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Abstract

This paper explores the task: Chinese spelling
correction (CSC), from a fine-grained perspec-
tive by recognizing that existing evaluations
lack nuanced typology for the spelling errors.
This deficiency can create a misleading im-
pression of models’ performance, incurring an
“invisible” bottleneck hindering the advance-
ment of CSC research. In this paper, we cat-
egorize spelling errors into six types and con-
duct a fine-grained evaluation across a wide
variety of models, including tagging models,
RelLM, and LLMs. As a result, we pinpoint
the underlying weaknesses of existing state-of-
the-art models - utilizing contextual clues and
handling co-existence of multiple typos. How-
ever, these two types of errors suffer from very
low occurrence in conventional training cor-
pus. Therefore, we introduce new error genera-
tion methods to artificially augment their occur-
rence. Armed with augmented data, we eventu-
ally enhance the overall performance of prior
CSC models by boosting their performance on
specific errors. We hope that this work could
provide fresh insight for future CSC research.

1 Introduction

This paper studies the evaluation principle for Chi-
nese spelling correction (CSC), a fundamental task
in natural language processing to rectify all poten-
tial spelling errors in a Chinese sentence. Evalua-
tion plays a critical role in CSC research, where the
researchers are allowed to understand the way mod-
els behave and guide for further solutions. Due to
the profoundness of Chinese language, there are di-
verse misspelling variations in real human corpora.
However, existing benchmarks (Tseng et al., 2015;
Lv et al., 2023; Wu et al., 2023b) are constrained to
producing an overall score for all kinds of spelling
errors, providing a coarse reflection of model per-
formances. This deficiency incurs an “invisible”
barrier that bottlenecks the progress of CSC re-
search. In this paper, we propose a fine-grained

Phonological Error:
EC>F) REtydE.
A bite (>> house) of China.

Morphological Error:
ERUAL C> AL, FXAE, A
Full speed after (>> ahead) , twice result with half effort...

Non-similarity Error:
X T#RIE, TIHBEELK > #) 692,
The following statements are sensitive (>> true) about game engines.

Multi-typo Error:
WFREERE, KF > R)ME, LHER, HHEC>) HED.
Please... make (>> eat) regular... something easy to talk (>> digest).

Semantic Error:
SR (>>355) mA, RFAPFHEFEFER, RESEZRS
The multipreview (>> lingual) version offers multilingual services...

J

Figure 1: Samples of different types of spelling errors.

evaluation principle, named FiBench-CSC, in the
hope of navigating the follow-up research in the
CSC community.

We categorize the spelling errors in a Chinese
sentence to five distinct types. Figure 1 offers an il-
lustration of them. We first categorize the errors by
the way they are misspelled. Phonological error
and morphological error are the two most com-
mon error types, stemming from the pinyin and
stroke similarities inherent in Chinese characters
(Liu et al., 2010). The former is caused by users’
keyboard input or audio speech recognition, while
the latter is caused by handwriting. In Figure 1,
“&” are “#” are the phonological and morpho-
logical counterparts of “7” and “&b” respectively.
These two types of errors are rich in the confusion
sets, which are used to generate synthetic errors
on top of monolingual sentences. We group the
remaining errors not conforming to any of these
two types into non-similarity error.

Second, we categorize the errors by the num-
ber of them within a single sentence, i.e. single
error and multi-typo error. The latter refers to
cases where are more than one typos in one sen-
tence. Co-existence of multiple typos may largely
distort the context and create intricacy for correc-



tion. For example in Figure 1, there are two typos
at the same time, where “//X'&” is misspelled to
“PXEE” and “YHL” is misspelled to “JH1%”. The
correction of the latter typo necessitates the correct
understanding of the former phrase “/X & # 12",
which is disturbed by the typo “IXE".

Third, we introduce contextual error. This type
of errors locally manifests as correct phrase within
the sentence. However, their correction strongly
relies on contextual clues. For example in Figure 1,
“J&F” (lingual) is misspelled to “FilyE" (preview),
both of which are legitimate Chinese words. Only
if referring to the subsequent context of “Z1EF
Az55” (multilingual services), can one figure out
the final answer. The edit pairs of contextual errors
are diverse case by case and may hardly occur in
the confusion sets. Given that many CSC models
are developed with signals from confusion sets,
correction of these errors can be a challenging task,
for which merely memorizing edit pairs from the
training corpus is insufficient.

