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ABSTRACT

Real-time image segmentation is a key enabler for AR/VR, robotics, drones, and
autonomous systems, where tight accuracy, latency, and energy budgets must be
met on resource-constrained edge devices. While U-Net offers a favorable balance
of accuracy and efficiency compared to large transformer-based models, achieving
real-time performance on high-resolution input remains challenging due to com-
pute, memory, and power limits. Extreme quantization, particularly binary net-
works, is appealing for its hardware-friendly operations. However, two obstacles
limit practicality: (1) severe accuracy degradation, and (2) a lack of end-to-end
implementations that deliver efficiency on general-purpose GPUs.
We make two empirical observations that guide our design. (1) An explicit zero
state is essential: training with zero masking to binary U-Net weights yields no-
ticeable sparsity. (2) Quantization sensitivity is uniform across layers. Moti-
vated by these findings, we introduce Masked Binary U-Net (MBU-Net), obtained
through a cost-aware masking strategy that prioritizes masking where it yields the
highest accuracy-per-cost, reconciling accuracy with near-binary efficiency.
To realize these gains in practice, we develop a GPU execution framework that
maps MBU-Net to Tensor Cores via a subtractive bit-encoding scheme, efficiently
implementing masked binary weights with binary activations. This design lever-
ages native binary Tensor Core BMMA instructions, enabling high throughput and
energy savings on widely available GPUs. Across 3 segmentation benchmarks,
MBU-Net attains near full-precision accuracy (3% average drop) while delivering
2.04× speedup and 3.54× energy reductions over a 16-bit floating point U-Net.
The code will be released to the public alongside this publication.

1 INTRODUCTION

Image segmentation is essential for applications such as AR/VR, autonomous drones, autopilot sys-
tems, and robotics. In these domains, real-time perception and sustained operation are typically
required. For instance, segmentation at roughly 60 Hz frame rate is fundamental for Meta’s AR
glasses to deliver a smooth, context-aware user experience. Likewise, inspection or delivery drones
often must operate continuously for 30 minutes, sometimes even hours on a single battery. Conse-
quently, in addition to accuracy, processing speed and power efficiency are also decisive for practical
deployment on edge devices. With rising demand for high-resolution data and high frame rates, these
constraints have become increasingly stringent.

Compared to large, over-parameterized architectures such as Vision Transformer (Dosovitskiy et al.,
2020), U-Net (Ronneberger et al., 2015) is substantially cheaper in compute, memory, and energy
for dense prediction, making it a more promising choice for edge scenarios. Additionally, U-Net’s
characteristic encoder-decoder structure with skip connections has demonstrated high effectiveness
for pixel-level tasks (Chen et al., 2018; Zhou et al., 2019), preserving spatial details and facilitating
accurate pixel-level predictions. Nevertheless, running a U-Net on high-resolution video in real
time can still exceed the strict power, latency, and memory limits of many edge devices – further
optimizations are necessary to reconcile accuracy with deployability.

Quantization (Gholami et al., 2022; Wei et al., 2024; Haghi et al., 2024) is a natural path to efficiency.
At the extreme, binary networks (Hubara et al., 2016; Liu et al., 2020) use 1-bit weights and acti-
vations, replacing Multiply-Accumulations (MACs) with simple bitwise operations (XNOR/XOR)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

followed by a population count (popcount) (Rastegari et al., 2016). Since most processors handle
data in chunks rather than individual bits, practical implementations group many binary values to-
gether – allowing a single instruction to execute many binary operations in parallel. This approach
is highly efficient on CPUs and GPU CUDA cores (Li et al., 2019; Chen et al., 2023), and can be
further extended to exploit Tensor Cores (Li & Su, 2020). Collectively, these techniques leverage
inexpensive, hardware-friendly operations to sharply reduce compute, memory traffic, and energy,
making extreme low-bit inference attractive for resource-constrained edge deployments.

However, two practical challenges hinder the effectiveness of extreme quantization. (1) Accuracy
degradation. Binary networks usually suffer from a significant drop in accuracy due to the ag-
gressive 1-bit quantization, and the impact on U-Net in segmentation tasks can be especially se-
vere (AskariHemmat et al., 2019; Guo et al., 2022). (2) Scarce practical solutions on general-
purpose processors. Many binary/ternary methods (Wan et al., 2018; Heinrich et al., 2018; Zhu
et al., 2022; Yin et al., 2024) are algorithmic proofs-of-concept or tailored to custom FPGA (Liang
et al., 2018; Geng et al., 2019; Mani et al., 2022) and ASIC (Wagle et al., 2020) datapaths, leaving
end-to-end U-Net designs and optimizations on general-purpose processors (e.g., GPUs) under-
explored. To address these challenges, this paper aims to answer: (1) How to achieve near-full-
precision accuracy with near-binary efficiency for U-Net on segmentation tasks? (2) How to deliver
that efficiency on widely available GPUs without relying on specialized accelerators?

