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ABSTRACT

In recent years there has been a flurry of activity around using pretrained diffusion
models as informed data priors for solving inverse problems, and more gener-
ally around steering these models towards certain reward models. Training-free
methods like gradient guidance have offered simple, flexible approaches for these
tasks, but when the reward is not informative enough, e.g., in inverse problems
with highly compressive measurements, these techniques can veer off the data
manifold, failing to produce realistic data samples. To address this challenge, we
devise a simple algorithm, REGUIDANCE, that leverages prior methods’ solu-
tions as strong initializations and substantially enhancing their realism. Given a
candidate solution x produced by a given method, we propose inverting the solu-
tion by running the unconditional probability flow ODE in reverse starting from
x, and then using the resulting latent as an initialization for a simple instantiation
of diffusion guidance. In toy settings, we provide theoretical justification for why
this technique boosts the reward and brings x closer to the data manifold. Em-
pirically, we evaluate our algorithm on difficult image restoration tasks including
large box inpainting, heavily downscaled superresolution, and high noise deblur-
ring with both linear and nonlinear blurring operations. We find that, using a wide
range of baseline methods as initializations, applying our method results in much
stronger samples with better realism and measurement consistency.

1 INTRODUCTION

Motivated by the flexibility and fidelity with which diffusion models can capture realistic data dis-
tributions Ho et al. (2020); Dhariwal & Nichol (2021); Song et al. (2021), a large number of recent
works have sought to leverage these models as rich data priors for solving complex downstream
tasks like Bayesian inference problems Baldassari et al. (2023); Venkatraman et al. (2024); Chan
et al. (2025), black box optimization Krishnamoorthy et al. (2023); Li et al. (2024c), medical imag-
ing Chung & Ye (2022); Chung et al. (2022a); Dorjsembe et al. (2024); Hung et al. (2023), and
molecular design Gruver et al. (2023); Wohlwend et al. (2024). These tasks are all incarnations of
the general problem of reward guidance: given a pretrained model for data distribution q and reward
model r, design a procedure that generates samples x which simultaneously are “realistic”, in that
they have high likelihood under q, and achieve high reward r(x).

Despite significant strides in practice along this direction, our understanding of this task remains
limited both mathematically and empirically. It is common to frame reward guidance as sampling
from the tilted density q̃(x) ∝ q(x) · er(x). However, it is very unclear to what extent methods in
practice are actually accomplishing this, as they either rely on heuristic approximations that signifi-
cantly bias the output away from sampling from q̃ Chung et al. (2023); Kawar et al. (2022); Zhang
et al. (2024), or they rely on stochastic optimal control, for which computational costs prevent train-
ing for long enough to actually approach q̃ Denker et al. (2024); Domingo-Enrich et al. (2025).
Indeed, for certain simple choices of q and r, prior works have even shown that sampling from the
tilted density is computationally intractable Gupta et al. (2024); Bruna & Han (2024).

Hard reward models. While this seems to run counter to the impressive capabilities of guid-
ance methods in practice, it is not difficult to construct natural reward models under which existing
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Figure 1: Comparing restoration performance on hard box-inpainting (cols. 1,2) and superresolution (cols.
3,4). First row is the measurement, second gives solutions given by state-of-the-art DAPS method Zhang et al.
(2024), and third gives solutions obtained by applying our method REGUIDANCE to DAPS.

methods fail. In this work, we focus on rewards arising from hard inverse problems with highly
compressive measurements. A canonical example is large box-inpainting, where an m×n image is
observed with a random region of size αm×αn masked out, for some large masking fraction α. The
reward function r(x) in this case is given by the negative squared distance between the generated
sample x and the observed masked image, restricted to the unmasked pixels.

State-of-the-art methods for reward guidance solve this problem remarkably well for data distribu-
tions like face datasets, which have large amounts of redundancy and low intrinsic dimension. But
as soon as one moves beyond these settings, these methods break down even for moderate α (e.g.
α > 1/2). Indeed, as shown in Figure 1 for hard inpainting and superresolution, these methods not
only fail to sample from the appropriate tilted density (i.e., the posterior) in such regimes, but their
outputs visibly suffer from poor realism. On the other hand, it is not so hard to achieve high reward:
the methods pictured all generate outputs consistent with the given measurements.

Altogether this basic example suggests that while it is now par for the course to be able to generate
highly realistic and accurate reconstructions for “easy” inverse problems, current methods are just
not there yet when it comes to these more challenging reward models.

1.1 OUR CONTRIBUTIONS
Our main results are threefold:

1. A new and simple boosting method: We propose REGUIDANCE, a simple algorithm that lever-
ages strong latent initializations in conjunction with diffusion guidance. It takes as input a candidate
reconstruction x, produced by an inverse problem solver of the user’s choice, and generates a new
reconstruction. The algorithm is simple, operating in two modular steps (see Algorithm 1 for the
pseudocode). (I) It runs the deterministic sampler given by the pretrained diffusion model for the
base density q in reverse to extract the latent x∗ associated to x. (II) Starting from x∗, it runs the Dif-
fusion Posterior Sampling (DPS) algorithm of Chung et al. (2023) to produce the new reconstruction
xDPS. We provide a full description of the technical details in Section 3.

We show that in many settings, both empirical and theoretical, the new reconstruction achieves
higher realism while still achieving high reward.

2. Empirical performance: In traditionally difficult inverse tasks for image restoration, we show
that REGUIDANCE can significantly boost the measurement consistency and sample quality of can-
didate reconstructions. For inverse problems like box-inpainting, superresolution, and deblurring,
we observe a consistent and significant improvement in both reward and realism metrics when ap-
plying REGUIDANCE. Qualitatively, we also observe diverse but realistic reconstructions that are
meaningfully distinct from the original sample being measured (details in Section 4).

Our work investigates a largely unexplored design axis, i.e. the choice of latent initialization affects
realism, and shows that selecting a good latent can lead to substantial performance improvements,
providing solutions to inverse tasks that prior sampling methods tend to collapse on.
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3. Theoretical justification: For two models of Gaussian mixture data, we rigorously prove that
REGUIDANCE improves reward value and realism. Formally, in these settings we are able to show
that the algorithm approximately brings x onto the manifold of points which achieve maximal re-
ward, and that even if x already lies on this manifold, under REGUIDANCE it will get contracted
even closer to one of the modes of the data. These results are given in Sections 3.1 and 3.2.

To our knowledge, these are the first end-to-end theoretical guarantees for DPS in any model of data.
This is enabled by two shifts in perspective. First, instead of sampling from the tilt q̃, which DPS
provably fails to do even on simple models of data (Appendix B), we focus on the goal of producing
a sample with high likelihood under the base density (“realism”) and high measurement consistency
(“reward”). Second, because we are quantifying how much our algorithm “improves” x, our bounds
are inherently tied to the choice of latent x∗ that DPS is initialized at in Step (II) of REGUIDANCE.
One corollary of our results is DPS’s performance depends heavily on the quality of the initial latent.

1.2 RELATED WORK

Solving inverse problems with pretrained diffusion models. Pretrained generative models like
GANs and diffusion models have been extensively used as data priors for solving inverse problems
Bora et al. (2017); Ongie et al. (2020); Daras et al. (2024). In recent years, the diffusion models have
outperformed GANs at modeling the image prior and generating novel images, leading to increased
interest in using diffusion models to solve inverse problems Lugmayr et al. (2022); Kawar et al.
(2022); Saharia et al. (2023); Chung et al. (2023); Wang et al. (2023); Song et al. (2023); Zhu et al.
(2023); Zhang et al. (2024); Li et al. (2024a); MOUFAD et al. (2025); Domingo-Enrich et al. (2025);
Chen et al. (2025). Many training-free methods such as DDRM Kawar et al. (2022), DPS Chung
et al. (2023), ΠGDM Song et al. (2023), DAPS Zhang et al. (2024) and training-based methods
Denker et al. (2024); Domingo-Enrich et al. (2025) have been proposed. Training-free methods
modify the reverse process of diffusion models with a hand-designed guidance term that pushes
the trajectory towards measurement consistency. Our work provides a simple method to boost the
performance of such methods for inverse problems where the measurement is highly lossy.

Reward guidance for generative models. A closely related but more general line of work concerns
steering the outputs of pretrained models to generate samples from a tilt given by a reward model
Black et al. (2024); Fan et al. (2023); Wallace et al. (2023); Clark et al. (2024); Domingo-Enrich et al.
(2025). When the reward is given by measurement consistency, the problem reduces to posterior
sampling for inverse problems. While our method in principle can also be applied to this more
general setting, in this work we focus primarily on image restoration tasks.

Scaling inference-time compute for diffusion models. Recent works have shown that increasing
inference-time compute for diffusion models can improve performance across various generation
tasks Dou & Song (2024); Wu et al. (2024); Li et al. (2024b); Uehara et al. (2025); Singhal et al.
(2025); Ma et al. (2025). These methods typically start sampling multiple diffusion generation
trajectories called particles, and reweight and filter the particles during the generation to optimize
for the reward. Reweighting and filtering of the particles is performed using sequential Monte Carlo
guidance Dou & Song (2024); Wu et al. (2024) or value-based importance sampling Li et al. (2024b).
Our work provides a different way of scaling inference-time compute by selecting a good latent noise
vector by running the reverse unconditional probability flow ODE.

