
Hierarchical Optimization via LLM-Guided Objective
Evolution for Mobility-on-Demand Systems

Yi Zhang1∗ Yushen Long2 Yun Ni3 Liping Huang1 Xiaohong Wang1 Jun Liu4

1 Agency for Science, Technology and Research, Singapore
2 Morgan Stanley Asia Pte.

3 Onto Innovation Inc.
4 School of computing and communications, Lancaster University, UK
{Zhang_Yi, Huang_Liping, Wang_Xiaohong}@a-star.edu.sg

Yushen.Long@morganstanley.com, Yun.Ni@ontoinnovation.com
j.liu81@lancaster.ac.uk

Abstract

Online ride-hailing platforms aim to deliver efficient mobility-on-demand services,
often facing challenges in balancing dynamic and spatially heterogeneous supply
and demand. Existing methods typically fall into two categories: reinforcement
learning (RL) approaches, which suffer from data inefficiency, oversimplified
modeling of real-world dynamics, and difficulty enforcing operational constraints;
or decomposed online optimization methods, which rely on manually designed high-
level objectives that lack awareness of low-level routing dynamics. To address this
issue, we propose a novel hybrid framework that integrates large language model
(LLM) with mathematical optimization in a dynamic hierarchical system: (1) it is
training-free, removing the need for large-scale interaction data as in RL, and (2) it
leverages LLM to bridge cognitive limitations caused by problem decomposition
by adaptively generating high-level objectives. Within this framework, LLM
serves as a meta-optimizer, producing semantic heuristics that guide a low-level
optimizer responsible for constraint enforcement and real-time decision execution.
These heuristics are refined through a closed-loop evolutionary process, driven by
harmony search, which iteratively adapts the LLM prompts based on feasibility
and performance feedback from the optimization layer. Extensive experiments
based on scenarios derived from both the New York and Chicago taxi datasets
demonstrate the effectiveness of our approach, achieving an average improvement
of 16% compared to state-of-the-art baselines.

1 Introduction

Mobility-on-demand platforms, such as ride-hailing services, have become critical urban transporta-
tion infrastructures, to address unbalanced demand and supply by continuously executing two core
decision-making processes: order dispatch and vehicle routing [1, 2, 3, 4, 5, 6]. This sequential
decision-making involves solving complex combinatorial optimization problems under spatiotemporal
constraints, ensuring timely and efficient service delivery in ever-evolving urban environments.

Firstly, reinforcement learning methods [7, 5, 8, 9, 10, 11] have been employed to learn policies to
address the problem. These approaches can capture long-term rewards by considering the future
trajectories of drivers and passengers. However, RL methods often require extensive training data
and interactions to learn effectively. Training can be unstable and enforcing hard constraints is chal-
lenging. In addition, learned policies can behave unpredictably outside of their training distribution.

∗Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Secondly, two-stage optimization frameworks have been deployed to decompose the problem to
reduce the complexity. Typically, the high-level stage addresses supply-demand balancing, e.g.,
batch matching via mixed-integer linear programming (MILP) [2, 3, 12], while the low-level stage
focuses on dispatching or routing, e.g., graph-based search [13, 14]. However, high-level objectives
are often manually designed without full knowledge of the low-level dynamics, potentially leading
to suboptimal decisions. This disconnect can lead to misaligned objectives that do not fully reflect
the true operational constraints, ultimately resulting in inefficiencies like increased waiting times
or idle distances. Thirdly, large language models offer a new paradigm: their embedded priors on
combinatorial reasoning and urban mobility can improve adaptability. However, current applica-
tions focus primarily on static optimization settings [15, 16, 17, 18, 19]. When applied to dynamic
ride-hailing systems with real-time state transitions, these methods face two key limitations: (1)
absence of iterative refinement aligned with evolving system states, and (2) lack of solver integration,
resulting in proposals that may violate constraints or degrade solution quality. To address the above
issue, we present the first integration of LLM and mathematical optimization for dynamic sequen-
tial decision-making systems. Specifically, we propose a hybrid LLM-optimizer framework that
decomposes the problem hierarchically, strategically embedding LLM only where human expertise
bottlenecks exist: (1) LLM as Meta-Objective Designer: Dynamically evolves high-level objectives
via prompt-based harmony search [20, 21], guided by feasibility feedback from the optimization
solver. (2) Optimizer as Constraint Enforcer: Solves low-level routing with mathematical rigor,
ensuring real-time feasibility. (3) Heuristics as Prompt Evolver: Leverages harmony search algo-
rithm to iteratively refine LLM prompts, guided by optimizer feedback to adaptively explore and
converge toward effective meta-objectives. This framework is training-free, eliminating the need for
extensive data or interaction required by RL-based methods. Simultaneously, by leveraging LLM
to adaptively evolve the high-level objective, it mitigates the sub-optimality introduced by manual
design in decomposed optimization, aligning high-level decisions more closely with downstream
dynamics.

Our framework hierarchically decomposes each decision step into two levels: The high-level module is
responsible for assigning passengers to taxis based on real-time spatial configurations and anticipated
supply-demand imbalances, while the low-level module solves the routing or visiting sequence
problem for each taxi to minimize passenger waiting time under spatiotemporal constraints. To address
the partial observability challenge (high-level model lack foresight into downstream routing dynamics)
induced by the decomposition, we employ LLM as a meta-heuristic designer, leveraging its implicit
understanding of urban mobility patterns to adaptively refine high-level objectives. As captured in
Figure 1, LLM generates high-level assignment objectives that serve as semantic guides within the
optimization loop. These objectives are embedded into a closed-loop evolutionary process, where
each simulation epoch evaluates their fitness. The evolutionary mechanism is guided by a harmony
search algorithm, which iteratively refines the LLM prompt space to improve objective quality. This
feedback-driven mechanism enables the LLM-generated heuristics to adapt and improve over time,
combining the semantic richness of LLM with the structural robustness of traditional optimization.
By integrating LLM as a semantic objective generator within a hierarchical optimization loop, our
framework achieves dynamic adaptability absent in static operation research (OR) formulations,
meanwhile avoiding the data inefficiency of RL-based approaches.

We summarize our contributions as follows: 1) We propose a hybrid LLM + Optimizer paradigm,
where LLM acts as a meta-optimizer for evolving high-level objective through prompt-based evolution,
while mathematical optimization solver guarantees constraint satisfaction and numerical rigor. To
the best of our knowledge, this is the first work to leverage the capabilities of LLM combined with
optimization solver for sequential dynamic decision-making systems. 2) We introduce a harmony
search algorithm with three novel operators (random inference, heuristic improvement, and innovative
generation) to iteratively refine LLM-generated objectives using feedback from the mathematical
solver. 3) Extensive experiments on various scenarios derived from the New York and Chicago
taxi datasets demonstrate the effectiveness of our approach, reducing passenger waiting time by
approximately 16% over state-of-the-art baselines.

