steinhardt, |2022; (Cotra,
2022). Several researchers have argued that Al systems capable of improving themselves or con-
ducting research represent a potential discontinuity in technological development (Bostrom, 2014
Yudkowsky, |2008). Recent work has begun to explore this frontier, with systems demonstrating in-
creasing autonomy in scientific discovery (Romera-Paredes et al.,[2024), machine learning research
(Lu et al.| 2024)), and algorithm development (Fawzi et al.| 2022).

While well short of a full self-improving system, our work demonstrates a concrete instantiation of
Al agents autonomously conducting the research cycle of hypothesis generation, experimentation,
and iterative refinement to improve performance on text-to-SQL generation.

RoboPhD’s architecture evolves Al agents composed of two artifacts—a database analysis tool and
SQL generation instructions—using an architecture that separates offline analysis from online infer-
ence. This pattern generalizes to other tasks with similar structure.

This work makes the following key contributions:

Under review as a conference paper at ICLR 2026

* Autonomous Al Research Framework: We demonstrate Al agents conducting systematic
research on text-to-SQL through a closed-loop evolution cycle, autonomously discovering
effective optimization strategies without human intervention

* ELO-Based Evolutionary Selection: First application of ELO ratings for evolutionary
prompt/agent optimization, effectively handling non-transitivity and asynchronous agent
entry

* Evolution of a complete Text-to-SQL system: The framework simultaneously evolves a
set of Python database analysis tools and SQL-generation instructions to improve end-to-
end performance.

* Inverse Scaling of Evolutionary Benefit: We show that evolution provides larger gains on
cheaper models (+8.9 points for Haiku vs +2.3 for Opus), enabling cost-effective deploy-
ment where evolved cheaper models exceed naive expensive models

¢ Self-Directed Improvement without Author-Supplied Domain Expertise: The system
improves without author-provided Text-to-SQL knowledge from a trivial baseline; gains
arise from latent LLM capabilities and iterative error-driven learning across iterations

2 RELATED WORK

2.1 TEXT-TO-SQL SYSTEMS

The BIRD benchmark (Li et al.,2023) has driven significant advances in Text-to-SQL, with top sys-
tems achieving (as of mid-September 2025) 71-77% accuracy through diverse approaches. AskData
(Shkapenyuk et al.| 2025) achieves 77.14% using GPT-40 with data analysis agents. CHASE-SQL
(Pourreza & Rafiei, 2024) reaches 76.02% through multi-path reasoning and preference optimiza-
tion. XiYan-SQL (Liu et al.| 2024) employs multi-scale few-shot learning for 75.63% accuracy.
CSC-SQL (Sheng et al. 2025) uses community-driven schema construction achieving 73.67%.
Reasoning-SQL (Pourreza et al., 2025) distills capabilities to smaller models reaching 72.78%.
OpenSearch-SQL (Xie et al., |2025), OmniSQL (L1 et al.l |2025a), and GenaSQL (Donder et al.}
2025) all achieve approximately 72% through various architectures. Distillery (Maamari et al.,
2024) introduces compositional approaches at 71.83%. CHESS (Talaei et al.,[2024) achieves 71.1%
using contextual harnessing.

Our work uniquely focuses on autonomous discovery of these strategies rather than manual design.
While prior systems require human experts to engineer prompts and architectures, RoboPhD dis-
covers optimization techniques autonomously. Note that we have experimented with using all of the
above papers (with the exception of the BIRD benchmark paper (Li et al., 2023)) as inputs to the
evolution agent in the research-driven evolution strategy mentioned in Section|[5.2}

Prior work on prompt optimization includes APE (Zhou et al., |2022)), OPRO (Yang et al., |2023)),
DSPy (Khattab et al., 2023)), and TextGrad (Yuksekgonul et al., |2025). While these systems opti-
mize prompts, our approach evolves complete agent artifacts including database analysis tools and
SQL generation instructions. Crucially, our system conducts research autonomously without human
intervention in the optimization loop. One key aspect of our approach is allowing the Evolutionary
agent access to the errors made from previous candidate agents. This is similar to the idea of text
gradients explored in the TextGrad paper (Yuksekgonul et al.l [2025), where the LLM produces a
(metaphorical) gradient to describe how to address a particular error. In our system, the error gradi-
ents are available for the agent to choose how to incorporate them into the next candidate agent.

Evolutionary algorithms have been applied to neural architecture search (Pham et al.| 2019) and
hyperparameter optimization (Loshchilov & Hutter, 2016} Jaderberg et al., 2017). We extend this
to evolving complete Al agents with natural language specifications and tool usage, creating a fully
autonomous research system.

The ELO rating system (Elo} [1978)), originally developed for chess, has found recent applications
in Al evaluation. The Chatbot Arena (Zheng et al.l 2023) uses ELO ratings to create a dynamic
leaderboard of LLMs based on human preferences, demonstrating ELO’s effectiveness for model
comparison. While these systems use ELO for passive evaluation and ranking, we introduce ELO
as an active selection mechanism for evolutionary optimization (see §3.2.5|for our implementation).

Under review as a conference paper at ICLR 2026

3 METHOD

Figure [I] shows the high-level architecture of RoboPhD. The system takes three inputs: a simple
naive agent package containing minimal Text-to-SQL logic (~70 lines total), an evolution strategy
that provides meta-level research guidance, and the BIRD training database (69 databases, 6.6K
training questions). Through competitive evolution over [V iterations, these simple origins yield a
production-ready agent. Our best agent grew from 50 lines of code and 20 lines of SQL generation
instructions to over 1000 lines of evolved code and 500 lines of generation instructions across 18
evolutionary iterations, achieving 71.3% accuracy on the BIRD development set.

INPUTS PROCESS OUTPUT
Naive Agent

Package

/ . Evolved Agent
. \ Evolutionary Package
Evolution Loop

Strategy) (ELO-based) l

~ Dev / Test
Training
Database

Figure 1: RoboPhD system overview. Simple inputs (a naive agent, an evolution strategy, and
training data) feed into an ELO-based evolutionary loop that produces a strong, production-ready
agent for deployment.