2 TECHNICAL PRELIMINARIES

2.1 DIFFUSION MODEL BASICS

In the context of unconditional generation, diffusion models provide the following framework for
approximately sampling from a target measure q over Rd given access to samples from q. In this
work we work with the most common choice of forward process, the Ornstein-Uhlenbeck process,
which is given by the SDE dxt = −xt dt +

√
2dBt, where (Bt)t≥0 denotes a standard Brownian

motion in Rd and x0 ∼ q. Define qt ≜ law(xt). Given a large terminal time T ≥ 0, one choice of
SDE which provides a time-reversal for this process over times t ∈ [0, T ] is the reverse SDE

dx←t = (x←t + 2∇ ln qT−t(x
←
t )) dt+

√
2dBt ,
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where now (Bt)0≤t≤T denotes the reversed Brownian motion, and the score functions (∇ ln qt)t are
estimated from data. We will touch upon issues of estimation error in Sections 3.1 and 3.2, but for
now we will assume these are exactly known to us.

The reverse SDE has the property that if x←T ∼ N (0, Id), then law(x←t ) ≈ qT−t for all 0 ≤ t ≤ T
provided T is sufficiently large. In particular, if one can simulate the reverse SDE up to t = T , then
the resulting iterate is distributed as a sample from the target measure.

Another process which also yields a time-reversal of the forward process is the probability flow ODE

dx←t = (x←t +∇ ln qT−t(x
←
t )) dt .

This is the process that is used in denoising diffusion implicit models (DDIMs) and, equivalently,
flow matching models with Gaussian source distribution.

2.2 POSTERIOR SAMPLING WITH DIFFUSION MODELS

In this work we are interested in the general question of steering a diffusion model according to a
given reward model. In this setting, one is given access to the scores ∇ ln qt for a base measure q,
corresponding to a pretrained diffusion model, as well as access to a reward model r : Rd → R,
and the goal is to design a sampler for the tilted measure q̃(x) ∝ q(x) · er(x). Various training-
free methods Kawar et al. (2022); Chung et al. (2023); Zhang et al. (2024) have been proposed for
sampling from the tilt, and our work offers a cheap training-free boosting method.

A well-studied family of reward models is those arising from inverse problems. Suppose that a
signal x is sampled from the base measure q, and we observe y = f(x) + g, where f : Rd → Rm

and g ∼ N (0, σ2Id). Then conditioned on observing y, the posterior measure on x is given by

q̃(x) ∝ q(x) · er(x) , r(x) = − 1

2σ2
∥y − f(x)∥2 .

We will often refer to ∥y − f(x)∥2 as the reconstruction loss.

One of the most popular training-free approaches for trying to sample from this posterior is diffusion
posterior sampling (DPS) Chung et al. (2023). First, one notes that

∇ ln q̃t(x) = ∇ ln qt(x) +∇ lnEx0
[er(x0) | xt = x] ,

where the conditional expectation is with respect to x0 conditioned on xt ∼ N (e−tx0, (1−e−2t)Id)
being equal to x. Unfortunately, this vector field is not readily available as it requires gradients of the
posterior density on x0, which can be very complicated. DPS offers one popular heuristic: replace
the expectation with the point mass at µt(x) ≜ E[x0 | xt = x]. This results in the approximation

∇ ln q̃t(x)
?
≈ ∇ ln qt(x) + vDPS

t (x) vDPS
t (x) ≜ ∇xr(E[x0 | xt = x]) .

One can then try sampling from q̃ by running either the ODE

dxDPS
t = (xDPS

t +∇ ln qT−t(x
DPS
t ) + vDPS

T−t(x
DPS
t ))dt (DPS-ODE)

or the analogous SDE, starting from xDPS
0 ∼ N (0, Id).

In this work, we will focus on linear inverse problems for concreteness, in which case f(x) = Ax
for A ∈ Rm×d. For linear inverse problems, we have

vDPS
t (x) = ∇xr(E[x0 | xt = x]) =

1

σ2
∇µt(x)A

⊤(y −Aµt(x)) ,

where ∇µt ∈ Rd×d denotes the Jacobian of the denoiser.

Unfortunately, it is well-known that DPS incurs significant bias relative to the true reverse process for
q̃, even for very simple special cases like q = N (0, Id) and A = Id (see Appendix B). Indeed, to our
knowledge there have been no works providing a well-defined, theoretically rigorous guarantee for
what DPS is actually accomplishing, despite its surprising effectiveness in practice. Nevertheless, in
this work we show that by starting this process with the appropriate initialization for xDPS

0 , we can
precisely pin down where Eq. (DPS-ODE) ends up after time T .
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3 THE REGUIDANCE ALGORITHM AND THEORETICAL GUARANTEES

Here we give a complete description of our algorithm. Suppose we get as input initial reconstruction
x, generated by an algorithm of the user’s choice and intended to be an approximate sample from the
support of q that achieves some decent level of reward r(x). Our algorithm consists of two simple
steps, given in Algorithm 1 below.

Algorithm 1: REGUIDANCE(x, r)

Input : Initial reconstruction x ∈ Rd and a reward model r : Rd → R
/* We set r(x) = ∥y −Ax∥2 for inverse tasks */

Hyperparams: Guidance strength ρ, time horizon T for ODEs
Output : Improved reconstruction x̂

1 Extract latent: Run the unconditional probability flow ODE in reverse from the initial
reconstruction x to obtain latent x∗T :

dx∗t = −(x∗t +∇ ln qt(x
∗
t )) dt, x∗0 = x

2 Run DPS from latent: Run the DPS-ODE for time T starting from x∗T :

dxDPS
t =

(
xDPS
t +∇ ln qT−t(x

DPS
t ) + ρ∇xr(µT−t(x

DPS
t ))

)
dt, xDPS

0 = x∗T

where µT−t(x) ≜ E[x0 | xT−t = x].
3 return x̂ = xDPS

T .

As we will see in our analysis (see Theorem 2) and in experiments (see Section 4.3), it is crucial
that the second step in REGUIDANCE uses the ODE formulation of DPS rather than the SDE. And
as the next two sections will make clear, it is also essential that we initialize DPS at the latent x∗T
rather than simply at some random latent as in the standard implementation of DPS.

3.1 THEORY VIGNETTE 1: BOOSTING REWARD

Here we provide a simple toy model in which we can prove rigorously that REGUIDANCE decreases
the reconstruction loss (i.e., boosts the reward) achieved by the original sample x.

Setup. We consider the following mixture model with exponentially many modes. For a param-
eter R > 0, consider the uniform mixture of identity-covariance Gaussians centered at the points
{R,−R}d. Next, consider an inpainting-style linear measurement A = (ei1 | · · · | eim)⊤, where ei
denotes the i-th standard basis vector in Rd. Suppose we observed measurements y ∈ {R,−R}m
which are consistent with some mode x′ ∈ {R,−R}d (in fact 2d−m many such modes), i.e. such
that y = Ax′. Let Λ be the affine subspace spanned by points consistent with this measurement.

Our first result shows that for small values of the hyperparameter σ, running our algorithm starting
at a sample x approximately in a sample xDPS

T which is given by the projection of x onto Λ. In other
words, the reconstruction loss is driven to near zero under our algorithm:

Theorem 1 (Informally reward boosting, see Theorem 4). If q is given by a mixture of identity-
covariance Gaussians centered at all 2d points in {R,−R}d, and A ∈ {0, 1}m×d is an inpainting
measurement, then on input x ∈ Rd, REGUIDANCE outputs xDPS

T for which ∥Πx − xDPS
T ∥ ≤

poly(σ, e−T ), where Π is the projection to the affine subspace given by all x′ for which Ax′ = y.

The phenomenon described in Theorem 1 is depicted in the left figure in Figure 2. Below, we briefly
sketch the key idea, deferring the proof to Appendix C.1.

In the setting above, the DPS-ODE drift can be calculated explicitly. The denoiser can be written as

µt(x) = etxt + (et − e−t)∇ ln qt(x) = e−tx+ (1− e−2t)R tanh(Re−tx) ,

where tanh(·) is applied entrywise, so

vDPS
t (x) =

[
e−tId +

1− e−2t

et
R2diag(sech2(Re−tx))

]
· A
⊤(y −Aµt(x))

σ2
.

5
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Figure 2: Initial reconstruction x gets mapped via Step 1 of REGUIDANCE to latent x∗
T , then via Step 2 (DPS-

ODE) to xDPS
T . Left figure shows x gets projected to subspace Λ of maximal reward. Right figure shows even

if x is already on this subspace, the algorithm brings it closer to a mode, increasing likelihood / realism.

On the other hand, the other term in the velocity field for the DPS-ODE is x + ∇ ln qt(x) =
Re−t tanh(Re−tx). In particular, as σ → 0, the velocity field is dominated by vDPS

t . And as t
approaches zero as the trajectory nears the end of the reverse process, the velocity field tends to

lim
t→0

vDPS
t (x) =

1

σ2
A⊤(y −Ax) .

Note that if one projects vDPS
t to any of the directions eij among the rows of A, the projection is

simply the score function of the one-dimensional Gaussian with mean yij and variance σ2. Further-
more, one can verify that the dynamics of this ODE decouple across the coordinates, so that in each
of the coordinates ij corresponding to a row of A, the corresponding one-dimensional ODE can be
shown to converge to a small neighborhood around yij . On the other hand, for all other coordinates
ℓ ̸∈ {i1, . . . , im}, the corresponding one-dimensional ODE is the projection of the unconditional
probability flow ODE to that coordinate, so by design, the dynamics converge to xℓ.