2 Related work

Reinforcement Learning in Ride-Hailing RL-based approaches have been adopted, which enables
the system to learn from historical data and optimize decision-making by considering the expected

2

Figure 1: Overall control flow framework. Search block: Uses harmony search algorithm to
iteratively select and apply 3 prompt-refinement operators. Initial iterations prioritize heuristics from
Operator 1; Dynamic System block: At each timestep, the LLM generates high-level objectives
based on the refined prompt and simulator-reported states (e.g., driver locations, pending orders).
These objectives guide a two-level optimizer: a high-level dispatcher assigns orders, and a low-level
router determines feasible visiting sequences. The optimizer’s decisions are executed in the simulator,
updating system states. This closed-loop process continues until the simulation horizon concludes;
Evaluation block: Computes the fitness score from simulator trajectories and pairs it with the
LLM-inferred objectives to update the harmony search population.

future trajectories of drivers and passengers [7, 10, 4, 22], including the deep RL-based approaches
[11, 5, 8, 9, 23]. [6] uses RL to estimate the long-term value of each possible driver-order assignment,
considering not just immediate trip rewards but also future opportunities (like driver repositioning).
[10] integrates behavior prediction and combinatorial optimization with a deep double scalable
network to generate order-driver assignments in an auto-regressive manner. However, RL-based
approaches often require a large number of interactions to learn effectively, and their training can be
unstable and highly sensitive to hyperparameters.

On-line Optimization in Order Dispatching Order-taxi matching problems in ride-hailing plat-
forms are typically formulated as MILP models or framed as bipartite graph matching problems
[2, 3, 12, 13, 14, 24]. Combinatorial optimization problems often face scalability challenges due to
the large decision variable space, leading to multi-stage decompositions. [2] proposed a federated
optimization framework integrating assignment blocks and routing engines with limited information
exchange. [24] developed two MILP models for ride-hailing: a flow-based high-level model for
supply-demand balance and a routing-based low-level model to minimize travel time. However,
hierarchical decomposition introduces sub-optimality by decoupling optimization stages: high-level
objectives lack visibility into low-level operational dynamics, resulting in myopic decisions that fail
to preserve system-wide optimality.

3

LLM for Operation Research Problems Recent studies have explored the use of LLMs to
automate the solution of OR problems, with approaches falling into two main categories: (1)
automating mathematical model formulation to reduce reliance on domain expertise [18, 17, 25,
26, 19, 27]. Approaches such as task allocation, few-shot learning, and chain-of-experts have been
proposed to guide programmatic LLM prompts [28, 29, 30, 17, 31, 32]. (2) Directly querying LLMs
for algorithmic code to find feasible solutions to OR problems [15, 33, 34, 35, 36]. FunSearch
[15] leverages the generative capabilities of LLMs to propose candidate programs, which are then
rigorously evaluated to identify high-quality solutions. The EoH framework [16] encodes heuristic
concepts as natural language "thoughts", which are then translated into executable code by LLM.
Additionally, it employs an evolutionary algorithm to iteratively refine and evolve the prompts.
However, to the best of our knowledge, no studies have yet combined LLM with optimization
formulations in the context of dynamic decision-making systems.

3 Methodology

3.1 Dynamic Hierarchical Optimization Problem

We propose a novel problem formulation for ride-hailing system (Appendix A.6) with a formal
analysis of the associated search space complexity (Appendix A.5), which jointly motivate the
decomposition of the original task into two tractable subproblems - involving sequential decisions
in task assignment and vehicle routing. These subproblems are integrated within a hierarchical
framework augmented by an LLM component.

First-level assignment problem As an assignment problem, our goal extends beyond merely
determining the next immediate passenger for an idle taxi. Instead, we formulate a comprehensive
assignment across an entire system snapshot, ensuring that each passenger is served and assigned to at
most one taxi. Omitting additional variables that capture taxi dynamics at the first level significantly
reduces problem complexity. However, traditional approaches employ handcrafted objectives (left
below), but these lack awareness of low-level routing dynamics may lead to suboptimal system
performance:

min J1st

s.t.
∑
v

ypv = 1

ypv ∈ {0, 1}



J
dist
1st =

∑
p,v

y
pv

(TROpSv + TRDpSv) (Distance)

J
time
1st =

∑
p,v

y
pv ∣∣Tp − tSv

∣∣ (Temporal)

J
util
1st =

∑
v

∑
p

y
pv

2

(Utilization)

LLM Refine
======⇒

min Φt = LLM(St, Ht−1)

s.t.
∑
v

ypv = 1

ypv ∈ {0, 1}

Notes: Op,Dp: Passenger p origin, destination points; Sv: Taxi v start position. TRij : Travel time i→ j; T p:
Passenger request time; tSv : Taxi v start time. ypv ∈ {0, 1}: Binary assignment variable.

These objective components can be linearly combined through weighted summation: J1st = αJdist
1st +

βJ time
1st + γJutil

1st, where fixed weights α, β, γ trade off distance (vehicle km), temporal alignment
(estimated waiting time) and utilization fairness. While this myopic approach lacks visibility into
low-level dynamics, our framework replaces handcrafted objectives with LLM-generated Φt =
LLM(St, Ht−1), where St encodes vehicle positions and pending requests, and Ht−1 captures
historical congestion and assignments. By embedding latent urban dynamics into MILP objectives,
the LLM bridges the gap between assignment and routing without explicit dynamic modeling.

Second-level sequencing problem After solving the first-level problem and assigning passengers
to each taxi, the second-level problem can be solved independently for each taxi, eliminating index v.
In the formulation below, Op and Dp represent the origin and destination of passenger p, while S and
E denote the taxi’s source and sink depots. t̃ is the estimated arrival time. The pickup service point
set P consists of {(p,Op)}, and the dropoff service point set D consists of {(p,Dp)}.
Constraints (1b)-(1d) initialize location and arrival time assignments, where xij is a binary variable
indicating link selection. ARi and DPi denote arrival time and depart time at position i. Constraints
(1e)-(1f) enforce flow conservation, ensuring equal incoming and outgoing links. Constraints (1g)-
(1m) define system dynamics: (1g)-(1h) establish taxi arrival times at dropoff points as the sum
of pickup departure times and travel durations, while (1j)-(1k) enforce the same for new pickups.