3.1 CONCEPTUAL OVERVIEW: THE GRADUATE STUDENT METAPHOR

RoboPhD operates like a graduate student operating with minimal faculty supervision, focused on
reducing error rate. This paper describes an application to the BIRD benchmark, but the lack of
SQL-specific initial guidance points towards easy transfer to other domains. The evolutionary agent,
here implemented as Claude Codeﬂ wrapping Claude Sonnet 4.5E] or Opus 4.5ﬂ can be interpreted
as a doctoral student attempting to build a complete Al-powered text-to-SQL system, analogous to
prior efforts on the BIRD benchmark.

The graduate student (Al Evolutionary Agent) analyzes experimental failures to identify patterns,
forms hypotheses about improvements, and implements these ideas as new system designs. System
designs are tested and refined at least once before being deployed. Each agent it creates consists of a
Python-based database analysis tool and SQL generation instructions for the evaluation model. Note
that, while we have a new “graduate student” with each iteration, the evolutionary agent maintains
context across the entire process of creating an agent package, refining its design and accumulating
expertise with each system test.

A core design goal of RoboPhD is domain independence: we intentionally avoid injecting author-
crafted Text-to-SQL techniques. The evolution strategy (see Appendix [C) provides only meta-level
research direction (“combine the best techniques from top-performing agents”), rather than pre-
scribing scientific content about Text-to-SQL itself. Consequently, measured gains arise from two
sources: (i) the latent capabilities of the underlying LLMs and (ii) experience accumulated over
many iterations as the Evolutionary Agent builds successively stronger agents that it refines and
combines to create even stronger agents.

Algorithm [I] presents the complete evolution cycle, showing how strategy selection, agent evolution,
evaluation, and ELO updates work together to drive continuous improvement.

'https://claude.com/product/claude-code
Zhttps://www.anthropic.com/claude-sonnet-4-5-system-card
*https://www.anthropic.com/claude-opus—4-5-system-card

https://claude.com/product/claude-code
https://www.anthropic.com/claude-sonnet-4-5-system-card
https://www.anthropic.com/claude-opus-4-5-system-card

Under review as a conference paper at ICLR 2026

Algorithm 1 RoboPhD Evolution Cycle

1: Input: Database pool D, question pool Q, iterations N, strategy S, initial agents .4

2: I/l In this paper: D = BIRD train (69 databases), S = cross-pollination, Ay = [naive]
3: Output: Final agent rankings and performance history

4:

5: A < Ap; competitors < Ag

6:

7: fori =1to N do

8: // Evaluation

9: databases +— RandomSample(D, 5)
10: for each db in databases do

11: questions|db] + RandomSample(Q[db], 30)

12: end for

13: for each agent in competitors do

14: accuracylagent] < EvaluateOnQuestions(agent, databases, questions)
15: end for

16:

17: / ELO Update via Pairwise Decomposition
18: for each pair (a,b) in {(1,2),(1,3),(2,3)} do

19: score < 1 if accuracyla] > accuracy[b], 0.5 if equal, else O
20: UpdateELO(competitors|a], competitors[b], score, K = 32)
21: end for

22:

23: winner — arg MaXqgentccompetitors ACCUTACY[agent]

24:

25: /I Prepare next iteration
26: ifi < N then

27: agentnew < EvolveAgent(competitors, S, ErrorAnalysis(z))

28: A — AU {agent,ew}

29:

30: /I Tournament Selection for Next Round

31: competitors[l] < winner {Current winner}

32: competitors|2] « agentpe,, {Newly evolved}

33: competitors[3] <+ RandomTop(A, 2) {Random selection from top 2 by ELO}
34: endif

35: end for

36: return A with final ELO rankings

3.2 TECHNICAL IMPLEMENTATION

We now detail how RoboPhD achieves accurate SQL generation from simple initial components
through an autonomous evolution process.

3.2.1 SYSTEM OVERVIEW: EVOLVING AN AGENT WITH TWO COMPONENTS

RoboPhD’s architecture centers on an agent consisting of two components that are evolved together
each iteration, as illustrated in Figure

1. Database Analysis Tool: A deterministic Python script that analyzes database schemas
offline, producing structured documentation of tables, relationships, sample values, and
data patterns.

2. Eval Instructions: SQL generation guidance that teaches the LLM how to transform nat-
ural language questions into precise SQL queries.

These artifacts operate in sequence: the analysis tool examines a database offline, producing struc-
tured output that feeds into online SQL generation. The SQL generation model never sees the
database schema directly—all understanding must flow through the analysis layer, forcing the evo-
lution process to develop effective communication strategies between its components.

Under review as a conference paper at ICLR 2026

1
| ‘
| |
! Evolution Al Generates 2-Artifact Package !
I Claude Code (Opus/Sonnet) tools/*.py — eval.md I
| |
I A I
: : Configures :
: Evaluated : :

. |

: ' Database Analysis Tool BIRD Databases |
| - Python Script Sample 5 DBs |
| Evaluation Results |
| |
! ® Successes e Schema Analysis !
| o Failures |
I e Error Patterns . . ‘
! SQL Generation Al BIRD Questions | |
l Claude (Haiku/Sonnet/Opus) Sample 30 per DB l
| |
| |
| |
| Outputs |
|

: |
| 4[SQL Queries] |
| |
| |
\ Y e e e e e e e e e e e e e e e e e 2 _

Components:
:] BIRD Data :} Evolved Package

Figure 2: The RoboPhD evolutionary cycle. The Database Analysis Tool (gray) is a deterministic
Python script, not an LLM call, making offline analysis fast ($0.00) and reproducible.

3.2.2 OFFLINE DATABASE ANALYSIS PHASE

The database analysis phase is conducted without seeing the questions that will be asked. This
separation is typical of industrial requirements where extensive database analysis can be performed
offline to facilitate SQL generation, which operates under tight time constraints. This pattern gener-
alizes broadly: separating offline analysis from online inference enables thorough preprocessing to
support rapid real-time responses.