To address the first challenge, we design our solution based on two key observations: (1) An explicit
zero state is essential. Pure binary representations ({-1, +1}) force every connection to contribute,
offering no neutral state to suppress uncertain or noisy signals. Our experiments demonstrate that,
when training with zero masking on U-Net weights, in addition to substantially enhanced accuracy,
there is noticeable sparsity – over 90% zeros in many layers, some consistently exceeding 95% –
far outnumbering the +1 and -1 states. This indicates an abundance of signals that should be sup-
pressed by zeros. (2) Uniform sensitivity across layers. An exhaustive sweep over 4,000 per-layer
quantization configurations shows that masking any single layer has a comparable effect on accu-
racy. Since masking adds overhead, and masking all layers is often unnecessary if a subset already
provides sufficient suppression of information flow, low-cost layers can be prioritized for masking
to balance computation and accuracy. For example, masking transposed convolution layers has a
strong impact on accuracy while incurring negligible computational cost.

Since extra costs are incurred due to masking, we can strategically pick which layer to enable mask-
ing for computing and accuracy tradeoff, as it may not be necessary to apply masking for all layers,
some of them can already ensure sufficient suppression for information pass. For instance, trans-
posed convolution layers have strong impact on accuracy, despite their negligible computing cost.
Guided by these findings, we propose a cost-aware masking strategy that identifies critical layers
where masking is most beneficial, and introduce Masked Binary U-Net (MBU-Net), which achieves
near full-precision accuracy with near-binary efficiency as highlighted in Figure 1.

Efficiency

Finding 1: Binary weights have a high tendancy
toward zero in binarized U-Net training
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Figure 1: Overview. Obtained through a cost-aware masking strategy and optimized for Tensor Core
on GPUs, MBU-Net achievs full-precision level accuracy and binary-level efficiency.

To address the second challenge, we target Tensor Cores, mapping MBU-Net via bit-packing and
dedicated APIs. On GPUs with Tensor Cores, performance is typically memory-bound rather than
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compute-bound, thus we retain binary activations to reduce data movement and power. This ap-
proach is timely: Tensor Cores are now common even on edge GPUs (e.g., NVIDIA Jetson Xavier
with Volta Tensor Cores, Jetson Orin with Ampere Tensor Cores), positioning them as practical
platforms for efficient edge application deployment. Although prior frameworks have accelerated
pure Binary Neural Networks (BNNs) on GPUs (Li et al., 2019; Li & Su, 2020), to the best of our
knowledge, no high-performance framework exists for selectively masked binary models on Tensor
Cores, especially for U-Net. To bridge this gap, we introduce a subtractive bit-encoding method that
naturally realizes masked binary weights with binary activations within the Tensor Core paradigm,
thereby unlocking substantial efficiency gains on modern commodity GPUs. Our major contri-
butions are listed below.

1. We discover that: (1) An explicit zero masking state in the weights of a binary U-Net can
significantly improve the segmentation quality, closely approaching full-precision results.
(2) Despite being cheap, transposed convolution layers are accuracy-critical.

2. We employ a cost-aware masking strategy based on above discoveries, systematically iden-
tifying the most critical layers in a U-Net, leading to MBU-Net models that regain near
full-precision segmentation accuracy at minor masking cost over a pure BNN.

3. We design and implement an end-to-end acceleration framework with native BMMA binary
Tensor Core instructions through subtractive bit-encoding method, enabling unified and
high-throughput inference for MBU-Net models on GPU Tensor Cores.

4. Our approach delivers an average 2.04× speedup and 3.54× power efficiency improvement
over a 16-bit floating point U-Net on A100, H100, Jetson Orin Nano, and RTX 2080 Ti
GPUs, while incurring only 3% average accuracy loss on 3 segmentation datasets. The
U-Net contains 16M parameters, and the input images range from 0.25M to 0.6M pixels.

2 BACKGROUNDS

2.1 U-NET

Since its introduction in 2015 (Ronneberger et al., 2015), the U-Net architecture has proven to be
far more than just a successful model for biomedical image segmentation (Ibtehaz & Rahman, 2020;
Cheng et al., 2022). It has been extended to other domains including image enhancement (Komatsu
& Gonsalves, 2020), generative AI (Ho et al., 2020; Schonfeld et al., 2020; Si et al., 2024), scientific
modeling (Kamali & Laksari, 2024; Zhu et al., 2025), etc.
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Figure 2: Left: Conventional U-Net architecture exemplified with segmentation task. c: number of
channels, W/H: feature width / height. Right: internal components of each abstracted block.

