
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ZEROS CAN BE INFORMATIVE: MASKED BINARY U-
NET FOR IMAGE SEGMENTATION ON TENSOR CORES

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-time image segmentation is a key enabler for AR/VR, robotics, drones, and
autonomous systems, where tight accuracy, latency, and energy budgets must be
met on resource-constrained edge devices. While U-Net offers a favorable balance
of accuracy and efficiency compared to large transformer-based models, achieving
real-time performance on high-resolution input remains challenging due to com-
pute, memory, and power limits. Extreme quantization, particularly binary net-
works, is appealing for its hardware-friendly operations. However, two obstacles
limit practicality: (1) severe accuracy degradation, and (2) a lack of end-to-end
implementations that deliver efficiency on general-purpose GPUs.
We make two empirical observations that guide our design. (1) An explicit zero
state is essential: training with zero masking to binary U-Net weights yields no-
ticeable sparsity. (2) Quantization sensitivity is uniform across layers. Moti-
vated by these findings, we introduce Masked Binary U-Net (MBU-Net), obtained
through a cost-aware masking strategy that prioritizes masking where it yields the
highest accuracy-per-cost, reconciling accuracy with near-binary efficiency.
To realize these gains in practice, we develop a GPU execution framework that
maps MBU-Net to Tensor Cores via a subtractive bit-encoding scheme, efficiently
implementing masked binary weights with binary activations. This design lever-
ages native binary Tensor Core BMMA instructions, enabling high throughput and
energy savings on widely available GPUs. Across 3 segmentation benchmarks,
MBU-Net attains near full-precision accuracy (3% average drop) while delivering
2.04× speedup and 3.54× energy reductions over a 16-bit floating point U-Net.
The code will be released to the public alongside this publication.

1 INTRODUCTION

Image segmentation is essential for applications such as AR/VR, autonomous drones, autopilot sys-
tems, and robotics. In these domains, real-time perception and sustained operation are typically
required. For instance, segmentation at roughly 60 Hz frame rate is fundamental for Meta’s AR
glasses to deliver a smooth, context-aware user experience. Likewise, inspection or delivery drones
often must operate continuously for 30 minutes, sometimes even hours on a single battery. Conse-
quently, in addition to accuracy, processing speed and power efficiency are also decisive for practical
deployment on edge devices. With rising demand for high-resolution data and high frame rates, these
constraints have become increasingly stringent.

Compared to large, over-parameterized architectures such as Vision Transformer (Dosovitskiy et al.,
2020), U-Net (Ronneberger et al., 2015) is substantially cheaper in compute, memory, and energy
for dense prediction, making it a more promising choice for edge scenarios. Additionally, U-Net’s
characteristic encoder-decoder structure with skip connections has demonstrated high effectiveness
for pixel-level tasks (Chen et al., 2018; Zhou et al., 2019), preserving spatial details and facilitating
accurate pixel-level predictions. Nevertheless, running a U-Net on high-resolution video in real
time can still exceed the strict power, latency, and memory limits of many edge devices – further
optimizations are necessary to reconcile accuracy with deployability.

Quantization (Gholami et al., 2022; Wei et al., 2024; Haghi et al., 2024) is a natural path to efficiency.
At the extreme, binary networks (Hubara et al., 2016; Liu et al., 2020) use 1-bit weights and acti-
vations, replacing Multiply-Accumulations (MACs) with simple bitwise operations (XNOR/XOR)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

followed by a population count (popcount) (Rastegari et al., 2016). Since most processors handle
data in chunks rather than individual bits, practical implementations group many binary values to-
gether – allowing a single instruction to execute many binary operations in parallel. This approach
is highly efficient on CPUs and GPU CUDA cores (Li et al., 2019; Chen et al., 2023), and can be
further extended to exploit Tensor Cores (Li & Su, 2020). Collectively, these techniques leverage
inexpensive, hardware-friendly operations to sharply reduce compute, memory traffic, and energy,
making extreme low-bit inference attractive for resource-constrained edge deployments.

However, two practical challenges hinder the effectiveness of extreme quantization. (1) Accuracy
degradation. Binary networks usually suffer from a significant drop in accuracy due to the ag-
gressive 1-bit quantization, and the impact on U-Net in segmentation tasks can be especially se-
vere (AskariHemmat et al., 2019; Guo et al., 2022). (2) Scarce practical solutions on general-
purpose processors. Many binary/ternary methods (Wan et al., 2018; Heinrich et al., 2018; Zhu
et al., 2022; Yin et al., 2024) are algorithmic proofs-of-concept or tailored to custom FPGA (Liang
et al., 2018; Geng et al., 2019; Mani et al., 2022) and ASIC (Wagle et al., 2020) datapaths, leaving
end-to-end U-Net designs and optimizations on general-purpose processors (e.g., GPUs) under-
explored. To address these challenges, this paper aims to answer: (1) How to achieve near-full-
precision accuracy with near-binary efficiency for U-Net on segmentation tasks? (2) How to deliver
that efficiency on widely available GPUs without relying on specialized accelerators?

To address the first challenge, we design our solution based on two key observations: (1) An explicit
zero state is essential. Pure binary representations ({-1, +1}) force every connection to contribute,
offering no neutral state to suppress uncertain or noisy signals. Our experiments demonstrate that,
when training with zero masking on U-Net weights, in addition to substantially enhanced accuracy,
there is noticeable sparsity – over 90% zeros in many layers, some consistently exceeding 95% –
far outnumbering the +1 and -1 states. This indicates an abundance of signals that should be sup-
pressed by zeros. (2) Uniform sensitivity across layers. An exhaustive sweep over 4,000 per-layer
quantization configurations shows that masking any single layer has a comparable effect on accu-
racy. Since masking adds overhead, and masking all layers is often unnecessary if a subset already
provides sufficient suppression of information flow, low-cost layers can be prioritized for masking
to balance computation and accuracy. For example, masking transposed convolution layers has a
strong impact on accuracy while incurring negligible computational cost.

Since extra costs are incurred due to masking, we can strategically pick which layer to enable mask-
ing for computing and accuracy tradeoff, as it may not be necessary to apply masking for all layers,
some of them can already ensure sufficient suppression for information pass. For instance, trans-
posed convolution layers have strong impact on accuracy, despite their negligible computing cost.
Guided by these findings, we propose a cost-aware masking strategy that identifies critical layers
where masking is most beneficial, and introduce Masked Binary U-Net (MBU-Net), which achieves
near full-precision accuracy with near-binary efficiency as highlighted in Figure 1.

Efficiency

Finding 1: Binary weights have a high tendancy
toward zero in binarized U-Net training

Cost-Aware Masking Strategy Tensor Core Deployment

Finding 2: U-Net layers contribute
comparably to accuracy

Balanced +1/-1
Apply Zero Masks

Apply Zero Masks

Apply Zero Masks

Low
Accuracy

High
Accuracy

...

...

...