We also show that one cannot replace the DPS-ODE in the second step of REGUIDANCE with the
analogous SDE and achieve the same result, see Appendix C.2 for proof:
Theorem 2 (Informal, see Theorem 5). Let q, A be as in Theorem 1. If the DPS-ODE in REGUID-
ANCE is replaced by the analogous SDE, then even if x is exactly equal to one of the modes in
{R,−R}d, running REGUIDANCE on x results in xDPS

T which is bounded away from any of the
modes in {R,−R}d with high probability over the randomness of the SDE.

3.2 THEORY VIGNETTE 2: BOOSTING REALISM

While the above shows how our algorithm can boost reward, it says nothing about the extent to which
it can bring x towards regions of higher likelihood (realism). Indeed, as we will see in experiments
on images (Section 4), our algorithm has the key benefit that even if the initial x achieves reasonable
reward, i.e. negligible reconstruction loss, it is still able to move it towards a more realistic xDPS

T .

We now provide a simple toy model in which we can prove rigorously that REGUIDANCE boosts the
likelihood of the sample under the data distribution. This is the most technically involved result in
our paper, involving a multi-stage analysis of the DPS ODE dynamics, see Appendix D for details.

Setup. We consider a simple bimodal distribution. For a parameter R > 0, consider the uniform
mixture of two identity-covariance Gaussians centered at the points z1 = Re1 and z2 = −Re1,
where e1 is the first standard basis vector (by rotation and translation invariance of our arguments
below, the specific choice of means is without loss of generality). Consider a single linear measure-
ment A = v⊤ ∈ Rd. Suppose we observed measurement y = ⟨v, z1⟩ consistent with mode z1. Let
Λ be the affine hyperplane spanned by points consistent with this measurement.

We show that even if REGUIDANCE is applied to a point x already on Λ, i.e. which already achieves
maximal reward, under mild conditions our algorithm will result in a sample xDPS

T which is closer to
the mode z1 than x is. In other words, the likelihood of the sample is boosted under our algorithm:

6
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Theorem 3 (Informally realism boosting, see Theorem 6). If q is given by a mixture of identity-
covariance Gaussians centered at means z1 = Re1, z2 = −Re1, and A = v⊤ is an arbitrary single
linear measurement, then on input x satisfying ⟨v, x⟩ = y ≜ ⟨z1, v⟩, provided that ⟨x, e1⟩ < R and
x is sufficiently close to z1, there is an absolute constant 0 < C < 1 such that the output x of a
slight modification of REGUIDANCE satisfies ∥x− z1∥ ≤ C∥x− z1∥+ poly(σ, e−T ).

Remark 1. Again, informally, for an initial sample x, Theorem 3 implies that the likelihood under
the data distribution (realism) p(x) strictly increases with REGUIDANCE. Theorem 1 boosts the
reward, implying that the likelihood p(y|x) of seeing the observed measurement y also increases.
By Bayes’ Rule, it follows that REGUIDANCE increases the likelihood of x conditioned on the
measurement y; i.e., precisely increases the likelihood under the posterior p(x|y).

The phenomenon described in Theorem 3 is depicted in the right figure in Figure 2.

4 EXPERIMENTS ON IMAGE DATA

Datasets and models. We primarily focus on the ImageNet 256 × 256 dataset1 Deng et al. (2009)
in the main body, and we defer additional experiments, including those conducted on the CIFAR-10
dataset Krizhevsky et al. (2009), to Appendix E. We use the pretrained unconditional 256 × 256
diffusion model from Dhariwal & Nichol (2021) as our base model.

Inverse problems. We focus on inverse problems with a well-defined measure of information loss
induced by the measurement process. In particular, we consider the following tasks: box-inpainting,
super-resolution, and deblurring. In box-inpainting, information loss is quantified by the size of
the missing region; we consider two settings: small inpainting, where a random 128 × 128 region
is removed from a 256 × 256 image, and large inpainting, where a random 191 × 191 region is
removed. For super-resolution, information loss is quantified by the downsampling factor. Small
super-resolution corresponds to 8× resolution reduction, and large super-resolution to 16× reduc-
tion. In these cases, we further corrupt the measurements by adding white Gaussian noise with
standard deviation 0.05. Finally, we examine deblurring tasks, where a blurring kernel is applied to
the image Chung et al. (2023). In motion deblurring, the kernel is linear, while nonlinear deblurring
uses a nonlinear corruption. The hard regime for these tasks corresponds to a high added Gaussian
noise, which we set to have standard deviation 0.2 (over the standard 0.05).

Baselines. To show the effectiveness of REGUIDANCE, we use three posterior sampling methods:
DDRM Kawar et al. (2022), DPS Chung et al. (2023), and DAPS Zhang et al. (2024). For each, we
use a fixed evaluation set of 100 generated samples for each inverse task and apply REGUIDANCE.
REGUIDANCE is implemented with the DDIM-based DPS Chung et al. (2023), setting the noise
parameter η to 0.0. As a final (idealized) baseline, we apply REGUIDANCE on the ground truth
images. Each run takes at most 7 GPU minutes on a single NVIDIA A100-SXM4-40GB GPU.

Metrics. We evaluate performance along the two axes of measurement consistency (reward) and
sample quality (realism). For measurement consistency, we use the LPIPS Zhang et al. (2018) score
of the generated sample relative to the ground truth. For sample quality, we use the well-known
CMMD score Jayasumana et al. (2024), which exhibits very little variance on typical evaluation set
sizes relative to other realism metrics Heusel et al. (2017), which can be unreliable in variance up to
5K+ samples. We use the standard 100 ImageNet samples for evaluation as used by DAPS Zhang
et al. (2024) and Ye et al. (2024).

4.1 INPAINTING

We present our main results for inpainting in Table 1. REGUIDANCE demonstrates large improve-
ments in measurement consistency and sample quality across almost every baseline and task diffi-
culty. As expected, REGUIDANCE informed with the ground truth latents has far superior LPIPS/-
consistency scores, but surprisingly, DAPS and DDRM are able to yield latents that achieve superior
realism scores. These strong empirical results are backed qualitatively in Figure 3, which shows that
REGUIDANCE resolves high-level realism failures from the baselines and yields diverse and high-
quality completions distinct from the original image. Notice that this type of behavior is desired.

1We choose ImageNet because unlike for other datasets in the literature (e.g., FFHQ), natural benchmarks
for solving inverse problems with highly compressive measurements have yet to be saturated for this dataset.
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Figure 3: Examples of REGUIDANCE for inpainting with a 191×191 box. First column contains the observed
measurement and reference image, while latter three demonstrate REGUIDANCE applied to different baselines.

Indeed, in highly compressive measurement regimes, recreating the original image (data consis-
tency) is impossible, as multiple “ground truth” images can correspond to the same measurement.
Instead, our method produces samples of high realistic quality that are consistent with the inpainted
measurement, making them exemplary solutions to inverse inpainting. These dual objectives are
precisely captured by the LPIPS and CMMD scores.

We provide additional visual examples in Appendix E.

Method Small Inpainting (Box) Large Inpainting (Box)

LPIPS ↓ CMMD ↓ LPIPS ↓ CMMD ↓

DAPS 0.228 0.500 0.418 1.103
DAPS + REGUIDANCE 0.198 0.270 0.376 0.628
DDRM 0.238 0.664 0.426 1.164
DDRM + REGUIDANCE 0.199 0.263 0.372 0.616
DPS 0.270 0.525 0.393 0.720
DPS + REGUIDANCE 0.219 0.449 0.386 1.107
Ground Truth + REGUIDANCE 0.163 0.390 0.290 0.942

Table 1: Experimental results for box-inpainting. Bold numbers show improvements over baseline, and under-
lined values mark the best result (not including last row which uses knowledge of ground truth).

Task DAPS DAPS + REGUIDANCE

LPIPS ↓ CMMD ↓ LPIPS ↓ CMMD ↓

Superresolution (Small) 0.410 1.257 0.404 1.186
Superresolution (Large) 0.545 2.114 0.496 1.582

Motion Deblurring 0.667 2.457 0.560 1.736
Nonlinear Deblurring 0.572 1.651 0.474 0.876

Table 2: Comparison of DAPS vs. DAPS + REGUIDANCE across various image restoration tasks. Best results
for each metric/task pair highlighted in bold.

4.2 RESULTS ON OTHER IMAGE RESTORATION TASKS

To show the effectiveness of REGUIDANCE, we experiment with superresolution to 8×, superres-
olution to 16×, motion deblurring, and nonlinear deblurring. Given the broad improvements over
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Figure 4: Examples of REGUIDANCE for 16× super-resolution. First column contains the observed measure-
ment and reference image, while latter three demonstrate REGUIDANCE applied to different baselines.

several baselines in the previous section, in this table, we restrict our initializations to the most state-
of-the-art prior method, DAPS, and report our results in Table 2. We observe that REGUIDANCE
consistently improves the performance for all the image restoration tasks. Additionally, we observe
that the performance gap becomes larger for harder image restoration tasks (from 0.06 LPIPS score
for 8× superresolution to 0.49 for 16× superresolution). Even in visual examples shown in Figure
4, we see that REGUIDANCE outputs images of much higher quality. Again, these images are nec-
essarily similar yet not equivalent to the reference image; as they maintain high realistic quality and
consistency with the blurred measurement, they are solutions to inverse super-resolution.

The qualitative results combined with visual examples confirm our hypothesis that REGUIDANCE
improves both sample quality and measurement consistency when equipped with a strong initial
latent. We provide additional visual examples for both superresolution and the deblurring tasks in
Appendix E.

