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Abstract

This paper explores the task: Chinese spelling001
correction (CSC), from a fine-grained perspec-002
tive by recognizing that existing evaluations003
lack nuanced typology for the spelling errors.004
This deficiency can create a misleading im-005
pression of models’ performance, incurring an006
“invisible” bottleneck hindering the advance-007
ment of CSC research. In this paper, we cat-008
egorize spelling errors into six types and con-009
duct a fine-grained evaluation across a wide010
variety of models, including tagging models,011
ReLM, and LLMs. As a result, we pinpoint012
the underlying weaknesses of existing state-of-013
the-art models - utilizing contextual clues and014
handling co-existence of multiple typos. How-015
ever, these two types of errors suffer from very016
low occurrence in conventional training cor-017
pus. Therefore, we introduce new error genera-018
tion methods to artificially augment their occur-019
rence. Armed with augmented data, we eventu-020
ally enhance the overall performance of prior021
CSC models by boosting their performance on022
specific errors. We hope that this work could023
provide fresh insight for future CSC research.024

1 Introduction025

This paper studies the evaluation principle for Chi-026

nese spelling correction (CSC), a fundamental task027

in natural language processing to rectify all poten-028

tial spelling errors in a Chinese sentence. Evalua-029

tion plays a critical role in CSC research, where the030

researchers are allowed to understand the way mod-031

els behave and guide for further solutions. Due to032

the profoundness of Chinese language, there are di-033

verse misspelling variations in real human corpora.034

However, existing benchmarks (Tseng et al., 2015;035

Lv et al., 2023; Wu et al., 2023b) are constrained to036

producing an overall score for all kinds of spelling037

errors, providing a coarse reflection of model per-038

formances. This deficiency incurs an “invisible”039

barrier that bottlenecks the progress of CSC re-040

search. In this paper, we propose a fine-grained041

Phonological Error:
舍 (>> 舌) 尖上的中国。
A bite (>> house) of China.

Morphological Error:
全速以赶 (>> 赴) ，事半功倍，以静制动。
Full speed after (>> ahead) , twice result with half effort...

Non-similarity Error:
关于游戏引擎，下列说法正敏 (>> 确) 的是。
The following statements are sensitive (>> true) about game engines.

Multi-typo Error:
请平时注意休息，饮事 (>> 食) 规律，吃清淡，易消话 (>> 化) 的东西。
Please... make (>> eat) regular... something easy to talk (>> digest).

Semantic Error:
多预演 (>> 语言) 版本，根据用户群体特点和需求，提供多语言服务。
The multipreview (>> lingual) version offers multilingual services...

Figure 1: Samples of different types of spelling errors.

evaluation principle, named FiBench-CSC, in the 042

hope of navigating the follow-up research in the 043

CSC community. 044

We categorize the spelling errors in a Chinese 045

sentence to five distinct types. Figure 1 offers an il- 046

lustration of them. We first categorize the errors by 047

the way they are misspelled. Phonological error 048

and morphological error are the two most com- 049

mon error types, stemming from the pinyin and 050

stroke similarities inherent in Chinese characters 051

(Liu et al., 2010). The former is caused by users’ 052

keyboard input or audio speech recognition, while 053

the latter is caused by handwriting. In Figure 1, 054

“舍” are “赶” are the phonological and morpho- 055

logical counterparts of “舌” and “赴” respectively. 056

These two types of errors are rich in the confusion 057

sets, which are used to generate synthetic errors 058

on top of monolingual sentences. We group the 059

remaining errors not conforming to any of these 060

two types into non-similarity error. 061

Second, we categorize the errors by the num- 062

ber of them within a single sentence, i.e. single 063

error and multi-typo error. The latter refers to 064

cases where are more than one typos in one sen- 065

tence. Co-existence of multiple typos may largely 066

distort the context and create intricacy for correc- 067
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tion. For example in Figure 1, there are two typos068