Ac
cu

ra
cy

Better

Full Precision
U-Net

Binary
U-Net

90% zeros

-10+1

+1-1 -1+1 -1+1 -1+1

-1 +1

Layer 1
Layer 2

Layer 1

Zero Masking

Layer 2

Layer 1

1st
2nd

3rd

4th

Lo
w

 C
os

t R
an

k

Layer 2
Layer 3
Layer 4
Binary

{-1,+1}

Activation a Weight b

{-1,0,+1}

MBU-Net Variations

Trading Efficiency for Accuracy

Layer 1
Layer 2

~~

0 0 0

0

0

0

0

0
0
0
0

0

0

Figure 1: Overview. Obtained through a cost-aware masking strategy and optimized for Tensor Core
on GPUs, MBU-Net achievs full-precision level accuracy and binary-level efficiency.

To address the second challenge, we target Tensor Cores, mapping MBU-Net via bit-packing and
dedicated APIs. On GPUs with Tensor Cores, performance is typically memory-bound rather than

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

compute-bound, thus we retain binary activations to reduce data movement and power. This ap-
proach is timely: Tensor Cores are now common even on edge GPUs (e.g., NVIDIA Jetson Xavier
with Volta Tensor Cores, Jetson Orin with Ampere Tensor Cores), positioning them as practical
platforms for efficient edge application deployment. Although prior frameworks have accelerated
pure Binary Neural Networks (BNNs) on GPUs (Li et al., 2019; Li & Su, 2020), to the best of our
knowledge, no high-performance framework exists for selectively masked binary models on Tensor
Cores, especially for U-Net. To bridge this gap, we introduce a subtractive bit-encoding method that
naturally realizes masked binary weights with binary activations within the Tensor Core paradigm,
thereby unlocking substantial efficiency gains on modern commodity GPUs. Our major contri-
butions are listed below.

1. We discover that: (1) An explicit zero masking state in the weights of a binary U-Net can
significantly improve the segmentation quality, closely approaching full-precision results.
(2) Despite being cheap, transposed convolution layers are accuracy-critical.

2. We employ a cost-aware masking strategy based on above discoveries, systematically iden-
tifying the most critical layers in a U-Net, leading to MBU-Net models that regain near
full-precision segmentation accuracy at minor masking cost over a pure BNN.

3. We design and implement an end-to-end acceleration framework with native BMMA binary
Tensor Core instructions through subtractive bit-encoding method, enabling unified and
high-throughput inference for MBU-Net models on GPU Tensor Cores.

4. Our approach delivers an average 2.04× speedup and 3.54× power efficiency improvement
over a 16-bit floating point U-Net on A100, H100, Jetson Orin Nano, and RTX 2080 Ti
GPUs, while incurring only 3% average accuracy loss on 3 segmentation datasets. The
U-Net contains 16M parameters, and the input images range from 0.25M to 0.6M pixels.

2 BACKGROUNDS

2.1 U-NET

Since its introduction in 2015 (Ronneberger et al., 2015), the U-Net architecture has proven to be
far more than just a successful model for biomedical image segmentation (Ibtehaz & Rahman, 2020;
Cheng et al., 2022). It has been extended to other domains including image enhancement (Komatsu
& Gonsalves, 2020), generative AI (Ho et al., 2020; Schonfeld et al., 2020; Si et al., 2024), scientific
modeling (Kamali & Laksari, 2024; Zhu et al., 2025), etc.

����������� �����������
������������

������������

���
������

������������
�	������

������������������������������������

��������
���	���������������	�	��������������������

�����������

���
������

�������

���������

���
������

�������������

�������
�������������

������������

����������������������
���������
	��� ������������
������������

������������ ����������

����������

����������

����������

������������

������������

������
�����

������������

���������������

���������������

���������������

���������������
���������������

c×W×H

2c×W/2×H/2

4c×W/4×H/4

8c×W/8×H/8 16c×W/16×H/16

8c×W/8×H/8

4c×W/4×H/4

2c×W/2×H/2

c×W×H

Figure 2: Left: Conventional U-Net architecture exemplified with segmentation task. c: number of
channels, W/H: feature width / height. Right: internal components of each abstracted block.

At its core, as Figure 2 illustrates, U-Net is a symmetric encoder-decoder architecture linked by skip
connections. The encoder (contracting path with orange down blocks) follows the typical structure
of a convolutional network, downsampling the input to capture semantic context. The decoder
(expanding path with blue up blocks), in return, progressively upsamples and refines the feature
representations to construct a full-resolution image. To avoid forcing all information through a
narrow bottleneck, skip connections concatenate encoder features with the corresponding decoder
features after transposed convolution layers, passing information along multiple paths and elegantly
preserving information at different semantic hierarchies.

Despite its widespread use, U-Net’s computational footprint at real-time, high-resolution settings is
substantial. A configuration at 720p can require on the order of hundreds of GFLOPs per frame,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and sustaining 60 fps implies tens of TFLOPs per second plus heavy memory bandwidth from skip
connections. On edge platforms such as AR glasses and drones, on-device inference is often neces-
sary for latency, privacy, and reliability, yet power budgets are only a few watts. These constraints
motivate aggressive quantization and sparsity to reduce arithmetic and bandwidth while preserving
accuracy. We therefore investigate U-Net in the binarized regime, aiming to characterize its behavior
under extreme precision reduction and masking, and to provide guidance for edge-oriented designs
that balance accuracy, compute, and energy.

2.2 BINARY NEURAL NETWORKS

The success of Deep Neural Networks (DNNs) has been largely predicated on a trend of escalat-
ing model complexity. In contrast, BNNs (Hubara et al., 2016) shrinks the complexity to an ex-
treme extent, with both activations and weights constrained to binary values, typically represented
as {-1, +1}. For activations, this constraint is commonly enforced through a binarization function
xb = sign(x) during forward pass, whereas the weights are trained under binary representation,
typically using Straight-Through Estimators (STE) (Bengio et al., 2013; Courbariaux et al., 2015;
Yin et al., 2019) to approximate the gradient in such non-differentiable architecture. Despite the
low resolution, theoretical analysis (Anderson & Berg, 2017) has confirmed BNN’s capability of
capturing features.

For efficient practical deployment, XNOR-Net (Rastegari et al., 2016) was introduced. Specifically,
for binary vectors a|ai ∈ {−1,+1} and b|bi ∈ {−1,+1}, their MAC operation can be translated
into bit-wise operations and population count on bit vectors a′|a′i ∈ {0, 1} and b′|b′i ∈ {0, 1}:

a · b =

n∑
i

(2a′i − 1)(2b′i − 1) = 2 · popc(a′ XNOR b′)− n (1)

using the equality a′i XNOR b′i = 2a′ib
′
i−a′i− b′i. Here, “popc” refers to population count operation

that counts the number of 1’s in an n-bit vector, e.g., a 32-bit vector as an unsigned integer.

In the past decade, BNN researches follow two main threads. On the algorithmic level, researchers
strive to improve BNN training accuracy, while on the implementation level, the main target is to
minimize power and latency, especially on FPGA and ASIC. In this work, our goal is to push the
boundaries on both directions for U-Net, achieving near full-precision accuracy with near-binary
efficiency.

2.3 TENSOR CORE APIS

Tensor Cores are specialized units that accelerate Matrix Multiply-Accumulate (MMA), computing
D = A × B + C per instruction, where A, B, C, and D are matrices of compatible dimensions.
Compared with issuing many MACs on CUDA cores, a single MMA instruction performs a large
number of fused operations on a small matrix tile. Impressively, for example, the throughput of
Tensor Cores on A100 is almost an order of magnitude higher than CUDA cores, emphasizing the
trend of shifting AI workloads to such dedicated matrix engines for higher throughput and efficiency.