4.3 QUALITATIVE BEHAVIOR

In this section, we briefly describe observations on how REGUIDANCE benefits from the structure
of good initial latents, the details of which we provide in Appendix E.3.

SDE vs. ODE The standard reverse SDE is known to be memoryless Domingo-Enrich et al. (2025),
i.e., the generated sample does not depend on the initial latent. Adding Brownian motion to DPS
similarly weakens the output’s dependency on the latent, deteriorating performance as predicted by
Theorem 2 and as we demonstrate in the supplement.

Space of good latents. We also demonstrate that the space of good initial latents is disconnected,
allowing many possible sample initializations to provide strong and diverse quality boosts. While
a small L2 ball of latents around good latents also provide generally strong reconstructed samples,
it is not true that all good latents are “neighbors” of each other, as we validate with images in the
supplement.

5 OUTLOOK
In this work, we identify a difficult regime for steering diffusion models corresponding to highly
compressive reward measurements. We introduce a simple and effective technique, REGUIDANCE,
that leverages prior methods as strong latent initalizations for deterministic diffusion guidance, pro-
viding inverse problem solutions with boosted realism and reward. We also provide the first theoret-
ical guarantees for DPS Chung et al. (2022b); it is an interesting future direction to extend these to
richer families of data distributions. While we focused on reward guidance in the context of inverse
problem solving, our technique is well-defined for other rewards. An immediate future direction is
to evaluate the efficacy of REGUIDANCE for other choices of reward.
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Roadmap for appendix.

• Appendix A: We discuss some other relevant works in the literature.

• Appendix B: For completeness, we prove the folklore result that DPS provably fails to sample
from the correct tilted density even for very simple data distributions and measurements. To our
knowledge, this has not yet appeared in written form in this literature.

• Appendix C: We give deferred proofs for our first and second main theoretical results. Theorem 1
shows in a stylized setting that REGUIDANCE projects the initial reconstruction to the manifold
of maximal reward. Theorem 2 shows that if one replaces the DPS ODE in REGUIDANCE with
the analogous SDE, it fails to achieve the desired property of boosting reward.

• Appendix D: We give deferred proofs for our third and most technically involved theoretical re-
sult, Theorem 3, which shows in a stylized setting that even if the initial reconstruction achieves
maximal reward, REGUIDANCE moves it towards one of the modes of the distribution and thus
increases its likelihood.

• Appendix E: We provide additional experimental results, including testing on alternate datasets,
further results on superresolution, and visual examples of reconstructions generated using
REGUIDANCE.

A FURTHER RELATED WORK

Optimizing for latents. The benefit of choosing the correct latent has been considered in prior
works in the broader diffusion model literature Mokady et al. (2022); Huberman-Spiegelglas et al.
(2024); Qi et al. (2024) for tasks like image editing, but it is not clear how these methods can be
utilized for image restoration. To our knowledge, our work also gives the only known theoretical
characterization of how the output of diffusion posterior sampling depends on the choice of latent.

Theory for diffusion posterior sampling. Posterior sampling with diffusion models is known to
be computationally intractable in the worst case Gupta et al. (2024); Bruna & Han (2024). How-
ever, several recent works Xu & Chi (2024); Bruna & Han (2024); Montanari & Wu (2024); Karan
et al. (2024) proposed algorithms with provable theoretical guarantees for posterior sampling un-
der relaxed assumptions on the data distribution and/or measurements. These works are mainly for
measurements that are either well-conditioned or have rank which is a constant fraction of the am-
bient dimension; in contrast, we work with highly compressive measurements. The exception is the
algorithm of Xu & Chi (2024) which comes with rigorous guarantees for general inverse problems;
their results however are asymptotic in nature, and they evaluated on superresolution on ImageNet
256× 256 but only at 4× downsampling, compared to 8×, 16× in our work.

B DPS FAILS TO SAMPLE FROM THE TILTED DENSITY

In this section we provide a proof of the folklore result that DPS provably fails to sample from
the correct tilted density even for very simple data distributions and measurements, and even with
perfect score estimation. We essentially prove that the KL divergence between the distribution of
the DPS algorithm and the correct tilted density is large.

Consider running the reverse SDE corresponding to the correct SDE and SDE given by the DPS:

dxt = (xt + 2∇ ln qT−t(xt) + 2∇ ln qT−t(y|xt))dt +
√
2dBt (1)

dxDPS
t = (xDPS

t + 2∇ ln qT−t(x
DPS
t ) + 2vDPS

T−t(x
DPS
t ))dt +

√
2dBt. (2)

We first show that the drift terms of eq.(1) and eq.(2) are different when q(x) = N (x; 0, Id) and
y = x + σz where z ∼ N (0, Id). Observe that ∇ ln qT−t(x) = −x for all t. Using xt =

e−tx0 +
√
1− e−2tz for z ∼ N (0, Id), the joint distribution of [x0, xt] is given by

p

(
x0

xt

)
= N

((
0
0

)
,

(
Id e−tId

e−tId Id

))
.
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The conditional probability p(x0|xt) is a Gaussian distribution with mean e−txt and covariance (1−
e−2t)Id. Using p(y|x0) ∝ exp(−∥y−x0∥2

2σ2 ) and p(x0|xt) ∝ exp(−∥x0−e−txt∥2
2(1−e−2t) ), the probability

density p(y|xt) =
∫
p(x0|xt)p(y|x0)dx0 ∼ N (y; e−txt, σ

2 + 1 − e−2t). Using this, the score
function

∇ ln qT−t(y|xt) = e−t(y − e−txt)/(σ
2 + 1− e−2t).

When q(x) = N (x; 0, Id), E[x0|xt] = e−txt. In this case, the DPS term in (2) is given by

vDPS
T−t(x) = ∇ ln qT−t(y | E[x0|xt = x]) = e−t(y − e−tx)/σ2.

This proves that the two drift terms of the correct conditional SDE (1) and DPS SDE (2) are different.
Now, to prove that these two SDEs result in different distributions, we use Girsanov’s theorem. We
first check Novikov’s condition required for Girsanov’s theorem. First, observe that ∥vDPS

T−t(x) −
∇ ln qT−t(y|xt)∥ = (1 − e−2t)e−t∥y − e−txt∥/(σ2(σ2 + 1 − e−2t)). We also have p(xt|y) =
N (xt; e

−ty/(σ2 + 1), (σ2 + 1− e−2t)/(σ2 + 1)). By rewriting xs ∼ p(xs|y) in terms of standard
Gaussian z, we obtain

∥vDPS
T−t(x)−∇ ln qT−t(y|xt)∥ =

(1− e−2t)e−t∥y − e−txt∥
σ2(σ2 + 1− e−2t)

≤ ∥y∥+ ∥(σ2 + 1− e−2t)0.5/(σ2 + 1)0.5z∥
σ2(σ2 + 1− e−2t)

Using this upper bound, we can check that Novikov’s condition holds when T ≤ σ8/8:

Exs∼qT−s(·|y)

[
exp

(
2

∫ T

0

∥vDPS
T−s(xs)−∇ ln qT−s(y|xs)∥2ds

)]
≤ Ez∼N (0,Id)

[
exp

(
4T
(∥y∥2

σ8
+

∥z∥2

σ8

))]
< ∞

Let QDPS
T (x|y) and QT (x|y) be the path measure of the DPS algorithm (2) and correct conditional

SDE (1), respectively. Then, using Girsanov’s theorem, for a fixed y, the KL divergence between

KL
(
QT (x|y)||QDPS

T (x|y)
)
= EQT (x|y)

∫ T

0

∥vDPS
T−t(x)−∇ ln qT−t(y|xt)∥2dt

= EQT (x|y)

[ ∫ T

0

(1− e−2t)2e−2t∥y − e−txt∥2

σ4(σ2 + 1− e−2t)2
dt
]

=

∫ T

0

(1− e−2t)2e−2t

σ4(σ2 + 1− e−2t)2

(
(1− e−2t

σ2 + 1
)∥y∥2 + d

e−2t(σ2 + 1− e−2t)

σ2 + 1

)
dt

By changing variable using x = e−2t, we obtain

KL
(
QT (x|y)||QDPS

T (x|y)
)
≥
∫ 1

e−2T

(1− x)2

2σ4(σ2 + 1)2
(∥y∥2 + dx)dt ≥ ∥y∥2(1− e−2T )3

6σ4(σ2 + 1)2

C DEFERRED PROOFS FROM SECTION 3.1

C.1 PROOF OF THEOREM 1

We state and prove the following formal version of Theorem 1, which states that when initialized at a
point which does not achieve maximal reward, REGUIDANCE will project that point to the subspace
of points that achieve maximal reward.
Theorem 4. Let q be the uniform mixture of identity-covariance Gaussians centered at all 2d points
in {R,−R}d, and let A ∈ {0, 1}m×d be an inpainting measurment, i.e. a Boolean matrix with
exactly one nonzero entry in each row. Suppose we observe the measurement y = Ax∗, where x∗ ∈
{R,−R}d. Let xDPS

T denote the output of REGUIDANCE with guidance strength ρ = 1/σ2 and time
T starting from initial reconstruction x. Then ∥Πx−xDPS

T ∥ ≤ poly(σRd∥y∥, TRd∥y∥e−T ), where
Π is the projection to the affine subspace of all x′ for which Ax′ = y.
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Proof of Theorem 4. Recall that starting from an initial construction x, the REGUIDANCE algo-
rithm runs the following ODE for T duration:

dxDPS
t =

(
xDPS
t +∇ ln qT−t(x

DPS
t ) + ρ∇µT−t(x

DPS
t )A⊤(y −AµT−t(x

DPS
t ))

)
dt, xDPS

0 = x.