At its core, as Figure 2 illustrates, U-Net is a symmetric encoder-decoder architecture linked by skip
connections. The encoder (contracting path with orange down blocks) follows the typical structure
of a convolutional network, downsampling the input to capture semantic context. The decoder
(expanding path with blue up blocks), in return, progressively upsamples and refines the feature
representations to construct a full-resolution image. To avoid forcing all information through a
narrow bottleneck, skip connections concatenate encoder features with the corresponding decoder
features after transposed convolution layers, passing information along multiple paths and elegantly
preserving information at different semantic hierarchies.

Despite its widespread use, U-Net’s computational footprint at real-time, high-resolution settings is
substantial. A configuration at 720p can require on the order of hundreds of GFLOPs per frame,
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and sustaining 60 fps implies tens of TFLOPs per second plus heavy memory bandwidth from skip
connections. On edge platforms such as AR glasses and drones, on-device inference is often neces-
sary for latency, privacy, and reliability, yet power budgets are only a few watts. These constraints
motivate aggressive quantization and sparsity to reduce arithmetic and bandwidth while preserving
accuracy. We therefore investigate U-Net in the binarized regime, aiming to characterize its behavior
under extreme precision reduction and masking, and to provide guidance for edge-oriented designs
that balance accuracy, compute, and energy.

2.2 BINARY NEURAL NETWORKS

The success of Deep Neural Networks (DNNs) has been largely predicated on a trend of escalat-
ing model complexity. In contrast, BNNs (Hubara et al., 2016) shrinks the complexity to an ex-
treme extent, with both activations and weights constrained to binary values, typically represented
as {-1, +1}. For activations, this constraint is commonly enforced through a binarization function
xb = sign(x) during forward pass, whereas the weights are trained under binary representation,
typically using Straight-Through Estimators (STE) (Bengio et al., 2013; Courbariaux et al., 2015;
Yin et al., 2019) to approximate the gradient in such non-differentiable architecture. Despite the
low resolution, theoretical analysis (Anderson & Berg, 2017) has confirmed BNN’s capability of
capturing features.

For efficient practical deployment, XNOR-Net (Rastegari et al., 2016) was introduced. Specifically,
for binary vectors a|ai ∈ {−1,+1} and b|bi ∈ {−1,+1}, their MAC operation can be translated
into bit-wise operations and population count on bit vectors a′|a′i ∈ {0, 1} and b′|b′i ∈ {0, 1}:

a · b =

n∑
i

(2a′i − 1)(2b′i − 1) = 2 · popc(a′ XNOR b′)− n (1)

using the equality a′i XNOR b′i = 2a′ib
′
i−a′i− b′i. Here, “popc” refers to population count operation

that counts the number of 1’s in an n-bit vector, e.g., a 32-bit vector as an unsigned integer.

In the past decade, BNN researches follow two main threads. On the algorithmic level, researchers
strive to improve BNN training accuracy, while on the implementation level, the main target is to
minimize power and latency, especially on FPGA and ASIC. In this work, our goal is to push the
boundaries on both directions for U-Net, achieving near full-precision accuracy with near-binary
efficiency.

2.3 TENSOR CORE APIS

Tensor Cores are specialized units that accelerate Matrix Multiply-Accumulate (MMA), computing
D = A × B + C per instruction, where A, B, C, and D are matrices of compatible dimensions.
Compared with issuing many MACs on CUDA cores, a single MMA instruction performs a large
number of fused operations on a small matrix tile. Impressively, for example, the throughput of
Tensor Cores on A100 is almost an order of magnitude higher than CUDA cores, emphasizing the
trend of shifting AI workloads to such dedicated matrix engines for higher throughput and efficiency.

In GPUs, processing units are grouped into warps, and the above MMA is executed using the
WMMA API with the following three key functions: (1) Load data from memory to registers. (2)
Perform the above MMA operation. (3) Write the data back to memory. Less widely known, some
NVIDIA GPUs also expose bit MMA (namely, BMMA): Tensor Core instructions that compute
binary matrix products using bitwise logic (e.g., XOR/AND) with popcount accumulation. These
binary Tensor Core features remain low-level and experimental, as they are not exposed by main-
stream libraries (e.g., cuBLAS, cuDNN) and typically require custom kernels. Consequently, despite
their potential, binary Tensor Core capabilities remain underused and underexplored in practice.