In GPUs, processing units are grouped into warps, and the above MMA is executed using the
WMMA API with the following three key functions: (1) Load data from memory to registers. (2)
Perform the above MMA operation. (3) Write the data back to memory. Less widely known, some
NVIDIA GPUs also expose bit MMA (namely, BMMA): Tensor Core instructions that compute
binary matrix products using bitwise logic (e.g., XOR/AND) with popcount accumulation. These
binary Tensor Core features remain low-level and experimental, as they are not exposed by main-
stream libraries (e.g., cuBLAS, cuDNN) and typically require custom kernels. Consequently, despite
their potential, binary Tensor Core capabilities remain underused and underexplored in practice.

In this work, we extend the scope of an existing BNN acceleration framework (Hosseini et al., 2019;
Li & Su, 2020) on Tensor Core, bringing the unique BMMA capability under the spotlight.

3 METHODS

In this section, we present MBU-Net, a class of masked binary U-Nets inspired from empirical ob-
servations (§3.1.1) and constructed using a cost-aware masking strategy §3.1.2, achieving balanced

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tradeoff between accuracy and computational cost. Next, we demonstrate that with subtractive bit
encoding §3.2.1, masked layers can be naturally mapped to Tensor Cores by reusing the BNN map-
ping §3.2.2, enabling an end-to-end implementation that runs efficiently on modern edge GPUs.

3.1 MASKED BINARY U-NET

3.1.1 EMPIRICAL OBSERVATIONS AND ANALYSIS

We begin by defining a U-Net backbone with 12 abstracted configurable layers: 4× double convolu-
tion layers in the encoder, labeled as down-C1∼4; 4× transposed convolution layers in the decoder,
as up-CT1∼4; 4× double convolution layers in the decoder, as up-T1∼4. The indexing is consis-
tent with the block indices in Figure 2. Each layer can be instantiated in one of two states: binary
or masked (i.e., with an explicit zero state in the weights), resulting in a 212 design space. In the
exhaustive sweeping, Carvana dataset (Shaler et al., 2017) is used as a representative example.

In binary layers, input features, output features, and weights are all binary values within {−1,+1},
following the convention of BNNs. In masked layers, an masking state ’0’ is included in weights,
effectively making the weights ternary {−1, 0,+1}, while keeping input and output features binary.
Detailed network architecture is in Appendix A.2. Extensive investigations (Appendix A.3) demon-
strate that higher-bit weight quantizations only result in marginal improvement compared to binary
weights with masks. Through STE training approach, the zero masking is automatically applied.
The training configuration is in Appendix A.4.

100

80

60

40

20

0

��
��
��

��
��

��
�
��
��

���
��
��

�
��

��
��

	�
����������������
 ��
��
 	�
��������������	������
������
�������

������ ����� ����

� � � � � � � � � � � �

�����

�����

�����

�����

�����

�����

����

����

����

����

����

��
�
���� ���

�
	����
�	��
�

�������
�	��
�

���� ���� ���� ���� ���� ����

�����

�����

�����

�
��
��

�

��	
�

��
��
��
��

�
��
��
��
��
��
��
�

�
��
��
��
��
��
��
��
��
��
�

������ ����� ����
� � � � � � � � � � � �

Figure 3: (a) Statistics of the weights masked to zero. (b) Accuracy and computing demand distri-
bution for all layer configurations. (c) Shapley analysis: marginal improvement in Dice score from
masking each binary layer. Only cases with fewer than five masked layers are included for clarity.

Figure 3(a) demonstrates that zero weights are notably prevalent across all masked layers and con-
figurations. On average, each layer exhibits more than 80% sparsity, with many layers exceeding
90% and some consistently surpassing 95%. This finding indicates that it is preferable to mask out
the majority of weights while retaining only a small essential subset. Figure 3(b) supports this ob-
servation: layer configurations with heavier masking generally achieve higher Dice scores (from 0
to 1, higher is better), confirming the value of masked binary weights.

However, masking inevitably introduces additional costs, which can sometimes be heavy in com-
putation. Figure 3(b) further shows that fully masking all layers can require about twice as many
operations as lightly masked configurations. Meanwhile, a configuration requiring 0.08 TOPs can
achieve accuracy comparable with the fully masked configuration exceeding 0.12 TOPs. This indi-
cates that masking every layer is unnecessary when a small set of critical layers suffices, motivating
us to identify those layers to achieve high accuracy at low cost.

Figure 3(c) shows the marginal gain in Dice score for each layer under zero masking. For clarity,
we restrict the analysis to cases with fewer than 5 masked layers, since including more layers dilutes
the per-layer contribution due to the limited improvement in Dice score. Interestingly, the contribu-
tions are broadly comparable across layers. This observation brings a straightforward yet practical
strategy: prioritize masking low-cost layers.

3.1.2 COST-AWARE MASKING STRATEGY

The above empirical findings indicate that if some layers are significantly cheaper than others, mask-
ing the cheap layers can achieve substantial improvement in accuracy at minimal cost. We thus fur-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ther profile the per-layer computing and memory in Figure 4, where the operations account for both
multiplications and additions.

�����

������

�������
�������
�������
�������

������
������
������
������

�����
�����
�����
�����

� �
� �
� �
� ��
� ��
� � � � � � ���
� ��
�

������������������������
�� ����������
�������������

����

	�
��

��
�����

������

�������
�������
�������
�������

������
������
������
������

�����
�����
�����
�����

	�
��

��

��� ���

Figure 4: Per-layer cost profiling. (a) Number of addition and multiplication operations in each layer
with a 512×512 image as a representative example. (b) Number of parameters in each layer.

We observe that, the numbers of operations of transposed convolution layers (highlighted with red
dashed frame) in the upsampling path are 1∼2 orders of magnitude fewer compared to other layers,
and the operation count and parameter count are relatively imbalanced across layers. As it is usually
infeasible to perform analysis like Figure 3 across the entire design space, it is preferable to set up
the strategy based on the model characteristics in Figure 4. Particularly, we define the cost-aware
strategy using the weighted cost score for layer l:

slcost = wopn̂
l
op + wparamn̂

l
param (2)

where n̂l
op and n̂l

param are the number of operations and the number of parameters of layer l normal-
ized to [0, 1], and the weights wop and wparam satisfy wop + wparam = 1, as hyperparameters. The
weighted cost scores are then ranked from low to high as the priority list for masking. Following the
strategy, MBU-Net can be populated based on the priority list based on demand, narrowing down
the design space significantly.