Consider the uniform mixture of identity-covariance Gaussians centers at the points {R,−R}d for
a parameter R > 0. For this distribution, the score function at noise scale t is given by

∇ log qt(x) =

d∑
j=1

(−xj +Re−t tanh(Re−txj))ej

where {e1, . . . , ed} are standard basis vector in Rd. In other words, in every direction, the score
function is −x + Re−t tanh(Re−tx). The drift of the ODE can be decomposed into two parts:
unconditional drift, denoted by UT−t(xt), and conditional DPS term, denoted by vDPS

T−t(xt). The
unconditional and conditional term for ith coordinate is given by

UT−t(x)i = −xi +Re−(T−t) tanh(Re−(T−t)xi)

vDPS
T−t(x)i =

[(
e−(T−t)Id + (1− e−2(T−t))e−(T−t)R2diag(sech2(Re−(T−t)x))

)
· A
⊤(y −AµT−t(x))

σ2

]
i

=

{
e−(T−t)(1 + (1− e−2(T−t))R2sech2(Re−(T−t)x)) (y−µT−t(x))

σ2 if ei is in subspace of A
0 otherwise

We refer to coordinates that are observed/measured as ‘measured coordinates’ and ‘unmeasured
coordinates’ if they are not observed. We first focus on the analysis of ‘measured coordinates’. Let i
be such a coordinate and yi be the measurement of it. For brevity, we will drop the superscript DPS
and the coordinate index i from the subscript as the analysis applies to any measured coordinate.
For these coordinates, we track the evolution of error d(y − xt)

2/dt as follows:

d(y − xt)
2

dt
= −2(y − xt)

dxt

dt
(3)

We first rewrite (y − µT−t(x)) as follows:

y − µT−t(x) = (y − x) + (x− e−(T−t)x)− (1− e−2(T−t))R tanh(Re−(T−t)x)

Using this, we can rewrite vDPS
T−t(xt) = e−(T−t)

(
1
σ2 +

(1−e−2(T−t))R2sech2(Re−(T−t)x)
σ2

)
(y−xt)+Et

where the additional term Et is given by

Et = e−(T−t)
(
(x− e−(T−t)x)− (1− e−2(T−t))R tanh(Re−(T−t)x)

)
σ2

+ e−(T−t)(1− e−2(T−t))R2sech2(Re−(T−t)x)
(x− µT−t(x))

σ2

Combining this with (3), we obtain

d(y − xt)
2

dt
= −2e−(T−t)

( 1

σ2
+

(1− e−2(T−t))R2sech2(Re−(T−t)x)

σ2

)
(y − xt)

2 − 2(y − xt)(Ut + Et)

It is easy to prove that |Ut| ≤ R and the upper bound on |Et| is given by

|Et| ≤
2R2e−(T−t)

σ2
(1− e−(T−t))|xt|+

2R3e−(T−t)

σ2
(1− e−2(T−t)) + e−(T−t)(1− e−2(T−t))|y − xt|
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Let rt be equal to |y − xt|. Then, using |xt| ≤ rt + |y| and −sech2(Re−(T−t)x) ≤ 0, for t ∈
[T − σ, T ] we obtain

drt
dt

≤ a(t)rt + b(t)

where a(t) = −e−(T−t)

σ2
+ (1− e−2(T−t)) ≤ −e−σ

σ2
+ 2σ,

b(t) = R+
2R3

σ2
(1− e−2(T−t)) +

2R2

σ2
(1− e−(T−t))|y|

≤ R+
4R3

σ
+

2R2

σ
|y|,

where the above inequality follows from (1 − e−z) ≤ z for all z. We now integrate the above
inequality from t = T −σ to T for sufficiently small σ (i.e., σ ≤ 0.1). For such σ, a(t) ≤ −1/10σ2.
For R ≥ 1, this gives us that

rT ≲ e−
1

10σ (rT−σ + σmax(R3, R2|y|)(e 1
10σ − 1))

≲ e−
1

10σ rT−σ + σmax(R3, R2|y|)
We now prove an upper bound on rT−σ by proving an upper bound on |xT−σ|. Using the conditional
DPS and unconditional term, for each coordinate, we have

dxt

dt
= Re−(T−t) tanh(Re−(T−t)xi) + e−(T−t)(1 + (1− e−2(T−t))R2sech2(Re−(T−t)xt))

(y − µT−t(xt))

σ2

≤ R+
R2

σ2
(|y| − e−(T−t)xt) +

R3

σ2
.

Solving this inequality for t = 0 to t = T − σ, we have

xT−σ ≤ e−
R2

σ2 (e−σ−e−T )
[
x0 +

(R2|y|+R3

σ2

)∫ T−σ

0

e
R2

σ2 (e−(T−s)−e−T )ds
]
≤ x0 +

(R2|y|+R3)T

σ2
.

Using this bound, we obtain

rT ≲ e−
1

10σ

(
x0 +

(R2|y|+R3)T

σ2

)
+ σmax(R3, R2|y|).

For sufficiently small σ ≤ 1/T , we obtain that for every measured coordinate, we have |y − xT | ≤
poly(σR|y|, TR|y|e−T ). For every unmeasured coordinate, the velocity field remains the same
as the unconditional score function. Therefore, the unmeasured coordinates converge to the same
value as the initial reconstruction after REGUIDANCE. Combining these two claims, we obtain the
result.

C.2 PROOF OF THEOREM 2

In this section, we state and prove the following formal version of Theorem 2, which states that the
guarantees of REGUIDANCE from Theorem 1 do not hold if one replaces the ODE with an SDE:
Theorem 5. Let q be the uniform mixture of identity-covariance Gaussians centered at all 2d points
in {R,−R}d, and let A ∈ {0, 1}m×d be an inpainting measurement, i.e. a Boolean matrix with
exactly one nonzero entry in each row. Let y = Ax be the value of the measurement for some
x ∈ {R,−R}d. If REGUIDANCE is run on the (perfect) initial reconstruction x but using the SDE
instead of the ODE, then the result xDPS

T is independently distributed as 1
2N (R, 1) + 1

2N (−R, 1),
up to exp(−Ω(T )) statistical error, on all other coordinates.

Proof. Recall from the previous section that the DPS term vDPS
t is zero on the unmeasured co-

ordinates, i.e. the coordinates corresponding to zero columns of A. Furthermore, as observed in
the previous section, the dynamics of the DPS-SDE decouple across coordinates. In the unmea-
sured coordinates, the velocity field is simply given by the unconditional score for the mixture
1
2N (R, 1) + 1

2N (−R, 1) marginalized to that coordinate. That is, it is given by the SDE

dxt = (−xt + 2Re−(T−t) tanh(Re−(T−t)xt)) dt+
√
2dBt .
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This SDE is initialized at the i-th coordinate of the vector x, which we denote by x[i], and the final
iterate xT is a sample from the posterior distribution over x ∼ 1

2N (R, 1)+ 1
2N (−R, 1) conditioned

on e−Tx +
√
1− e−2T g = x[i] for g ∼ N (0, Id). The KL divergence between this posterior and

1
2N (R, 1) + 1

2N (−R, 1) decays exponentially with T , as claimed.

D PROOF OF THEOREM 3

D.1 PROOF PRELIMINARIES

We begin by giving the formal version of Theorem 3, which states that when initialized at a point
with maximal reward, under some mild conditions REGUIDANCE will contract that point even closer
to one of the modes of the data distribution. To do this, we will first introduce a modification
of REGUIDANCE to assist with the formalization. Throughout, given a vector w, we will use the
shorthand w[i] to denote ⟨w, ei⟩, where ei is the i-th standard basis vector.

Modification of REGUIDANCE. Here we explicitly compute the velocity field of the ODE that
we run. Let qt denote the marginal at time t of running the Ornstein-Uhlenbeck process starting at
q. Note that

x+∇ ln qt(x) = Re−t tanh(Re−tx[1]) · e1
The denoiser x̂0(xt) is given by

e−txt + (1− e−2t)R tanh(Re−txt[1]) · e1 ,
and the Jacobian of the denoiser is given by

e−tId +
1− e−2t

et
R2diag({sech2(Re−tx[1]), 0, . . . , 0}) .

The DPS term in the velocity field of the DPS-ODE is thus given by the product
1

σ2

[
e−tId +

1− e−2t

et
R2diag({sech2(Re−tx[1]), 0, . . . , 0})

]
·(

vv⊤(Re1 − e−txt − (1− e−2t)R tanh(Re−txt[1]) · e1)
)
.