at the same time, where “饮食” is misspelled to069

“饮事” and “消化” is misspelled to “消话”. The070

correction of the latter typo necessitates the correct071

understanding of the former phrase “饮食规律”,072

which is disturbed by the typo “饮事”.073

Third, we introduce contextual error. This type074

of errors locally manifests as correct phrase within075

the sentence. However, their correction strongly076

relies on contextual clues. For example in Figure 1,077

“语言” (lingual) is misspelled to “预演” (preview),078

both of which are legitimate Chinese words. Only079

if referring to the subsequent context of “多语言080

服务” (multilingual services), can one figure out081

the final answer. The edit pairs of contextual errors082

are diverse case by case and may hardly occur in083

the confusion sets. Given that many CSC models084

are developed with signals from confusion sets,085

correction of these errors can be a challenging task,086

for which merely memorizing edit pairs from the087

training corpus is insufficient.088

In FiBench, each dataset is reorganized into six089

subsets, each associated with one specific error090

type, thus allowing for an ever fine-grained insight091

into models’ strengths and shortcomings. Our pa-092

per unfolds as below. In §2, we first conduct a com-093

prehensive FiBench evaluation on a broad range of094

CSC models. While state-of-the-art counterparts095

show adeptness in using phonological and morpho-096

logical clues, we pinpoint contextual and multi-097

typo errors that notably struggle with. However,098

these two errors can hardly exist in conventinal099

confusion sets. In §3, we introduce two error gener-100

ation methods to automatically synthesize contex-101

tual and multi-typo errors given arbitrary sentences.102

In §4, we refine the training process of recent mod-103

els based on newly generated error signals. Fur-104

thermore, we an in-depth analysis targeting the two105

challenging error types.106

2 FiBench107

In this section, we scrutinize the performances ex-108

hibited by existing CSC models from a fine-grained109

perspective. The findings in this section serve as110

the foundation for the subsequent methods and ex-111

periments in the paper.112

2.1 Categorization Principle113

Phonological & Morphological & Non-similarity114

We obtain the phonological errors and morpholog-115

ical errors by checking if the edit pair in the sen-116
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Figure 2: Statistics of error types in six chosen domains.

tences exists in the associated confusion set, while 117

categorizing the rest into non-similarity errors. The 118

confusion sets employed in our study are released 119

by Liu et al. (2022). 120

Contextual The process we obtain the contex- 121

tual errors is two-step. First, we check if the edit 122

pair in the sentence can form a correct word or 123

phrase in the local context. The logic behind this is 124

that if the error cannot make a correct expression, it 125

can be easily detected without referring to the con- 126

text. This step can greatly increase the efficiency of 127

the process. Second, we conduct manual screening 128

to eventually obtain the contextual errors. 129

Single & Multi We obtain the single and multi- 130

typo errors simply by counting the number of errors 131

in the sentence. 132

2.2 Datasets 133

We conduct experiments on two public datasets, 134

ECSpell (Lv et al., 2023) and LEMON (Wu et al., 135

2023b). ECSpell is a small-scale CSC benchmark 136

with three domains: LAW (law) with 1,960 training 137

and 500 test samples, MED (medical treatment) 138

with 3,000 training and 500 test samples, and ODW 139

(official document writing) with 1,728 training and 140

500 test samples. LEMON is an open-domain CSC 141

benchmark with a diverse set of real-life spelling 142

errors. In our experiments, we choose the three 143

biggest domains as representatives: NEW (news 144

title) with 5,887 test samples, CAR (car) with 3,245 145

samples, and ENC (encyclopedia) with 3,274 test 146

samples. 147

Figure 2 eventually demonstrates the statistics 148

of six error types in ECSpell and LEMON. There 149

exists an overlap of samples among each error sub- 150

set. 151
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2.3 Models and Methods152