3.2 TENSOR CORE DEPLOYMENT

3.2.1 SUBTRACTIVE BIT-ENCODING

MBU-Net maintains binary activations and assigns each layer to either binary or masked weights
according to the cost-aware strategy described above. To ensure that the MAC between binary
activation and masked weight can be naturally supported by native operations on Tensor Cores –
XOR and popcount, we encode masked weights with two subtracting bit-planes. In particular, let
a|ai ∈ {−1,+1} denote a binary activation vector, and b|bi ∈ {−1, 0,+1} as a masked weight
vector, we encode a weight value as bi = bpos

i − bneg
i , with bpos

i , bneg
i ∈ {0, 1}. The MAC operation is

thus translated using a′i ∈ {0, 1}:

a·b =

n∑
i

2a′ib
pos
i − bpos

i − a′i︸ ︷︷ ︸
1−(a′

i XOR bpos
i)

+ a′i + bneg
i − 2a′ib

neg
i︸ ︷︷ ︸

a′
i XOR bneg

i

= n+popc(a′ XOR bneg)−popc(a′ XOR bpos)

(3)
Compared to Equation 1, the binary-ternary MAC operation is fully represented by bit-friendly
operations, only to use XOR instead of XNOR to be compatible with Tensor Core intrinsics.

3.2.2 MAPPING LAYERS TO TENSOR CORE

We map these computations to GPU Tensor Cores using binary WMMA, or the experimental
BMMA API. Each kernel of a masked layer stores the two bit planes as bit-packed matrices. At
warp level, we operate on 8 × 8 × 128 bit tiles, where the three dimensions are mapped to batch
size, output layer number, and input layer number. For clarity, we show the high-level procedure for
convolution on Tensor Core in Algorithm 3.2.2.

In the algorithm, the matrices A, B, and C follow the update rule C ← A · B + C, implemented
using the Tensor Core API function “bmma sync”. The function is further compiled to a Parallel

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Bit Convolution with Subtractive Bit-Encoding on Tensor Core
1: for all H,W,Cout, B do ▷ feature height, width, output channel, batch size
2: Initialize accumulators Cpos, Cneg ← 0
3: for all FH , FW , and Cin of 128-bit blocks do ▷ filter height, width, input channel
4: Load binary activation fragment A ▷ row-major
5: Load binary weight fragments Bpos, Bneg ▷ column-major
6: bmma sync(Cpos, A,Bpos, Cpos) ▷ binary WMMA API
7: bmma sync(Cneg, A,Bneg, Cneg)
8: end for
9: R← Cneg − Cpos ▷ temporary result R

10: Threshold comparison: Aout ← (R ≥ θ) ▷ covering batchnorm, bias, and binary activation
11: Pack bits via intrinsics (ballot, brev) and store to memory
12: end for

Thread Execution (PTX) Tensor Core opcode that includes XOR and popcount. θ denotes the pre-
computed threshold. The threshold comparison jointly incorporates batch normalization (Ioffe &
Szegedy, 2015), bias, and binary activation, which is a standard practice in BNNs. In terms of other
layers (detailed in Figure 2), transposed convolution is performed similarly, while pooling and 1×1
convolutions are trivial, hence not discussed in further details.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Our experiments are conducted on 4 Nvidia GPU platforms: A100 (Ampere architecture), H100
(Hopper), Jetson Orin Nano (Ampere), and RTX 2080 Ti (Turing), all equipped with Tensor Cores.
We evaluate models under the following execution settings: PyTorch-FP32/FP16 – baseline imple-
mentations in PyTorch (Paszke et al., 2019) using 32-bit floating point and 16-bit floating point for
both weights and activations, where the FP16 variant employs tensor cores; MBU-Net adopts binary
activation and mixed binary/masked weights; The Binary model uses both binary activations and
weights. The first and the last convolution layers in the quantized experiments are full-precision. For
benchmarks, we use 3 representative datasets: Carvana (Shaler et al., 2017) – car image segmenta-
tion, ISIC (Codella et al., 2019) – skin lesion image segmentation, and Nuclei – nuclei segmentation
in divergent images (Goodman et al., 2018). Dataset details are in Appendix A.4.

4.2 EFFICIENCY COMPARISON

We compare separate GPU and execution settings over the selected datasets. Efficiency is evaluated
and discussed in terms of latency and energy in the following sections.

4.2.1 LATENCY COMPARISON

Figure 5 shows the latency comparison. MBU-Net consistently outperforms FP32, with an average
speedup of 4.83× over all platforms and datasets. On average, MBU-Net also outperforms FP16
with a 2.04× speedup. Noticeably, FP16 achieves better latency results, even compared to Binary.
This is likely due to the removal of native BMMA support on Nvidia Hopper Tensor Core architec-
ture (NVIDIA, 2022) – performance is lost, despite MBU-Net and Binary models are still runnable.

La
te

nc
y

pe
r I

m
ag

e
(m

s)

A100 H100 Jetson 2080 Ti A100 H100 Jetson 2080 Ti A100 H100 Jetson 2080 Ti

FP32 FP16 MBU-Net Binary

1

10

100

1K

10K

1

10

100

1K

1

10

100

1K
Carvana

GPU Platform GPU Platform GPU Platform

ISIC Nuclei

Figure 5: Latency per image inference (milliseconds). Lower is better.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2.2 ENERGY COMPARISON

Figure 6 presents the energy comparison. Consistently, MBU-Net’s energy cost is comparable to the
Binary model, while achieving average energy reduction of 8.53× over FP32 and 3.54× over FP16.

0

4

8

12

16

20

En
er

gy
 p

er
 Im

ag
e

(J
)

A100 H100 Jetson 2080 Ti A100 H100 Jetson 2080 Ti A100 H100 Jetson 2080 Ti0

2

4

6

8

10

0

2

4

6

8
Carvana

GPU Platform GPU Platform GPU Platform

ISIC Nuclei

FP32 FP16 MBU-Net Binary

Figure 6: Energy per image inference (Joule). Lower is better.

4.3 ACCURACY COMPARISON

Table 1 compares the U-Net model across different precision configurations. “Full Precision” refers
to both full-precision weights and activations (FP32 and FP16 show negligible accuracy differences),
while other configurations employ binary activations. Accuracy is evaluated with three metrics: Dice
Score, IoU, and F1 score, with our results highlighted in the shaded row. On average, aggressive
quantization in MBU-Net only leads to drops of 0.029, 0.037, and 0.024 in Dice, IoU, and F1 scores.

Table 1: Accuracy comparison using Dice score, IoU, and F1 score across three datasets. All metrics
range from 0 to 1, higher is better. All configurations other than Full Precision use binary activations.

Dataset Carvana ISIC Nuclei
Metric (Weight-Activation) Dice IoU F1 Dice IoU F1 Dice IoU F1

Full Precision* 0.997 0.994 0.997 0.771 0.644 0.783 0.867 0.776 0.874
INT8 0.994 0.987 0.994 0.763 0.633 0.776 0.823 0.741 0.851
INT4 0.989 0.979 0.989 0.753 0.619 0.765 0.819 0.739 0.850

MBU-Net 0.981 0.963 0.981 0.750 0.617 0.763 0.817 0.722 0.839
Binary 0.662 0.530 0.693 0.560 0.399 0.570 0.434 0.302 0.464

* Both weights and activations are in full precision; negligible difference between FP32 and FP16 accuracy.