The sech2 term is unnecessarily cumbersome for our analysis and does not qualitatively impact the
behavior of REGUIDANCE in this setting, so we define MODIFIEDREGUIDANCE to be given by the
following ODE:

dxMDPS
t =

{
Re−(T−t) tanh(RxMDPS

t [1])e1

+
e−(T−t)

σ2
vv⊤

(
Re1 − xMDPS

t

− (1− e−2(T−t))R tanh(RxMDPS
t [1])e1

)}
dt . (MDPS-ODE)

We are now ready to state the formal version of Theorem 3.
Theorem 6. Let q be a mixture of two Gaussians q = 1

2N (z1, Id) +
1
2N (z2, Id) where z1 =

Re1 and z2 = −Re1. For measurement y = ⟨z1, v⟩ given by a single unit vector A = v⊤, let
xMDPS
T denote the output of MODIFIEDREGUIDANCE (Eq. (MDPS-ODE)) with guidance strength

ρ = 1/σ2 and time T starting from initial reconstruction x which has maximal reward, i.e., which
satisfies y = ⟨x, v⟩.
There is an absolute constant c > 0 such that the following holds. Suppose ⟨xMDPS

0 , v⟩ ≤ cR⟨v, e1⟩,
where xMDPS

0 = x∗T is the latent noise vector given by running the unconditional probability flow
ODE in reverse starting from x. Furthermore, suppose that ⟨x, e1⟩ < R; σ ≪ 1; T ≫ log(R/σ);
and ⟨v, e1⟩ is bounded away from {0, 1,−1}. Then:

• Reward approximately preserved: 1
R |⟨xMDPS

T , v⟩ − y| ≲ σ log(1/σ)⟨v, e1⟩

• Contraction toward mode: ∥xMDPS
T − z1∥ ≤ C∥x − z1∥ for a factor 0 < C < 1 which tends

towards ⟨v, e1⟩2 as σ → 0.

Before proceeding to the proof, we provide some simplifying reductions.
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Reparametrization. Instead of tracking xMDPS
t , we will track x′t ≜ e−(T−t)xMDPS

t . Under this
change of variable, Eq. (MDPS-ODE) becomes

dx′t =
{
x′t +Re−2(T−t) tanh(Rx′t[1])e1

+
e−2(T−t)

σ2
vv⊤

(
Re1 − x′t − (1− e−2(T−t))R tanh(Rx′t[1])e1

)}
dt .

Reduction to two-dimensional problem. Note that the drift only depends on the projection of the
trajectory to the two-dimensional subspace spanned by v and e1. Furthermore, the construction of
the latent noise vector x∗T out of initial reconstruction x is given by running an ODE which decouples
across every coordinate vector ei. We will thus henceforth assume without loss of generality that the
original Gaussian mixture was two-dimensional by projecting to the span of v and e1. Extend e1 to
an orthonormal basis for this subspace; we will write occasionally express points in the coordinates
given by this basis, e.g. v = (v[1], v[2]).

We can always assume without loss of generality that v[1] ≥ 0. Furthermore, as the data distribution
is symmetric under reflection around e1, we can additionally assume without loss of generality that
v[2] ≥ 0.

Additionally, let v⊥ = (−v[2], v[1]) denote the orthogonal complement of v.

Latent noise vector Let x∗T denote the latent noise vector obtained by starting from initial recon-
struction x and running the unconditional probability flow ODE in reverse for time T .
Lemma 1. x∗T = (c, x[2]) for some c for which sgn(c) = sgn(x[1]).

We defer the proof to Appendix D.

D.2 PROOF OVERVIEW

Our high-level strategy will be to argue that for most of the trajectory, tanh(Rx′t[1]) is
very close to 1. Note that the drift of the process (xMDPS

t ) in the direction v⊥ is
Re−2(T−t) tanh(Re−(T−t)xMDPS

t [1]) and thus entirely dictated by (xMDPS
t [1]). Provided that the

latter is close to 1 for most of the trajectory, this ensures that the total movement in the v⊥ direc-
tion is close to −Rv[2] (see Eq. (8) below). We will also need to track the total movement in the
v direction; in fact in the course of analyzing the movement in this direction, we will show that
tanh(Rx′t[1]) ≈ 1 for most of the trajectory as a byproduct.

Roughly speaking, our analysis of the trajectory of MODIFIEDREGUIDANCE can be broken into
three stages, depicted in Figure 5:

• Stage 1: In this stage, tanh(Rx′t[1]) increases from a small value to nearly 1 over a time window
of length roughly T −O(log(R/σ)) (see the definition of T ′1 below). At the same time, as x′t[1] is
increasing, the quantity ⟨x′t, v⟩ is increasing but not too quickly, up to a value of at most Õ(σ

√
R).

• Stage 2: In this stage, from time T − O(log(Rv[1]/σ)) to time T − log(1/σ), x′t[1] is still
increasing, and ⟨x′t, v⟩ steadily increases to a value of at most Õ(σR).

• Stage 3: In the final stage, from time T − log(1/σ) to time T , tanh(Rx′t[1]) is no longer mono-
tonically increasing but also never drops below 1 − O(σ). Because the value of tanh(Rx′t[1]) is
still close to 1, the evolution of ⟨x′t, v⟩ is well-approximated by a self-consistent evolution purely
in the direction of v (see Eq. (12)). The form of this evolution can be then be used both to derive
a good estimate for the final value ⟨x′T , v⟩, and also to control the fluctuations of tanh(Rx′t[1])
around 1 in this final stage.

Altogether, this three-stage analysis will allow us to prove the following key lemma:
Lemma 2 (Dynamics of REGUIDANCE). Let

δ′ ≜ e−2(T−T
′
1) ≍ log(1/ϵ)σ2

Rv[1]
. (6)

If xMDPS
0 [1] ≥ 0, then:
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Figure 5: Depiction of evolution of tanh(Rx′t) and ⟨x′t, v⟩ and the three stages of analysis

1. xMDPS
t [1] ≥ 0 for all 0 ≤ t ≤ T .

2. For t ≥ T − log(1/δ′), tanh(Re−(T−t)xMDPS
t [1]) ≥ 1−O(σ).

3. |⟨xMDPS
T , v⟩ − y| ≲ Rv[1]σ log(1/σ).

The proof of this is quite subtle and is the crux of our argument. We defer the proof to Appendix D.4.
With Lemma 2 in hand, we can now conclude the proof of our main result.

Proof of Theorem 6. The guarantee on reward follows from Part 3 of Lemma 2.

We now establish contraction towards the mode. Recall from Section D.1 the definition of v⊥ =
(−v[2], v[1]) and the fact that we are assuming without loss of generality that v[1], v[2] ≥ 0.

Let us compute the total movement in the direction of v⊥ over the course of the DPS ODE trajectory.
For this calculation, let us work with the original process (xMDPS

t ) rather than the reparametrized
one. The drift in the v⊥ direction is given by〈dxMDPS

t

dt
, v⊥

〉
= −Re−(T−t) tanh(Re−(T−t)xMDPS

t [1]) · v[2] . (7)

In the first two parts of Lemma 2, it was shown that if xMDPS
0 [1] ≥ 0, then xMDPS

t [1] ≥ 0 for all
0 ≤ t ≤ T . Furthermore, for t ≥ T ′1, tanh(Re−(T−t)xMDPS

t [1]) ≥ 1−O(σ).

Integrating Eq. (7), we conclude that

⟨xMDPS
T , v⊥⟩ − ⟨xMDPS

0 , v⊥⟩ ≤ (1−O(σ))v[2] ·
∫ T

T−log(1/δ′)
−Re−(T−t) dt

= (1−O(σ))Rv[2] · (1− δ′)

≤ −(1−O(σ))Rv[2] . (8)

Recall that xMDPS
0 = x∗T = (c, x[2]) for c defined in Lemma 1 and x[2] the second coordinate of

the initial reconstruction x. At the end of the trajectory, ⟨xMDPS
T , v⊥⟩ = −(c+R)v[2] + v[1]x[2]±

O(Rσv[2]) and ⟨xMDPS
T , v⟩ = (1± σ log(1/σ))Rv[1].

Because x was assumed to achieve maximal reward ⟨v, x⟩ = Rv[1], so that x[1] = R− v[2]x[2]
v[1] (here

we are using that v[1] is bounded away from zero) and thus

⟨x, v⊥⟩ = −v[2]x[1] + v[1]x[2] = −Rv[2] +
v[2]2x[2]

v[1]
+ v[1]x[2].
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Note that x[2] > 0 because we are assuming in Theorem 6 that x[1] < R and furthermore we are
assuming v[1], v[2] ≥ 0 without loss of generality.

In contrast, we have
⟨z1, v⊥⟩ = −Rv[2]

We thus have

∥z1 − x∥ = |⟨x− z1, v
⊥⟩| ≤ v[2]2x[2]

v[1]
+ v[1]x[2] .

On the other hand,

∥z1 − xMDPS
T ∥ ≤

√
(−cv[2] + v[1]x[2] +O(Rσv[2]))2 +R2v[1]2σ2 log2(1/σ)

≤ O(Rv[1]σ log(1/σ)) + v[1]x[2] .

Provided that x[2] ≳ Rσ log(1/σ)v[1]2/v[2]2, we get a contraction from ∥z1−x∥ to ∥z1−xMDPS
T ∥.

Note that in particular, as σ → 0, the factor of contraction tends towards v[1]2 as claimed.

D.3 PROOF OF LEMMA 1

The unconditional probability flow ODE in reverse time is given by

dx∗t = −Re−t tanh(Re−tx∗t [1]) dt

First, note that the velocity field does not depend on x∗t [2], so x∗T [2] = x[2]. Next, note that the
unconditional probability flow ODE in forward time is monotone in the sense that it ends up at a
point whose first coordinate is the same sign as that of its initialization. The fact that c in the claim
has the same sign as x[1] follows by reversing time.

D.4 PROOF OF LEMMA 2

In preparation for the analysis, define
ϵ = 4σ2 (9)

and define the stopping times

• T ∗: first time that ⟨x′t, v⟩ > ϵRv[1]/2.