We span a broad range of models/methods.153

BERT The pre-trained BERT (Devlin et al.,154

2019) is the fundamental architecture to perform155

the CSC task in the way of sequence tagging.156

Soft-Masked BERT Zhang et al. (2020) ap-157

ply a GRU network as the additional detector and158

mask the detected errors in the sentence using soft-159

masking technique to encourage the correction.160

MDCSpell Zhu et al. (2022) design a paralleled161

detector-corrector network to enhance the correc-162

tion. The new detector network is initialized by163

another BERT encoder.164

CRASpell The correction-making is likely to be165

biased when there is one more error in the context.166

Liu et al. (2022) augment the original sentence167

by introducing an additional error and optimizing168

a smoothness loss (Jiang et al., 2020; Wu et al.,169

2023a) on it.170

PLOME PLOME (Liu et al., 2021) is an en-171

hanced pre-trained CSC model based on BERT. It172

is incorporated with phonological and morphologi-173

cal clues in its word embeddings.174

Masked-Fine-Tuning Above models learn CSC175

by sequence tagging. We apply the masked-fine-176

tuning technique (MFT) to boost the tagging pro-177

cess (Wu et al., 2023b), which is designed to en-178

hance the language modeling aspect of CSC learn-179

ing.180

ReLM Rephrasing Language Model (ReLM)181

(Liu et al., 2024) is a non-autoregressive language182

model, which regards CSC as sentence rephrasing183

on top of entire semantics. A CSC model is thus184

transferred to a pure language model.185

LLM Similar to ReLM, CSC is a sentence186

rephrasing task for large language models (LLMs),187

while they rephrase the sentences in an autoregres-188

sive manner. However, we find that generative mod-189

els suffer from the overly-paraphrase issue. The190

prompt we use is Detect whether there are191

any misspelled words in the sentence. If192

there are any, please correct them. The193

important trick here is that the model won’t do194

anything on the input sentence if there are no er-195

rors detected, which we find useful for reducing196

the above issue. We adopt Baichuan2-7b (Yang197

et al., 2023) in our experiments. We also instruct198

GPT4 (OpenAI, 2023) to perform this task through199

in-context learning with 5 shots. For each sentence,200

the in-context samples are uniformly chosen from201

sentences with the same error type in the train-202

ing set. The prompt we use is Please correct 203

the spelling errors in the given sentence, 204

ensuring that the modified sentence is the 205

same length as the original one. If there 206

are no errors in the sentence, please copy 207

it exactly as it is. 208

Tagging vs. Rephrasing It is worth noting that 209

current CSC models can be categorized into tag- 210

ging models and rephrasing models, by their train- 211

ing objectives. The former corresponds to BERT, 212

Soft-Masked BERT, MDCSpell, CRASpell, and 213

PLOME, while the latter corresponds to ReLM and 214

a series of autoregressive models. In the following, 215

we will explore their differences. 216

2.4 Training Setup 217

On ECSpell, we fine-tune each model separately 218

on the three domains for 5,000 steps with the batch 219

size selected from {32, 128} and learning rate from 220

{2e-5, 5e-5}. Especially for fine-tuning Baichuan2, 221

we set the learning rate to 3e-4 and use LoRA (Hu 222

et al., 2022a) with r = 8 and α = 32 to improve 223

efficiency. On LEMON, we adopt the pre-trained 224

models open-sourced by Wu et al. (2023b). Each 225

model is trained on 34 million synthetic pair-wise 226

sentences from wiki2019zh and news2016zh. We 227

evaluate each pre-trained model in zero-shot learn- 228

ing on each LEMON domain. 229

2.5 Evaluation Result 230

Table 1 reports the performances of a line of CSC 231

models on ECSpell and LEMON. 232

Most models show nice adeptness in addressing 233

phonological and morphological errors. We 234

can also see that these two types of errors are less 235

challenging for models under zero-shot learning, 236

compared to the other ones. In addition, we find 237

that PLOME achieves great success on associated 238

phonological and morphological errors, which un- 239

dergoes additional pre-training guided by confu- 240

sion sets. It indicates that the similarity signals like 241

pronunciations and shapes are rich in the training 242

corpus for CSC models to fit the error model (Wu 243

et al., 2023b). 244

A large performance disparity emerges when 245

models moving from addressing single errors to 246

multi-typo errors. For multi-typo errors, we 247

find distinct trends between fine-tuned models and 248

the zero-shot models. Among the fine-tuned mod- 249

els, enhanced tagging models like Soft-Masked 250

BERT, MDCSpell, and CRASpell, even after un- 251

dergoing MFT, only achieve limited performance 252
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Phono. Morpho. Non-s. Single Multi Contextual FPR Overall

EC-LAW

BERT 52.9 58.5 17.2 56.2 15.4 28.5 10.6 36.9
PLOME† 91.7 79.0 54.7 82.1 47.3 19.9 5.2 69.6
BERTMFT 93.3 93.2 89.9 92.9 57.1 59.1 13.8 75.6
Soft-MaskedMFT 95.6 93.2 94.1 94.5 69.8 75.5 15.5 80.0
MDCSpellMFT 95.9 95.6 96.1 96.7 70.3 74.7 14.6 82.0
CRASpellMFT 96.8 95.1 94.2 96.7 66.6 76.7 9.3 82.8
ReLM 99.1 99.0 98.1 99.1 96.4 87.9 10.2 89.4
ReLM† 99.9 99.5 96.2 98.8 96.4 98.0 5.3 95.6
Baichuan2 93.6 92.3 94.3 92.4 85.7 80.8 2.0 92.8
GPT4 (5-shot) 80.7 71.2 72.0 70.7 52.2 43.7 6.5 67.9