4.4 ABLATION STUDY

Figure 7 presents the Pareto frontier illustrating the tradeoff between accuracy (Dice score) and
speed (FPS) across different MBU-Net configurations on A100 GPU, where masked layers are cho-
sen using the cost-aware masking strategy with wop = wparam = 0.5. The corresponding cost score
ranking and additional results with other metrics are in Appendix A.5

0.0
0.1
0.2
0.3
0.4
0.5
0.6

A
cc

ur
ac

y
(D

ic
e

Sc
or

e)

Carvana ISIC

Speed (FPS) Speed (FPS) Speed (FPS)

Nuclei

0.7
0.8
0.9
1.0

0 40 80 120 160
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 50 100 150 200 250 300
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 100 200 300 400

FP32
FP32

FP32FP16
FP16

FP16

Binary

Better

Binary

Binary

Better Better

Figure 7: Pareto frontier of accuracy (dice score) and speed (FPS) on A100 for 3 datasets. Colors
(bright→dark) indicate more layers get masked, based on the cost-aware masking strategy in §3.1.2.

5 RELATED WORK

Ternary Networks. Table 5 summarizes a few notable studies related to neural networks with
ternary activations or weights. TWN (Li et al., 2016) and TTQ (Zhu et al., 2016) focus on full
precision activation and ternary weights on the algorithmic level, reporting results primarily on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Summary of ternary activation/weight network studies.
Related Work TWN TTQ TBN TernaryNet FATNN

Platform Unspecified Unspecified Unspecified CPU GPU
Focus Acc* Acc Acc & Theoretical Speed Acc Acc & Speed

Activation Full Precision Full Precision Ternary Ternary Ternary
Weights Ternary Ternary Binary Ternary Ternary

Task IC* IC IC Segmentation IC
* IC: Image Classification; Acc: Accuracy

image classification tasks. TBN (Wan et al., 2018) adopts ternary activations and binary weights,
also at the algorithmic level. TernaryNet (Heinrich et al., 2018) is also an algorithmic endeavor,
focusing on achieving faster inference without GPUs. FATNN (Chen et al., 2021) introduces a
2-bit encoding method: −1 → 00; 0 → 01/10, +1 → 11 and uses a series of bit operations
to reduce ternary-ternary operation complexity from O(4N) to O(2N). TAB (Zhu et al., 2022)
proposes a flexible framework accommodating various activation/weight quantization schemes. To
our knowledge, none of these works analyze per-layer contributions to accuracy, assess compatibility
with U-Net, or deliver end-to-end implementations targeting Tensor Cores on commodity GPUs.

Image Segmentation. U-Net (Ronneberger et al., 2015) stands as one of the most influential ar-
chitectures in image segmentation, inspiring a wide range of successors that refine different as-
pects of its design. U-Net++ (Zhou et al., 2019) introduces nested and dense skip connections.
UNet3+ (Huang et al., 2020) extends this idea with full-scale skip connections. Beyond architec-
tural refinements, U-Net is often combined with other mechanisms. Attention U-Net (Oktay et al.,
2018) integrates attention gates into skip connections, while ResUNet (Diakogiannis et al., 2020)
and Recurrent Residual U-Net (Alom et al., 2019) incorporate residual connections to enhance the
capacity of deeper networks. In the era of large models, Transformer-based approaches, notably
ViTs (Dosovitskiy et al., 2020), have proven effective for segmentation tasks (Strudel et al., 2021).
Segment Anything Models (Kirillov et al., 2023; Ravi et al., 2024), based on ViT, achieve excep-
tional segmentation quality. However, their parameter counts and computational demands pose
significant challenges for edge deployment.

Additional Applications of U-Net. In addition to segmentation, U-Net has been widely explored
for image enhancement tasks, including denoising (Fan et al., 2022; Tripathi, 2021) and super-
resolution (Hu et al., 2019). With the rapid growth of AR/VR, U-Net has emerged as a promising
candidate for waveguide correction (Chapiro et al., 2024) to enable lower power consumption and
reduced distortions in AR systems. Moreover, U-Net plays a pivotal role in generative AI, serving
as the backbone for models such as DDPM (Ho et al., 2020) and high-resolution image synthe-
sis (Rombach et al., 2022).

6 CONCLUSION

In this work, we address the challenges of bringing binary quantization to U-Net for real-time image
segmentation on edge devices. Two critical observations are identified: (1) The necessity of an
explicit zero state to suppress noisy signals and promote sparsity, and (2) the uniform sensitivity of
U-Net layers to quantization. Building on these insights, we propose a cost-aware masking strategy
that balances accuracy and efficiency, resulting in Masked Binary U-Net (MBU-Net). To realize
its benefits on commodity hardware, we develop a GPU execution framework that leverages Tensor
Cores through a subtractive bit-encoding scheme, efficiently supporting masked binary weights with
binary activations. This framework ensures high throughput and power efficiency, while remaining
deployable on widely available edge GPUs.

Experiments across multiple segmentation datasets demonstrate that MBU-Net achieves near full-
precision accuracy (3% drop on average), while attaining 2.04× speedup and 3.54× energy con-
sumption compared to a 16-bit floating point U-Net. These results establish MBU-Net as a practical
and scalable solution for real-time, high-resolution image segmentation on Tensor Cores. If de-
ployed on AR/VR, autonomous drones or related domains, this can raise a 30 FPS pipeline to 60
FPS, and cut segmentation power by 70%, extending battery life. While measured on GPU Tensor
Cores, MBU-Net is well suited for ASICs: its low-bit width arithmetic and masking enable narrow
data paths and reduced SRAM bandwidth, yielding higher performance per watt and deterministic
latency in a dedicated accelerator.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken comprehensive measures to ensure the reproducibility of our results. All datasets em-
ployed in our experiments are publicly available and described in detail in Appendix Section A.4.2.
The experimental settings are presented in Section 4.1 and further elaborated in Appendix Sec-
tion A.4. We will release the full code implementation of this work together with the publication.

REFERENCES

Md Zahangir Alom, Chris Yakopcic, Mahmudul Hasan, Tarek M Taha, and Vijayan K Asari. Recur-
rent residual u-net for medical image segmentation. Journal of medical imaging, 6(1):014006–
014006, 2019.

Alexander G Anderson and Cory P Berg. The high-dimensional geometry of binary neural networks.
arXiv preprint arXiv:1705.07199, 2017.

MohammadHossein AskariHemmat, Sina Honari, Lucas Rouhier, Christian S Perone, Julien Cohen-
Adad, Yvon Savaria, and Jean-Pierre David. U-net fixed-point quantization for medical image
segmentation. In International Workshop on Large-scale Annotation of Biomedical data and
Expert Label Synthesis, pp. 115–124. Springer, 2019.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Alexandre Chapiro, Dongyeon Kim, Yuta Asano, and Rafał K. Mantiuk. Ar-david: Augmented
reality display artifact video dataset. ACM Trans. Graph., 43(6), November 2024. ISSN 0730-
0301. doi: 10.1145/3687969. URL https://doi.org/10.1145/3687969.

Jou-An Chen, Hsin-Hsuan Sung, Xipeng Shen, Sutanay Choudhury, and Ang Li. Bitgnn: Unleash-
ing the performance potential of binary graph neural networks on gpus. In Proceedings of the
37th International Conference on Supercomputing, pp. 264–276, 2023.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In Proceedings of
the European conference on computer vision (ECCV), pp. 801–818, 2018.

Peng Chen, Bohan Zhuang, and Chunhua Shen. Fatnn: Fast and accurate ternary neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5219–5228,
2021.