4

Departure times must not precede arrival times (1i), (1l), and must larger than or equal to passenger
request times (1m). The objective (1a) minimizes total passenger waiting time.

minimize J2nd =
∑
p

(DP(p,Op) − T p) (1a)

∑
i∈P

xS,i = 1 (1b)

ARS = t̃ (1c)∑
i∈P

xi,E = 1 (1d)∑
i∈P

xij =
∑
q∈P

xjq,∀j ∈ D (1e)

∑
j∈D

xji =
∑
k∈D

xik,∀i ∈ P (1f)

AR(p,Dp) ≤ DP(p,Op) + TROpDp

+M(1− x(p,Op),(p,Dp)) (1g)

AR(p,Dp) ≥ DP(p,Op) + TROpDp

−M(1− x(p,Op),(p,Dp)) (1h)

DP(p,Dp) ≥ AR(p,Dp) (1i)

AR(p′,Op′) ≤ DP(p,Dp) + TRDpOp′

+M(1− x(p,Dp),(p′,Op′)) (1j)

AR(p′,Op′) ≥ DP(p,Dp) + TRDpOp′

−M(1− x(p,Dp),(p′,Op′)) (1k)

DP(p′,Op′) ≥ AR(p′,Op′) (1l)

DP(p′,Op′) ≥ T p′
(1m)

3.2 LLM-Optimizer Interaction Protocol

3.2.1 Scenario prompt setup

The scenario prompt Psce equips the LLM with contextual knowledge regarding the problem, the
assigned role, and the specific task. The prompt structure is formalized through three nested layers:
Psce = Psys ⊕ Pgeo ⊕ Pmodel. (1) Psys defines the LLM’s role as an adaptive objective designer,
aligning outputs with solver-compatible templates; (2) Pgeo encodes geospatial semantics through
Manhattan / Chicago zone graphs and OD matrices; (3) Pmodel provides class blueprints to enable
variable-aware objective formulation. In contrast to Pdata, which merely specifies input formats or
argument types, Pmodel ensures LLM-generated objectives respect both class structure and solver
constraints. Further details are provided in Appendix A.9.1.

3.2.2 Dynamic environment feedback

Since each simulation run involves multiple decision-making steps, there are two approaches to
enabling inference with an LLM, as captured in Figure 2: (1) a one-time query at the beginning
of the test, where the generated objective remains fixed for all subsequent steps, or (2) queries at
each step of the test. These correspond to two inference strategies. From a control perspective,

Figure 2: Inference strategies in a single simulation run: (1) Open-loop control, where a one-time
query occurs at the beginning of the test. (2) Closed-loop control, where queries occur at each step of
the test.

the second approach, where multiple queries occur, incorporates real-time environment feedback
from the simulator, allowing the LLM to generate updated objectives dynamically. This forms a
closed-loop control system, which is generally more effective for adaptive decision making. Thus,
we adopt this approach in our inference strategy. To implement the closed-loop approach, the latest
environment state must be incorporated into the prompt, ensuring the LLM remains context-aware.
Specifically, we define the prompt text as follows.

5

Dynamic states streaming Pdyn: At time step t, the prompt context Pt
dyn = {(veht,passt)}, where

veht ∈ R|veh|×2 denotes vehicle state vector, such as positions and arrival time. passt ∈ R|pass|×3

denotes demand tensor, including origin-destination pairs and request time.

3.2.3 Evolutionary prompt optimization

To facilitate reasoning in the LLM through experiential learning, we iteratively optimize a population
of prompts using an evolutionary algorithm (EA). Departing from traditional EAs where individuals
are parameter vectors, each prompt here is treated as an evolving entity, with fitness evaluated
by simulation-based inference scores. Prompt evolution is guided by heuristics generated via the
harmony search (HS) algorithm, a method well-established in classical optimization.

Figure 3: Evolutionary mechanism of harmony
search algorithm

Harmony search algorithm HS emulates
the process of musical performance, aiming
to achieve an optimal state of harmony. As
depicted in Algorithm 1, its evolution is gov-
erned by two key parameters: harmony mem-
ory considering rate (HMCR) and pitch adjust-
ment rate (PAR). HMCR determines whether
the next iteration involves an exploration branch
(introducing new solutions) or an exploitation
branch (refining existing solutions). If exploita-
tion is selected, PAR facilitates local adjust-
ments with a certain probability, allowing fine-
tuned modifications. The prompt evolution pro-
cess is formalized through a population ma-
trix P ∈ RI×N×T where I,N, T denote itera-
tion times, population size and simulation steps.
Pi = [Y

(i)
1 , ..., Y

(i)
N], Y

(i)
k = [X

(i)
k , f

(i)
k], here X

(i)
k denotes the k-th individual at iteration i,

f
(i)
k is its fitness value, also, X(i)

k = [x
(i)
k (1), ..., x

(i)
k (T)]. The fitness landscape is defined as:

f(X) = Eτ∼D[R(E(X, τ))], where E represents the simulation environment andR the fitness cost
over trajectory τ . We adapt the HS algorithm through a probabilistic transition matrix:

Π =

{
Exploration if α > HMCR
Exploitation if α ≤ HMCR

(2)

where α ∼ U(0, 1). The exploitation phase incorporates dual refinement strategies: Wexploit =
λWheuristic + (1− λ)Winnovative with λ controlled by PAR.

As illustrated in Figure 3, varying the value of α and λ results in the selection of one of three distinct
prompt compositions. Each composition consists of four components: a scenario block Psce, a
dynamic constraint block Pdyn, an operator block defined in Table 1, and a format restriction block
Prestriction, with further implementation details provided in Appendix A.9.3.

Table 1: Three operators for LLM-driven objective generation. Equations and example prompts
illustrate the mechanisms of each operator.

Random Inference (W1) Heuristic Improvement (W2) Innovative Generation (W3)

If exploration is chosen, the LLM
generates a new objective
without historical knowledge.

The LLM generates an enhanced
prompt by refining heuristics
derived from the parent prompt.

The LLM formulates a novel
prompt, drawing inspiration from
the parent prompt.

Xnew = LLM(∅,Psce) Xnew = LLM(Xparent,Psce, I1) Xnew = LLM(Xparent,Psce, I2)

Example prompt:
"Please generate a new
objective for first-level
assignment model."

Example prompt:
"Develop an improved
objective function by
[instruction block1]."

Example prompt:
"Reinvent the objective
function from the
previous run by
[instruction block2]."

6

Our three evolutionary operators are listed in Table 1. The instruction blocks “[instruction block1]”
and “[instruction block2]” contain specific directives assigned to their respective operators, generated
by DeepSeek-R1 [37][38]. A detailed explanation is provided in Appendix A.9.2.