In FiBench, each dataset is reorganized into six
subsets, each associated with one specific error
type, thus allowing for an ever fine-grained insight
into models’ strengths and shortcomings. Our pa-
per unfolds as below. In §2, we first conduct a com-
prehensive FiBench evaluation on a broad range of
CSC models. While state-of-the-art counterparts
show adeptness in using phonological and morpho-
logical clues, we pinpoint contextual and multi-
typo errors that notably struggle with. However,
these two errors can hardly exist in conventinal
confusion sets. In §3, we introduce two error gener-
ation methods to automatically synthesize contex-
tual and multi-typo errors given arbitrary sentences.
In §4, we refine the training process of recent mod-
els based on newly generated error signals. Fur-
thermore, we an in-depth analysis targeting the two
challenging error types.

2 FiBench

In this section, we scrutinize the performances ex-
hibited by existing CSC models from a fine-grained
perspective. The findings in this section serve as
the foundation for the subsequent methods and ex-
periments in the paper.

2.1 Categorization Principle

Phonological & Morphological & Non-similarity
We obtain the phonological errors and morpholog-
ical errors by checking if the edit pair in the sen-
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Figure 2: Statistics of error types in six chosen domains.

tences exists in the associated confusion set, while
categorizing the rest into non-similarity errors. The
confusion sets employed in our study are released
by Liu et al. (2022).

Contextual The process we obtain the contex-
tual errors is two-step. First, we check if the edit
pair in the sentence can form a correct word or
phrase in the local context. The logic behind this is
that if the error cannot make a correct expression, it
can be easily detected without referring to the con-
text. This step can greatly increase the efficiency of
the process. Second, we conduct manual screening
to eventually obtain the contextual errors.

Single & Multi We obtain the single and multi-
typo errors simply by counting the number of errors
in the sentence.

2.2 Datasets

We conduct experiments on two public datasets,
ECSpell (Lv et al., 2023) and LEMON (Wu et al.,
2023b). ECSpell is a small-scale CSC benchmark
with three domains: LAW (law) with 1,960 training
and 500 test samples, MED (medical treatment)
with 3,000 training and 500 test samples, and ODW
(official document writing) with 1,728 training and
500 test samples. LEMON is an open-domain CSC
benchmark with a diverse set of real-life spelling
errors. In our experiments, we choose the three
biggest domains as representatives: NEW (news
title) with 5,887 test samples, CAR (car) with 3,245
samples, and ENC (encyclopedia) with 3,274 test
samples.

Figure 2 eventually demonstrates the statistics
of six error types in ECSpell and LEMON. There
exists an overlap of samples among each error sub-
set.



2.3 Models and Methods

We span a broad range of models/methods.

BERT The pre-trained BERT (Devlin et al.,
2019) is the fundamental architecture to perform
the CSC task in the way of sequence tagging.
Soft-Masked BERT  Zhang et al. (2020) ap-
ply a GRU network as the additional detector and
mask the detected errors in the sentence using soft-
masking technique to encourage the correction.
MDCSpell Zhu et al. (2022) design a paralleled
detector-corrector network to enhance the correc-
tion. The new detector network is initialized by
another BERT encoder.

CRASpell The correction-making is likely to be
biased when there is one more error in the context.
Liu et al. (2022) augment the original sentence
by introducing an additional error and optimizing
a smoothness loss (Jiang et al., 2020; Wu et al.,
2023a) on it.

PLOME PLOME (Liu et al., 2021) is an en-
hanced pre-trained CSC model based on BERT. It
is incorporated with phonological and morphologi-
cal clues in its word embeddings.
Masked-Fine-Tuning Above models learn CSC
by sequence tagging. We apply the masked-fine-
tuning technique (MFT) to boost the tagging pro-
cess (Wu et al., 2023b), which is designed to en-
hance the language modeling aspect of CSC learn-
ing.