EC-MED

BERT 33.7 54.2 37.6 39.6 11.6 42.6 9.8 25.1
PLOME† 82.5 76.5 61.7 72.3 45.0 12.7 7.3 60.0
BERTMFT 75.5 88.6 72.4 78.2 37.8 66.6 11.6 55.9
Soft-MaskedMFT 88.1 89.9 84.7 86.1 51.0 66.6 12.4 65.6
MDCSpellMFT 86.0 93.3 81.9 87.0 57.9 74.1 12.0 69.0
CRASpellMFT 86.1 90.9 86.9 82.8 63.1 67.7 8.7 72.5
ReLM 92.9 97.0 93.6 94.0 67.3 67.7 9.8 80.9
ReLM† 98.4 97.3 97.6 98.3 90.3 74.9 8.7 89.9
Baichuan2 90.8 91.6 86.6 86.6 77.7 80.0 5.1 79.8
GPT4 (5-shot) 57.5 65.5 68.0 66.9 53.7 56.2 24.0 56.4

EC-ODW

BERT 27.4 41.6 27.4 35.2 10.3 29.7 14.1 24.8
PLOME† 87.6 80.4 71.4 60.2 57.5 31.2 3.9 67.2
BERTMFT 76.7 83.8 69.5 73.2 42.9 51.2 17.0 57.6
Soft-MaskedMFT 86.0 92.7 72.9 80.6 53.6 58.8 14.9 66.4
MDCSpellMFT 86.5 93.2 75.5 81.5 55.2 62.2 16.6 67.0
CRASpellMFT 89.6 90.2 78.5 83.4 56.9 66.1 6.4 74.9
ReLM 93.9 93.7 84.5 86.3 82.1 79.6 10.2 81.0
ReLM† 97.1 97.1 88.6 92.4 91.3 89.4 2.1 92.3
Baichuan2 89.8 94.3 92.1 85.6 87.2 88.8 2.5 87.5
GPT4 (5-shot) 87.1 83.9 75.5 76.6 71.6 61.8 1.7 72.5

LE-NEW

BERTMFT
† 71.3 72.0 45.0 63.9 11.3 49.3 9.4 56.0

Soft-MaskedMFT
† 71.8 72.1 42.8 64.0 10.8 50.4 10.5 55.6

MDCSpellMFT
† 74.9 73.2 37.7 65.6 11.0 53.0 9.1 57.3

CRASpellMFT
† 72.9 73.8 38.9 64.4 5.6 50.7 10.5 55.4

ReLM† 74.9 75.8 44.0 67.0 10.2 52.2 8.3 58.8
GPT4 (5-shot) 40.6 47.8 38.5 37.1 23.7 46.1 41.9 34.8

LE-ENC

BERTMFT
† 62.4 62.1 35.5 53.9 5.7 42.1 13.8 45.2

Soft-MaskedMFT
† 59.3 62.1 33.9 52.8 5.6 39.4 14.7 44.1

MDCSpellMFT
† 63.8 66.7 33.7 54.7 7.3 41.4 13.8 46.1

CRASpellMFT
† 62.8 68.1 39.2 56.8 4.9 43.3 14.3 47.6

ReLM† 63.1 63.4 41.4 56.5 3.3 39.8 12.7 47.6
GPT4 (5-shot) 40.4 51.3 40.4 39.1 25.2 32.7 33.1 40.5

LE-CAR

BERTMFT
† 74.1 65.9 45.3 64.5 4.2 47.5 12.2 51.9

Soft-MaskedMFT
† 73.6 67.4 47.1 64.5 7.6 46.8 12.3 52.2

MDCSpellMFT
† 74.8 70.3 38.3 64.0 8.1 43.4 11.9 51.9

CRASpellMFT
† 74.6 71.8 42.7 64.7 5.9 45.5 13.2 51.9

ReLM† 76.8 66.3 45.0 65.7 9.7 44.7 11.9 53.5
GPT4 (5-shot) 39.8 43.3 39.0 36.1 19.2 32.1 31.5 35.9

Table 1: Fine-grained performances on ECSpel (EC-x) and LEMON (LE-x). We report the F1 score for each
error type, the false negative rate (FPR) on non-error sentences, and the overall F1 score on all sentences. “Non-s.”
refers to the non-similarity errors. † refers to the pre-trained model on additional CSC data. The subscription MFT
indicates that the model is trained using masked-fine-tuning.