Algorithm 1 Generate New Individual
Require: HMCR, PAR, Simulation steps t ∈ T ,

Population size N , Population P0 =
{(X1, fitness1), ..., (XN , fitnessN)}

Ensure: NewIndt for t ∈ T
1: for step t = 1 to T do
2: if rand1() > HMCR then
3: NewIndt ← {W1}
4: else
5: (Xi, fitnessi)← INDIVIDUALSELECT(P)
6: X̃i ← TOKENSELECT(Xi)
7: λ ∼ Bernoulli(PAR)

8: NewIndt ← λW2(X̃i, fi)+

(1− λ)W3(X̃i, fi)
9: end if

10: end for

Multiple queries are issued at different time
steps throughout a complete simulation run,
thus, the operator categories at different
time steps are selected collectively in Al-
gorithm 1. At this stage, only the parent
prompt (Xi, fitnessi) and operator cate-
gory are chosen, while additional compo-
nents, such as the scenario block, dynamic
block, and format block, are incorporated
to construct a complete prompt when the
simulation step is executed. A detailed full
loop algorithm of this process is provided
in Appendix A.4. In Algorithm 1, function
INDIVIDUALSELECT is trying to select an
elite parent (individual with good fitness)
from the old population. Each individual
consists of three components: dynamic en-
vironment inputs spanning T time steps;

corresponding LLM response objectives, which also span T time steps; and the final fitness value
evaluated over a horizon of T . As the horizon T increases, the context length for each parent becomes
substantially larger. To mitigate the growing token size, the function TOKENSELECT is employed to
retain only the most critical components, specifically the objective part, which is then combined with
the fitness value to construct the final parent prompt.

4 Experiments

4.1 Experiment Settings

Dataset and baselines The 9 testing scenarios in Table 2 are constructed using the New York taxi
dataset [39]. We also test on Chicago taxi dataset [40], experiments and details are provided in Table
3 at Appendix 4.2. A comprehensive description of the scenario generation process is presented in
Appendix A.3. The details of all baseline methods are provided in Appendix A.2.

Evaluation metrics In the simulator, the waiting time for each passenger is computed, and the
mean waiting time is used as the evaluation metric, as presented in Tables 2 and 3. Accordingly,
methods employing two-level optimization frameworks should consider passenger waiting time as an
objective in the second-level sequencing problem. Similarly, in the RL approach, minimizing the
total time serves as the reward signal for model training. For LLM-based methods, the prompt is
provided to instruct the LLM to minimize passenger waiting time.

Implementation details In our experimental setup, we utilize the DeepSeek-R1-Distill-Qwen-32B
[41] model through the Hugging Face platform API as the default large language model for all LLM-
based methods, which allow us to evaluate the adaptability of our method on smaller LLMs, thereby
highlighting its potential applications. The temperature parameter is configured to 0.9. LLM-based
methods all executed 3 times for each scenario, and the mean value of these three runs is reported in
Tables 2 and 3. FunSearch is performed under 20 iterations. EOH and our method all employ 10
iterations with a population size of 5. All optimizer-based methods, either manual objectives or our
adaptive-objective method, optimization solver Gurobi [42] is adopted to solve the problem running
on a PC with 13th Gen Intel Core i9-13900KF × 32 CPU up to 5.80 GHz and RAM 32GB.

4.2 Experiment Comparison

Baseline comparisons on Manhattan taxi dataset Table 2 presents the experimental results on
Downtown Manhattan. Our method outperforms the best baseline (FunSearch) in 7 out of 9 scenarios,
excluding small-scale cases 1 and 3, and achieves an average improvement exceeding 14% for all

7

scenarios. In large-scale scenarios (8 and 9), it further reduces mean passenger delay by over 40%
compared to the strongest baseline (Full RL). Three key findings can be found:

• Manual objective limitations: While composite objective functions that integrate distance,
temporal, and utilization signals (Distance × Temporal × Utilization) outperform single-
objective variants (e.g., 5.77 min vs. 14.88 min in Scenario 3), their effectiveness deteriorates
under increased problem scale: Waiting times increase to 9.27 min in Scenario 9 (P200_-
C100_T1200), indicating limited scalability.

• RL-based and LLM-only methods: RL performs well in low-complexity settings (1.27 min
and 3.10 min in Scenario 1) but struggles with reward sparsity and exploration inefficiencies
in larger scenarios, especially the first RL method (10.35 min in Scenario 9). While LLM-
based EoH struggles with dynamic adaptation (10.27 min in Scenario 9), Funsearch’s
heuristics show better generalization (8.98 min). However, both approaches lack dynamic,
per-time-interval feedback and a low-level optimizer to enforce solution quality, resulting in
suboptimal performance compared to our hybrid method in large cases.

• Hybrid LLM+optimizer approach: By coupling LLM adaptability with optimizer precision,
our hybrid framework delivers consistent performance gains, particularly under high-demand,
long-horizon conditions (4.01 min in Scenario 9), achieving approximately 40% improve-
ment over Full RL (6.82 min). The performance gap widens with scale, highlighting the
importance of dynamic objective formulation and closed-loop LLM-optimizer interaction.

Our approach succeeds by combining LLM-driven semantic reasoning with solver-enforced mathemat-
ical rigor. LLM iteratively refines high-level objectives through prompt-based updates, overcoming
the rigidity of static objectives in traditional systems that lack low-level constraint awareness. Mean-
while, solvers ensure spatiotemporal feasibility and numerical precision at scale without relying
on large training datasets, as required in RL. This closed-loop mechanism, adapting objectives via
the LLM and enforcing feasibility via the solver, effectively balances exploration and tractability,
achieving state-of-the-art performance on mobility-on-demand benchmarks. Further analysis and
experiments on Chicago dataset are provided in Appendix A.1.1.

Table 2: Average passenger waiting time (minutes) across optimization methods and scenarios on
New York taxi dataset

Category Method Scenario

1 2 3 4 5 6 7 8 9

Manual Objectives

Distance† [2] 6.51 14.78 14.88 11.42 24.67 22.32 18.09 34.98 28.04
Distance × Utilization⋆ 5.02 7.38 7.94 6.96 9.07 9.89 7.06 9.24 11.59
Temporal‡ × Utilization⋆ [24] 10.09 8.81 9.93 9.74 11.48 15.23 10.97 13.26 18.99
Distance × Temporal × Utilization 3.32 4.99 5.77 4.37 6.06 6.72 5.19 7.07 9.27

RL Methods
Default∗ + RL-Seq⋄ [23] 3.10 4.37 4.90 4.92 6.63 6.59 7.48 7.51 10.35
Full RL [6] 1.27 2.35 3.98 2.42 3.80 4.83 3.20 4.78 6.82

LLM Methods
FunSearch [15] 0.77 1.74 1.55 5.29 2.95 5.43 5.78 5.79 10.27
EoH [16] 1.64 1.58 2.79 3.04 4.68 5.71 3.87 5.55 8.98

Hybrid (LLM+Optimizer) Ours 1.55 1.37 2.50 1.89 2.59 4.14 3.10 2.25 4.01

Distance: Travel time between vehicle start position and passenger pickup&dropoff location.
Temporal: Gap between the vehicle non-idle time and passenger request time.
Utilization: Taxi service efficiency (vehicles/request).
Default: Use default objective (Distance × Temporal × Utilization) in first-level assignment optimization.
RL-Seq: Reinforcement learning method is adopted to solve second-level sequencing problem.