ReLM Rephrasing Language Model (ReLM)
(Liu et al., 2024) is a non-autoregressive language
model, which regards CSC as sentence rephrasing
on top of entire semantics. A CSC model is thus
transferred to a pure language model.

LLM Similar to ReLM, CSC is a sentence
rephrasing task for large language models (LLMs),
while they rephrase the sentences in an autoregres-
sive manner. However, we find that generative mod-
els suffer from the overly-paraphrase issue. The
prompt we use is Detect whether there are
any misspelled words in the sentence. If
there are any, please correct them. The
important trick here is that the model won’t do
anything on the input sentence if there are no er-
rors detected, which we find useful for reducing
the above issue. We adopt Baichuan2-7b (Yang
et al., 2023) in our experiments. We also instruct
GPT4 (OpenAl, 2023) to perform this task through
in-context learning with 5 shots. For each sentence,
the in-context samples are uniformly chosen from
sentences with the same error type in the train-

ing set. The prompt we use is Please correct
the spelling errors in the given sentence,
ensuring that the modified sentence is the
same length as the original one. If there
are no errors in the sentence, please copy
it exactly as it is.

Tagging vs. Rephrasing It is worth noting that
current CSC models can be categorized into tag-
ging models and rephrasing models, by their train-
ing objectives. The former corresponds to BERT,
Soft-Masked BERT, MDCSpell, CRASpell, and
PLOME, while the latter corresponds to ReLM and
a series of autoregressive models. In the following,
we will explore their differences.

2.4 Training Setup

On ECSpell, we fine-tune each model separately
on the three domains for 5,000 steps with the batch
size selected from {32, 128} and learning rate from
{2e-5, 5e-5}. Especially for fine-tuning Baichuan2,
we set the learning rate to 3e-4 and use LoRA (Hu
et al., 2022a) with r = 8 and @ = 32 to improve
efficiency. On LEMON, we adopt the pre-trained
models open-sourced by Wu et al. (2023b). Each
model is trained on 34 million synthetic pair-wise
sentences from wiki2@19zh and news2016zh. We
evaluate each pre-trained model in zero-shot learn-
ing on each LEMON domain.

2.5 Evaluation Result

Table 1 reports the performances of a line of CSC
models on ECSpell and LEMON.

Most models show nice adeptness in addressing
phonological and morphological errors. We
can also see that these two types of errors are less
challenging for models under zero-shot learning,
compared to the other ones. In addition, we find
that PLOME achieves great success on associated
phonological and morphological errors, which un-
dergoes additional pre-training guided by confu-
sion sets. It indicates that the similarity signals like
pronunciations and shapes are rich in the training
corpus for CSC models to fit the error model (Wu
et al., 2023b).

A large performance disparity emerges when
models moving from addressing single errors to
multi-typo errors.  For multi-typo errors, we
find distinct trends between fine-tuned models and
the zero-shot models. Among the fine-tuned mod-
els, enhanced tagging models like Soft-Masked
BERT, MDCSpell, and CRASpell, even after un-
dergoing MFT, only achieve limited performance



Phono. Morpho. Non-s. Single Multi Contextual FPR Overall

BERT 529 58.5 172 562 154 28.5 106 369
PLOME' 91.7 79.0 547 821 473 19.9 52 696
BERTyigr 93.3 93.2 899 929 571 59.1 138 756
Soft-Maskedyrr 956 93.2 941 945 6938 75.5 155  80.0

EC.LAW  MDCSpellyer 95.9 95.6 9.1 967 703 74.7 146  82.0
CRASpellyr 96.8 95.1 942 967  66.6 76.7 9.3 82.8
ReLM 99.1 99.0 981  99.1  96.4 87.9 102 89.4
ReLM' 99.9 99.5 962 988  96.4 98.0 53 956
Baichuan2 93.6 923 943 924 857 80.8 20 928
GPT4 (5-shot) 80.7 712 720 707 522 437 65 679
BERT 33.7 54.2 376 396 116 426 98  25.1
PLOME' 82.5 76.5 617 723 450 12.7 73 600
BERTyrr 75.5 88.6 724 782 378 66.6 1.6 559
Soft-Maskedyrr ~ 88.1 89.9 847 861 510 66.6 124 656