Tool-Only Execution: Our best-performing approach uses deterministic Python scripts that analyze
databases without any LLLM calls. The evolved tool receives full access to a SQLite database (schema
and row data) and produces structured analysis including (for our better performing agents): com-
plete DDL schema, table relationships with foreign key cardinality, sample values for each column,
enumerated values for categorical columns, and data format patterns (dates, currencies, codes).

We experimented with three approaches during system development: (1) LLM-only analysis where
an Al agent reasons about the schema, (2) hybrid approaches where an LLM orchestrates Python
tools and synthesizes their outputs, and (3) tool-only execution where Python scripts generate com-
plete analysis deterministically. Through competitive evaluation, tool-only execution emerged as
superior for two reasons: it is fast and economical ($0.00 per database vs. $0.50 for LLM-based
analysis), and, perhaps because a deterministic target is easier to optimize in an evolutionary cycle,
it yielded our strongest results. The tool-assistend hybrid approach remains as a fallback mecha-
nism if the evolved Python tool fails, but in practice this is relatively rare. For instance, tool failures
accounted for only 5.5% of total costs in the evolution of our best-performing system.

3.2.3 ONLINE SQL GENERATION PHASE

The goal of a Text-to-SQL system is to transform natural language questions into executable SQL
queries. The SQL generation phase is the end of the process, where the system transforms natural
language questions into executable SQL through concatenation of the two evolved artifacts with user
inputs:

Under review as a conference paper at ICLR 2026

Prompt = DatabaseAnalysis ¢ Evallnstructions & Question ¢ Evidence

where @ denotes concatenation. DatabaseAnalysis is the output of the evolved Python tool (Sec-
tion [3.2.2). Evallnstructions is the evolved SQL generation guidance. The Question is the natural
language question as provided by the user (here, BIRD benchmark). Evidence is provided by BIRD
and supplies hints about the domain/schema and clarifications for the question.

The Role of Eval Instructions: The eval_instructions.md file serves as the bridge between
database analysis and SQL generation. While the analysis tool extracts database structure, the eval
instructions guide how to transform natural language questions into precise SQL queries. These
instructions operate at the final online inference step. Successful eval instructions balance com-
prehensiveness with precision. Overly lengthy instructions can be counterproductive, as the LLM
may have difficulty focusing on the most important components and they may use up too much of
Claude’s 200K token limit.

Our best-performing agent’s eval instructions (527 lines) include: (1) Column Selection Discipline:
Detailed rules with examples showing that, for instance, “Which movie has the best rating?” should
return only the title, not SELECT Title, Rating—a critical requirement where extra columns
count as failure. (2) Evidence Interpretation Patterns: Seven distinct patterns for parsing BIRD’s
evidence field, from column mappings (“full address refers to street_num, street_name, city”) to com-
plex percentage formulas. (3) String Matching Rules: Instructions to check the tool’s enum value
output for exact case-sensitive matches, with guidance on when to use LIKE vs. exact equality. (4)
Percentage Formula Parsing: Rules distinguishing “percentage of A that are B” from “percentage
of B that are A”—the word order determines which count is the numerator vs. denominator.

Agentic Query Result Validation: text-to-SQL systems face two critical failure modes: syntax
errors and semantic errors. Syntax errors prevent execution, while semantic errors produce incorrect
results. Prior work typically addresses these challenges through multiple generation attempts. For
instance, OpenSearch-SQL (Xie et al [2025)) generates multiple candidate queries and uses self-
consistency voting. Our system employs an agentic answer evaluation approach:

Universal Verification: Every generated SQL query undergoes verification where the model re-
views its own query execution results in the context of the question and the system prompt with
database analysis information. The model then responds with either CORRECT to accept those re-
sults as the answer or an improved SQL query in light of this new information from the candidate
execution result. This self-verification and correction process can iterate up to k = 2 times, using
progressive temperature (0.0 — 0.2 — 0.3) to encourage exploration on retries. Additionally, if
iteration k produces errors or an empty (null) result, the system employs an additional targeted retry
with an alert highlighting the SQL error or null result.

3.2.4 EVOLUTION: CREATING NEW ARTIFACTS

The Evolution Al creates new artifacts based on comprehensive performance feedback from pre-
vious iterations (see Algorithm . It receives ELO rankings, accuracy metrics, and detailed error
analysis, then generates two artifacts that define a candidate solution: 1) a database analysis tool
(tools/=*.py); and 2) SQL generation instructions (eval_instructions.md). The evolu-
tion process is guided by a hand-crafted strategy prompt; evolving these strategies themselves is
future work (Section [5.2).

Cross-Pollination Strategy: Our primary evolution strategy instructs the Evolution Al to examine
top-performing agents and combine their best techniques into a new “super-tool.” The strategy
prompt (see Appendix [C) emphasizes:

* Identifying complementary strengths: Which techniques do different agents use effec-
tively? How do they complement each other?

* Error-driven improvement: What error patterns appear in the iteration’s
error_analysis_report.md? How can the new agent address them?

* Tool-only requirement: The strategy requires deterministic Python tools rather than LLM-
based analysis, ensuring speed and reproducibility.

Under review as a conference paper at ICLR 2026

The Evolution Al produces a reasoning.md file documenting its analysis before generating ar-
tifacts, providing transparency into its design decisions. We experimented with alternative strate-
gies (refinement, research-driven, error-focused) but found cross-pollination with tool-only empha-
sis consistently produced our strongest agents.

Deep Focus Refinement: Before a newly-evolved agent is put into the main competitive loop, it
undergoes a multi-round testing process we call “Deep Focus.” After generating an artifact using
the methodology described above, the system tests the newly created agent on the questions and
databases from prior iterations, beginning with the most recent iteration and working backwards,
comparing it with the corresponding agents from those iterations (for instance, it is shown questions
the new agent uniquely answered correctly and uniquely answered incorrectly). After each testing
round, the Evolution Al can refine its artifacts based on this performance feedback. We parame-
terize this with k test rounds (default £ = 1), where each round tests against one additional prior
iteration. Our experiments with k € {0, 1, 2, 3} found that even a single test round (k = 1) provides
meaningful refinement opportunities while keeping evolution time reasonable. Key to Deep Focus
is that all Deep Focus testing and refinement takes place in the same Claude Code session in which
the agent was created, enabling the Evolution Al to maintain continuity of planning and analysis.