In this work, we extend the scope of an existing BNN acceleration framework (Hosseini et al., 2019;
Li & Su, 2020) on Tensor Core, bringing the unique BMMA capability under the spotlight.

3 METHODS

In this section, we present MBU-Net, a class of masked binary U-Nets inspired from empirical ob-
servations (§3.1.1) and constructed using a cost-aware masking strategy §3.1.2, achieving balanced
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tradeoff between accuracy and computational cost. Next, we demonstrate that with subtractive bit
encoding §3.2.1, masked layers can be naturally mapped to Tensor Cores by reusing the BNN map-
ping §3.2.2, enabling an end-to-end implementation that runs efficiently on modern edge GPUs.

3.1 MASKED BINARY U-NET

3.1.1 EMPIRICAL OBSERVATIONS AND ANALYSIS

We begin by defining a U-Net backbone with 12 abstracted configurable layers: 4× double convolu-
tion layers in the encoder, labeled as down-C1∼4; 4× transposed convolution layers in the decoder,
as up-CT1∼4; 4× double convolution layers in the decoder, as up-T1∼4. The indexing is consis-
tent with the block indices in Figure 2. Each layer can be instantiated in one of two states: binary
or masked (i.e., with an explicit zero state in the weights), resulting in a 212 design space. In the
exhaustive sweeping, Carvana dataset (Shaler et al., 2017) is used as a representative example.

In binary layers, input features, output features, and weights are all binary values within {−1,+1},
following the convention of BNNs. In masked layers, an masking state ’0’ is included in weights,
effectively making the weights ternary {−1, 0,+1}, while keeping input and output features binary.
Detailed network architecture is in Appendix A.2. Extensive investigations (Appendix A.3) demon-
strate that higher-bit weight quantizations only result in marginal improvement compared to binary
weights with masks. Through STE training approach, the zero masking is automatically applied.
The training configuration is in Appendix A.4.
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Figure 3: (a) Statistics of the weights masked to zero. (b) Accuracy and computing demand distri-
bution for all layer configurations. (c) Shapley analysis: marginal improvement in Dice score from
masking each binary layer. Only cases with fewer than five masked layers are included for clarity.

Figure 3(a) demonstrates that zero weights are notably prevalent across all masked layers and con-
figurations. On average, each layer exhibits more than 80% sparsity, with many layers exceeding
90% and some consistently surpassing 95%. This finding indicates that it is preferable to mask out
the majority of weights while retaining only a small essential subset. Figure 3(b) supports this ob-
servation: layer configurations with heavier masking generally achieve higher Dice scores (from 0
to 1, higher is better), confirming the value of masked binary weights.

However, masking inevitably introduces additional costs, which can sometimes be heavy in com-
putation. Figure 3(b) further shows that fully masking all layers can require about twice as many
operations as lightly masked configurations. Meanwhile, a configuration requiring 0.08 TOPs can
achieve accuracy comparable with the fully masked configuration exceeding 0.12 TOPs. This indi-
cates that masking every layer is unnecessary when a small set of critical layers suffices, motivating
us to identify those layers to achieve high accuracy at low cost.

Figure 3(c) shows the marginal gain in Dice score for each layer under zero masking. For clarity,
we restrict the analysis to cases with fewer than 5 masked layers, since including more layers dilutes
the per-layer contribution due to the limited improvement in Dice score. Interestingly, the contribu-
tions are broadly comparable across layers. This observation brings a straightforward yet practical
strategy: prioritize masking low-cost layers.

3.1.2 COST-AWARE MASKING STRATEGY

The above empirical findings indicate that if some layers are significantly cheaper than others, mask-
ing the cheap layers can achieve substantial improvement in accuracy at minimal cost. We thus fur-
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ther profile the per-layer computing and memory in Figure 4, where the operations account for both
multiplications and additions.
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Figure 4: Per-layer cost profiling. (a) Number of addition and multiplication operations in each layer
with a 512×512 image as a representative example. (b) Number of parameters in each layer.

We observe that, the numbers of operations of transposed convolution layers (highlighted with red
dashed frame) in the upsampling path are 1∼2 orders of magnitude fewer compared to other layers,
and the operation count and parameter count are relatively imbalanced across layers. As it is usually
infeasible to perform analysis like Figure 3 across the entire design space, it is preferable to set up
the strategy based on the model characteristics in Figure 4. Particularly, we define the cost-aware
strategy using the weighted cost score for layer l:

slcost = wopn̂
l
op + wparamn̂

l
param (2)

where n̂l
op and n̂l

param are the number of operations and the number of parameters of layer l normal-
ized to [0, 1], and the weights wop and wparam satisfy wop + wparam = 1, as hyperparameters. The
weighted cost scores are then ranked from low to high as the priority list for masking. Following the
strategy, MBU-Net can be populated based on the priority list based on demand, narrowing down
the design space significantly.