Baseline comparisons on Chicago taxi dataset Due to the relatively larger spatial extent of
Chicago’s zones compared to Manhattan, combined with the highly imbalanced distribution of ride
requests (Appendix A.3 for details), the average origin-destination (OD) travel times in Chicago are
significantly longer. This increased travel distance contributes to overall higher passenger waiting
times across the scenarios in Table 3. Table 3 demonstrates our framework’s consistent superiority
on Chicago distribution conditions, reducing mean passenger waiting times by an average of 18%
in large-scale scenarios (e.g., 10.79 min vs. 14.35 min in Scenario 7, 14.51 min vs. 15.93 min in
Scenario 8, 15.37 min vs. 19.79 min in Scenario 9). Compared to the best baseline (FunSearch), our
method outperforms in 8 of 9 scenarios, with a marginal exception in small-scale case 3, and delivers
an average improvement exceeding 18% across all cases. Three critical insights can be found:

8

• Manual objective limitations: Composite objectives (Distance × Temporal × Utilization)
degrade severely under scale, with delays escalating to 25.01 min in Scenario 9 (vs. 15.37
min for our proposed approach). When the trip distribution is significantly imbalanced, as
shown in Appendix A.3, single-objective variants that optimize solely for travel distance
perform poorly under high-demand conditions, resulting in extreme delays (145.14 min in
Scenario 8).

• RL-based and LLM-only methods: Full RL outperforms Default+RL-Seq (20.03 min
vs. 24.63 min) but remains inferior to our proposed methods, with a gap of 4.66 min
compared to the best-performing approach (15.37 min). This underscores RL’s sensitivity
to reward design and training data coverage. LLM-only methods exhibit inconsistent
adaptation. Specifically, FunSearch outperforms EoH in smaller-scale scenarios (Scenarios
1–3), whereas EoH achieves better results in larger-scale settings (Scenarios 7–9). However,
both methods lack dynamic feedback mechanisms and a fine-grained optimization layer
to ensure solution quality, leading to inferior performance relative to our proposed hybrid
approach.

• Hybrid LLM+optimizer approach: Our framework delivers robust performance across all
scenarios, with several cases exhibiting substantial gains. For instance, in Scenario 4, our
method achieves an average delay of 8.40 min compared to 12.05 min with the Full RL;
in Scenario 7, 10.79 min vs. 14.35 min with the Full RL; and in Scenario 9, 15.37 min
compared to 19.79 min with EoH. These improvements, all exceeding 20%, underscore the
importance of closed-loop adaptation in dynamic and high-demand environments.

These results generalize the findings from the Manhattan dataset (Table 2), proving our method’s
adaptability to varying urban layouts and demand distributions. The advantage in large-scale scenarios
underscores the necessity of iterative LLM-optimizer interaction for real-world ride-hailing systems.

Table 3: Average passenger waiting time (minutes) across optimization methods and scenarios on
Chicago taxi dataset

Category Method Scenario

1 2 3 4 5 6 7 8 9

Manual Objectives

Distance† [2] 17.52 35.87 47.85 41.08 80.96 121.41 49.99 145.14 102.44
Distance × Utilization⋆ 11.60 15.34 18.35 15.70 18.50 22.77 19.07 22.74 30.38
Temporal‡ × Utilization⋆ [24] 17.07 18.15 16.90 17.33 19.74 23.96 18.51 22.09 26.96
Distance × Temporal × Utilization 9.54 13.79 18.19 11.81 16.71 20.74 17.21 20.68 25.01

RL Methods
Default∗ + RL-Seq⋄ [23] 10.94 10.87 15.37 19.27 18.68 21.57 24.02 24.86 24.63
Full RL [6] 10.83 13.43 15.40 12.05 14.43 16.50 14.35 15.93 20.03

LLM Methods
FunSearch [15] 9.03 10.70 10.87 21.70 12.82 15.35 18.29 17.42 21.74
EoH [16] 10.43 10.83 13.05 13.53 14.45 17.16 15.01 16.93 19.79

Hybrid (LLM+Optimizer) Ours 8.65 9.58 11.30 8.40 12.32 14.96 10.79 14.51 15.37

Distance: Travel time between vehicle start position and passenger pickup&dropoff location.
Temporal: Gap between the vehicle non-idle time and passenger request time.
Utilization: Taxi service efficiency (vehicles/request).
Default: use default objective (Distance × Temporal × Utilization) in first-level assignment optimization.
RL-Seq: reinforcement learning method is adopted to solve second-level sequencing problem.

4.3 Ablation Study

Table 4: Average waiting time (minutes) by prompt composition

Prompt Composition P50_C30_T300 P70_C60_T600 P100_C80_T900 P130_C80_T1200

Psys ∪ Pgeo ∪ Pdata 9.93 ± 0.00 5.86 ± 0.00 5.29 ± 0.00 6.46 ± 0.00
Psys ∪ Pgeo ∪ Pmodel 8.72 ± 0.91 2.86 ± 0.29 3.07 ± 0.89 4.54 ± 0.36
+Prestriction 8.16 ± 1.48 4.12 ± 0.83 2.59 ± 0.52 2.25 ± 0.05

Note: Mean ± standard deviation across runs. Bold: best per scenario
(P=Passengers, C=Taxis, T=Time(s)). Prompt variants: - Psys ∪ Pgeo ∪
Pdata: System+Geo+Data structure (Sec. 3.2.1). - Psys ∪ Pgeo ∪ Pmodel:
System+Geo+Model structure (Sec. 3.2.1). - +Prestriction denotes Psys ∪
Pgeo ∪Pmodel ∪Prestriction: System+Geo+Model+Gurobi-compatible constraints
(App. A.9.3). Pdata defines variable formats, Pmodel specifies full MILP struc-
ture.

Scenario prompt
composition In-
corporating Pmodel,
which encodes a
structural blueprint
of the optimization
model, significantly
reduces waiting times
(e.g., 2.86±0.29 min
for P70_C60_T600),
though variability
increases due to

9

LLM-generated function diversity. Further integrating Prestriction (Gurobi-compatible constraints)
achieves the lowest costs in three compositions (e.g., 2.25±0.05 min for P130_C80_T1200).

Table 4 compares the performance of three prompt compositions involving scenario block and format
block, with means and standard deviations computed over three runs (visualized in Figure 4). When
only basic system parameters and data specifications are provided, the model produces high passenger
waiting times (e.g., 9.93±0.00 min for P50_C30_T300) with zero standard deviation across runs.
This consistency is attributed to the generation of invalid objective functions, which are rejected
during Gurobi’s model verification; as a fallback, a static default objective is applied (see Table 6 in
the Appendix).

(a) Run 1 (b) Run 2 (c) Run 3

Figure 4: Average passenger waiting time (minutes) under different compositions and runs. Cases: A
(P50_C30_T300), B (P70_C60_T600), C (P100_C80_T900), and D (P130_C80_T1200). Blue line
(Psys ∪ Pgeo ∪ Pdata), orange line (Psys ∪ Pgeo ∪ Pmodel), green line (Psys ∪ Pgeo ∪ Pdata ∪ Prestriction).