3.2.5 EVALUATION AND ELO RANKING

The system evaluates three agents simultaneously on identical sets of databases and questions, com-
puting overall accuracy using BIRD’s set-based comparison (row order ignored, exact match re-
quired). Each iteration tests agents on randomly selected databases with their associated questions,
providing head-to-head comparisons on the exact same tasks.

These three-way competitions are decomposed into three pairwise comparisons. For example, if
agents achieve 65%, 62%, and 62% accuracy, we process three head-to-head results: A beats B
(1-0), A beats C (1-0), and B ties C (0.5-0.5).

Maintaining an accurate picture of relative agent strength is critical for the evolutionary algorithm.
This work introduces ELO as a ranking mechanism for evolutionary algorithms, updating scores
using the standard formula (Ag,0 = K(S — E), K = 32). ELO offers key advantages for our
setting:

(1) Asynchronous Competition: Like chess players who play their first tournament match at dif-
ferent times, agents can join the population at any point while maintaining fair comparisons through
persistent ratings. ELO naturally weights unexpected outcomes more strongly than expected out-
comes—when a low-rated (or newly-created) agent defeats a high-rated one, both scores change
much more than if the higher-rated agent defeats the lower-rated.

(2) Non-transitivity Handling: ELO naturally accommodates rock-paper-scissors dynamics where
on one sample of databases and questions, Agent A beats B, on another sample B beats C, but on a
third sample C beats A—a situation which is common when different agents have different strengths
and weaknesses.

(3) Task Normalization: Win/loss treatment normalizes across varying difficulty—although accu-
racy commonly swings from 60% to 80% on different database samples, relative rankings on the
same task remain stable.

This competitive framework enables survival-of-the-fittest dynamics while maintaining fairness
across agents with different entry points.

3.2.6 EXPERIMENTAL PROTOCOL: SELECTION AND SAMPLING

Agent Selection: In a standard evolutionary iteration, (see Appendix [D]for details on exceptions),
RoboPhD tests three agents selected via a priority system: (1) the previous winner, (2) the newly
evolved agent, and (3) a random agent selected from the top 2 performers by ELO (other than the
winner). This balance ensures thorough testing while maintaining the evolutionary pressure.

Database Sampling: To prevent overfitting and encourage generalizable improvements, each itera-
tion evaluates agents on only 5 randomly selected databases from the 69-database training set, with
30 randomly sampled questions per database (BIRD supplies a median of 82 questions per database
for a total of 6.6K training questions). This deliberate undersampling ensures that agents never see

Under review as a conference paper at ICLR 2026

the complete dataset in any single iteration, forcing the evolution process to discover robust pat-
terns rather than memorizing specific database quirks. The random sampling changes each iteration,
exposing agents to different challenges and preventing specialization on a fixed subset.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate on the BIRD benchmark (Li et al.l [2023)), a large-scale cross-domain dataset with 69
training databases and 11 development databases. Each evolution iteration (using only Haiku 4.5
LLMs for SQL generation) costs approximately $2 in Claude API for the calls and runs for 22
minutes on average, enabling rapid experimentation cycles. Note that evolution is accomplished via
Claude Code (using either Sonnet or Opus 4.5 LLMs) and does not incur direct costs, but rather
uses up a weekly usage quota. Empirically, each 30-iteration run uses about 12% of the weekly
usage quota of a Claude Max plan{’| Computational requirements are modest. Experiments were
conducted on either a MacBook Pro (48GB RAM) or an Azure VM with 8 vCPUs and 32GB RAM.

4.2 MAIN RESULTS

We demonstrate RoboPhD’s effectiveness by evolving agents on the training set and evaluating them
across three tiers of Anthropic models: Haiku-4.5, Sonnet-4.5, and Opus-4.5. As noted above, the
naive baseline represents the simplest possible agentic design, similar to what someone would use
if they were new to the Text-to-SQL problem, with a 50-line Python tool that only dumps raw DDL
schema statements (see Appendix [E|for the complete agent). The naive agent represents the starting
point of our evolutionary process as well as our experimental baseline.

Table 1: Results on BIRD dev set. Evolution provides larger improvements on cheaper models.

Opus-4.5 Sonnet-4.5 Haiku-4.5
Accuracy Cost/Query Accuracy Cost/Query Accuracy Cost/Query
Naive 69.0% 1.61¢ 65.7% 0.56¢ 57.2% 0.34¢
Best Evolved 71.3% 3.13¢ 69.2% 0.87¢ 66.1% 0.51¢
A +2.3 +3.5 +8.9

There are three key takeaways from our main results, shown in Table

(1) Evolution produced the largest gains on the cheapest models. While the evolved Opus agent
improves by 2.3 points over naive Opus, the evolved Haiku agent gains 8.9 points—nearly four
times the improvement. This inverse relationship between model capability and evolutionary benefit
suggests that more powerful models already capture much of what can be learned through prompting
and tooling, leaving less room for improvement.

(2) Relative to the naive baseline, evolution delivers higher accuracy at lower cost. An evolved Haiku
agent (66.1%, 0.51¢/query) exceeds the accuracy of a naive Sonnet agent (65.7%, 0.56¢/query) at
lower cost. Similarly, an evolved Sonnet agent (69.2%, 0.87¢/query) exceeds naive Opus (69.0%,
1.61¢/query) at roughly half the cost. Since evolution is a one-time training cost while inference
is ongoing, organizations can deploy cheaper models with evolved prompts rather than expensive
models with naive prompts.

(3) Evolution delivers meaningful improvements across all model tiers, arguing for the broad ap-
plicability of RoboPhD’s approach. Even Opus-4.5, which starts from a strong 69.0% baseline,
benefits from evolution, reaching 71.3%—our highest recorded accuracy on the BIRD dev set. As
of the time of this writing, 71.3% ranks 17th on the BIRD dev setEl We would argue that this is a
strong result to achieve without the benefit of human domain knowledge.