on multi-typo errors. This suggests that additional253

errors in the context can significantly compromise254

the model’s decision-making. In contrast, the fine-255

tuned rephrasing models, ReLM and Baichuan2,256

demonstrated remarkable adeptness in handling257

multiple typos within a single sentence, indicating 258

that the rephrasing process can effectively bypass 259

the negative impact of multiple errors co-existing 260

simultaneously. However, under zero-shot learning, 261

the performance of all models on multi-typo errors 262
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deteriorates substantially, including ReLM, which263

is considered more powerful in language modeling.264

This indicates a potential issue in the training pro-265

cess that researchers might overlook constructing266

samples that contain multi-typo errors, resulting in267

models’ inability during testing.268

Contextual errors pose a consistent challenge in269

every scenario. For fine-tuned models, we find270

that rephrasing models generally perform better,271

such as ReLM and Baichuan2, while MFT appears272

to be particularly important for tagging models to273

deal with contextual errors. We also see that the274

guidance of confusion sets is ineffective in address-275

ing such errors. This is because that the edit pairs276

of contextual errors are almost nonexistent in them.277

However, for zero-shot models, all of them strug-278

gle with contextual errors. Correspondingly, their279

performance on non-similarity errors also encoun-280

ters a big decline. Surprisingly, ReLM rephrases281

the sentence based on the entire semantics (Liu282

et al., 2024), which is supposed to naturally excel283

in handling contextual errors. However, we find284

that zero-shot ReLM offers no advantage over other285

models. We conjecture that adaptation to contex-286

tual errors heavily relies on domain-specific signals,287

allowing models to better understand the context288

within the domain. Unfortunately, it is very hard to289

achieve in open-domain CSC. This indicates that290

open-domain CSC is the biggest challenge faced291

by the community.292

We realize that existing CSC models exhibit293

deficiencies in addressing these two types of er-294

rors, bottlenecking their overall performance in295

practical applications. Therefore, there emerges296

a very need for the development of a comprehen-297

sive benchmark specifically targeting the perfor-298

mance of CSC models in addressing multi-typo299

and contextual errors. This forms the focus of our300

follow-up section, where we will introduce such a301

benchmark.302

3 Error Generation303

In this section, we discuss the error generation304

method to automatically generate contextual errors305

with the assistance of the powerful lexical process-306

ing capability of LLMs, as well as the synthesis307

method to generate multi-typo errors.308

3.1 Contextual Error309

We design a three-step pipeline. Given a sentence,310

we first tokenize it into words using the segmenta-311

Substitution:
You are a native Chinese speaker to modify the given sentence fol-
lowing the requirements below.

1. Change the word in ''<>'' to a new word using the same number 
of characters.
2. The new word in ''<>'' is correct within the local context.
3. The new word in ''<>'' should induce a wrong or strange meaning 
of the new sentence.
4. Do not change the other words outside of ''<>''.

Input:
比赛至今他从未出现，可见他是一个<鸽子>。
Response 1:
比赛至今他从未出现，可见他是一个<毒瘤>。
Response 2:
比赛至今他从未出现，可见他是一个<歌者>。

Verification:
You are a skilled Chinese writer. People admire you. I will give a 
pair of sentences, please help me decide the following situations:

1. two sentences are in the same meaning, and they are both gram-
matically and contextually correct.
2. two sentences are in different meanings, but they are both gram-
matically and contextually correct.
3. two sentences are supposed to be in the same meaning, but either 
is not grammatically and contextually correct.

Input 1:
比赛至今他从未出现，可见他是一个<鸽子>。
比赛至今他从未出现，可见他是一个<毒瘤>。
Response 1:
2
Input 2:
比赛至今他从未出现，可见他是一个<鸽子>。
比赛至今他从未出现，可见他是一个<歌者>。
Response 2:
3

Figure 3: Prompts we use to generate contextual errors.

tion tool and randomly select one of them as the 312

target word. We prompt GPT4 to substitute the 313

target word for a new word. The prompt for sub- 314

stitution is shown in Figure 3. In this prompt, we 315

instruct GPT4 to follow two primary principles: 1. 316

the new word is still a legitimate Chinese word; 2. 317

the new word will introduce an unnatural semantics 318

to the entire sentence. 319

The first step is a tough task even for GPT4. It 320

is likely to solely paraphrase the given sentence 321

or introduce another word, potentially retaining 322

correctness while altering the original meaning. If 323

either of two situations occurs, we will acquire an 324

invalid sentence pair. To address this, we design 325

the second step to verify the validity of the output 326

sentence from the first step. As detailed in Figure 3, 327

we further prompt GPT4 to identify the relationship 328

between the output sentence in the first step and 329

the original one. Only if both sentences convey the 330

same meaning and one contains grammatical and 331

contextual error, do we keep this sentence pair. 332

LLMs like GPT4 lean to make somewhat unsta- 333

ble responses. To ensure reliability, we eventually 334
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employ a ruled-based filter to verify if the new335