Junlong Cheng, Shengwei Tian, Long Yu, Shijia Liu, Chaoqing Wang, Yuan Ren, Hongchun Lu, and
Min Zhu. Ddu-net: A dual dense u-structure network for medical image segmentation. Applied
Soft Computing, 126:109297, 2022.

Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David Gut-
man, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
collaboration (isic). arXiv preprint arXiv:1902.03368, 2019.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. Advances in neural information processing
systems, 28, 2015.

Foivos I Diakogiannis, François Waldner, Peter Caccetta, and Chen Wu. Resunet-a: A deep learning
framework for semantic segmentation of remotely sensed data. ISPRS Journal of Photogrammetry
and Remote Sensing, 162:94–114, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10

https://doi.org/10.1145/3687969

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chi-Mao Fan, Tsung-Jung Liu, and Kuan-Hsien Liu. Sunet: Swin transformer unet for image
denoising. In 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–
2337. IEEE, 2022.

Tong Geng, Tianqi Wang, Chunshu Wu, Chen Yang, Shuaiwen Leon Song, Ang Li, and Martin
Herbordt. Lp-bnn: Ultra-low-latency bnn inference with layer parallelism. In 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures and Processors (ASAP),
volume 2160, pp. 9–16. IEEE, 2019.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Allen Goodman, Anne Carpenter, Elizabeth Park, jlefman nvidia, Josette BoozAllen, Kyle, Maggie,
Nilofer, Peter Sedivec, and Will Cukierski. 2018 data science bowl. https://kaggle.com/
competitions/data-science-bowl-2018, 2018. Kaggle.

Liming Guo, Wen Fei, Wenrui Dai, Chenglin Li, Junni Zou, and Hongkai Xiong. Mixed-precision
quantization of u-net for medical image segmentation. In 2022 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 2871–2875. IEEE, 2022.

Pouya Haghi, Chunshu Wu, Zahra Azad, Yanfei Li, Andrew Gui, Yuchen Hao, Ang Li, and
Tony Tong Geng. Bridging the gap between llms and lns with dynamic data format and architec-
ture codesign. In 2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 1617–1631. IEEE, 2024.

Mattias P Heinrich, Max Blendowski, and Ozan Oktay. Ternarynet: faster deep model inference
without gpus for medical 3d segmentation using sparse and binary convolutions. International
journal of computer assisted radiology and surgery, 13(9):1311–1320, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Morteza Hosseini, Hirenkumar Paneliya, Utteja Kallakuri, Mohit Khatwani, and Tinoosh Mohsenin.
Minimizing classification energy of binarized neural network inference for wearable devices. In
20th International Symposium on Quality Electronic Design (ISQED), pp. 259–264. IEEE, 2019.

Xiaodan Hu, Mohamed A Naiel, Alexander Wong, Mark Lamm, and Paul Fieguth. Runet: A robust
unet architecture for image super-resolution. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

Huimin Huang, Lanfen Lin, Ruofeng Tong, Hongjie Hu, Qiaowei Zhang, Yutaro Iwamoto, Xianhua
Han, Yen-Wei Chen, and Jian Wu. Unet 3+: A full-scale connected unet for medical image
segmentation. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp. 1055–1059. Ieee, 2020.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

Nabil Ibtehaz and M Sohel Rahman. Multiresunet: Rethinking the u-net architecture for multimodal
biomedical image segmentation. Neural networks, 121:74–87, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Ali Kamali and Kaveh Laksari. Physics-informed unets for discovering hidden elasticity in het-
erogeneous materials. Journal of the mechanical behavior of biomedical materials, 150:106228,
2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 4015–4026, 2023.

11

https://kaggle.com/competitions/data-science-bowl-2018
https://kaggle.com/competitions/data-science-bowl-2018

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rina Komatsu and Tad Gonsalves. Comparing u-net based models for denoising color images. AI,
1(4):465–486, 2020.

Ang Li and Simon Su. Accelerating binarized neural networks via bit-tensor-cores in turing gpus.
IEEE Transactions on Parallel and Distributed Systems, 32(7):1878–1891, 2020.

Ang Li, Tong Geng, Tianqi Wang, Martin Herbordt, Shuaiwen Leon Song, and Kevin Barker. Bstc:
A novel binarized-soft-tensor-core design for accelerating bit-based approximated neural nets. In
Proceedings of the international conference for high performance computing, networking, storage
and analysis, pp. 1–30, 2019.

Fengfu Li, Bin Liu, Xiaoxing Wang, Bo Zhang, and Junchi Yan. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. Fp-bnn: Binarized neural
network on fpga. Neurocomputing, 275:1072–1086, 2018.

Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards precise
binary neural network with generalized activation functions. In European conference on computer
vision, pp. 143–159. Springer, 2020.

VRS Mani, A Saravanaselvan, and NJMJ Arumugam. Performance comparison of cnn, qnn and
bnn deep neural networks for real-time object detection using zynq fpga node. Microelectronics
Journal, 119:105319, 2022.

NVIDIA. Nvidia h100 tensor core gpu architecture. Whitepaper, 2022. URL
https://resources.nvidia.com/en-us-hopper-architecture/
nvidia-h100-tensor-c.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa,
Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net:
Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. A u-net based discriminator for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8207–8216, 2020.

Brian Shaler, Dan Gill, Maggie McDonald, Patricia, and Will Cukierski. Car-
vana image masking challenge. https://kaggle.com/competitions/
carvana-image-masking-challenge, 2017. Kaggle.

Chenyang Si, Ziqi Huang, Yuming Jiang, and Ziwei Liu. Freeu: Free lunch in diffusion u-net.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4733–4743, 2024.

12

https://resources.nvidia.com/en-us-hopper-architecture/nvidia-h100-tensor-c
https://resources.nvidia.com/en-us-hopper-architecture/nvidia-h100-tensor-c
https://kaggle.com/competitions/carvana-image-masking-challenge
https://kaggle.com/competitions/carvana-image-masking-challenge

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 7262–7272, 2021.

Milan Tripathi. Facial image denoising using autoencoder and unet. Heritage and Sustainable
Development, 3(2):89, 2021.

Ankit Wagle, Sunil Khatri, and Sarma Vrudhula. A configurable bnn asic using a network of pro-
grammable threshold logic standard cells. In 2020 IEEE 38th International Conference on Com-
puter Design (ICCD), pp. 433–440. IEEE, 2020.

Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and Heng Tao Shen. Tbn: Convo-
lutional neural network with ternary inputs and binary weights. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 315–332, 2018.

Lu Wei, Zhong Ma, Chaojie Yang, and Qin Yao. Advances in the neural network quantization: A
comprehensive review. Applied Sciences, 14(17):7445, 2024.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

Rui Yin, Haotong Qin, Yulun Zhang, Wenbo Li, Yong Guo, Jianjun Zhu, Cheng Wang, and Biao
Jia. Bidense: Binarization for dense prediction. arXiv preprint arXiv:2411.10346, 2024.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++:
Redesigning skip connections to exploit multiscale features in image segmentation. IEEE trans-
actions on medical imaging, 39(6):1856–1867, 2019.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv
preprint arXiv:1612.01064, 2016.

Shien Zhu, Luan HK Duong, and Weichen Liu. Tab: Unified and optimized ternary, binary, and
mixed-precision neural network inference on the edge. ACM Transactions on Embedded Com-
puting Systems (TECS), 21(5):1–26, 2022.