‘nttps://www.claude.com/pricing/max
*https://bird-bench.github.io/

https://www.claude.com/pricing/max
https://bird-bench.github.io/

Under review as a conference paper at ICLR 2026

4.3 EVOLUTION ANALYSIS

Champion Agent Design. Our best-performing agent, iter18_hybrid_comprehensive_analyzer,
emerged from cross-pollination—in the 18th round of evolution, the Evolution Al synthesized tech-

niques from three parent agents that had each reached 76% training accuracy on the 17th iteration

through different approaches: adaptive context scaling, semantic pattern analysis, and precision

column coverage. Rather than choosing one approach, evolution combined their complementary
strengths into a unified tool. The key design innovation was a size-based feature matrix that adjusts

analysis depth based on database complexity:

Feature Small Medium Large Ultra
(<150 cols) (<300cols) (<400cols) (>400 cols)
Sample values/column 10 5 3 1
Enum value limit All 15 5 0
Semantic patterns Full Essential Skip Skip
Cross-table validation Full Critical Skip Skip

Table 2: Size-adaptive feature matrix. The agent gracefully degrades analysis depth for larger
databases to prevent overflowing the 200K token Claude context limit while maintaining compre-
hensive analysis for typical BIRD databases.

This adaptive approach prevents catastrophic failures on large databases (which previously caused
0% accuracy due to context overflow) while maintaining rich analysis for small and medium
databases where detailed semantic understanding improves accuracy.

Database Analysis Script. The ~1000-line Python script generates a structured 10-section anal-
ysis: (1) complete schema DDL, (2) table overview with row counts, (3) detailed column analysis
with data types and sample values, (4) foreign key relationship map with cardinality, (5) enumer-
ated value reference for low-cardinality columns, (6) value ranges for numeric columns, (7) format
detection (dates, currencies, codes), (8) semantic patterns like temporal sequences or hierarchical
relationships, (9) cross-table validation identifying orphaned foreign keys, and (10) query guidance
with common pitfalls for the specific database.

Evolved SQL Instructions. The eval instructions (527 lines) encode patterns discovered across
18 iterations of evolution, including: precise column selection rules (return only columns explicitly
requested, not those used for filtering or sorting), evidence interpretation patterns (when evidence
says “full address refers to street_num, street_name, city,” return all three columns in that exact
order), and aggregation guidance (apply LIMIT 1 only for superlatives like “best” or “highest,” not
for singular nouns).

5 DISCUSSION AND FUTURE WORK

5.1 PRACTICAL APPLICABILITY

RoboPhD produces easily deployable artifacts. The evolved agent consists entirely of a Python
script and a markdown file containing SQL generation instructions—no complex frameworks or
dependencies. At deployment time, the Python script runs once per database as an offline prepro-
cessing step, generating a structured analysis without seeing any user questions. This analysis is
concatenated with the SQL generation instructions to form a system prompt.

At runtime, answering a user’s question requires only this system prompt, the question, and any
provided evidence—there is no dependency on Claude Code, the evolutionary infrastructure, or
any of the complexity described in this paper. The only additional logic beyond the prompt is the
universal verification step (Section [3.2.3)), which validates query results and optionally retries. This
simplicity enables straightforward integration into production systems.

Under review as a conference paper at ICLR 2026

5.2 ARCHITECTURAL OPTIONS UNDER INVESTIGATION

RoboPhD’s framework supports several capabilities that we have explored but not included in this
paper due to insufficient experimental evidence. In the interest of simplicity, we focus on the cross-
pollination strategy with tool-only execution, but note these alternatives for future investigation:

Meta-evolution. A meta-agent critiques and evolves the evolution strategies themselves, meta-
evolving new strategies and scheduling them strategically based on performance trends and review of
the reasoning and post-evolution reflection of the evolutionary agents. Our preliminary experiments
show promise, but results remain ambiguous—meta-evolution may primarily benefit very lengthy
runs exceeding 30 iterations where strategy adaptation becomes more valuable.

Alternative evolution strategies. We developed several manually-written strategies beyond cross-
pollination, including a research-driven strategy that instructs the Evolution Al to study academic
papers and extract applicable techniques. While the research-driven strategy is intriguing, we view
these alternative strategies as likely superseded by meta-evolution, which could discover the most
effective strategies automatically.

LLM-based database analysis. Our current approach is “all-or-nothing”—either a deterministic
Python script or full LLM reasoning. A promising middle ground would allow generated Python
scripts to invoke the LLM in targeted situations where semantic understanding provides high value,
such as inferring implicit relationships or disambiguating column purposes.

5.3 BROADER APPLICATIONS

Other Text-to-SQL benchmarks. While we evaluate on BIRD, the RoboPhD framework is
benchmark-agnostic. Spider 2.0 (Lei et al., 2024)) presents a natural extension, with its enterprise-
scale databases and more complex queries requiring multi-step reasoning. BIRD-Critic (L1 et al.,
2025b) offers another direction, focusing on debugging and fixing incorrect SQL queries rather than
generation from scratch.

Other domains. Given that a key feature of the system is an absence of human-injected text-to-SQL
domain knowledge, we would expect RoboPhD to generalize beyond Text-to-SQL. Code generation
represents a particularly promising application, where similar evolutionary pressure could discover
effective prompting strategies and tool designs for programming tasks.

6 CONCLUSION

We presented RoboPhD, a system where Al agents autonomously conduct research to improve Text-
to-SQL performance. Our system achieves 71.3% accuracy on the BIRD Deyv set through systematic
evolution, discovering effective strategies without human intervention in the research loop. Like a
tireless PhD student, RoboPhD runs experiments continuously, learning from failures and evolving
better approaches.

While our system operates within the bounded domain of database queries, it demonstrates that
Al agents can conduct meaningful research cycles—analyzing failures, forming hypotheses, and
iteratively refining solutions—without human intervention. The techniques explored here, including
competitive evolution and error-driven learning, may extend to other domains where systematic
experimentation is feasible. We open-source our framework to enable the community to explore
whether similar approaches can accelerate capability development in domains beyond Text-to-SQL.