word can form a legitimate expression if checking336

its existence in a word vocabulary.337

3.2 Multi-typo Error338

We construct a distribution to synthesize multiple339

typos in one sentence. Each typo can be any of a340

contextual error, phonological error, or morpholog-341

ical error. The last two errors are sampled from342

the associated confusion sets, while the contex-343

tual errors are generated using the prior method.344

Given an arbitrary sentence, we introduce N ty-345

pos in it. N follows the p-Binomial distribution346

∼ Binomial(n, p), where n is the number of char-347

acters in the sentence. When N is determined,348

specifically, we uniformly sample N positions in349

the sentence and replace each of them with: 1. a350

phonologically similar character 60% of the time;351

2. a morphologically similar character 30% of the352

time; 3. a character/word making a contextual error353

10% of the time. This is due to the empirical fact354

that contextual errors occur at a lower frequency in355

real-world sentences.356

The expectation of N is np, meaning that there357

will be one typo for every one hundred characters358

in the sentence, if p is set to 1%.359

4 Data Augmentation360

In this section, we refine the existing datasets us-361

ing the error generation methods introduced in § 3.362

Based on the augmented data, we introduce several363

effective training strategies to facilitate stronger364

CSC models.365

4.1 Strategy366

We have observed that models fine-tuned on EC-367

Spell exhibit a greater susceptibility to contextual368

errors, yet better performance in the face of multi-369

typo errors (from Table 1). This is attributed to the370

fact that contextual errors have a significantly lower371

occurrence in the training set, even lower than that372

of multi-typo errors (from Figure 2). Therefore,373

we randomly sample a proportion of the target sen-374

tences in the training set and generate new contex-375

tual errors on them. Given that contextual errors376

occur less frequently in natural language, excessive377

introduction of them may compromise the model’s378

overall performance. Hence, we complement the379

training data with 100 new samples with con-380

textual errors for each domain (∼ 5% of orig-381

inal training samples). Additionally, in § 3, we382

have conjectured that adaption to contextual errors 383

strongly depends on domain-specific signals. We 384

prepare another 100 samples with contextual er- 385

rors for comparison, where the target sentences are 386

sourced from Chinese wikipedia. 387

For open-domain CSC, models are pre-trained 388

a large scale of pair-wise sentences without be- 389

ing fine-tuned on specific training sets. We thus 390

employ two strategies, continue-training and few- 391

shot learning. Instead of undergoing a new round 392

of complete pre-training, we choose to continually 393

train the model on refined sentences. Specifically, 394

we refine the synthetic pair-wise sentences from 395

wiki2019zh (each already with one typo) by im- 396

posing random additional typos to them, and train 397

the prior model for another one epoch. Since the 398

sentence initially contains a typo, we set p for the 399

Binomial distribution to a lower value 0.001. An- 400

other more efficient approach is to construct a few 401

samples with highly concentrated errors to allow 402

the model to quickly adapt to the associated error 403

types. We set p to 0.1 and generate 100 samples 404

with multi-typo errors. However, our experience 405

suggests that this rapid method can trade off the 406

performance on the rest error types. 407

Lastly, we acknowledge that addressing contex- 408

tual errors is a remaining challenging for open- 409

domain CSC. Unfortunately, LEMON doesn’t of- 410

fer domain-specific training sets for us to conduct 411

further experiments. In future work, we will try to 412

address this issue. In our experiments, we verify 413

our method for contextual errors through ECSpell. 414

4.2 Result 415

Given that ReLM is the newest state-of-the-art 416

counterparts, our experiments are based on ReLM. 417

The upper part of Table 2 showcases the effective- 418

ness of incorporating new contextual errors. Signif- 419

icant performance improvement can be observed 420

in the domains of MED and ODW. For instance, 421

on MED, the performance on contextual errors in- 422

creases from 75.8 to 87.7, which further results in 423

the improvement of the overall performance. On 424

the other hand, we find that constructing contextual 425

errors using the general corpus doesn’t yield sig- 426

nificant benefit. It indicates that the exploitation of 427

contextual information is consistent with our prior 428

hypothesis in § 3. 429

From the lower part of Table 2, we find that 430

continue-training enhances the certain aspects of 431

the model in a more stable manner. For multi- 432

typo errors, the resultant ReLM gains a significant 433
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LAW MED ODW

Con All Con All Con All

ReLM 98.0 96.0 75.8 89.2 91.1 91.6
ReLM♣domain 100.0 96.4 87.7 90.7 95.9 92.1
ReLM♣wiki 97.1 95.0 78.2 90.0 91.9 90.5

NEW ENC CAR

Mul All Mul All Mul All

ReLM 10.2 58.8 3.3 47.6 9.7 53.5
ReLM♣CT 18.7 58.6 12.9 48.3 22.0 54.3
ReLM♣FS 16.8 53.9 14.6 43.5 20.0 50.6

Table 2: Results after simple data augmentation. “CT”
refers to continue-training and “FS” refers to few-shot.