Tong Zhu, Dehao Liu, and Yanglong Lu. Finite-volume physics-informed u-net for flow field recon-
struction with sparse data. Journal of Computing and Information Science in Engineering, 25(7):
071004, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE

We use GPT-5, Gemini-2.5-Pro, and Claude-4-sonnet to polish writing and assist literature search-
ing. All LLM-assisted text and references have been reviewed, revised, and verified by the authors.

A.2 DETAILED MBU-NET ARCHITECTURE

Input

Down 1

MaxPool2D
2×2

BatchNorm

Input

ReLU
Conv2D

kernel=3×3
padding=1

Conv2D
kernel=3×3
padding=1

BatchNorm ReLU

Cin = 3, Cout = 64

Conv2D
kernel=3×3
padding=1

Cin = 64, Cout = 128 Cin = 128, Cout = 128
Conv2D

kernel=3×3
padding=1

Cin = 64, Cout = 64

BatchNorm ReLU BatchNorm ReLU

Down 2

MaxPool2D
2×2

Conv2D
kernel=3×3
padding=1

Cin = 128, Cout = 256 Cin = 256, Cout = 256
Conv2D

kernel=3×3
padding=1

BatchNorm ReLU BatchNorm ReLU

Down 3

MaxPool2D
2×2

Conv2D
kernel=3×3
padding=1

Cin = 256, Cout = 512 Cin = 512, Cout = 512
Conv2D

kernel=3×3
padding=1

BatchNorm ReLU BatchNorm ReLU

Down 4

MaxPool2D
2×2

Conv2D
kernel=3×3
padding=1

Cin = 512, Cout = 512 Cin = 512, Cout = 512
Conv2D

kernel=3×3
padding=1

BatchNorm ReLU BatchNorm ReLU

Up 1
ConvTranspose2D

kernel=2×2
stride=2

Cin = 512, Cout = 512
Conv2D

kernel=3×3
padding=1

Concatenate

Cin = 1K, Cout = 256 Cin = 256, Cout = 256

BatchNorm ReLU
Conv2D

kernel=3×3
padding=1

BatchNorm ReLU

Cin = 64, Cout = 2
Conv2D

kernel=1×1

Up 2
ConvTranspose2D

kernel=2×2
stride=2

Cin = 256, Cout = 256
Conv2D

kernel=3×3
padding=1

Concatenate

Cin = 512, Cout = 128 Cin = 128, Cout = 128

BatchNorm ReLU
Conv2D

kernel=3×3
padding=1

BatchNorm ReLU

Up 3
ConvTranspose2D

kernel=2×2
stride=2

Cin = 128, Cout = 128
Conv2D

kernel=3×3
padding=1

Concatenate

Cin = 256, Cout = 64 Cin = 64, Cout = 64

BatchNorm ReLU
Conv2D

kernel=3×3
padding=1

BatchNorm ReLU

Up 4
ConvTranspose2D

kernel=2×2
stride=2

Cin = 64, Cout = 64
Conv2D

kernel=3×3
padding=1

Concatenate

Cin = 128, Cout = 64 Cin = 64, Cout = 64

BatchNorm ReLU
Conv2D

kernel=3×3
padding=1

BatchNorm ReLU

Detailed U-Net Architecture in This WorkOutput

Output

Figure A.1: The foundational U-Net architecture used in this work.

Input

Down 1

MaxPool2D
2×2

BatchNorm

Input

ReLU
Conv2D

kernel=3×3
padding=1

QuantConv2D
kernel=3×3
padding=1

BatchNorm Binary
Activ

Binary
Activ

Cin = 3, Cout = 64

QuantConv2D
kernel=3×3
padding=1

Cin = 64, Cout = 128 Cin = 128, Cout = 128
QuantConv2D

kernel=3×3
padding=1

Cin = 64, Cout = 64

BatchNorm BatchNorm

Down 2

MaxPool2D
2×2

QuantConv2D
kernel=3×3
padding=1

Cin = 128, Cout = 256 Cin = 256, Cout = 256
QuantConv2D

kernel=3×3
padding=1

BatchNorm BatchNorm

Down 3

MaxPool2D
2×2

QuantConv2D
kernel=3×3
padding=1

Cin = 256, Cout = 512 Cin = 512, Cout = 512
QuantConv2D

kernel=3×3
padding=1

BatchNorm BatchNorm

Down 4

MaxPool2D
2×2

QuantConv2D
kernel=3×3
padding=1

Cin = 512, Cout = 512 Cin = 512, Cout = 512
QuantConv2D

kernel=3×3
padding=1

BatchNorm BatchNorm

Up 1
QuantConvTranspose2D

kernel=2×2
stride=2

Cin = 512, Cout = 512
QuantConv2D

kernel=3×3
padding=1

Concatenate

Cin = 1K, Cout = 256 Cin = 256, Cout = 256

BatchNorm
QuantConv2D

kernel=3×3
padding=1

BatchNorm

Cin = 64, Cout = 2
Conv2D

kernel=1×1

Up 2
QuantConvTranspose2D

kernel=2×2
stride=2

Cin = 256, Cout = 256
QuantConv2D

kernel=3×3
padding=1

Concatenate

Cin = 512, Cout = 128 Cin = 128, Cout = 128

BatchNorm
QuantConv2D

kernel=3×3
padding=1

BatchNorm

Up 3
QuantConvTranspose2D

kernel=2×2
stride=2

Cin = 128, Cout = 128
QuantConv2D

kernel=3×3
padding=1

Concatenate

Cin = 256, Cout = 64 Cin = 64, Cout = 64

BatchNorm
QuantConv2D

kernel=3×3
padding=1

BatchNorm

Up 4
QuantConvTranspose2D

kernel=2×2
stride=2

Cin = 64, Cout = 64
QuantConv2D

kernel=3×3
padding=1

Concatenate

Cin = 128, Cout = 64 Cin = 64, Cout = 64

BatchNorm
QuantConv2D

kernel=3×3
padding=1

BatchNorm

Detailed Quantized U-Net Architecture in This Work
Output

Output

Binary
Activ

Binary
Activ

Binary
Activ

Binary
Activ

Binary
Activ

Binary
Activ

Binary
Activ

Binary
Activ

Binary
ActivBatchNorm Binary

Activ

BatchNorm Binary
Activ

BatchNorm Binary
Activ

BatchNorm Binary
Activ

Binary
Activ

Binary
Activ

Binary
Activ

Binary
Activ

Binary
Activ

Binary
Activ

Quantized Modules from Full Precision New Modules

Figure A.2: The quantized U-Net architecture used in this work.