ETHICS STATEMENT

This work involves autonomous Al systems with significant operational freedom, raising important
safety and security considerations. We acknowledge several critical risks:

Execution Safety: RoboPhD operates with Claude Code in an automated mode where generated
code is executed without human review. While model alignment has reduced risks significantly,
autonomous code execution remains inherently dangerous—the system could theoretically execute

10

Under review as a conference paper at ICLR 2026

destructive commands. We mitigate this through process isolation and filesystem permissions, but
acknowledge this remains an open challenge for autonomous Al systems.

Security Vulnerabilities: Deploying Al-evolved code introduces novel attack surfaces. The evolved
Python tools process database schemas and could potentially be manipulated by adversarial inputs
to exfiltrate data or execute unintended operations. While these considerations are not a concern for
BIRD’s open-source databases, production deployments would require strict sandboxing, network
isolation, and comprehensive security auditing of the evolved artifacts.

Code Release: We release our code openly to enable reproducibility and community scrutiny. While
the techniques demonstrated here are domain-specific, we encourage practitioners deploying similar
autonomous code generation systems to implement appropriate safeguards including sandboxing,
least-privilege execution, and security review of generated artifacts.

REFERENCES

Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 2014.

Ajeya Cotra. Without specific countermeasures, the easiest path to transformative ai likely leads to
ai takeover. Al Alignment Forum, 2022.

Ahmet Donder et al. Genasql: A generative agent for advanced sql generation. arXiv preprint
arXiv:2505.14174, 2025.

Arpad E Elo. The Rating of Chessplayers, Past and Present. Arco Publishing, 1978.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, et al. Discovering faster matrix multiplication algorithms with reinforce-
ment learning. Nature, 610(7930):47-53, 2022.

Max Jaderberg, Victor Dalibard, Oriol Osindero, et al. Population based training of neural networks.
arXiv preprint arXiv:1711.09846, 2017.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy:
Compiling declarative language model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714, 2023.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoging Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. Spider 2.0: Evaluating language models on
real-world enterprise text-to-sql workflows. arXiv preprint arXiv:2411.07763, 2024.

Hao Li et al. Omnisql: Database systems enhancement with large language models. arXiv preprint
arXiv:2503.02240, 2025a.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C.C. Chan, Leyang
Fan, Yongji Du, Shaodong Qu, Hongkun Yao, Ming An, Annan Cheng, Gang Zhao, Ziwei Zou,
and Fei Yang. BIRD: Big bench for large-scale database grounded text-to-SQLs. In Thirty-
seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2023. URL https://openreview.net/forum?id=gqJVWOgJT5H.

Jinyang Li, Xiaolong Li, Ge Qu, Per Jacobsson, Bowen Qin, Binyuan Hui, Shuzheng Si, Nan Huo,
Xiaohan Xu, Yue Zhang, et al. Swe-sql: Illuminating llm pathways to solve user sql issues in
real-world applications. arXiv preprint arXiv:2506.18951, 2025b.

Yichen Liu et al. Xiyan-sql: A multi-scale few-shot learning method for text-to-sql. arXiv preprint
arXiv:2507.04701, 2024.

Ilya Loshchilov and Frank Hutter. Cma-es for hyperparameter optimization of deep neural networks.
arXiv preprint arXiv:1604.07269, 2016.

11

https://openreview.net/forum?id=qJVWOgJT5H

Under review as a conference paper at ICLR 2026

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Daniel Maamari et al. Distillery: A compositional framework for text-to-sql. arXiv preprint
arXiv:2408.07702, 2024.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. /CML, 2019.

Mohammadreza Pourreza and Davood Rafiei. Chase-sql: Multi-path reasoning and preference opti-
mized candidate selection in text-to-sql. arXiv preprint arXiv:2410.01943, 2024.

Mohammadreza Pourreza et al. Reasoning-sql: Distilling reasoning capabilities from Ilms to smaller
models for text-to-sql. arXiv preprint arXiv:2503.23157, 2025.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, et al. Mathematical discoveries from program search with
large language models. Nature, 625(7995):468—475, 2024.

Yunnan Sheng et al. Csc-sql: Community-driven schema construction for text-to-sql. arXiv preprint
arXiv:2505.13271, 2025.

Vladislav Shkapenyuk et al. Askdata: Naturally leveraging data analysis agents for complex text-
to-sql generation. arXiv preprint arXiv:2505.19988, 2025.

Jacob Steinhardt. Ai capabilities and alignment research. Al Alignment Forum, 2022.

Shayan Talaei, Mohammadreza Pourreza, and Davood Rafiei. Chess: Contextual harnessing for
efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Jianmin Xie et al. Opensearch-sql: Context-aware sql generation with an open-source suite. arXiv
preprint arXiv:2502.14913, 2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. EMNLP, 2018.

Eliezer Yudkowsky. Artificial intelligence as a positive and negative factor in global risk. In Global
catastrophic risks, pp. 308-345, 2008.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
639(8055):609-616, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. NeurIPS, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

A LLM USAGE

Scope and philosophy. In keeping with the spirit of this project, we made extensive use of large
language models (LLMs) throughout. Our goal was to study whether LLMs can function as au-
tonomous research agents with minimal domain-specific guidance from the authors. In addition to
using Claude Code to help write, enhance, and refactor the code, we used Claude to help write design
documents to brainstorm and clarify new ideas, and Claude helped author parts of the manuscript.
In each case there was human oversight and revision applied, especially for the manuscript itself.

12

Under review as a conference paper at ICLR 2026

A.1 ROLES WITHIN THE ROBOPHD SYSTEM

Evolution (Section 3.2.6). As discussed in Section 3.1, a core contribution is showing that an LLM
can serve in the role of a graduate student. Concretely, we used Claude Code running Opus 4.5 or
Sonnet 4.5 for the Evolution Agent. This agent generated new agent packages (prompts and python
tools) across iterations.

SQL Generation (Section 3.2.3). The SQL Generation phase used Haiku, Sonnet, or Opus 4.5 via
the Claude API (not via Claude Code) to translate questions (and evidence) into executable SQL,
conditioned on the database analysis and evaluation instructions.