• T1 = T − 1
2 log(1/δ) for δ ≜ 3σ2

Rv[1]

• T ′1 = T1 +Θ(log log 1/ϵ)

• T2 = T − log(1/σ)

D.4.1 STAGE 1: t = 0 TO t = T ′1 = T −O(log(R/σ))

While tanh(Rx′t[1]) ≤ 1/2 and x′t[1] ≥ 0, we can lower bound the drift in the e1 direction by

x′t[1] +
e−2(T−t)

σ2
(Rv[1]/2− ⟨x′t, v⟩) .

Then for all t ≤ T ∗, by integrating we conclude that

x′t[1] ≥ x′0[1]e
t +

(1− e−t)e−2(T−t)

4σ2
·Rv[1] .

So provided that T ∗ > T1, by our choice of T1 above we have that tanh(x′T1
[1]) > 1/2.

Next, for all T1 ≤ t ≤ T ∗, we will lower bound the drift in the e1 direction by x′t[1], yielding the
naive bound of x′t[1] ≥ x′T1

et−T1 . Provided that T ∗ > T ′1, by our choice of T ′1 above we have that
tanh(x′T ′

1
[1]) ≥ 1− ϵ.

Next, let us consider the drift in the v direction, which can be upper bounded by(
1− e−2(T−t)

σ2

)
⟨x′t, v⟩+Re−2(T−t)v[1] · (1 + 1/σ2) .
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Furthermore, for all t ≤ T2, the drift in the v direction is nonnegative. So by integrating the above
upper bound, we conclude that for δ′ defined as in Eq. (6), we have

⟨x′T ′
1
, v⟩ ≤ e−

δ′+e−2T

2σ2

√
δ′ · eT ⟨x′0, v⟩+

√
π

2
Rv[1]

√
δ′(σ + σ−1)

(
erfi
(√ δ′

2σ2

)
− erfi

( e−T

σ
√
2

))

≲ σ

√
log(1/ϵ)

Rv[1]
· ⟨xMDPS

0 , v⟩+ log(1/ϵ) ≤ c′σ
√
log(1/ϵ)Rv[1] + log(1/ϵ) , (10)

for some small constant c > 0, where erfi(·) denotes the imaginary error function, and where in the

second step we used that erfi(
√

δ′

2σ2 ) ≲
√

δ′

2σ2 as well as the definition of x′0 = e−TxMDPS
0 , and

in the third step we used the assumption that ⟨xMDPS
0 , v⟩ ≤ cRv[1] for sufficiently small absolute

constant c.

D.4.2 STAGE 2: t = T ′1 TO t = T2 = T − log(1/σ)

Next we show that from time T ′1 to time T2, ⟨x′t, v⟩ steadily increases to O(Rσ).

First note that by definition of T2, both x′t[1] and ⟨x′t, v⟩ are nondecreasing for 0 ≤ t ≤ T2. Further-
more, at the end of the previous stage, we saw that tanh(x′T ′

1
[1]) ≥ 1 − ϵ, so tanh(x′t[1]) ≥ 1 − ϵ

for all T ′1 ≤ t ≤ T2. As a result, the drift in the v direction is upper bounded by(
1− e−2(T−t)

σ2

)
⟨x′t, v⟩+

(
e−2(T−t) +

e−2(T−t)(e−2(T−t) + 4σ2)

σ2

)
Rv[1] .

Integrating this, we conclude that

⟨x′T2
, v⟩ ≤ Rv[1]σ2 + eδ

′/2σ2−1/2 ·
( σ√

δ′
⟨x′T ′

1
, v⟩ −Rv[1]σ

√
δ′
)

+ 2
√
2πδ′Rv[1]σ

(
erfi(1/

√
2)− erfi(

√
δ/2σ2)

)
≤ c′′Rv[1]σ , (11)

where δ′ is defined in Eq. (6), and in the second step we used the bound on ⟨x′T ′
1
, v⟩ from Eq. (10),

and c′′ is a small absolute constant depending on c in the assumed bound of ⟨xMDPS
0 , v⟩ ≤ cRv[1].

As ⟨x′t, v⟩ has been nondecreasing up to this point, and the final bound in Eq. (11) is at most
ϵRv[1]/2 by our choice of ϵ in Eq. (9), we conclude that our running assumption that time T ∗

happens after Stages 1 and 2 is valid.

D.4.3 STAGE 3: t = T2 TO t = T

We now complete the analysis of the trajectory by considering t ≥ T2. Define ϵt ≜ 1−tanh(Rx′t[1])
so that the drift in the v direction can be written as〈dx′t

dt
, v
〉
=
(
1− e−2(T−t)

σ2

)
⟨x′t, v⟩+

(
e−2(T−t) +

e−4(T−t)

σ2

)
Rv[1] + ∆t

for

∆t =
(e−2(T−t)(1− e−2(T−t))

σ2
− e−2(T−t)

)
Rv[1]ϵt .

Writing t = T2 + s, we can express the above as〈dx′T2+s

ds
, v
〉
= (1− e2s)⟨x′T2+s, v⟩+ (e2s + e4s)Rv[1]σ2 +∆T2+s

and
∆T2+s = (1− 2σ2e2s)Rv[1]ϵT2+s

We will regard this as a perturbed version of the ODE

dZs

ds
= (1− e2s)Zs + (e2s + e4s)Rv[1]σ2 , (12)
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which admits the solution

Zs = e2sRv[1]σ2 + e1/2−e
2s/2+s(Z0 −Rv[1]σ2) ≜ fs(Z0) .

Note that |f ′s(Z0)| = e1/2−e
2s/2+s, and

∫∞
0

e1/2−e
2s/2+s ds ≤ 2/3. So by the Alekseev-Gröbner

formula, if Z0 = ⟨x′T2
, v⟩,∣∣Zs − ⟨x′T2+s, v⟩

∣∣ = ∣∣∣∫ s

0

f ′r(Zr) ·∆r dr
∣∣∣ ≤ 2

3
sup

0≤r≤s
|∆r| .

Let T3(ξ) denote the smallest time T2 ≤ t ≤ T for which tanh(x′t[1]) ≤ 1− ξ; if no such t exists,
let T3(ξ) ≜ ∞. Then for any 0 ≤ s ≤ T3(ξ)− T2, we have∣∣∣⟨x′T2+s, v⟩ −

(
e2sRv[1]σ2 + e1/2−e

2s/2+s(⟨x′T2
, v⟩ −Rv[1]σ2)

)∣∣∣ ≤ 2

3
Rv[1]ξ (13)

Let us now track the evolution of x′T2+s[1]. We can always lower bound the drift in the e1 direction
by

x′T2+s[1] + (1− ξ)Rσ2e2s + e2sv[1](Rv[1]ξ + 0.99Rv[1]e2sσ2 − ⟨x′T2+s, v⟩)
≥ x′T2+s[1] + (1− v[1])Rσ2e2s − ξRσ2e2s + 0.99Rσ2e4sv[1]2

− e1/2−e
2s/2+3sc′′Rv[1]2σ +

1

3
e2sRv[1]2ξ ,

where in the second step we used Eq. (13) and the bound Eq. (11) established in Stage 2. In par-
ticular, for ξ = Cσ for sufficiently large constant C relative to c′′, we see that the above drift is
nonnegative, implying that tanh(x′t[1]) can never go below 1 − O(σ). In particular, for this choice
of ξ, T3(ξ) = ∞.

We have thus established that Eq. (13) holds for all times 0 ≤ s ≤ T − T2. In particular, at the end
of the trajectory, i.e. when s = T − T2 = log(1/σ), we can bound the final measurement loss by∣∣⟨x′T , v⟩ −Rv[1]

∣∣ ≲ e−
1

2σ2 ·Rv[1]σ +Rv[1]σ log(1/σ) ≲ Rv[1]σ log(1/σ) .

E ADDITIONAL EXPERIMENTAL RESULTS

In this section we report additional experimental results. In Section E.1, we report similar im-
provements using REGUIDANCE on CIFAR-10 and provide visual examples comparing our method
to baselines. In Section E.2, we provide additional details for our experiments with superresolu-
tion on ImageNet as well as visual examples of outputs of REGUIDANCE for both box in-painting
and superresolution. In Section E.3.1 we explore how the choice of latent affects the behavior of
REGUIDANCE and provide visualizations for the space of good latents. Finally, in Section E.3.2, we
validate the theoretical result of Theorem 2 by showing that empirically, REGUIDANCE using the
SDE performs considerably worse compared to REGUIDANCE using the ODE.

E.1 RESULTS ON CIFAR-10

E.1.1 EMPIRICAL RESULTS

To validate REGUIDANCE on an alternative dataset, we take our top performing baseline
(DAPS) and run our experiments (baseline with and without REGUIDANCE) on the CIFAR-10
dataset Krizhevsky et al. (2009), consisting of 32 × 32 images. We use the unconditional 32 × 32
diffusion model from Dhariwal & Nichol (2021) as the base model. As before, the inverse tasks
are different scales of box-inpainting and superresolution: now, small inpainting denotes a 16 × 16
region masked out from the original image, while in large inpainting, the masked region dimensions
are 23× 23. All other settings with respect to evaluation are the same as with ImageNet. We report
the results below.