EC.MED  MDCSpellyer 86.0 933 819 870 579 74.1 120 69.0
CRASpellyr 86.1 90.9 869 88  63.1 67.7 87 725
ReLM 92.9 97.0 93.6 940 673 67.7 98 809
ReLM' 98.4 97.3 97.6 983 903 74.9 87 899
Baichuan2 90.8 91.6 86.6 866 717 80.0 51 798
GPT4 (5-shot) 575 65.5 680 669  53.7 56.2 240 564
BERT 274 416 274 352 103 29.7 141 248
PLOME' 87.6 80.4 714 602 575 312 39 672
BERTyr 76.7 83.8 69.5 732 429 512 170 576
Soft-Maskedyrr  86.0 92.7 729 806 536 58.8 149  66.4

EC.opw  MDCSpellyer 86.5 93.2 755 815 552 62.2 166  67.0
CRASpellyr 89.6 90.2 785 834 569 66.1 64 749
ReLM 93.9 93.7 845 863 821 79.6 102 81.0
ReLM' 97.1 97.1 886 924 913 89.4 2.1 92.3
Baichuan2 89.8 94.3 921 856 872 88.8 2.5 87.5
GPT4 (5-shot) 87.1 83.9 755 766 716 61.8 17 725
BERTer ! 713 72.0 450 639 113 493 94 560
Soft-Maskedyr!  71.8 72.1 428 640 108 50.4 105 55.6

LE.NEW  MDCSpellyer' 74.9 732 377 656 110 53.0 9.1 573
CRASpellyyr! 72.9 73.8 389 644 56 50.7 105 554
ReLM' 74.9 75.8 440 670 102 522 83 588
GPT4 (5-shot) 40.6 478 385 371 237 46.1 419 348
BERTyr! 62.4 62.1 355 539 57 42.1 13.8 452
Soft-Maskedwir! ~ 59.3 62.1 339 528 56 39.4 147 44.1

LE-ENC  MDCSpellyr’ 63.8 66.7 337 547 73 414 13.8  46.1
CRASpellyr! 62.8 68.1 392 568 49 433 143 476
ReLM' 63.1 63.4 414 565 33 39.8 127 476
GPT4 (5-shot) 40.4 513 404 391 252 327 331 405
BERTyer! 74.1 65.9 453 645 42 475 122 519
Soft-Maskedyrr! ~ 73.6 67.4 471 645 76 46.8 123 522

LE.CAR  MDCSpellyr' 74.8 70.3 383 640 8.1 434 1.9 519
CRASpellygr! 74.6 71.8 427 647 59 455 132 519
ReLM' 76.8 66.3 450 657 97 447 119 535
GPT4 (5-shot) 39.8 433 390 361 192 32.1 315 359

Table 1: Fine-grained performances on ECSpel (EC-x) and LEMON (LE-x). We report the F1 score for each
error type, the false negative rate (FPR) on non-error sentences, and the overall F1 score on all sentences. “Non-s.”
refers to the non-similarity errors. t refers to the pre-trained model on additional CSC data. The subscription MFT
indicates that the model is trained using masked-fine-tuning.

on multi-typo errors. This suggests that additional =~ multiple typos within a single sentence, indicating
errors in the context can significantly compromise  that the rephrasing process can effectively bypass
the model’s decision-making. In contrast, the fine-  the negative impact of multiple errors co-existing
tuned rephrasing models, ReLM and Baichuan2, simultaneously. However, under zero-shot learning,
demonstrated remarkable adeptness in handling  the performance of all models on multi-typo errors



deteriorates substantially, including ReLM, which
is considered more powerful in language modeling.
This indicates a potential issue in the training pro-
cess that researchers might overlook constructing
samples that contain multi-typo errors, resulting in
models’ inability during testing.