3.2 TENSOR CORE DEPLOYMENT

3.2.1 SUBTRACTIVE BIT-ENCODING

MBU-Net maintains binary activations and assigns each layer to either binary or masked weights
according to the cost-aware strategy described above. To ensure that the MAC between binary
activation and masked weight can be naturally supported by native operations on Tensor Cores –
XOR and popcount, we encode masked weights with two subtracting bit-planes. In particular, let
a|ai ∈ {−1,+1} denote a binary activation vector, and b|bi ∈ {−1, 0,+1} as a masked weight
vector, we encode a weight value as bi = bpos

i − bneg
i , with bpos

i , bneg
i ∈ {0, 1}. The MAC operation is

thus translated using a′i ∈ {0, 1}:

a·b =

n∑
i

2a′ib
pos
i − bpos

i − a′i︸ ︷︷ ︸
1−(a′

i XOR bpos
i )

+ a′i + bneg
i − 2a′ib

neg
i︸ ︷︷ ︸

a′
i XOR bneg

i

= n+popc(a′ XOR bneg)−popc(a′ XOR bpos)

(3)
Compared to Equation 1, the binary-ternary MAC operation is fully represented by bit-friendly
operations, only to use XOR instead of XNOR to be compatible with Tensor Core intrinsics.

3.2.2 MAPPING LAYERS TO TENSOR CORE

We map these computations to GPU Tensor Cores using binary WMMA, or the experimental
BMMA API. Each kernel of a masked layer stores the two bit planes as bit-packed matrices. At
warp level, we operate on 8 × 8 × 128 bit tiles, where the three dimensions are mapped to batch
size, output layer number, and input layer number. For clarity, we show the high-level procedure for
convolution on Tensor Core in Algorithm 3.2.2.

In the algorithm, the matrices A, B, and C follow the update rule C ← A · B + C, implemented
using the Tensor Core API function “bmma sync”. The function is further compiled to a Parallel

6
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Algorithm 1 Bit Convolution with Subtractive Bit-Encoding on Tensor Core
1: for all H,W,Cout, B do ▷ feature height, width, output channel, batch size
2: Initialize accumulators Cpos, Cneg ← 0
3: for all FH , FW , and Cin of 128-bit blocks do ▷ filter height, width, input channel
4: Load binary activation fragment A ▷ row-major
5: Load binary weight fragments Bpos, Bneg ▷ column-major
6: bmma sync(Cpos, A,Bpos, Cpos) ▷ binary WMMA API
7: bmma sync(Cneg, A,Bneg, Cneg)
8: end for
9: R← Cneg − Cpos ▷ temporary result R

10: Threshold comparison: Aout ← (R ≥ θ) ▷ covering batchnorm, bias, and binary activation
11: Pack bits via intrinsics (ballot, brev) and store to memory
12: end for

Thread Execution (PTX) Tensor Core opcode that includes XOR and popcount. θ denotes the pre-
computed threshold. The threshold comparison jointly incorporates batch normalization (Ioffe &
Szegedy, 2015), bias, and binary activation, which is a standard practice in BNNs. In terms of other
layers (detailed in Figure 2), transposed convolution is performed similarly, while pooling and 1×1
convolutions are trivial, hence not discussed in further details.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Our experiments are conducted on 4 Nvidia GPU platforms: A100 (Ampere architecture), H100
(Hopper), Jetson Orin Nano (Ampere), and RTX 2080 Ti (Turing), all equipped with Tensor Cores.
We evaluate models under the following execution settings: PyTorch-FP32/FP16 – baseline imple-
mentations in PyTorch (Paszke et al., 2019) using 32-bit floating point and 16-bit floating point for
both weights and activations, where the FP16 variant employs tensor cores; MBU-Net adopts binary
activation and mixed binary/masked weights; The Binary model uses both binary activations and
weights. The first and the last convolution layers in the quantized experiments are full-precision. For
benchmarks, we use 3 representative datasets: Carvana (Shaler et al., 2017) – car image segmenta-
tion, ISIC (Codella et al., 2019) – skin lesion image segmentation, and Nuclei – nuclei segmentation
in divergent images (Goodman et al., 2018). Dataset details are in Appendix A.4.

4.2 EFFICIENCY COMPARISON

We compare separate GPU and execution settings over the selected datasets. Efficiency is evaluated
and discussed in terms of latency and energy in the following sections.

