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ABSTRACT

We present RoboPhD, a system where AI agents autonomously conduct research
to improve Text-to-SQL performance. RoboPhD implements a closed-loop evo-
lution cycle with three coordinated components: a Database Analysis agent that
profiles schemas without seeing test questions, a SQL Evaluation agent that gen-
erates executable queries conditioned on analysis and evidence, and an Evolution
agent that designs new versions of the other two agents based on performance
feedback. The Evolution agent employs weighted random sampling from multi-
ple evolutionary strategies—including refinement, research-driven adaptation, and
error-focused improvement—ensuring diverse exploration paths. Central to the
framework is an ELO-based selection mechanism, which enables survival-of-the-
fittest dynamics across competing agents while handling non-transitivity in perfor-
mance. Starting from a simple baseline, RoboPhD evolves agents through iterative
refinement, discovering how to analyze databases to facilitate Text-to-SQL, while
also evolving a sophisticated prompt for SQL Evaluation that covers numerous
common pitfalls such as proper ordering of columns, when to use COUNT() vs
SUM(), etc.-—without being explicitly programmed for them. The full system
achieves 68.6% execution accuracy on the BIRD test benchmark, demonstrating
that AI can autonomously generate hypotheses, run experiments, and refine tech-
niques.

1 INTRODUCTION

Text-to-SQL, the task of translating natural language questions into executable SQL queries, remains
a fundamental challenge in natural language processing with significant real-world applications. Re-
cent advances have shown that large language models (LLMs) can achieve impressive performance
on benchmarks like Spider (Yu et al., 2018) and BIRD (Li et al., 2023), but these approaches typi-
cally require extensive manual prompt engineering, careful model selection, and domain expertise.

The ability of AI systems to conduct AI research autonomously has been identified as a crucial ca-
pability milestone with profound implications for the pace of AI progress (Steinhardt, 2022; Cotra,
2022). Several researchers have argued that AI systems capable of improving themselves or con-
ducting research represent a potential discontinuity in technological development (Bostrom, 2014;
Yudkowsky, 2008). Recent work has begun to explore this frontier, with systems demonstrating in-
creasing autonomy in scientific discovery (Romera-Paredes et al., 2024), machine learning research
(Lu et al., 2024), and algorithm development (Fawzi et al., 2022).

RoboPhD represents a concrete step toward this milestone by demonstrating that AI systems can
autonomously improve their performance on complex tasks through systematic experimentation and
iteration. While focused on the specific domain of text-to-SQL, our approach shows that AI agents
can effectively conduct the research cycle of hypothesis generation, experimentation, and iterative
refinement—core components of the scientific process with minimal inductive bias introduced by
humans. We propose a paradigm shift: instead of humans manually optimizing prompts and archi-
tectures, we create AI systems that autonomously conduct research to improve themselves.

RoboPhD’s architecture consists of three specialized agents that implement domain-independent
learning constraints—a design that enables the framework to generalize beyond text-to-SQL to any
task decomposable into offline analysis and online inference.
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1. Evolution AI: Critic agent that analyzes experimental results, identifies patterns in failures
and successes, and creates new agent designs for the Offline + Online Agents, combining
successful strategies

2. Offline Analysis AI: Responsible for gathering useful information to support the online
task in a specific problem instance (e.g. a specific database in text-to-SQL); for text-to-
SQL this offline analysis examines the database schema and generates text summaries and
insights without seeing test questions, bridging the gap between raw schemas and online
SQL generation

3. Online Evaluation AI: Responsible for implementing the core ‘online’ inference task. In
text-to-SQL, this generates SQL queries based on the offline database analysis and the
specific input question, and this evaluates the result/failures to potentially self-correct

This creates a closed-loop research system where AI agents learn from their own experiments, dis-
covering optimization strategies without human intervention in the research process.

This work makes the following key contributions:

• Autonomous AI Research Framework: We demonstrate AI agents conducting systematic
research on text-to-SQL through a closed-loop evolution cycle, autonomously discovering
effective optimization strategies without human intervention

• ELO-Based Evolutionary Selection: First application of ELO ratings for evolutionary
prompt/agent optimization, effectively handling non-transitivity and asynchronous agent
entry

• Stochastic Multi-Strategy Evolution: We introduce an evolutionary framework employ-
ing weighted random sampling from a portfolio of complementary strategies—including
refinement, literature adaptation, error analysis, and pure selection—ensuring diverse ex-
ploration paths and robustness to local optima

• Evolution of a complete Text-to-SQL system: The framework simultaneously evolves
the tool-using analysis agent (its prompt and tools) and the SQL-generation instructions to
improve end-to-end performance.