Contextual errors pose a consistent challenge in
every scenario. For fine-tuned models, we find
that rephrasing models generally perform better,
such as ReLM and Baichuan2, while MFT appears
to be particularly important for tagging models to
deal with contextual errors. We also see that the
guidance of confusion sets is ineffective in address-
ing such errors. This is because that the edit pairs
of contextual errors are almost nonexistent in them.
However, for zero-shot models, all of them strug-
gle with contextual errors. Correspondingly, their
performance on non-similarity errors also encoun-
ters a big decline. Surprisingly, ReLM rephrases
the sentence based on the entire semantics (Liu
et al., 2024), which is supposed to naturally excel
in handling contextual errors. However, we find
that zero-shot ReLM offers no advantage over other
models. We conjecture that adaptation to contex-
tual errors heavily relies on domain-specific signals,
allowing models to better understand the context
within the domain. Unfortunately, it is very hard to
achieve in open-domain CSC. This indicates that
open-domain CSC is the biggest challenge faced
by the community.

We realize that existing CSC models exhibit
deficiencies in addressing these two types of er-
rors, bottlenecking their overall performance in
practical applications. Therefore, there emerges
a very need for the development of a comprehen-
sive benchmark specifically targeting the perfor-
mance of CSC models in addressing multi-typo
and contextual errors. This forms the focus of our
follow-up section, where we will introduce such a
benchmark.

3 Error Generation

In this section, we discuss the error generation
method to automatically generate contextual errors
with the assistance of the powerful lexical process-
ing capability of LLMs, as well as the synthesis
method to generate multi-typo errors.

3.1 Contextual Error

We design a three-step pipeline. Given a sentence,
we first tokenize it into words using the segmenta-

p

You are a native Chinese speaker to modify the given sentence fol-
lowing the requirements below.

1. Change the word in '"'<>'"' to a new word using the same number
of characters.

2. The new word in '"'<>"" is correct within the local context.

3. The new word in ''<>'"" should induce a wrong or strange meaning
of the new sentence.

4. Do not change the other words outside of ''<>'".

Input:

R EZSHMAKBIL, TIRARZ—A<ET>,
Response 1:

IR EAS R ARIL, TRAERZ—A<EREZ>,
Response 2:

WRESAREI, TR —A<KH>.

Verification:
You are a skilled Chinese writer. People admire you. I will give a
pair of sentences, please help me decide the following situations:

1. two sentences are in the same meaning, and they are both gram-
matically and contextually correct.

2. two sentences are in different meanings, but they are both gram-
matically and contextually correct.

3. two sentences are supposed to be in the same meaning, but either
is not grammatically and contextually correct.

Input 1:

WRESAREI, TR —A<HBF>,
R ESRAKEI, TR —A<EHE>.
Response 1:

2

Input 2:

IR Z 4RI, T AR —AN<dtF>,
IR ES AR, TRAEE—A<KE>,
Response 2:

3

€

Figure 3: Prompts we use to generate contextual errors.

tion tool and randomly select one of them as the
target word. We prompt GPT4 to substitute the
target word for a new word. The prompt for sub-
stitution is shown in Figure 3. In this prompt, we
instruct GPT4 to follow two primary principles: 1.
the new word is still a legitimate Chinese word; 2.
the new word will introduce an unnatural semantics
to the entire sentence.

The first step is a tough task even for GPT4. It
is likely to solely paraphrase the given sentence
or introduce another word, potentially retaining
correctness while altering the original meaning. If
either of two situations occurs, we will acquire an
invalid sentence pair. To address this, we design
the second step to verify the validity of the output
sentence from the first step. As detailed in Figure 3,
we further prompt GPT4 to identify the relationship
between the output sentence in the first step and
the original one. Only if both sentences convey the
same meaning and one contains grammatical and
contextual error, do we keep this sentence pair.

LLMs like GPT4 lean to make somewhat unsta-
ble responses. To ensure reliability, we eventually



employ a ruled-based filter to verify if the new
word can form a legitimate expression if checking
its existence in a word vocabulary.

3.2 Multi-typo Error

We construct a distribution to synthesize multiple
typos in one sentence. Each typo can be any of a
contextual error, phonological error, or morpholog-
ical error. The last two errors are sampled from
the associated confusion sets, while the contex-
tual errors are generated using the prior method.
Given an arbitrary sentence, we introduce N ty-
pos in it. N follows the p-Binomial distribution
~ Binomial(n, p), where n is the number of char-
acters in the sentence. When N is determined,
specifically, we uniformly sample /N positions in
the sentence and replace each of them with: 1. a
phonologically similar character 60% of the time;
2. a morphologically similar character 30% of the
time; 3. a character/word making a contextual error
10% of the time. This is due to the empirical fact
that contextual errors occur at a lower frequency in
real-world sentences.