4.2.1 LATENCY COMPARISON

Figure 5 shows the latency comparison. MBU-Net consistently outperforms FP32, with an average
speedup of 4.83× over all platforms and datasets. On average, MBU-Net also outperforms FP16
with a 2.04× speedup. Noticeably, FP16 achieves better latency results, even compared to Binary.
This is likely due to the removal of native BMMA support on Nvidia Hopper Tensor Core architec-
ture (NVIDIA, 2022) – performance is lost, despite MBU-Net and Binary models are still runnable.
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4.2.2 ENERGY COMPARISON

Figure 6 presents the energy comparison. Consistently, MBU-Net’s energy cost is comparable to the
Binary model, while achieving average energy reduction of 8.53× over FP32 and 3.54× over FP16.
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Figure 6: Energy per image inference (Joule). Lower is better.

4.3 ACCURACY COMPARISON

Table 1 compares the U-Net model across different precision configurations. “Full Precision” refers
to both full-precision weights and activations (FP32 and FP16 show negligible accuracy differences),
while other configurations employ binary activations. Accuracy is evaluated with three metrics: Dice
Score, IoU, and F1 score, with our results highlighted in the shaded row. On average, aggressive
quantization in MBU-Net only leads to drops of 0.029, 0.037, and 0.024 in Dice, IoU, and F1 scores.

Table 1: Accuracy comparison using Dice score, IoU, and F1 score across three datasets. All metrics
range from 0 to 1, higher is better. All configurations other than Full Precision use binary activations.

Dataset Carvana ISIC Nuclei
Metric (Weight-Activation) Dice IoU F1 Dice IoU F1 Dice IoU F1

Full Precision* 0.997 0.994 0.997 0.771 0.644 0.783 0.867 0.776 0.874
INT8 0.994 0.987 0.994 0.763 0.633 0.776 0.823 0.741 0.851
INT4 0.989 0.979 0.989 0.753 0.619 0.765 0.819 0.739 0.850

MBU-Net 0.981 0.963 0.981 0.750 0.617 0.763 0.817 0.722 0.839
Binary 0.662 0.530 0.693 0.560 0.399 0.570 0.434 0.302 0.464

* Both weights and activations are in full precision; negligible difference between FP32 and FP16 accuracy.

4.4 ABLATION STUDY

Figure 7 presents the Pareto frontier illustrating the tradeoff between accuracy (Dice score) and
speed (FPS) across different MBU-Net configurations on A100 GPU, where masked layers are cho-
sen using the cost-aware masking strategy with wop = wparam = 0.5. The corresponding cost score
ranking and additional results with other metrics are in Appendix A.5
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Figure 7: Pareto frontier of accuracy (dice score) and speed (FPS) on A100 for 3 datasets. Colors
(bright→dark) indicate more layers get masked, based on the cost-aware masking strategy in §3.1.2.

5 RELATED WORK

Ternary Networks. Table 5 summarizes a few notable studies related to neural networks with
ternary activations or weights. TWN (Li et al., 2016) and TTQ (Zhu et al., 2016) focus on full
precision activation and ternary weights on the algorithmic level, reporting results primarily on
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Table 2: Summary of ternary activation/weight network studies.
Related Work TWN TTQ TBN TernaryNet FATNN

Platform Unspecified Unspecified Unspecified CPU GPU
Focus Acc* Acc Acc & Theoretical Speed Acc Acc & Speed

Activation Full Precision Full Precision Ternary Ternary Ternary
Weights Ternary Ternary Binary Ternary Ternary

Task IC* IC IC Segmentation IC
* IC: Image Classification; Acc: Accuracy

image classification tasks. TBN (Wan et al., 2018) adopts ternary activations and binary weights,
also at the algorithmic level. TernaryNet (Heinrich et al., 2018) is also an algorithmic endeavor,
focusing on achieving faster inference without GPUs. FATNN (Chen et al., 2021) introduces a
2-bit encoding method: −1 → 00; 0 → 01/10, +1 → 11 and uses a series of bit operations
to reduce ternary-ternary operation complexity from O(4N) to O(2N). TAB (Zhu et al., 2022)
proposes a flexible framework accommodating various activation/weight quantization schemes. To
our knowledge, none of these works analyze per-layer contributions to accuracy, assess compatibility
with U-Net, or deliver end-to-end implementations targeting Tensor Cores on commodity GPUs.