Loc-F1 F1 Sensitivity

LAW

BERT 45.0 36.9 18.7
BERTMFT 60.6 75.6 67.0
Soft-MaskMFT 59.0 80.0 69.6
MDCSpellMFT 66.4 82.0 70.9
ReLM 73.8 96.0 62.1
ReLM♣ 70.7 96.4 72.6
Baichuan2 37.1 92.8 64.8

Table 3: Analysis of contextual errors. We report the
local-F1 (Loc-F1), overall F1 (F1), semantic sensitivity
(Sensitivity) of several representative models on EC-
LAW.

boost from 10.2 to 18.7 on NEW, 3.3 to 11.9 on434

MED, and 9.7 to 19.0 on ODW respectively. In con-435

trast, the improvement brought by few-shot learn-436

ing seems even more significant. However, we find437

that it rapidly deteriorates the overall performance.438

In our experiments, each model has been fine-tuned439

for only 3 epochs on few-shot samples. This is due440

to the fact that few-shot samples may significantly441

distort the natural data distribution. The recent442

BERT-based CSC models are not strong enough443

to overcome such a negative impact. Therefore, it444

won’t be a feasible approach for general scenarios.445

4.3 Analysis of Contextual Errors446

The possible explanation behind this is the mod-447

els’ weak awareness of the context. To track how448

context impacts the model’s prediction, we de-449

sign a further experiment. First, we truncate the450

source sentence by solely keeping three neighbor-451

ing words around the error characters. We calculate452

the F1 score on these truncated samples, denoted453

as local-F1. Second, we pick out the samples on454

which the model makes a wrong prediction with455

only local context. Then, we recover the full con-456

text for these samples and calculate the ratio that457

the model’s prediction changes. We define this in-458
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Figure 4: Left: Statistics of the number of typos in each
example. Right: Variation of performances (F1) with
the increasing number of typos. We choose ODW as the
representative domain.

dicator as Semantic Sensitivity, which measures the 459

sensitivity of a CSC model to the context change. 460

By comparing the first two columns of Table 3, 461

we surprisingly find that BERT even achieves a 462

better F1 score with only the information of local 463

context. In contrast, the local-F1 of ReLM and 464

Baichuan2 lag far behind their overall F1, where 465

the full context is visible, suggesting their reliance 466

on the entirety of contextual information for op- 467

timal predictions. Referring to the last column, 468

we find that BERT is almost insensitive to context 469

change and in only 18.7% of cases, the context re- 470

covery would impact its prediction. It underscores 471

a significant drawback in tagging models, predom- 472

inantly focusing on local edit pairs, i.e. the error 473

model, thus having a poor utilization of seman- 474

tics. We find that the ReLM model undergoing data 475

augmentation exhibits a higher sensitivity to the 476

context. 477

4.4 Analysis of Multi-typo Errors 478

For multi-typo errors, CSC models can be vulnera- 479

ble to contextual noise while making the correction 480

(Zhu et al., 2022; Liu et al., 2022). Furthermore, 481

we look deeper into the impact of the number of 482

typos co-existed in the sentence by grouping the 483

multi-typo errors by their numbers. The results are 484

depicted in Figure 4. Intuitively, all models expe- 485

rience a decline in performance when the number 486

of typos rises. However, ReLM is able to main- 487

tain a nice and stable performance, outstripping all 488

other tagging models by a big margin. This finding 489

is consistent with that in Sec. 3. Among tagging 490

models, CRASpell outperforms other counterparts, 491

especially when the number of typos is above four, 492

suggesting that optimizing the smoothness loss dur- 493

ing training effectively allows the model to adapt 494
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Case 1: synthetic contextual error

雷击债券余额不超过公司净资产的百分之十。[SRC]
累计债券余额不超过公司净资产的百分之十。[TRG]

Case 2: synthetic multi-typo error

知识单权权利人在许诺合同中进行价格歧视。[SRC]
知识产权权利人在许可合同中进行价格歧视。[TRG]

Bad Case 1: exploiting contextual clues

首先要简单的修剪美貌四周的碎毛。[SRC]
首先要简单的修剪眉毛四周的碎毛。[TRG]
首先要简单的修剪美貌四周的碎毛。[Original]
首先要简单的修剪眉毛四周的碎毛。[Augmented]

Bad Case 2: addressing multi-typo error

契而不舌的艰苦追求,使我们国内领先。[SRC]
锲而不舍的艰苦追求,使我们国内领先。[TRG]
契而不舍的艰苦追求,使我们国内领先。[Original]
锲而不舍的艰苦追求,使我们国内领先。[Augmented]