• Minimal External Knowledge, Domain-Independent Improvement: The system im-
proves with only minimal author-provided Text-to-SQL knowledge; gains arise from la-
tent LLM capabilities, iterative error-driven learning across iterations, and occasional au-
tonomous literature adaptation

2 RELATED WORK

2.1 TEXT-TO-SQL SYSTEMS

The BIRD benchmark (Li et al., 2023) has driven significant advances in Text-to-SQL, with top
systems achieving 71-77% accuracy through diverse approaches. AskData (Shkapenyuk et al., 2025)
achieves 77.14% using GPT-4o with data analysis agents. CHASE-SQL (Pourreza & Rafiei, 2024)
reaches 76.02% through multi-path reasoning and preference optimization. XiYan-SQL (Liu et al.,
2024) employs multi-scale few-shot learning for 75.63% accuracy. CSC-SQL (Sheng et al., 2025)
uses community-driven schema construction achieving 73.67%. Reasoning-SQL (Pourreza et al.,
2025) distills capabilities to smaller models reaching 72.78%. OpenSearch-SQL (Xie et al., 2025),
OmniSQL (Li et al., 2025), and GenaSQL (Dönder et al., 2025) all achieve approximately 72%
through various architectures. Distillery (Maamari et al., 2024) introduces compositional approaches
at 71.83%. CHESS (Talaei et al., 2024) achieves 71.1% using contextual harnessing.

Our work uniquely focuses on autonomous discovery of these strategies rather than manual design.
While prior systems require human experts to engineer prompts and architectures, RoboPhD discov-
ers optimization techniques autonomously. Note that, with the exception of the BIRD benchmark
paper (Li et al., 2023), all of the above papers served as inputs to the evolution agent in the research-
driven evolution strategy discussed in Section 3.2.4.

Prior work on prompt optimization includes APE (Zhou et al., 2022), OPRO (Yang et al., 2023),
DSPy (Khattab et al., 2023), and TextGrad (Yuksekgonul et al., 2025). While these systems optimize
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prompts, our approach evolves entire agent architectures including tools, strategies, and multi-phase
workflows. Crucially, our system conducts research autonomously without human intervention in
the optimization loop. One key aspect of our approach is allowing the Evolutionary agent access to
the errors made from previous candidate agents. This is similar to the idea of text gradients explored
in the TextGrad paper (Yuksekgonul et al., 2025), where the LLM produces a (metaphorical) gradient
to describe how to address a particular error. In our system, the error gradients are available for the
agent to choose how to incorporate them into the next candidate agent.

Evolutionary algorithms have been applied to neural architecture search (Pham et al., 2019) and
hyperparameter optimization (Loshchilov & Hutter, 2016; Jaderberg et al., 2017). We extend this
to evolving complete AI agents with natural language specifications and tool usage, creating a fully
autonomous research system.

The ELO rating system (Elo, 1978), originally developed for chess, has found recent applications
in AI evaluation. The Chatbot Arena (Zheng et al., 2023) uses ELO ratings to create a dynamic
leaderboard of LLMs based on human preferences, demonstrating ELO’s effectiveness for model
comparison. While these systems use ELO for passive evaluation and ranking, we introduce ELO
as an active selection mechanism for evolutionary optimization (see §3.2.5 for our implementation).

3 METHOD

3.1 CONCEPTUAL OVERVIEW: THE ACADEMIC RESEARCH METAPHOR

RoboPhD operates like an autonomous doctoral research program, with two key actors and the
systems they build:

The Advisor (Evolution Strategies) provides high-level research directions—“focus on fixing error
patterns,” “see if there are any good ideas in this paper,” or “focus on refining your strongest candi-
date”—without prescribing specific solutions. Like a PhD advisor, it sets strategic direction while
granting autonomy to explore and implement (see Appendix C for example prompts).

The Graduate Student (Claude Code1, wrapping Claude Opus-4.12) interprets this guidance to
build complete AI-powered text-to-SQL systems, analogous to prior efforts on the BIRD benchmark.
It reads academic papers when directed, analyzes experimental failures to identify patterns, forms
hypotheses about improvements, and implements these ideas as new system designs. Each system it
creates consists of a Database Analysis Agent with supporting tools and an SQL Evaluation Agent
with generation instructions. Like a doctoral student, it maintains context across research iterations,
accumulating expertise about which architectural choices and techniques work in which contexts.

This academic structure enables truly autonomous research: the system reads papers from top per-
formers on the BIRD benchmark, learns from its failures, develops novel techniques, and iteratively
improves without human intervention. Each iteration represents a complete research cycle: review
results → read literature (when applicable) → form hypotheses → build new system → test across
databases → analyze outcomes → repeat.

Note that a core design goal of RoboPhD is domain independence: we intentionally avoid injecting
author-crafted Text-to-SQL techniques. The evolution strategies provide only meta-level research
directions (e.g. “focus on prompts,” “refine a starting agent,” “analyze errors,” or “read and adapt a
paper”), rather than prescribing scientific content about Text-to-SQL itself. Consequently, measured
gains arise primarily from two sources: (i) the latent capabilities of the underlying LLMs and (ii)
experience accumulated over many iterations as the Evolution AI learns from outcomes and refines
agent designs. External domain information is introduced only when the research-driven strategy is
sampled, at which point the system autonomously reads a high-performing paper.