Image Segmentation. U-Net (Ronneberger et al., 2015) stands as one of the most influential ar-
chitectures in image segmentation, inspiring a wide range of successors that refine different as-
pects of its design. U-Net++ (Zhou et al., 2019) introduces nested and dense skip connections.
UNet3+ (Huang et al., 2020) extends this idea with full-scale skip connections. Beyond architec-
tural refinements, U-Net is often combined with other mechanisms. Attention U-Net (Oktay et al.,
2018) integrates attention gates into skip connections, while ResUNet (Diakogiannis et al., 2020)
and Recurrent Residual U-Net (Alom et al., 2019) incorporate residual connections to enhance the
capacity of deeper networks. In the era of large models, Transformer-based approaches, notably
ViTs (Dosovitskiy et al., 2020), have proven effective for segmentation tasks (Strudel et al., 2021).
Segment Anything Models (Kirillov et al., 2023; Ravi et al., 2024), based on ViT, achieve excep-
tional segmentation quality. However, their parameter counts and computational demands pose
significant challenges for edge deployment.

Additional Applications of U-Net. In addition to segmentation, U-Net has been widely explored
for image enhancement tasks, including denoising (Fan et al., 2022; Tripathi, 2021) and super-
resolution (Hu et al., 2019). With the rapid growth of AR/VR, U-Net has emerged as a promising
candidate for waveguide correction (Chapiro et al., 2024) to enable lower power consumption and
reduced distortions in AR systems. Moreover, U-Net plays a pivotal role in generative AI, serving
as the backbone for models such as DDPM (Ho et al., 2020) and high-resolution image synthe-
sis (Rombach et al., 2022).

6 CONCLUSION

In this work, we address the challenges of bringing binary quantization to U-Net for real-time image
segmentation on edge devices. Two critical observations are identified: (1) The necessity of an
explicit zero state to suppress noisy signals and promote sparsity, and (2) the uniform sensitivity of
U-Net layers to quantization. Building on these insights, we propose a cost-aware masking strategy
that balances accuracy and efficiency, resulting in Masked Binary U-Net (MBU-Net). To realize
its benefits on commodity hardware, we develop a GPU execution framework that leverages Tensor
Cores through a subtractive bit-encoding scheme, efficiently supporting masked binary weights with
binary activations. This framework ensures high throughput and power efficiency, while remaining
deployable on widely available edge GPUs.

Experiments across multiple segmentation datasets demonstrate that MBU-Net achieves near full-
precision accuracy (3% drop on average), while attaining 2.04× speedup and 3.54× energy con-
sumption compared to a 16-bit floating point U-Net. These results establish MBU-Net as a practical
and scalable solution for real-time, high-resolution image segmentation on Tensor Cores. If de-
ployed on AR/VR, autonomous drones or related domains, this can raise a 30 FPS pipeline to 60
FPS, and cut segmentation power by 70%, extending battery life. While measured on GPU Tensor
Cores, MBU-Net is well suited for ASICs: its low-bit width arithmetic and masking enable narrow
data paths and reduced SRAM bandwidth, yielding higher performance per watt and deterministic
latency in a dedicated accelerator.
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REPRODUCIBILITY STATEMENT

We have taken comprehensive measures to ensure the reproducibility of our results. All datasets em-
ployed in our experiments are publicly available and described in detail in Appendix Section A.4.2.
The experimental settings are presented in Section 4.1 and further elaborated in Appendix Sec-
tion A.4. We will release the full code implementation of this work together with the publication.

REFERENCES

Md Zahangir Alom, Chris Yakopcic, Mahmudul Hasan, Tarek M Taha, and Vijayan K Asari. Recur-
rent residual u-net for medical image segmentation. Journal of medical imaging, 6(1):014006–
014006, 2019.

Alexander G Anderson and Cory P Berg. The high-dimensional geometry of binary neural networks.
arXiv preprint arXiv:1705.07199, 2017.

MohammadHossein AskariHemmat, Sina Honari, Lucas Rouhier, Christian S Perone, Julien Cohen-
Adad, Yvon Savaria, and Jean-Pierre David. U-net fixed-point quantization for medical image
segmentation. In International Workshop on Large-scale Annotation of Biomedical data and
Expert Label Synthesis, pp. 115–124. Springer, 2019.
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A APPENDIX

A.1 LLM USAGE

We use GPT-5, Gemini-2.5-Pro, and Claude-4-sonnet to polish writing and assist literature search-
ing. All LLM-assisted text and references have been reviewed, revised, and verified by the authors.