Table 4: Samples of contextual errors and multi-typo
errors generated by our two error generation methods.

to multi-typo errors.495

4.5 Case Study496

We further offer a closer look on concrete cases.497

The case study comprises two parts. We first498

demonstrate the newly generated sample (TRG)499

given SRC by our methods. In case 1 (The cu-500

mulative bond balance shall not exceed ten per-501

cent of the company’s net assets), we synthesize502

the contextual error “雷击” (lightning) → “累计”503

(accumulative). The correction of this error neces-504

sitates the model not only to seek clues from the505

context but also consider phonological similarity.506

Case 2 (Intellectual property rights holders engage507

in price discrimination in licensing contracts) con-508

tains two typos, where the correction of the second509

error “许可” (license contract) → “许诺” (promise510

contract) is strongly dependent on the correction of511

the first one “知识单权” → “知识产权” (intellec-512

tual property rights).513

In the second part, we demonstrate the two cases514

where the model could successfully address them515

after undergoing data augmentation. In bad case 1516

(First, trim the stray hairs around the eyebrows),517

the original ReLM fails to detect the contextual518

error “眉毛” → “美貌”. After fine-tuning on aug-519

mented contextual errors, the augmented ReLM520

can successfully address it. In bad case 2 (Persis-521

tent and strenuous efforts have made us a leader522

in the domestic market), the augmented ReLM suc-523

cessfully detects the two typos.524

5 Related Work 525

A large body of research in CSC focuses on intro- 526

ducing external clues, e.g. phonological and mor- 527

phological similarity (Wang et al., 2019; Liu et al., 528

2021; Huang et al., 2021; Sun et al., 2023; Liang 529

et al., 2023), negative samples (Li et al., 2022b), 530

retrieval (Song et al., 2023), auxiliary objectives 531

(Liu et al., 2021; Li et al., 2022a). Another line of 532

work focuses on disentangling the detection and 533

correction module (Zhang et al., 2020; Zhu et al., 534

2022; Huang et al., 2023). In contrast to these ef- 535

forts, our work centers on the foundation principles 536

for CSC. 537

Foundation Study for CSC and Benchmark 538

Foundation study plays an essential role in the 539

research of CSC. Wu et al. (2023b) explore the 540

two underlying sub-models behind a general CSC 541

model, the error model and language model. Liu 542

et al. (2024) discuss the primary training objective 543

for the CSC task. This paper focuses on the fun- 544

damental evaluation principle and offers an ever 545

fine-grained perspective. Benchmarking is equally 546

important. Recently, many attempts at benchmarks 547

offer new standards for CSC research, e.g. IME 548

(Hu et al., 2022b) for errors stemming from pinyin 549

similarity, ECSpell for multi-domain (Lv et al., 550

2023), MCSC for medical-specialist (Jiang et al., 551

2022), LEMON for open-domain CSC (Wu et al., 552

2023b). A similar effort is Hu et al. (2022b), which 553

synthesizes a large number of errors by approximat- 554

ing the real error distribution. Yet, diverging from 555

their path, this paper focuses on the refinement of 556

existing benchmarks with synthetic data. It poten- 557

tially skews the real error distribution because we 558

argue that it is those lower-frequency errors that 559

pose the bottleneck of CSC models. 560

6 Conclusion 561

This paper identifies and categorizes spelling errors 562

in Chinese into various types. We conduct a fine- 563

grained evaluation across a broad spectrum of CSC 564

models. The nuanced assessment offers a clear 565

view of each model’s strengths and weaknesses, 566

which is crucial for their practical application and 567

future enhancement. Additionally, we introduce 568

automatic error generation methods specifically de- 569

signed for contextual errors and multi-typo errors 570

where current models show notable vulnerability. 571

We also study the impact of context and number of 572

typos using the augmented datasets. 573
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7 Limitations574

Our evaluation covers the most representative CSC575

methods in recent years while does not encompass576

all possible ones. Future work can further improve577

the landscape of FiBench. Besides, the experimen-578

tal results demonstrate the potential of LLMs in579

certain aspects, such as tackling multi-typo errors580

and processing contextual signals. However, our581

paper primarily focuses on BERT-based models,582

without deeper exploration of LLMs. In the other583

hand, our study uncovers several valuable future di-584

rections. Open-domain CSC emerges as a notable585

challenge with sparse exploration. Firstly, we long586

for effective methods for handling negative trans-587

fer between error types and domains. Secondly,588

we long for greater diversity in the training cor-589

pus to enhance the base models. In this paper, we590

only consider the models trained from the source591

of wikipedia.592
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