The expectation of N is np, meaning that there
will be one typo for every one hundred characters
in the sentence, if p is set to 1%.

4 Data Augmentation

In this section, we refine the existing datasets us-
ing the error generation methods introduced in § 3.
Based on the augmented data, we introduce several
effective training strategies to facilitate stronger
CSC models.

4.1 Strategy

We have observed that models fine-tuned on EC-
Spell exhibit a greater susceptibility to contextual
errors, yet better performance in the face of multi-
typo errors (from Table 1). This is attributed to the
fact that contextual errors have a significantly lower
occurrence in the training set, even lower than that
of multi-typo errors (from Figure 2). Therefore,
we randomly sample a proportion of the target sen-
tences in the training set and generate new contex-
tual errors on them. Given that contextual errors
occur less frequently in natural language, excessive
introduction of them may compromise the model’s
overall performance. Hence, we complement the
training data with 100 new samples with con-
textual errors for each domain (~ 5% of orig-
inal training samples). Additionally, in § 3, we

have conjectured that adaption to contextual errors
strongly depends on domain-specific signals. We
prepare another 100 samples with contextual er-
rors for comparison, where the target sentences are
sourced from Chinese wikipedia.

For open-domain CSC, models are pre-trained
a large scale of pair-wise sentences without be-
ing fine-tuned on specific training sets. We thus
employ two strategies, continue-training and few-
shot learning. Instead of undergoing a new round
of complete pre-training, we choose to continually
train the model on refined sentences. Specifically,
we refine the synthetic pair-wise sentences from
wiki2@19zh (each already with one typo) by im-
posing random additional typos to them, and train
the prior model for another one epoch. Since the
sentence initially contains a typo, we set p for the
Binomial distribution to a lower value 0.001. An-
other more efficient approach is to construct a few
samples with highly concentrated errors to allow
the model to quickly adapt to the associated error
types. We set p to 0.1 and generate 100 samples
with multi-typo errors. However, our experience
suggests that this rapid method can trade off the
performance on the rest error types.

Lastly, we acknowledge that addressing contex-
tual errors is a remaining challenging for open-
domain CSC. Unfortunately, LEMON doesn’t of-
fer domain-specific training sets for us to conduct
further experiments. In future work, we will try to
address this issue. In our experiments, we verify
our method for contextual errors through ECSpell.

4.2 Result

Given that ReLM is the newest state-of-the-art
counterparts, our experiments are based on ReLM.
The upper part of Table 2 showcases the effective-
ness of incorporating new contextual errors. Signif-
icant performance improvement can be observed
in the domains of MED and ODW. For instance,
on MED, the performance on contextual errors in-
creases from 75.8 to 87.7, which further results in
the improvement of the overall performance. On
the other hand, we find that constructing contextual
errors using the general corpus doesn’t yield sig-
nificant benefit. It indicates that the exploitation of
contextual information is consistent with our prior
hypothesis in § 3.

From the lower part of Table 2, we find that
continue-training enhances the certain aspects of
the model in a more stable manner. For multi-
typo errors, the resultant ReLM gains a significant



LAW \ MED \ ODW
Con All Con All Con All

ReLM 980 960 758 892 91 916
ReLM*d‘f"?‘" 100.0 964 87.7 90.7 959 92.1
ReLM*¥iki 97.1 950 782 90.0 919 905
NEW | ENC | CAR
Mul All Mul All Mul Al
ReLM 102 588 33 476 9.7 535
ReLM*CT 18.7 58.6 129 483 22.0 54.3
ReLM*'S 16.8 539 14.6 43.5 20.0 50.6

Table 2: Results after simple data augmentation. “CT”
refers to continue-training and “FS” refers to few-shot.