As shown in Tables 3 and 4, the strong boost in performance offered by REGUIDANCE transfers to
CIFAR 10. We see a near universal boost in performance across all tasks and metrics, especially
seeing strong boosts in realism as quantified by the CMMD score.
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Method Small Inpainting Large Inpainting

LPIPS ↓ CMMD ↓ LPIPS ↓ CMMD ↓

DAPS 0.147 0.519 0.300 0.636
DAPS + REGUIDANCE 0.151 0.373 0.298 0.560

Table 3: Experimental results for inpainting. Bold numbers show improvements over baseline, and underlined
values mark the best result (not including last row which uses knowledge of ground truth).

Method Small Superresolution Large Superresolution

LPIPS ↓ CMMD ↓ LPIPS ↓ CMMD ↓

DAPS 0.392 0.591 0.516 0.859
DAPS + REGUIDANCE 0.383 0.569 0.509 0.669

Table 4: Experimental results for superresolution. Bold numbers show improvements over baseline, and under-
lined values mark the best result (not including last row which uses knowledge of ground truth).

E.1.2 VISUAL EXAMPLES

(a) DAPS (b) DAPS + REGUIDANCE

Figure 6: Validation set generations for large inpainting on CIFAR-10.
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(a) DAPS (b) DAPS + REGUIDANCE

Figure 7: Validation set generations for large superresolution on CIFAR-10.

E.2 ADDITIONAL RESULTS ON IMAGENET

E.2.1 SUPERRESOLUTION

Method Small Superresolution Large Superresolution

LPIPS ↓ CMMD ↓ LPIPS ↓ CMMD ↓

DAPS 0.410 1.257 0.545 2.114
DAPS + REGUIDANCE 0.510 1.323 0.590 1.429
DAPS + REGUIDANCE with ReNoise 0.404 1.186 0.496 1.582
DDRM 0.393 1.232 0.511 1.549
DDRM + REGUIDANCE 0.405 1.435 0.530 1.971
DDRM + REGUIDANCE with ReNoise 0.391 1.221 0.505 1.704
DPS 0.457 0.566 0.523 0.576
DPS + REGUIDANCE 0.433 0.655 0.493 0.705
Ground Truth + REGUIDANCE 0.314 0.813 0.222 0.407

Table 5: Experimental results for superresolution. Bold numbers show improvements over baseline, and under-
lined values mark the best result (not including last row which uses knowledge of ground truth).

From Table 5, we note that REGUIDANCE helps boost reward in realism in some cases, while leav-
ing the other metrics relatively unchanged / slightly worse. We note that performance using the
ground truth latents of the original images have considerably better performance in reward and real-
ism, suggesting that the candidate latents offered by the baselines might not be strong initializations
(as refl-ected in the requirements of Theorems 1 and 3). Indeed, we observe that this could be due
to both the baseline samples as well as due to discretization error in the inversion process using
the reverse probability flow ODE. We show evidence of the latter in Figure 8, where running the
deterministic diffusion ODE after inverting a candidate image does not quite return to said image,
introducing noisy artifacts that are magnified by REGUIDANCE. These artifacts contribute to deteri-
orated performance (especially in the 8× superresolution regime). To reduce the discretization error
due to the inversion process, we employ a stronger inversion technique from ReNoise Garibi et al.
(2024) and report our results in Table 5. We observe that a stronger inversion technique substantially
improves the performance, and we leave the investigation of more advanced inversion techniques for
future work.
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Method Motion Deblurring Nonlinear Deblurring

LPIPS ↓ CMMD ↓ LPIPS ↓ CMMD ↓

DAPS 0.667 2.457 0.572 1.651
DAPS + REGUIDANCE 0.560 1.736 0.474 0.876

Table 6: Experimental results for Motion and Nonlinear Deblurring. Bold numbers shows the best result.

E.2.2 MORE VISUAL EXAMPLES

Figure 9: Hard motion deblurring.
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Figure 10: Hard nonlinear deblurring.
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Figure 11: Small superresolution.
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Figure 12: Large superresolution.
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Figure 13: Small box-inpainting.
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Figure 14: Large box-inpainting.

E.3 QUALITATIVE BEHAVIOR

Here we describe further experiments to develop qualitative understanding for the behavior of
REGUIDANCEas outlined in Section 4.3.

E.3.1 STRUCTURE OF LATENT INITIALIZATIONS FOR REGUIDANCE

We notice the space of good initial latents is disconnected, allowing many possible sample initial-
izations to provide strong and diverse quality boosts. While a small L2 ball of latents around good
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latents also provide generally strong reconstructed samples, it is not true that all good latents are
“neighbors” of each other.

Figure 8: First row: candidate solution generated by DAPS; second row: image
generated by running unconditional ODE from inverted ground truth latent; third
row: image generated by REGUIDANCE with this latent. Second row does not quite
give the identity map, and artifacts introduced by discretization error are magnified
with REGUIDANCE. First two columns: 8× superresolution; last two: 16×.

We provide a qualita-
tive experiment to test
these assertions. For
DAPS, DDRM, and
DPS, we take their
candidate solutions
to a large inpainting
problem (see Fig-
ure 3), along with
the original ground
truth image. Firstly,
inverting these four
images, we notice
that the pairwise
distances between
the resulting latents
is quite large: if d
is the dimensionality
of the latents, then
the average distance
between two random
standard normal la-
tents is approximately
∼ 2

√
d = ℓ. Given

the latents have shape
[3, 256, 256], we find
that the pairwise
distances between
these latents lie in
the interval [0.5ℓ, 0.7ℓ]. In particular, these “good” latents are quite far apart in space. In Figure
15, we see that perturbing these latents by a standard normal vector with standard deviation
0.1 and applying REGUIDANCE results in realistic images quite similar to those generated from
REGUIDANCE applied on the non-perturbed latents, regardless of the random seed. In particular,
the good latents are robust up to a radius of ∼ 0.1

√
d. Beyond this radius, e.g., interpolating two

subsequent latents and then applying REGUIDANCE, the resulting images are much less realistic,
and often contain visible defects.

This suggests that the space of good latents for REGUIDANCE is disconnected, with a small neigh-
borhood around each good latent providing highly similar images, while distinct neighborhoods
lead to diverse but strong solutions to the target inverse problem. In particular, good latents are not
necessarily “neighbors” of each other, but exist in disjoint neighborhoods within initialization space.

E.3.2 REGUIDANCE WITH SDE VS. ODE

These strong initializations rely on the deterministic sampler for REGUIDANCE. We demonstrate
that REGUIDANCE with a stochastic DPS sampler (SDE) loses some of this benefit that a strong
initialization provides. Using a classic unconditional SDE sampler for diffusion models is known
to be memoryless Domingo-Enrich et al. (2025), in the sense that the generated sample does not
depend on the initial latent. Adding Brownian motion to DPS similarly weakens dependency on the
latent, deteriorating performance as we now show.

To implement REGUIDANCE with a stochastic sampler, we use DPS with DDIM but now with
noise parameter η = 1.0. In Table 7, we see REGUIDANCE with this DPS-SDE underperforms the
baseline in measurement consistency and underperforms the DPS-ODE in realism. Figure 16 shows
sample REGUIDANCE DPS-ODE images relative to using the DPS-SDE, stressing the disparity in
performance seen in Table 7.
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Figure 15: The first row displays solution images generated by REGUIDANCE using latent initializations from
DAPS, DDRM, DPS, and the ground truth image respectively. The second row displays REGUIDANCE applied
on these latent initializations perturbed by a random normal vector with variance 0.1. The final row displays
REGUIDANCE applied on the current latent averaged with the initial latent of the next column of images (with
wrap-around). This figure demonstrates that small neighborhoods around good latents still lead to realistic
images, albeit with little variation, while across neighborhoods of good latents, diversity in infillings emerges.

Figure 16: The first column gives REGUIDANCE with a deterministic DPS-ODE on DAPS candidate latents for
large inpainting on ImageNet, and the subsequent three columns are different samples using REGUIDANCE with
a stochastic DPS-SDE sampler. It is evident from the photos that both realism and measurement consistency
are lost when using the stochastic REGUIDANCE sampler.
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Method Large Inpainting (Box)

LPIPS ↓ CMMD ↓

DAPS 0.418 1.103
DAPS + REGUIDANCE (ODE) 0.376 0.628
DAPS + REGUIDANCE (SDE) 0.470 0.815

Table 7: Comparing REGUIDANCE with the ODE vs the SDE for large box-inpainting on ImageNet. The SDE
sampler results in much worse performance than both the baseline and the ODE with regards to consistency
(LPIPS), and worse performance than the ODE with regards to realism (CMMD).

34


	Introduction
	Our contributions
	Related work

	Technical preliminaries
	Diffusion model basics
	Posterior sampling with diffusion models

	The ReGuidance algorithm and theoretical guarantees
	Theory vignette 1: Boosting reward
	Theory vignette 2: Boosting realism

	Experiments on image data
	Inpainting
	Results on other image restoration tasks
	Qualitative behavior

	Outlook
	Further related work
	DPS fails to sample from the tilted density
	Deferred proofs from Section 3.1
	Proof of Theorem 1
	Proof of Theorem 2

	Proof of Theorem 3
	Proof preliminaries
	Proof overview
	Proof of Lemma 1
	Proof of Lemma 2
	Stage 1: t = 0 to t = T'1 = T - O((R/))
	Stage 2: t = T'1 to t = T2 = T - (1/)
	Stage 3: t = T2 to t = T


	Additional experimental results
	Results on CIFAR-10
	Empirical results
	Visual examples

	Additional results on ImageNet
	Superresolution
	More visual examples

	Qualitative behavior
	Structure of latent initializations for ReGuidance
	ReGuidance with SDE vs. ODE