Algorithm 1 presents the complete evolution cycle, showing how strategy selection, agent evolution,
evaluation, and ELO updates work together to drive continuous improvement.

1https://claude.com/product/claude-code
2https://www.anthropic.com/claude-opus-4-1-system-card
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Algorithm 1 RoboPhD Evolution Cycle
1: Input: Initial agent pool A, evolution weights W , iterations N
2: // Example: W = {refine: 30%, research: 30%, error: 30%, none: 10%}
3: Output: Final agent rankings and performance history
4:
5: // Initial agent pool typically has 1 - 3 agents
6: competitors← A
7:
8: for i = 1 to N do
9: // Evaluation

10: databases← RandomSample(BIRD.train, 8)
11: for each db in databases do
12: questions[db]← RandomSample(db.questions, 30)
13: end for
14: for each agent in competitors do
15: accuracy[agent]← EvaluateOnQuestions(agent, databases, questions)
16: end for
17:
18: // ELO Update via Pairwise Decomposition
19: for each pair (a, b) in {(1, 2), (1, 3), (2, 3)} do
20: S ← 1 if accuracy[a] > accuracy[b], 0.5 if equal, else 0
21: UpdateELO(competitors[a], competitors[b], S, K = 32)
22: end for
23:
24: winner ← arg maxagent∈competitors accuracy[agent]
25:
26: Prepare next iteration
27: if i < N then
28: strategy ←WeightedRandom(W )
29:
30: if strategy 6= none then
31: agentnew ← EvolveAgent(winner, strategy, ErrorAnalysis(i))
32: A ← A∪ {agentnew}
33: end if
34:
35: // Tournament Selection for Next Round
36: competitors[1]← winner {Current winner}
37: competitors[2]← agentnew if exists, else RandomTop(A, 2k)
38: competitors[3]← RandomTop(A, 2k) {ELO-based selection}
39: end if
40: end for
41: return A with final ELO rankings

3.2 TECHNICAL IMPLEMENTATION

We now detail how RoboPhD orchestrates three distinct AI model calls in each iteration cycle to
achieve autonomous research.

3.2.1 SYSTEM OVERVIEW: THE THREE-AGENT ARCHITECTURE

RoboPhD’s coordinates three specialized agents as described in Section 1, each playing a distinct
role in the research cycle. This is illustrated in Figure 1.

Crucially, these agents operate in a carefully orchestrated sequence where the output of one becomes
the input to another, creating a closed-loop research system. The SQL evaluation agent never sees
the database schema directly—all understanding must flow through the analysis layer, forcing the
system to develop effective communication strategies between its components.
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RoboPhD Evolutionary Cycle

Evolution AI

Claude Code (Opus-4.1)

Generates
3-Artifact Agent Package

agent.md | eval.md | tools/

Configures

Database Analysis AI

Claude Code (Sonnet-4)

BIRD Databases

Sample 8 DBs

Schema Analysis

SQL Generation AI

Claude Sonnet-4

BIRD Questions

Sample 30 questions

per DB

Outputs

SQL QUERIES

EVALUATION RESULTS

• Successes

• Failures

• Error Patterns

Evaluated

Components: Claude Code Claude API Package BIRD Data

Figure 1: The RoboPhD evolutionary cycle

3.2.2 OFFLINE DATABASE ANALYSIS PHASE

The database analysis phase is conducted without seeing the questions that will be asked. This is
typical of industrial requirements where it is acceptable to do extensive database analysis offline
to facilitate SQL generation, which operates under tight time constraints. This pattern generalizes
broadly: separating offline analysis from online inference enables thorough preprocessing to support
rapid real-time responses

The Database Analysis agent receives 1) full access to a complete SQLite database, including
schema and row data, 2) Analysis instructions from agent.md, which were evolved by the Evo-
lution agent, and 3) (Optional) Python scripts for systematic database analysis, also evolved by the
Evolution Agent.

The analysis process is executed by a Claude Code agent operating under the instructions of the
agent.md file. Through evolution, we observe that some agents are designed to rely exclusively
on the LLM, in some cases the agent simply orchestrates sophisticated Python tools that perform
systematic database analysis, and in some cases the agent combines programmatic tool execution
with natural language synthesis, using tools for systematic analysis while adding semantic interpre-
tation and domain understanding.

3.2.3 ONLINE SQL GENERATION PHASE

The SQL generation phase transforms natural language questions into executable SQL through con-
catenation of the following prompts:

Prompt = DatabaseAnalysis⊕ EvalInstructions⊕ Question⊕ Evidence

where ⊕ denotes concatenation. The Question is the natural language question as provided by
the user (here, BIRD benchmark). Evidence is provided by BIRD and supplies hints about the
domain/schema and clarifications for the question; in a general system this is analogous to comple-
mentary semantic annotations about the task/data. DatabaseAnalysis was discussed in Section 3.2.2.

5
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The Role of Eval Instructions: The eval instructions.md file serves as the bridge between
database analysis and SQL generation. While the analysis agent examines the database schema,
the eval instructions guide how to transform natural language questions into precise SQL queries.
These instructions operate at the final online inference step. Successful eval instructions balance
comprehensiveness with precision.