Loc-F1  F1  Sensitivity
BERT 450 369 18.7
BERT et 60.6  75.6 67.0
Law  Soft-Maskyrr 59.0  80.0 69.6
MDCSpellygr 664 82.0 70.9
ReLM 738 96.0 62.1
ReLM* 707  96.4 72.6
Baichuan2 371 928 64.8

Table 3: Analysis of contextual errors. We report the
local-F1 (Loc-F1), overall F1 (F1), semantic sensitivity
(Sensitivity) of several representative models on EC-
LAW.

boost from 10.2 to 18.7 on NEW, 3.3 to 11.9 on
MED, and 9.7 to 19.0 on ODW respectively. In con-
trast, the improvement brought by few-shot learn-
ing seems even more significant. However, we find
that it rapidly deteriorates the overall performance.
In our experiments, each model has been fine-tuned
for only 3 epochs on few-shot samples. This is due
to the fact that few-shot samples may significantly
distort the natural data distribution. The recent
BERT-based CSC models are not strong enough
to overcome such a negative impact. Therefore, it
won’t be a feasible approach for general scenarios.

4.3 Analysis of Contextual Errors

The possible explanation behind this is the mod-
els” weak awareness of the context. To track how
context impacts the model’s prediction, we de-
sign a further experiment. First, we truncate the
source sentence by solely keeping three neighbor-
ing words around the error characters. We calculate
the F1 score on these truncated samples, denoted
as local-F1. Second, we pick out the samples on
which the model makes a wrong prediction with
only local context. Then, we recover the full con-
text for these samples and calculate the ratio that
the model’s prediction changes. We define this in-
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Figure 4: Left: Statistics of the number of typos in each
example. Right: Variation of performances (F1) with
the increasing number of typos. We choose ODW as the
representative domain.

dicator as Semantic Sensitivity, which measures the
sensitivity of a CSC model to the context change.

By comparing the first two columns of Table 3,
we surprisingly find that BERT even achieves a
better F1 score with only the information of local
context. In contrast, the local-F1 of ReLM and
Baichuan? lag far behind their overall F1, where
the full context is visible, suggesting their reliance
on the entirety of contextual information for op-
timal predictions. Referring to the last column,
we find that BERT is almost insensitive to context
change and in only 18.7% of cases, the context re-
covery would impact its prediction. It underscores
a significant drawback in tagging models, predom-
inantly focusing on local edit pairs, i.e. the error
model, thus having a poor utilization of seman-
tics. We find that the ReLM model undergoing data
augmentation exhibits a higher sensitivity to the
context.

4.4 Analysis of Multi-typo Errors

For multi-typo errors, CSC models can be vulnera-
ble to contextual noise while making the correction
(Zhu et al., 2022; Liu et al., 2022). Furthermore,
we look deeper into the impact of the number of
typos co-existed in the sentence by grouping the
multi-typo errors by their numbers. The results are
depicted in Figure 4. Intuitively, all models expe-
rience a decline in performance when the number
of typos rises. However, ReLM is able to main-
tain a nice and stable performance, outstripping all
other tagging models by a big margin. This finding
is consistent with that in Sec. 3. Among tagging
models, CRASpell outperforms other counterparts,
especially when the number of typos is above four,
suggesting that optimizing the smoothness loss dur-
ing training effectively allows the model to adapt



Case 1: synthetic contextual error

FHEARIFARLR AT DTS2
ZitpRBIrRE N TG E»Z T

Case 2: synthetic multi-typo error

Fa iR AU A A VTS AR P BATIM A AL -
Fa 1R AR A A VF T AR # AT A EAL -

Bad Case 1: exploiting contextual clues

HAEREGET L ROAGHEL. [SRC]
HARR LG LORA®AEL. [TRG]
HhRERENGT £RWAEGAEL . [Original]
BARER LS T A LWE AL . [Augmented]
Bad Case 2: addressing multi-typo error

R hEH e REE R AR KB AL - [SRC]

R R e R E i R AR RATE AL - [TRG]
R4 e REE R AR KA E A4 L . [Original]
Wi A e g R AL RATE A4 . [Augmented]

[SRC]
[TRG]

[SRC]
[TRG]

Table 4: Samples of contextual errors and multi-typo
errors generated by our two error generation methods.

to multi-typo errors.