Figure 4 illustrates the average passenger waiting time corresponding to Table 4. When problem
scale is small (Case A and Case B), Pmodel is enough, but as complexity increases, Prestriction becomes
essential. This aligns with Table 6, where larger scenarios exhibit higher error rates for compositions
lacking constraints (e.g., 36.7% errors in P130_C80_T1200 without Prestriction), necessitating explicit
formalization to stabilize LLM outputs. This underscores the necessity of structured task grounding
(model definitions) and constraint formalization for reliable LLM-driven optimization.

Table 5: Average passenger waiting time comparison:
open-loop vs. dynamic closed-loop query mechanisms

Query Mechanism Run1 Run2 Run3 Avg.

Single open-loop 4.62 4.62 4.62 4.62
Dynamic closed-loop 2.23 2.31 2.19 2.24

Note: Values in minutes. Bold entries highlight the
superior performance of the dynamic closed-loop mech-
anism.

Dynamic environment feedback impacts As
shown in Table 5, we perform experiments on
two query mechanisms - single time on first time
step and multiple times on each time step - at
scenario P130_C80_T1200, the final result of
each run at last iteration is provided. Clearly, the
dynamic multi-time query demonstrates superior
performance compared to the single-time query.
The dynamic approach benefits from frequent
interactions with the LLM, allowing it to acquire rich semantic information at each step. In contrast,
the single query only provides the LLM with the initial environment setup, limiting its ability to
propose an objective based on evolving information. This results in the generation of identical final
outcomes, highlighting the limited flexibility of the single-query approach. Further discussion of cost
reduction is provided in Figure 9 in Appendix A.1.1.

5 Conclusion
In this paper, to solve the dynamic dispatching problem in a ride-hailing system, we propose a hybrid
approach that combines LLM and optimizer in a dynamic hierarchical system, where LLM-generated
objective in the high-level model is served as guiding heuristics for the low-level routing optimizer.
High-level objectives are iteratively refined in a closed-loop evolutionary process, with performance
evaluated across simulation epochs. A harmony search algorithm adaptively explores the LLM
prompt space to improve objective quality over time. Experiments on Manhattan downtown and
Central Chicago taxi datasets demonstrate the effectiveness of our approach, achieving an average
16% improvement over state-of-the-art baselines. Additional results, future work, and supporting
materials are provided in Appendix A. The source code can be found in: https://github.com/
yizhangele/llm-guided-mod-optimization.

10

https://github.com/yizhangele/llm-guided-mod-optimization
https://github.com/yizhangele/llm-guided-mod-optimization

References
[1] Isaac Oyeyemi Olayode, Alessandro Severino, Frimpong Justice Alex, Elżbieta Macioszek, and

Lagouge Kwanda Tartibu. Systematic review on the evaluation of the effects of ride-hailing
services on public road transportation. Transportation research interdisciplinary perspectives,
22:100943, 2023.

[2] Andrea Simonetto, Julien Monteil, and Claudio Gambella. Real-time city-scale ridesharing
via linear assignment problems. Transportation Research Part C: Emerging Technologies,
101:208–232, 2019.

[3] Felix Weidinger, Szymon Albiński, and Nils Boysen. Matching supply and demand for free-
floating car sharing: On the value of optimization. European Journal of Operational Research,
308(3):1380–1395, 2023.

[4] Ming Zhou, Jiarui Jin, Weinan Zhang, Zhiwei Qin, Yan Jiao, Chenxi Wang, Guobin Wu, Yong
Yu, and Jieping Ye. Multi-agent reinforcement learning for order-dispatching via order-vehicle
distribution matching. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pages 2645–2653, 2019.

[5] Yang Liu, Fanyou Wu, Cheng Lyu, Shen Li, Jieping Ye, and Xiaobo Qu. Deep dispatching: A
deep reinforcement learning approach for vehicle dispatching on online ride-hailing platform.
Transportation Research Part E: Logistics and Transportation Review, 161:102694, 2022.

[6] Zhe Xu, Qianchuan Zhao, Jian Li, Hao Wang, Weinan Zhang, and Yong Yu. Large-scale
order dispatch in on-demand ride-hailing platforms: A learning and planning approach. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 905–913. ACM, 2018.

[7] Soheil Sadeghi Eshkevari, Xiaocheng Tang, Zhiwei Qin, Jinhan Mei, Cheng Zhang, Qianying
Meng, and Jia Xu. Reinforcement learning in the wild: Scalable RL dispatching algorithm
deployed in ridehailing marketplace. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 5033–5041, 2022.

[8] John Holler, Risto Vuorio, Zhiwei Qin, Xiaocheng Tang, Yan Jiao, Tiancheng Jin, Satinder Singh,
Chenxi Wang, and Jieping Ye. Deep reinforcement learning for multi-driver vehicle dispatching
and repositioning problem. In Proceedings of the 2019 IEEE International Conference on Data
Mining (ICDM), pages 1090–1095, 2019.

[9] Zhaodong Wang, Zhiwei (Tony) Qin, Xiaocheng Tang, Jieping Ye, and Hongtu Zhu. Deep rein-
forcement learning with knowledge transfer for online rides order dispatching. In Proceedings
of the 2018 IEEE International Conference on Data Mining (ICDM), pages 617–626, 2018.

[10] Xinlang Yue, Yiran Liu, Fangzhou Shi, Sihong Luo, Chen Zhong, Min Lu, and Zhe Xu. An end-
to-end reinforcement learning based approach for micro-view order-dispatching in ride-hailing.
In Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, pages 5054–5061, 2024.

[11] Heiko Hoppe, Tobias Enders, Quentin Cappart, and Maximilian Schiffer. Global rewards in
multi-agent deep reinforcement learning for autonomous mobility on demand systems. In
Alessandro Abate, Mark Cannon, Kostas Margellos, and Antonis Papachristodoulou, editors,
Proceedings of the 6th Annual Learning for Dynamics Control Conference, volume 242 of
Proceedings of Machine Learning Research, pages 260–272. PMLR, July 2024.

[12] Alexandre Wallar and Javier Alonso-Mora. Optimizing vehicle distributions and fleet sizes for
shared mobility-on-demand. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 3853–3859, 2018.

[13] Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application
to ride hailing. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2862–2877. SIAM, 2021.

11

[14] Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-consistency trade-
offs for the two-stage model. Advances in Neural Information Processing Systems, 35:14555–
14567, 2022.

[15] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from program
search with large language models. Nature, 625(7995):468–475, January 2024.

[16] Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and
Qingfu Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large
language model. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 32201–32223. PMLR, 21–27 Jul 2024.

[17] Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han,
Xiaojin Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet
complex operations research problems. In The twelfth international conference on learning
representations, 2023.

[18] Yang Liu, Fanyou Wu, Zhiyuan Liu, Kai Wang, Feiyue Wang, and Xiaoqian Qu. Can language
models be used for real-world urban-delivery route optimization? The Innovation, 4(6):100453,
2023.