Through observing many evolutionary runs, RoboPhD typically evolves instructions that include
components such as the following: (1) Output Constraints: Instructions regarding clean SQL
generation—no markdown, comments, or explanations that could corrupt execution. (2) Pattern
Recognition: mappings from question types to SQL templates (e.g. “How many X?” → SELECT
COUNT(*), “Which Y has the most Z?” → ORDER BY COUNT(Z) DESC LIMIT 1). (3) Col-
umn Selection Discipline: Explicit rules to return only requested columns—a critical requirement
where returning extra ‘helpful’ columns counts as failure in BIRD evaluation. (4) “Evidence”
Supremacy: when domain-specific evidence is provided by the BIRD benchmark, it overrides all
other rules.

Agentic Query Result Validation: text-to-SQL systems face two critical failure modes: syntax
errors and semantic errors. Syntax errors prevent execution, while semantic errors produce incorrect
results. Prior work typically addresses these challenges through multiple generation attempts. For
instance, OpenSearch-SQL (Xie et al., 2025) generates multiple candidate queries and uses self-
consistency voting. Our system employs an agentic answer evaluation approach:

Universal Verification: Every generated SQL query undergoes verification where the model re-
views its own query execution results in the context of the question and the system prompt with
database analysis information. The model then responds with either CORRECT to accept those re-
sults as the answer or an improved SQL query in light of this new information from the candidate
execution result. This self-verification and correction process can iterate up to k = 2 times, using
progressive temperature (0.0 → 0.2 → 0.3) to encourage exploration on retries. Additionally, if
iteration k produces errors or an empty (null) result, the system employs an additional targeted retry
with an alert highlighting the SQL error or null result. Note that while our current verification and
error recovery mechanisms are fixed, we see opportunity to evolve these components as discussed
in Section 5.

3.2.4 EVOLUTION: CREATING NEW AGENTS

The Evolution AI creates new agents based on comprehensive performance feedback from pre-
vious iterations (see Algorithm 1). It receives ELO rankings, accuracy metrics, detailed er-
ror analysis, and historical context, then generates three artifacts that define a candidate solu-
tion instance: 1) offline analysis agent instructions (agent.md); 2) online agent instructions
(eval instructions.md); 3) tools as python code. In this system, the authors hand-crafted
the evolution strategies themselves. It is future work to consider another meta-learning layer as an
agentic critic that improves the evolution strategies themselves (Section 5).

Evolution Strategies: At each epoch of evolution, the system randomly draws from five core strate-
gies with configurable weightings (detailed in Section 4.3; see Appendix C for example prompts):

• Refinement: Surgical improvements to an agent from the previous round

• Research-Driven: Reads papers from top BIRD leaderboard performers and adapts their
techniques

• Error-Focused: The evolver is prompted to do extensive error analysis before building an
agent

• Prompt-Focused: The evolver is prompted to extensively study the generated system
prompts of prior agents before building its new agent

• None: Skips evolution to gather more data on existing agents

3.2.5 EVALUATION AND ELO RANKING

The system evaluates three agents simultaneously on identical sets of databases and questions, com-
puting overall accuracy using BIRD’s set-based comparison (row order ignored, exact match re-
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quired). Each iteration tests agents on randomly selected databases with their associated questions,
providing head-to-head comparisons on the exact same tasks.

These three-way competitions are decomposed into three pairwise comparisons. For example, if
agents achieve 65%, 62%, and 62% accuracy, we process three head-to-head results: A beats B
(1-0), A beats C (1-0), and B ties C (0.5-0.5).

Maintaining an accurate picture of relative agent strength is critical for the evolutionary algorithm.
This work introduces ELO as a ranking mechanism for evolutionary algorithms, updating scores
using the standard formula (∆ELO = K(S − E), K = 32). ELO offers key advantages for our
setting:

(1) Asynchronous Competition: Like chess players who play their first tournament match at dif-
ferent times, agents can join the population at any point while maintaining fair comparisons through
persistent ratings. ELO naturally weights unexpected outcomes more strongly than expected out-
comes—when a low-rated (or newly-created) agent defeats a high-rated one, both scores change
much more than if the higher-rated agent defeats the lower-rated.

(2) Non-transitivity Handling: ELO naturally accommodates rock-paper-scissors dynamics where
Agent A beats B, B beats C, but C beats A—common when different agents excel on different
databases or question types.

(3) Task Normalization: Win/loss treatment normalizes across varying difficulty—although accu-
racy commonly swings from 60% to 75% on different database samples, relative rankings on the
same task remain stable.

This competitive framework enables survival-of-the-fittest dynamics while maintaining fairness
across agents with different entry points.

3.2.6 EXPERIMENTAL PROTOCOL: SELECTION AND SAMPLING

Agent Selection: Each iteration tests three agents selected via a priority system: (1) previous winner
for continuity, (2) newly evolved agent if created, (3) previously untested agents (mostly relevant
at the beginning of a run), and (4) a random selection from the top 2-4 top performers by ELO
(we select 1 of 2 normally, but 2 of 4 if using the None evolution strategy). This balance ensures
thorough testing while maintaining evolutionary pressure.