Minimal domain guidance (Sections 3.1, 3.2). By design, author-provided Text-to-SQL know-how
was kept to an absolute minimum. Evolution strategies specify process (e.g. cross-pollinate leading
agents, analyze errors, etc.) rather than scientific content; improvements therefore arise from the
models’ latent knowledge and error-driven iteration.

A.2 LLMS USED AS SOFTWARE-ENGINEERING TOOLS

In addition, and consistent with the project’s philosophy, we used Claude Code (primarily with Opus
and Sonnet) models as a development assistant for the RoboPhD infrastructure. The RoboPhD code-
base was almost entirely authored through Claude Code sessions, with the human authors providing
specifications, reviewing diffs, enforcing style/tests, and making final design decisions. In this con-
text, Claude Code functioned as a coding tool under close human supervision. Very little of the final
codebase was the result of direct manual edits by the authors, with one exception: the evolution
strategy prompts discussed in Section [3.2.4]and shown in Appendix [C|were primarily hand-written.
We see this as consistent with the Graduate Student metaphor laid out in Section @ we, the au-
thors, provide thoughtful strategic guidance (similar to the role of a research advisor), while leaving
autonomy to the graduate student to iterate towards a solution. As discussed in Section [5] evolving
this strategic guidance is a direction for future research.

A.3 LLMS USED IN MANUSCRIPT PREPARATION

In contrast to the codebase, most of the manuscript text was written by the authors. However,
portions of this paper were drafted and edited by the authors with assistance from Claude Code
(Opus 4.1 and 4.5), ChatGPT 5, and Gemini 3. In these cases, the authors determined the structure
and arguments. Where LLM-suggested text was used, it was reviewed and, as needed, rewritten by
the authors for accuracy and clarity.

A.4 ATTRIBUTION, AUTHORSHIP, AND ACCOUNTABILITY

Although LLMs played a significant role in ideation (via the Evolution Agent), engineering as-
sistance, and writing support, all scientific claims, experiments, analyses, and conclusions are the
responsibility of the human authors. The models did not have independent access to private test data
or to submission systems, and they did not make publication decisions.

A.5 DATA GOVERNANCE AND SAFEGUARDS

LLM prompts and outputs were constrained to benchmark-permitted artifacts (schemas, evidence,
and allowed literature). We avoided leaking ground-truth SQL or test questions to the agents; evalu-
ation used standard execution-accuracy protocols. Logs of prompts/outputs for key experiments are
retained for audit and reproducibility.

B REPRODUCIBILITY STATEMENT

The results in this paper are reproducible using the open source code bundle provided as supplemen-
tary material to this manuscript. The entire framework can be run from scratch following instructions
in the README, which will execute all of the iterations of evolution, reproducing agents similar to
the ones featured in the results and discussion earlier in the paper. In the main body of the paper,
we note the model families and modes (Claude Code Opus/Sonnet 4.5 for evolution and Claude

13

Under review as a conference paper at ICLR 2026

Sonnet 4.5 for evaluation), interface (Claude Code vs. Claude API), and where nondeterminism is
relevant, we note seeds and sampling parameters in the released configs. Despite seeds in our code
for the randomness that we control, there is some non-determinism that we cannot control in Claude
Opus/Sonnet API responses that may lead to minor differences in the results when run from scratch.
Given that this is an evolutionary approach over many iterations, small variations in one iteration,
may lead to amplified differences in subsequent iterations.

C CROSS-POLLINATION STRATEGY PROMPT

This appendix provides excerpts from the cross-pollination evolution strategy that guides the Evolu-
tion Agent. The full prompt (~240 lines) emphasizes process-oriented guidance rather than domain-
specific Text-to-SQL techniques.

C.1 CORE OBJECTIVE

“You are creating a new Claude Code agent primarily by combining success-
ful elements from multiple existing agents using the three-artifact architecture.”
“**Note:** Although you are primarily using a cross-pollinating approach, you
can use a new idea of your own if you think you see an opportunity.”

C.2 CROSS-POLLINATION APPROACH

The strategy instructs the Evolution Agent to identify complementary strengths:

“When examining top-performing agents, ask: Which techniques do different
agents use effectively? Which approaches consistently achieve the best results?
How do different agents’ tools complement each other? What patterns of effec-
tiveness emerge across multiple agents? Which combinations of techniques might
create synergies?”

“Cross-Pollination Approach: 1) Identify Agent A’s most effective techniques. 2)
Identify Agent B’s complementary strengths. 3) Identify Agent C’s unique success-
ful approaches. 4) Your tool: Combine these complementary techniques into one
comprehensive analyzer.”

C.3 TooOL-ONLY REQUIREMENT

The strategy mandates deterministic execution:

“The system supports a tool-only execution mode where your Python/shell tool
generates a complete analysis file that is directly copied to the agent output, by-
passing the Al agent entirely. This is the REQUIRED approach for this cross-
pollination strategy.”

C.4 META-LEVEL GUIDANCE

The strategy concludes with process-oriented direction:

“Your overall goal: Push accuracy higher through tool-only cross-pollination.
You are an expert in the field of Text2SQL. Use your knowledge of the field, your
analysis of what is bringing accuracy down with current agents, and your analysis
of which tool-based techniques from each agent work best to build an agent pack-
age that will achieve higher accuracy than previous agents on a set of databases
that you haven’t seen before.”

“Remember: Think hardeIE] than you normally would about this. Review the tools
from multiple top-performing agents, identify what makes each one effective, and

“Think harder” is a Claude Code keyword that triggers extended reasoning. See https://www.
anthropic.com/engineering/claude-code-best-practices.

14

https://www.anthropic.com/engineering/claude-code-best-practices
https://www.anthropic.com/engineering/claude-code-best-practices

Under review as a conference paper at ICLR 2026

combine the best elements into a comprehensive tool-only solution that achieves
your goal of pushing accuracy higher.”

These excerpts demonstrate how we provide high-level research methodology—analyze multiple
agents, identify complementary strengths, combine deterministic techniques—without injecting
domain-specific Text-to-SQL knowledge.