A.2 DETAILED MBU-NET ARCHITECTURE

Input

Down 1

MaxPool2D
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BatchNorm

Input
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Figure A.1: The foundational U-Net architecture used in this work.
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Figure A.2: The quantized U-Net architecture used in this work.
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Figure A.3: Per-layer quantization space exploration. First row: Dice score distribution of 256 ex-
periments on down-sampling convolution layers with binary remaining layers. Second row: distribu-
tion of 256 experiments on up-sampling convolution layers with binary remaining layers. Each sub-
figure explores the accuracy improvement of increasing the number of bits for this layer’s weights.
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Figure A.1 and Figure A.2 illustrate the model architectures used in this work, with the former
used to evaluate the full-precision configuration, and the other for quantized experiments. Com-
pared to the foundational U-Net architecture, the quantized architecture not only modifies the ReLU
activation function and the convolution/transposed convolution into binary versions, but also adds
batchnorm and binary activation after transposed convolution layers to preserve the binary activation
and ensure training quality.

A.3 QUANTIZATION SPACE EXPLORATION

Figure A.3 shows the statistics of using higher bit quantization for individual convolution layers
using Carvana dataset. The two input convolution layers, and the final convolution layer are full-
precision (slightly different from the experiments in the main text, where the 2nd convolution layer
is always masked-binary). In the first row, the four down-sampling layers are traversed from all
binary to all 8-bit, totaling 44 = 256 experiments, while the remaining layers are binary. Similarly,
the second row traverses all double convolution layers in up-sampling with another 256 experiments.
The distribution demonstrates that for most of the layers, the transition from binary to masked-binary
contributes the most to accuracy, whereas negligible benefit is obtained from 2-bit to 4-bit, or from
4-bit to 8-bit. We thus confine the paper’s scope within binary and 2-bit.

A.4 TRAINING AND INFERENCE CONFIGURATIONS

A.4.1 HYPERPARAMETERS

Training and inference parameters are shown in Tables A.1 and A.2 list the hyperparameters. Full-
precision training uses the RMSprop optimizer, while quantized training uses Adam.

Table A.1: The training hyperparameters for separate experiments.
Batch Size Learning Rate Number of Epochs Grad Clipping Weight Decay Momentum

2 1e-5 30 1.0 1e-8 0.9

Table A.2: The batch sizes used for inference experiments. For fair comparison, the batch sizes for
FP32 and FP16 are maximized before the GPUs run out of memory.

Dataset Carvana ISIC Nuclei
Configuration FP32 FP16 MBU-Net FP32 FP16 MBU-Net FP32 FP16 MBU-Net

A100 32 32 64 64 128 128 64 128 128
H100 64 64 64 128 256 256 128 256 256
Jetson 4 8 32 8 16 64 8 16 64

2080 Ti 8 16 64 16 32 128 16 32 128

A.4.2 DATASET DETAILS

Table A.3 shows the dimensions of the three selected datasets. The data are scaled from the original
datasets to the numbers listed in the table. For Nuclei dataset, the original individual nucleus masks
are combined into a comprehensive mask to facilitate the image-mask pair for segmentation.

Table A.3: Dataset specifications.
Dataset Number of Images Width Height
Carvana 5088 959 640

ISIC 3693 640 480
Nuclei 669 512 512

A.5 DETAILED ABLATION STUDIES

A.5.1 COST RANKING

The cost scores and rankings for individual layers of the U-Net used in this work are listed in
Table A.4. In our ablation studies, the layers are gradually masked starting from Rank 1 to evaluate
the tradeoff between efficiency and accuracy.
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Table A.4: Cost scores and rankings of layers.
Rank Layer Cost Score Rank Layer Cost Score Rank Layer Cost Score

1 Up-CT4 0.011 5 Up-C3 0.228 9 Up-C4 0.512
2 Up-CT3 0.016 6 Down-C1 0.273 10 Up-C1 0.521
3 Up-CT2 0.037 7 Up-C2 0.286 11 Down-C4 0.583
4 Up-CT1 0.120 8 Down-C2 0.406 12 Down-C3 0.625

A.5.2 RESULTS OF ADDITIONAL METRICS

Figure A.4 shows the Pareto frontiers of speed in FPS and accuracy in IoU and F1 score, on A100
GPU platform. The results are consistent with Figure 7 in the main text. Figure A.5 demonstrates
the Pareto frontiers on other GPU platforms (H100, RTX 2080 Ti, and Jetson Orin Nano). On RTX
2080 Ti and Jetson Orin Nano, MBU-Net variations clearly outperforms FP32 and FP16 in terms of
speed, while the accuracy drop is low when sufficient masked layers are deployed. As discussed in
the main text, on H100, the performance of MBU-Net is lost due to the lack of BMMA support.
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Figure A.4: Speed vs. accuracy (IoU and F1 score) on A100.
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Figure A.5: Speed vs. accuracy (Dice score) on H100, RTX 2080 Ti, and Jetson Orin Nano.
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