Database Sampling: To prevent overfitting and encourage generalizable improvements, each it-
eration evaluates agents on only 8 randomly selected databases from the 63-database training set,
with 30 randomly sampled questions per database (BIRD supplies a median of 116 questions per
database for a total of 9.4K training questions). This deliberate undersampling ensures that agents
never see the complete dataset in any single iteration, forcing the evolution process to discover ro-
bust patterns rather than memorizing specific database quirks. The random sampling changes each
iteration, exposing agents to different challenges and preventing specialization on a fixed subset.

Note that the Evolution AI maintains context across iterations, allowing it to learn from previous
evolutions. We reset context after every fourth evolution so as to remain within the 200K token limit
of Claude Opus 4.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate on the BIRD benchmark (Li et al., 2023), a large-scale cross-domain dataset with 63
training databases and 11 development databases. Each evolution iteration costs approximately $4
in Claude API calls and runs for 23 minutes on average, enabling rapid experimentation cycles.

4.2 MAIN RESULTS

We demonstrate RoboPhD’s effectiveness through an 80- and a 30-iteration evolutionary run starting
from different baseline, primordial agents. The naive baseline represents simple starting prompts
(for online and offline agents) similar to what someone would type if they were new to the Text-to-
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SQL problem (see Appendix D for the complete agent), while the minimal 3a baseline is slightly
more sophisticated. Both represent starting points for evolution without advanced expertise in Text-
to-SQL and rely heavily on the latent knowledge of the Claude Sonnet-4 LLM.

Table 1: Performance evolution from baseline agents to refined champions. Run 1 used weighted
random strategy selection: (30% Research-driven, 30% Refinement, 15% Error-focused, 15%
Prompt-focused, 10% None). Run 2 used: (30% each for Research-driven, Error-focused, and Re-
finement, 10% None).

Agent Train Dev Test ELO Wins
Run 1: From minimal 3a baseline (80 iterations)
minimal 3a (baseline) 66.7% 66.6% N/A 1495 2/80
iter60 column order precision 68.0% 68.6% 68.6% 1652 8/80

Run 2: From naive baseline (30 iterations)
naive (baseline) 64.9% 63.8% N/A 1512 7/30
iter13 focused context optimizer 67.1% 66.4% N/A 1666 10/30

The first run evolved from minimal 3a through a complex lineage detailed in Section 4.3, ul-
timately producing our champion agent. The second run refined the naive baseline through 30
iterations, producing iter13 focused context optimizer which dominated the later iter-
ations. Note that in both cases, we are able to improve by 2 to 2.6% over the baseline without any
intervention by the authors.

Our champion agent, iter60 column order precision, achieved 68.59% accuracy on the
BIRD test set—our official result as verified by the BIRD benchmark organizers on their held-out
test dataset. Note that train, dev and test accuracies are nearly identical for our champion agent, and
train-dev gaps are consistently small across all agents, indicating that RoboPhD’s evolution process
resists overfitting.

4.2.1 HARDWARE AND COSTS

RoboPhD requires modest computational resources. Both evolutionary runs completed on a Mac-
Book Pro (48GB RAM), with the 30-iteration run finishing in 11 hours. Total costs: $117 in Claude
API fees for SQL generation (Sonnet-4). Evolution and Database Analysis usage came at no incre-
mental cost beyond a $200/month Claude subscription3.

4.3 EVOLUTION ANALYSIS

Case Study: Evolution of the Champion Agent. Our best-performing agent,
iter60 column order precision, achieved 68.6% accuracy on both dev and test sets. This
agent’s evolutionary pathway revealed three key mechanisms of autonomous improvement:

(1) Research-Driven Foundation. On iteration 2, the “dynasty” began with
iter2 schema value miner, created through the research driven strategy. The Evolu-
tion Agent autonomously studied OpenSearch-SQL (Xie et al., 2025), which achieved 72.28% on
BIRD through sophisticated vector retrieval and three-phase processing. Lacking access to neural
retrieval infrastructure, the Evolution Agent translated these concepts into practical Python tools:
schema analyzers, value extractors, and relationship mappers. This adaptation demonstrates the
system’s ability to extract actionable insights from literature despite architectural constraints.

(2) Error-Driven Refinement. In iteration 12, after observing that iter2 failed on
complex aggregations and evidence parsing (30% of errors), the Evolution Agent created
iter12 evidence precision orchestrator using the error focused strategy. The
agent’s reasoning explicitly referenced both successful (iter2: “strong on simple queries”) and un-
successful (iter11: “too much focus on reserved words”) predecessors, synthesizing their lessons
to emphasize evidence-first parsing—a capability that became foundational for all descendants.