D AGENT SELECTION PROTOCOL

This appendix details exceptions to the standard three-agent selection protocol described in Sec-
tion[3.2.3]

D.1 STANDARD SELECTION (ITERATIONS 1-11)
Each iteration tests three agents:

1. Pending winner(s): The winner from the previous iteration. If the previous iteration re-
sulted in a tie, all tied agents are pending winners and receive priority slots.

2. Newly evolved agent: The agent created by the Evolution Al for this iteration.

3. ELO-based selection: Random selection from the top performers by ELO (excluding
pending winners and the new agent).

D.2 LATE-STAGE EXPLORATION (ITERATIONS 12-30)

In the experiments described in this paper, starting at iteration 12, the system probabilistically sub-
stitutes non-evolution iterations to increase testing coverage of the accumulated agent population:

* 70% probability: Standard cross-pollination evolution with 3 agents

* 15% probability: “Challenger” iteration—no evolution occurs; instead, 4 agents are
tested, targeting under-tested agents with above average ELO (ELO > 1500, prioritizing
non-pending winners with the fewest prior tests)

* 15% probability: “None” iteration—no evolution occurs; 4 agents are tested via standard
ELO-based random selection

The increased agent count (4 vs. 3) in non-evolution iterations compensates for the lack of a newly
evolved agent, allowing more thorough evaluation of existing agents. This late-stage exploration
helps identify “hidden gems”—agents with strong potential that received insufficient testing in ear-
lier iterations.

E THE NAIVE BASELINE AGENT

This appendix presents the complete naive baseline agent referenced in Section 4.2. This agent
represents the simplest possible starting point—prompts that someone new to the Text-to-SQL prob-
lem might write without any domain expertise.

E.1 DATABASE ANALYSIS AGENT (AGENT.MD)

The database analysis component uses tool-only execution to extract raw schema:

name: naive

description: Baseline agent that outputs raw DDL schema using tool-only execution
execution_mode: tool_only

tool_command: python tools/extract_schema.py

tool_output_file: tool_output/schema.txt

15

Under review as a conference paper at ICLR 2026

Naive DDL Extractor (Tool-Only)
This agent uses deterministic tool-only execution to extract raw database schema.
Process

1. *xRun Schema Extraction Toolxx
‘Y'bash
python tools/extract_schema.py

ANAURY

2. xxRead and Output Resultsxx*
- Read the generated schema from ‘tool_output/schema.txt®
- Write the complete output to ‘./output/agent_output.txt®

Error Recovery
If the tool fails:

Check ‘database.sglite' exists

Verify Python environment has sqglite3 library

Examine any error messages in ‘tool_output/?

Attempt to run the tool manually to see errors

Fall back to manual schema extraction using SQLite CLI:

‘Y 'bash

sglite3 database.sglite ".schema" > output/agent_output.txt

ANAURY

g s wh

E.2 SQL GENERATION INSTRUCTIONS (EVAL_INSTRUCTIONS.MD)

The SQL generation instructions are equally minimal:

SQL Generation Instructions

Core SQL Requirements

Generate clean, executable SQL:

- No markdown formatting or code blocks
- No comments or explanatory text

— Only the SQL statement

Evidence Handling

Evidence is important! When evidence is provided, be sure to follow
it very carefully

SQLite Specifics
- This is a SQLite database. Be sure to use SQLite syntax
Remember

Keep it simple. Return exactly what’s requested. Follow evidence literally.

E.3 SCHEMA EXTRACTION TOOL (TOOLS/EXTRACT_SCHEMA.PY)

The naive baseline includes a single 50-line Python script that extracts raw DDL:

16

Under review as a conference paper at ICLR 2026

#!/usr/bin/env python3
"""Baseline schema extractor - extracts raw DDL using sglite3."""

import sqglite3
import sys

def extract_schema (db_path: str, output_file: str):
"""Extract complete database schema as DDL."""
try:
conn = sqglite3.connect (db_path)
cursor = conn.cursor ()

Get all schema DDL statements (equivalent to .schema command)
cursor.execute ("""

SELECT sqgl || ";’

FROM sqglite_master

WHERE sgl IS NOT NULL

ORDER BY tbl_name, type DESC, name

nn ")

schema_statements = cursor.fetchall ()

Format and write output

output_lines = []

for (sgl,) in schema_statements:
output_lines.append(sgl)

schema_output = '\n’.join (output_lines)

with open (output_file, '"w’) as f:
f.write (schema_output)

print (f"Schema extraction complete - wrote {len(schema_statements)} DDL stat«
conn.close ()
return O

except Exception as e:
print (f"ERROR: {e}", file=sys.stderr)
return 1
if _ name_ == "_ main__
exit (extract_schema ("database.sglite", "tool_output/schema.txt"))

”w.

17

	Introduction
	Related Work
	Text-to-SQL Systems

	Method
	Conceptual Overview: The Graduate Student Metaphor
	Technical Implementation
	System Overview: Evolving an Agent with Two Components
	Offline Database Analysis Phase
	Online SQL Generation Phase
	Evolution: Creating New Artifacts
	Evaluation and ELO Ranking
	Experimental Protocol: Selection and Sampling

	Experiments
	Experimental Setup
	Main Results
	Evolution Analysis

	Discussion and Future Work
	Practical Applicability
	Architectural Options Under Investigation
	Broader Applications

	Conclusion
	LLM Usage
	Roles within the RoboPhD System
	LLMs used as software-engineering tools
	LLMs used in manuscript preparation
	Attribution, authorship, and accountability
	Data governance and safeguards

	Reproducibility Statement
	Cross-Pollination Strategy Prompt
	Core Objective
	Cross-Pollination Approach
	Tool-Only Requirement
	Meta-Level Guidance

	Agent Selection Protocol
	Standard Selection (Iterations 1–11)
	Late-Stage Exploration (Iterations 12–30)

	The Naive Baseline Agent
	Database Analysis Agent (agent.md)
	SQL Generation Instructions (eval_instructions.md)
	Schema Extraction Tool (tools/extract_schema.py)