4.5 Case Study

We further offer a closer look on concrete cases.
The case study comprises two parts. We first
demonstrate the newly generated sample (TRG)
given SRC by our methods. In case 1 (The cu-
mulative bond balance shall not exceed ten per-
cent of the company’s net assets), we synthesize
the contextual error “%& #” (lightning) — “ & 117
(accumulative). The correction of this error neces-
sitates the model not only to seek clues from the
context but also consider phonological similarity.
Case 2 (Intellectual property rights holders engage
in price discrimination in licensing contracts) con-
tains two typos, where the correction of the second
error “¥F ¥ (license contract) — “¥#f 7% (promise
contract) is strongly dependent on the correction of
the first one “#= 1% £ A" — “%2 1% * A (intellec-
tual property rights).

In the second part, we demonstrate the two cases
where the model could successfully address them
after undergoing data augmentation. In bad case 1
(First, trim the stray hairs around the eyebrows),
the original ReLM fails to detect the contextual
error “/8 £ — “% 40", After fine-tuning on aug-
mented contextual errors, the augmented ReLM
can successfully address it. In bad case 2 (Persis-
tent and strenuous efforts have made us a leader
in the domestic market), the augmented ReLM suc-
cessfully detects the two typos.

5 Related Work

A large body of research in CSC focuses on intro-
ducing external clues, e.g. phonological and mor-
phological similarity (Wang et al., 2019; Liu et al.,
2021; Huang et al., 2021; Sun et al., 2023; Liang
et al., 2023), negative samples (Li et al., 2022b),
retrieval (Song et al., 2023), auxiliary objectives
(Liu et al., 2021; Li et al., 2022a). Another line of
work focuses on disentangling the detection and
correction module (Zhang et al., 2020; Zhu et al.,
2022; Huang et al., 2023). In contrast to these ef-
forts, our work centers on the foundation principles
for CSC.

Foundation Study for CSC and Benchmark
Foundation study plays an essential role in the
research of CSC. Wu et al. (2023b) explore the
two underlying sub-models behind a general CSC
model, the error model and language model. Liu
et al. (2024) discuss the primary training objective
for the CSC task. This paper focuses on the fun-
damental evaluation principle and offers an ever
fine-grained perspective. Benchmarking is equally
important. Recently, many attempts at benchmarks
offer new standards for CSC research, e.g. IME
(Hu et al., 2022b) for errors stemming from pinyin
similarity, ECSpell for multi-domain (Lv et al.,
2023), MCSC for medical-specialist (Jiang et al.,
2022), LEMON for open-domain CSC (Wu et al.,
2023b). A similar effort is Hu et al. (2022b), which
synthesizes a large number of errors by approximat-
ing the real error distribution. Yet, diverging from
their path, this paper focuses on the refinement of
existing benchmarks with synthetic data. It poten-
tially skews the real error distribution because we
argue that it is those lower-frequency errors that
pose the bottleneck of CSC models.

6 Conclusion

This paper identifies and categorizes spelling errors
in Chinese into various types. We conduct a fine-
grained evaluation across a broad spectrum of CSC
models. The nuanced assessment offers a clear
view of each model’s strengths and weaknesses,
which is crucial for their practical application and
future enhancement. Additionally, we introduce
automatic error generation methods specifically de-
signed for contextual errors and multi-typo errors
where current models show notable vulnerability.
We also study the impact of context and number of
typos using the augmented datasets.



7 Limitations

Our evaluation covers the most representative CSC
methods in recent years while does not encompass
all possible ones. Future work can further improve
the landscape of FiBench. Besides, the experimen-
tal results demonstrate the potential of LLMs in
certain aspects, such as tackling multi-typo errors
and processing contextual signals. However, our
paper primarily focuses on BERT-based models,
without deeper exploration of LLMs. In the other
hand, our study uncovers several valuable future di-
rections. Open-domain CSC emerges as a notable
challenge with sparse exploration. Firstly, we long
for effective methods for handling negative trans-
fer between error types and domains. Secondly,
we long for greater diversity in the training cor-
pus to enhance the base models. In this paper, we
only consider the models trained from the source
of wikipedia.
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