3https://claude.com/pricing/max
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(3) Emergent Discovery Through Refinement. After 48 additional iterations which clarified
iter12 as the current leader, iter60 emerged through refinement of iter12, adding the criti-
cal innovation of column ordering precision. The Evolution Agent discovered that BIRD’s set-based
evaluation is sensitive to column order, leading to systematic rules for matching column sequence to
question phrasing.

Emergent Capabilities. The final agent employs nine specialized tools executing in sequence,
each addressing weaknesses identified across generations:

• Schema and relationship analysis (inherited from iter2’s OpenSearch-SQL adaptation)
• Evidence parsing and pattern matching (iter12’s contribution)
• Column ordering and selection logic (iter60’s innovation)
• Aggregation disambiguation and reserved word detection (accumulated refinements)

The evolutionary chain shows progressive improvement: 65.5% (iter2)→ 67.9% (iter12)→ 68.6%
(iter60) on dev set.

5 DISCUSSION AND FUTURE WORK

We are currently conducting systematic ablation studies across evolution strategies, model configu-
rations, and architectural components, which will be reported in a forthcoming extended version. In
addition, we see several directions that could enhance ROBOPHD’s capabilities:

Meta-evolution: A meta-agent could critique and evolve the evolution strategies themselves, ad-
justing both the strategy pool and their weights based on long-term performance trends. This would
address local maxima where a single moderately strong agent dominates for extended periods.

Structured error analysis: A dedicated error analysis agent could provide comprehensive failure
reports to all evolution strategies, ensuring consistent learning from mistakes across different evolu-
tionary paths—analogous to gradient accumulation in optimization.

Multi-iteration refinement: Allowing the Evolution Agent to refine their previous creation across
2-3 “mini-iterations” in the same agentic context could enable deeper exploration and “aha” mo-
ments through sustained focus.

Challenger dynamics: Inspired by chess rankings, a “challenger” strategy could periodically in-
troduce promising but under-tested agents (moderately high ELO, few tests) to disrupt stagnant
hierarchies.

Tool evolution: The Evolution Agent could expand beyond database analysis and SQL generation
to also evolve verification and error recovery mechanisms—learning optimal retry strategies, error
interpretation patterns, and when to trust versus challenge initial results, creating a fully evolved
three-phase system.

6 CONCLUSION

We presented RoboPhD, a system where AI agents autonomously conduct research to improve Text-
to-SQL performance. Our system achieves 68.6% accuracy on the BIRD Test and Dev sets through
systematic evolution, discovering effective strategies without human intervention in the research
loop. Like a tireless PhD student, RoboPhD runs experiments continuously, learning from failures
and evolving better approaches.

This work demonstrates a fundamental shift in AI development: rather than humans manually en-
gineering AI systems, we can create AI researchers that improve themselves. While our system
operates within the bounded domain of database queries, it demonstrates key components of au-
tonomous research: hypothesis generation, systematic experimentation, and iterative refinement.
As these capabilities generalize to broader domains, we may witness AI systems that can tackle
increasingly complex research problems with minimal human oversight (Lu et al., 2024). We open-
source our framework to enable the community to build upon this autonomous research paradigm,
potentially transforming how we develop AI capabilities across domains beyond Text-to-SQL.
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ETHICS STATEMENT

This work involves autonomous AI systems with significant operational freedom, raising important
safety and security considerations. We acknowledge several critical risks:

Execution Safety: RoboPhD operates with Claude Code in an automated mode where generated
code is executed without human review. While model alignment has reduced risks significantly,
autonomous code execution remains inherently dangerous—the system could theoretically execute
destructive commands. We mitigate this through process isolation and filesystem permissions, but
acknowledge this remains an open challenge for autonomous AI systems.

Security Vulnerabilities: Autonomous agents in the inference pipeline introduce novel attack sur-
faces. Adversarial inputs could potentially manipulate the database analysis agent to exfiltrate data
or execute unintended operations. While these considerations are not a concern for BIRD’s open-
source databases, production deployments would require strict sandboxing, network isolation, and
comprehensive security auditing.

Autonomy and Safety Implications: Echoing longstanding warnings about recursive self-
improvement and rapid capability escalation (Yudkowsky, 2008; Bostrom, 2014; Steinhardt, 2022;
Cotra, 2022), while our system advances beneficial AI research capabilities, the techniques for au-
tonomous agent evolution could potentially be misused. We therefore release our code openly to
enable scrutiny and collaborative safety research, believing that transparency can accelerate both
capability and safety progress.

We view this work as part of the broader conversation about AI safety and autonomy. The risks
we identify are not unique to ROBOPHD but are fundamental to any system granting AI agents
autonomous execution capabilities (Yudkowsky, 2008; Bostrom, 2014). In line with recent calls to
proactively shape research practices and governance as autonomy increases (Steinhardt, 2022; Cotra,
2022), we encourage the community to develop stronger safety frameworks (e.g., sandboxing, least-
privilege execution, red-teaming) as such systems become more capable.
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A LLM USAGE

Scope and philosophy. In keeping with the spirit of this project, we made extensive use of large
language models (LLMs) throughout. Our goal was to study whether LLMs can function as au-
tonomous research agents with minimal domain-specific guidance from the authors. In addition to
using Claude Code to help write, enhance, and refactor the code, we used Claude to help write design
documents to brainstorm and clarify new ideas, and Claude helped author parts of the manuscript.
In each case there was human oversight and revision applied, especially for the manuscript itself.