Fr
eq

ue
nc

y

Dice Score

Down-C4Down-C3Down-C2Down-C1

Up-C1 Up-C2 Up-C3 Up-C4

12

10
Masked (2-bit)
4-bit
8-bit

Binary

8

6

4

2

0

8

6

4

2

0

10

8

6

4

2

0

Fr
eq

ue
nc

y 10

12

14

8

6

4

2

0

10

12

14

8

6

4

2

0

10

12

14

8

6

4

2

0

10

12

14

8

6

4

2

0

10

8

6

4

2

0

Dice ScoreDice Score
0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

Dice Score
0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

Dice Score
0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

Dice Score
0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

Dice Score
0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.9500.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950
Dice Score

Figure A.3: Per-layer quantization space exploration. First row: Dice score distribution of 256 ex-
periments on down-sampling convolution layers with binary remaining layers. Second row: distribu-
tion of 256 experiments on up-sampling convolution layers with binary remaining layers. Each sub-
figure explores the accuracy improvement of increasing the number of bits for this layer’s weights.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure A.1 and Figure A.2 illustrate the model architectures used in this work, with the former
used to evaluate the full-precision configuration, and the other for quantized experiments. Com-
pared to the foundational U-Net architecture, the quantized architecture not only modifies the ReLU
activation function and the convolution/transposed convolution into binary versions, but also adds
batchnorm and binary activation after transposed convolution layers to preserve the binary activation
and ensure training quality.

A.3 QUANTIZATION SPACE EXPLORATION

Figure A.3 shows the statistics of using higher bit quantization for individual convolution layers
using Carvana dataset. The two input convolution layers, and the final convolution layer are full-
precision (slightly different from the experiments in the main text, where the 2nd convolution layer
is always masked-binary). In the first row, the four down-sampling layers are traversed from all
binary to all 8-bit, totaling 44 = 256 experiments, while the remaining layers are binary. Similarly,
the second row traverses all double convolution layers in up-sampling with another 256 experiments.
The distribution demonstrates that for most of the layers, the transition from binary to masked-binary
contributes the most to accuracy, whereas negligible benefit is obtained from 2-bit to 4-bit, or from
4-bit to 8-bit. We thus confine the paper’s scope within binary and 2-bit.

A.4 TRAINING AND INFERENCE CONFIGURATIONS

A.4.1 HYPERPARAMETERS

Training and inference parameters are shown in Tables A.1 and A.2 list the hyperparameters. Full-
precision training uses the RMSprop optimizer, while quantized training uses Adam.

Table A.1: The training hyperparameters for separate experiments.
Batch Size Learning Rate Number of Epochs Grad Clipping Weight Decay Momentum

2 1e-5 30 1.0 1e-8 0.9

Table A.2: The batch sizes used for inference experiments. For fair comparison, the batch sizes for
FP32 and FP16 are maximized before the GPUs run out of memory.

Dataset Carvana ISIC Nuclei
Configuration FP32 FP16 MBU-Net FP32 FP16 MBU-Net FP32 FP16 MBU-Net

A100 32 32 64 64 128 128 64 128 128
H100 64 64 64 128 256 256 128 256 256
Jetson 4 8 32 8 16 64 8 16 64

2080 Ti 8 16 64 16 32 128 16 32 128

A.4.2 DATASET DETAILS

Table A.3 shows the dimensions of the three selected datasets. The data are scaled from the original
datasets to the numbers listed in the table. For Nuclei dataset, the original individual nucleus masks
are combined into a comprehensive mask to facilitate the image-mask pair for segmentation.

Table A.3: Dataset specifications.
Dataset Number of Images Width Height
Carvana 5088 959 640

ISIC 3693 640 480
Nuclei 669 512 512

A.5 DETAILED ABLATION STUDIES

A.5.1 COST RANKING

The cost scores and rankings for individual layers of the U-Net used in this work are listed in
Table A.4. In our ablation studies, the layers are gradually masked starting from Rank 1 to evaluate
the tradeoff between efficiency and accuracy.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table A.4: Cost scores and rankings of layers.
Rank Layer Cost Score Rank Layer Cost Score Rank Layer Cost Score

1 Up-CT4 0.011 5 Up-C3 0.228 9 Up-C4 0.512
2 Up-CT3 0.016 6 Down-C1 0.273 10 Up-C1 0.521
3 Up-CT2 0.037 7 Up-C2 0.286 11 Down-C4 0.583
4 Up-CT1 0.120 8 Down-C2 0.406 12 Down-C3 0.625

A.5.2 RESULTS OF ADDITIONAL METRICS

Figure A.4 shows the Pareto frontiers of speed in FPS and accuracy in IoU and F1 score, on A100
GPU platform. The results are consistent with Figure 7 in the main text. Figure A.5 demonstrates
the Pareto frontiers on other GPU platforms (H100, RTX 2080 Ti, and Jetson Orin Nano). On RTX
2080 Ti and Jetson Orin Nano, MBU-Net variations clearly outperforms FP32 and FP16 in terms of
speed, while the accuracy drop is low when sufficient masked layers are deployed. As discussed in
the main text, on H100, the performance of MBU-Net is lost due to the lack of BMMA support.

0 50 100 150 200 250 300 350

Nuclei

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 20 40 60 80 100 120 140 160

Carvana

A
cc

ur
ac

y
(Io

U
)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

ur
ac

y
(F

1
Sc

or
e)

Speed (FPS) Speed (FPS) Speed (FPS)

Speed (FPS) Speed (FPS) Speed (FPS)

0 50 100 150 200 250 300

ISIC

NucleiCarvana ISIC

0 50 100 150 200 250 300 3500 20 40 60 80 100 120 140 160 0 50 100 150 200 250 300

FP32

FP32

FP16

FP16
FP32 FP16

FP32 FP16

FP32 FP16

FP32 FP16

Binary

Binary

Binary

Binary
Binary

Binary

Figure A.4: Speed vs. accuracy (IoU and F1 score) on A100.

0 50 100 150 200 250 0 100 200 300 400 0 100 200 300 400 500

0 20 40 60 80 100 0 50 100 150 200 250 0 50 100 150 200 250

0 2 4 6 8 10 0 5 10 15 20 0 5 10 15 20

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

ur
ac

y
(D

ic
e

Sc
or

e)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

ur
ac

y
(D

ic
e

Sc
or

e)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

ur
ac

y
(D

ic
e

Sc
or

e)

Nuclei

Carvana ISIC Nuclei

Speed (FPS) Speed (FPS)H100

2080 Ti

Jetson

Speed (FPS)

Speed (FPS) Speed (FPS) Speed (FPS)

Speed (FPS) Speed (FPS) Speed (FPS)

FP32 FP16
FP32 FP16

FP32 FP16

FP32 FP16
FP32 FP16

FP32 FP16

FP32 FP16
FP32 FP16

FP32 FP16

Binary
Binary

Binary

Binary

Binary

Binary

Binary
Binary

Binary

Figure A.5: Speed vs. accuracy (Dice score) on H100, RTX 2080 Ti, and Jetson Orin Nano.

16

	Introduction
	Backgrounds
	U-Net
	Binary Neural Networks
	Tensor Core APIs

	Methods
	Masked Binary U-Net
	Empirical Observations and Analysis
	Cost-Aware Masking Strategy

	Tensor Core Deployment
	Subtractive Bit-Encoding
	Mapping Layers to Tensor Core

	Experimental Results
	Experimental Setup
	Efficiency Comparison
	Latency Comparison
	Energy Comparison

	Accuracy Comparison
	Ablation Study

	Related Work
	Conclusion
	Appendix
	LLM Usage
	Detailed MBU-Net Architecture
	Quantization Space Exploration
	Training and Inference Configurations
	Hyperparameters
	Dataset Details

	Detailed Ablation Studies
	Cost Ranking
	Results of Additional Metrics