A.1 ROLES WITHIN THE ROBOPHD SYSTEM

Evolution (Section 3.2.6). As discussed in Section 3.1, a core contribution is showing that an LLM
can serve in the role of a graduate student. Concretely, we used Claude Code running Opus 4.1 for
the Evolution Agent. This agent generated new agent packages (prompts, tools, and analysis plans)
across iterations.

Database Analysis (Section 3.2.2). The Evolution Agent constructed Claude Code agents powered
by Sonnet 4 to perform schema profiling and produce database-specific analyses. These analyses
were consumed downstream at inference time.

SQL Generation (Section 3.2.3). The SQL Generation phase used Sonnet 4 via the Claude API
(not via Claude Code) to translate questions (and evidence) into executable SQL, conditioned on the
database analysis and evaluation instructions.

Minimal domain guidance (Sections 3.1, 3.2). By design, author-provided Text-to-SQL know-
how was kept to an absolute minimum. Evolution strategies specify process (e.g. refine, analyze
errors, optionally read and adapt a paper) rather than scientific content; improvements therefore
arise primarily from the models’ latent knowledge, error-driven iteration, and occasional literature
adaptation.

A.2 LLMS USED AS SOFTWARE-ENGINEERING TOOLS

In addition, and consistent with the project’s philosophy, we used Claude Code (primarily with
Opus 4.1) as a development assistant for the RoboPhD infrastructure. The RoboPhD codebase was
almost entirely authored through Claude Code sessions, with the human authors providing speci-
fications, reviewing diffs, enforcing style/tests, and making final design decisions. In this context,
Claude Code functioned as a coding tool under close human supervision. Very little of the final
codebase was the result of direct manual edits by the authors, with one exception: the evolution
strategy prompts discussed in Section 3.2.4 and shown in Appendix C were primarily hand-written.
We see this as consistent with the Advisor/Graduate Student metaphor laid out in Section 3.1: we,
the authors, provide thoughtful strategic guidance, while leaving autonomy to the graduate student
to iterate towards a solution. As discussed in Section 5, evolving this strategic guidance is a direction
for future research.

A.3 LLMS USED IN MANUSCRIPT PREPARATION

In contrast to the codebase, most of the manuscript text was written by the authors. However,
portions of this paper were drafted and edited by the authors with assistance from Claude Code
(Opus 4.1) and ChatGPT 5. In these cases, the authors determined the structure and arguments.
Where LLM-suggested text was used, it was reviewed and, as needed, rewritten by the authors for
accuracy and clarity.

A.4 ATTRIBUTION, AUTHORSHIP, AND ACCOUNTABILITY

Although LLMs played a significant role in ideation (via the Evolution Agent), engineering as-
sistance, and writing support, all scientific claims, experiments, analyses, and conclusions are the
responsibility of the human authors. The models did not have independent access to private test data
or to submission systems, and they did not make publication decisions.
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A.5 DATA GOVERNANCE AND SAFEGUARDS

LLM prompts and outputs were constrained to benchmark-permitted artifacts (schemas, evidence,
and allowed literature). We avoided leaking ground-truth SQL or test questions to the agents; evalu-
ation used standard execution-accuracy protocols. Logs of prompts/outputs for key experiments are
retained for audit and reproducibility.

B REPRODUCIBILITY STATEMENT

The results in this paper are reproducible using the open source code bundle provided as supplemen-
tary material to this manuscript. The entire framework can be run from scratch following instructions
in the README, which will execute all of the iterations of evolution, reproducing agents similar to
the ones featured in the results and discussion earlier in the paper. In the main body of the paper, we
note the model families and modes (Claude Code Opus 4.1 for evolution and Claude Sonnet 4 for
evaluation), interface (Claude Code vs. Claude API), and where nondeterminism is relevant, we note
seeds and sampling parameters in the released configs. Despite seeds in our code for the random-
ness that we control, there is some non-determinism that we cannot control in Claude Opus/Sonnet
API responses that may lead to minor differences in the results when run from scratch. Given that
this is an evolutionary approach over many iterations, small variations in one iteration, may lead to
amplified differences in subsequent iterations. While we haven’t presented a thorough sensitivity
analysis of this, we anecdotally note that most replication runs produce highly similar results on the
development set, within 0.2 accuracy points.

C EVOLUTION STRATEGY PROMPTS

This appendix provides excerpts from the evolution strategy prompts that guide the Evolution Agent.
These prompts illustrate how we provide high-level research directions without injecting domain-
specific Text-to-SQL knowledge.

C.1 RESEARCH-DRIVEN STRATEGY

The research-driven strategy directs the Evolution Agent to learn from academic literature:

“You MUST read exactly ONE paper from the available research in papers/... The
papers are from top BIRD methods achieving 71-77% accuracy.”
“Your Mission: Create an evolved three-artifact agent package that improves SQL
generation accuracy by incorporating proven techniques from academic research.
You have complete creative freedom in adapting research insights to our architec-
ture.”
“How to think about the research: The key focus of a paper is on describing novel
techniques they have invented that have enabled them to achieve high scores on
the BIRD benchmark... Not everything in a paper is going to be practical for your
system. As an example, some papers may be fine-tuning an LLM. In our work, we
can’t do that... Use your judgment on this.”

The papers provided to the research-driven strategy are selected from the top ten papers on the BIRD
leaderboard as of 9/4/2025 (specifically, the top 10 results for which a PDF describing the method
was provided): AskData (Shkapenyuk et al., 2025), CHASE-SQL (Pourreza & Rafiei, 2024), XiYan-
SQL (Liu et al., 2024), CSC-SQL (Sheng et al., 2025), Reasoning-SQL (Pourreza et al., 2025),
OpenSearch-SQL (Xie et al., 2025), OmniSQL (Li et al., 2025), GenaSQL (Dönder et al., 2025),
Distillery (Maamari et al., 2024), and CHESS (Talaei et al., 2024).

C.2 REFINEMENT STRATEGY

The refinement strategy focuses on incremental improvement of successful agents:

“The strategy you will be using is to adopt one agent as a starting point and to
make targeted changes on top of that agent.”
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“Pick an agent to be your starting point. This is your call. Maybe this is a current
top-performer or maybe is an agent where you see an opportunity to fix it so that
it would be the top performer.”
“Having developed ideas for improvement from your analysis of errors and system
prompts produced by the agent you selected and its competitors, please refine your
starting-point agent to improve it so that your new, refined agent will become the
most accurate agent going forward.”

C.3 ERROR-FOCUSED STRATEGY

The error-focused strategy emphasizes deep analysis of failure patterns:

“Use your judgment, but this time, try to be especially thorough in your examina-
tion of error cases. Look at more errors than you ordinarily would and work hard
to study them for opportunities for significant improvements in accuracy.”
“Remember: Think harder than you normally would about this. Gather the infor-
mation you need and use your knowledge and experience to improve accuracy...
try to be guided by your thorough examination of error cases to push accuracy
higher.”

C.4 COMMON ELEMENTS ACROSS STRATEGIES

All strategies share certain meta-level guidance:

“Your overall goal: Push accuracy higher. You are an expert in the field of
Text2SQL. Use your knowledge of the field, your analysis of what is bringing ac-
curacy down with current agents, and your analysis of the system prompts that
prior systems are generating to build an agent package that will achieve higher
accuracy than previous agents on a set of databases that you haven’t seen before.”

These prompts demonstrate how we provide process-oriented guidance (analyze errors, read papers,
refine agents) rather than domain-specific Text-to-SQL techniques, allowing the Evolution Agent to
autonomously discover optimization strategies.

D THE NAIVE BASELINE AGENT

This appendix presents the complete naive baseline agent referenced in Section 4.2. This agent
represents the simplest possible starting point—prompts that someone new to the Text-to-SQL prob-
lem might write without any domain expertise.

D.1 DATABASE ANALYSIS AGENT (AGENT.MD)

The database analysis component simply extracts the raw database schema:

---
name: baseline
description: Baseline agent that outputs raw DDL schema
---

# Baseline DDL Extractor

Extract the database schema from ‘./database.sqlite‘ and save it to
‘./output/agent_output.txt‘.

## Instructions

1. Connect to the SQLite database at ‘./database.sqlite‘
2. Extract the complete database schema using ‘.schema‘ command

14
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3. Save the raw DDL output to ‘./output/agent_output.txt‘

## Output Requirements

The output should contain:
- All CREATE TABLE statements
- All CREATE INDEX statements
- All CREATE VIEW statements (if any)
- Any other DDL statements present in the database

The output should be the raw SQL DDL with no additional formatting,
comments, or explanations.

## Example Output Format

The output file should contain statements like:
‘‘‘
CREATE TABLE table_name (

column1 type,
column2 type,
...

);
CREATE INDEX index_name ON table_name(column);
‘‘‘

Save the complete schema dump to ‘./output/agent_output.txt‘.

D.2 SQL GENERATION INSTRUCTIONS (EVAL INSTRUCTIONS.MD)

The SQL generation instructions are equally minimal:

# SQL Generation Instructions

## Core SQL Requirements

Generate clean, executable SQL:
- No markdown formatting or code blocks
- No comments or explanatory text
- Only the SQL statement

## Evidence Handling

Evidence is important! When evidence is provided, be sure to follow
it very carefully

## SQLite Specifics

- This is a SQLite database. Be sure to use SQLite syntax

## Remember

Keep it simple. Return exactly what’s requested. Follow evidence literally.

D.3 TOOLS

The naive baseline contains no tools—the tools/ directory is absent. All database analysis is
performed directly by the LLM following the simple instructions above.
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