[19] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

[20] Mahima Dubey, Vijay Kumar, Manjit Kaur, and Thanh-Phong Dao. A systematic review on
harmony search algorithm: theory, literature, and applications. Mathematical Problems in
Engineering, 2021(1):5594267, 2021.

[21] Feng Qin, Azlan Mohd Zain, and Kai-Qing Zhou. Harmony search algorithm and related
variants: A systematic review. Swarm and Evolutionary Computation, 74:101126, 2022.

[22] Minne Li, Zhiwei (Tony) Qin, Yan Jiao, Yaodong Yang, Jun Wang, Chenxi Wang, Guobin
Wu, and Jieping Ye. Efficient ridesharing order dispatching with mean field multi-agent
reinforcement learning. In Proceedings of The World Wide Web Conference (WWW), pages
983–994, 2019.

[23] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

[24] Federico Rossi, Rick Zhang, Yousef Hindy, and Marco Pavone. Routing autonomous vehi-
cles in congested transportation networks: Structural properties and coordination algorithms.
Autonomous Robots, 42:1427–1442, 2018.

[25] Tasnim Ahmed and Salimur Choudhury. Lm4opt: Unveiling the potential of large language
models in formulating mathematical optimization problems. INFOR: Information Systems and
Operational Research, 62(4):559–572, 2024.

[26] Segev Wasserkrug, Leonard Boussioux, Dick den Hertog, Farzaneh Mirzazadeh, Ilker Birbil,
Jannis Kurtz, and Donato Maragno. From large language models and optimization to decision
optimization copilot: A research manifesto. arXiv preprint arXiv:2402.16269, 2024.

[27] Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Scalable optimization
modeling with (mi)lp solvers and large language models. arXiv preprint arXiv:2402.10172,
2024. arXiv:2402.10172.

[28] Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages
1898–1908, 2024.

12

https://arxiv.org/abs/2402.10172

[29] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-
guage models are few-shot learners. In Advances in Neural Information Processing Systems
(NeurIPS), pages 1877–1901, 2020.

[30] Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language
models as evolutionary optimizers. In Proceedings of the 2024 IEEE Congress on Evolutionary
Computation (CEC), pages 1–8. IEEE, 2024.

[31] Shyam Sundar Kannan, Vishnunandan L. N. Venkatesh, and Byung-Cheol Min. Smart-llm:
Smart multi-agent robot task planning using large language models. In Proceedings of the 2024
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024.

[32] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe:
Multi-task vehicle routing solver with mixture-of-experts. arXiv preprint arXiv:2405.01029,
2024. https://arxiv.org/abs/2405.01029.

[33] Silin Meng. Llm-a*: Large language model enhanced incremental heuristic search on path
planning. Master’s thesis, University of California, Los Angeles, 2025.

[34] He Yu and Jing Liu. Deep insights into automated optimization with large language models and
evolutionary algorithms. arXiv preprint arXiv:2410.20848, 2024.

[35] Jin Huang, Xinyu Li, Liang Gao, Qihao Liu, and Yue Teng. Automatic programming via large
language models with population self-evolution for dynamic job shop scheduling problem.
arXiv preprint arXiv:2410.22657, 2024.

[36] Mahdi Mostajabdaveh, Timothy T. Yu, Samarendra Chandan Bindu Dash, Rindranirina Rama-
monjison, Jabo Serge Byusa, Giuseppe Carenini, Zirui Zhou, and Yong Zhang. Evaluating llm
reasoning in the operations research domain with orqa. arXiv preprint arXiv:2412.17874, 2024.
https://arxiv.org/abs/2412.17874.

[37] DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism. arXiv
preprint arXiv:2401.02954, 2024.

[38] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025.

[39] New York City Taxi and Limousine Commission. Tlc trip record data. https://www.nyc.
gov/site/tlc/about/tlc-trip-record-data.page.

[40] Chicago Data Portal. Taxi trips. https://data.cityofchicago.org/Transportation/
Taxi-Trips-2013-2023-/wrvz-psew/about_data.

[41] DeepSeek. Deepseek-r1-distill-qwen-32b. https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-32B, 2025.

[42] Gurobi Optimization, Incorporate. Gurobi optimizer reference manual. https://docs.
gurobi.com/projects/optimizer/en/current/index.html, 2025.

[43] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flöt-
teröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie
Wießner. Microscopic traffic simulation using sumo. https://elib.dlr.de/124092/,
https://sumo.dlr.de/docs/index.html, 2018.

[44] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[45] Alberto Bemporad and Manfred Morari. Control of systems integrating logic, dynamics, and
constraints. Automatica, 35(3):407–427, 1999.

13

https://arxiv.org/abs/2405.01029
https://arxiv.org/abs/2412.17874
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://data.cityofchicago.org/Transportation/Taxi-Trips-2013-2023-/wrvz-psew/about_data
https://data.cityofchicago.org/Transportation/Taxi-Trips-2013-2023-/wrvz-psew/about_data
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://docs.gurobi.com/projects/optimizer/en/current/index.html
https://docs.gurobi.com/projects/optimizer/en/current/index.html
https://elib.dlr.de/124092/
https://sumo.dlr.de/docs/index.html

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s core contributions
and scope. They clearly state the main methodological innovation: a hybrid framework that
integrates LLM with mathematical optimization for dynamic decision-making in ride-hailing
platforms. The abstract and introduction appropriately highlights the limitations of existing
RL and decomposed optimization methods. They also outlines key components such as the
training-free nature of the method, prompt-based high-level objective generation, and the
closed-loop refinement mechanism via harmony search. These contributions are thoroughly
developed in the main paper (Section 3.1 and Section 3.2 and Appendix Algorithm A.4) and
evaluated through experiments (Section 4, Appendix A.1.1) on real-world datasets (New
York and Chicago taxi data). The claims of performance improvements and semantic-guided
optimization are substantiated by the results, making the abstract and introduction a faithful
summary of the paper’s contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix A.1.2 discusses several limitations and outlines directions for future
work, reflecting a clear understanding of the boundaries of the current study. Specifically,
Appendix A.1.2 acknowledge the limitation of simulation fidelity, noting that the current
experiments do not incorporate fine-grained, real-world traffic dynamics such as congestion
patterns, signal timing, or road disruptions. To address this, we propose integrating micro-
scopic traffic simulators like SUMO to enable higher-fidelity evaluations under realistic
operational conditions.
Moreover, we recognize the static role of the LLM in the current framework: it is not
fine-tuned and adapts only through prompt-level feedback. Thus, we propose future en-
hancements involving reinforcement learning techniques to enable co-adaptation between
the LLM and the optimizer, treating the optimizer as a critic to fine-tune the LLM more
efficiently.
Finally, we identify the potential for quantum computing to overcome current limitations
in scalability and solution efficiency. We envision integrating quantum-enhanced solvers
into the framework to accelerate both data-driven reasoning (via LLM) and combinatorial
optimization, allowing tighter interaction and real-time deployment.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors

14

should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper includes a formal mixed-integer logic model formulation of the ride-
hailing problem, which is introduced and discussed in the Appendix A.6. The conversion
of logical constraints into equivalent mixed-integer linear constraints is also detailed, with
accompanying proofs provided in Appendix A.7 to ensure correctness. While the main
paper focuses on the hierarchical decomposition into high-level assignment and low-level
routing problems, as part of the LLM-guided optimization loop, it clearly states the modeling
assumptions and system-level structure. Additionally, the theoretical foundations behind the
modular decomposition and prompt-based refinement via harmony search are supported by
formal modeling and complete derivations in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4.1 presents the experimental setup, evaluation metrics, and imple-
mentation details. The New York and Chicago taxi datasets used in the experiments are
described in Appendix A.3. Benchmark comparisons with baseline methods are provided in
Table 2 and Figure 5 for the New York dataset (main paper), and in Table 3 and Figure 6 for
the Chicago dataset.

15

Ablation studies are conducted to evaluate several key aspects of the system. The impact of
scenario prompt composition is analyzed in Table 4 and Figure 4. The effect of dynamic
environment feedback mechanisms is detailed in Table 5. Additional analyses presented
in the appendix include: cost variations over iterations for both multi-query and single-
query settings (Figure 9); an evolutionary hyperparameter study (Figures 10 and 11); an
investigation of LLM temperature sensitivity (Figure 12); and an analysis of LLM-induced
error rates (Table 6).
To preserve contribution integrity and ensure proper attribution, code is provided in
https://github.com/yizhangele/llm-guided-mod-optimization to support fu-
ture research.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our codebase is now publicly available, can be found in https://github.
com/yizhangele/llm-guided-mod-optimization.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

16

https://github.com/yizhangele/llm-guided-mod-optimization
https://github.com/yizhangele/llm-guided-mod-optimization
https://github.com/yizhangele/llm-guided-mod-optimization
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: While our work does not involve training machine learning models in the
traditional sense, it integrates a well-established pretrained LLM with a mathematical op-
timization framework. As such, there are no training/test data splits or model training
procedures to report. However, to ensure clarity of results, we provide: (1) Full implementa-
tion details for all components involved in our approach in Section 4.1 Implementation
details; (2) The New York and Chicago taxi datasets, along with the methodology for
generating the nine testing scenarios, are described in Appendix A.3; (3) To evolve prompt
heuristics for the LLM, we utilize the harmony search algorithm. Key hyperparameters of
this algorithm (e.g., HMCR and PAR) are analyzed via a sensitivity study presented in the
Figures 10 and 11 at Appendix A.1.1. These details collectively provide a complete picture
of the experiment setup required to understand the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our study does not involve training a data-driven model but instead evalu-
ates the performance and stability of a hybrid framework integrating LLM-based prompt
generation with optimization solvers. To demonstrate statistical significance and variability:
(1) We benchmark our method on two distinct real-world taxi datasets (New York and
Chicago), providing evidence of adaptability to divergent trip distributions.
(2) We evaluate the impact of prompt composition on LLM inference stability. Specif-
ically, Table 4 reports average passenger waiting times across four scenarios and three
prompt variants, showing mean and standard deviation over 3 independent runs per setting.
These error bars reflect variation in LLM outputs due to prompt randomness and inherent
nondeterminism.
(3) We study LLM output validity through an error rate analysis (Table 6 in Appendix
A.1.1), showing acceptance rates of LLM-generated objectives by the Gurobi solver across
prompt types and scenarios. Each configuration is evaluated over three independent runs,
and average error rates are reported.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

All reported statistics clarify the source of variability (LLM generation stochasticity) and
the method used (empirical evaluation over multiple independent runs). Standard deviations
are explicitly provided, and tables/figures are cross-referenced in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient details regarding the computational resources
used in Section 4.1. Specifically, all optimizer-based methods were executed on a local
machine equipped with a 13th Gen Intel Core i9-13900KF CPU (32 cores, up to 5.80 GHz)
and 32 GB RAM. For LLM-based methods, the DeepSeek-R1-Distill-Qwen-32B model was
accessed via the Hugging Face platform API, and relevant configuration parameters (e.g.,
temperature = 0.9) were reported. Each LLM-based method was executed three times per
scenario, and the average results are presented. However, since these methods rely on third-
party API calls, the end-to-end runtime is influenced by network latency and server load
on the Hugging Face platform, making it difficult to precisely report wall-clock execution
times. Nonetheless, the number of iterations, population size, and evaluation protocol are
clearly stated, ensuring reproducibility of the experimental procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

18

https://neurips.cc/public/EthicsGuidelines

Justification: The research focuses on algorithmic development and evaluation using es-
tablished optimization benchmarks. It does not involve human participants or engage with
applications that raise evident ethical concerns. Based on this, we affirm that the work
complies fully with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper emphasizes technical contributions and does not explicitly address
broader societal impacts. Although the application domains (such as transportation systems)
suggest potential positive societal benefits, these are not specifically articulated. Likewise,
possible negative societal consequences are not discussed in the manuscript.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper introduces a novel framework combining LLM with optimization
techniques. The optimization model, its integration with LLM and the standard benchmark
datasets employed do not present a high risk of misuse. As such, no additional release
safeguards beyond standard open-source practices are deemed necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.

19

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper appropriately cites and credits all external assets, including baseline
methods (e.g., Default + RL-Seq, FullRL, FunSearch, EoH) and datasets (New York taxi,
Chicago taxi). Details are as follows:

• Default + RL-Seq: This method employs deep reinforcement learning for low-level
sequencing. We have cited the relevant publication in our manuscript and utilized a
publicly available implementation from GitHub. Although the repository does not
explicitly specify a license, we have reached out to the repository’s author to clarify the
terms of use.
https://github.com/higgsfield/np-hard-deep-reinforcement-learning/
tree/master

• FullRL: This method applies reinforcement learning to solve the entire problem. The
implementation is publicly accessible on GitHub. Although the repository does not
specify a license, we have cited the associated publication in our manuscript and
have contacted the author of Github repository to clarify usage permissions. We have
received confirmation via email that our use of their code is permitted.
https://github.com/callmespring/MDPOD/tree/main.

• EoH: The code is openly available on GitHub under the MIT license.
https://github.com/FeiLiu36/EoH/blob/main/LICENSE

• FunSearch: We adopt the FunSearch implementation from the EoH baseline methods,
which is publicly available and released under the Apache 2.0 license.
https://github.com/FeiLiu36/EoH/blob/main/baseline/funsearch/
LICENSE

• New York Taxi Dataset: This dataset is publicly available and maintained by the
NYC Taxi and Limousine Commission. It is accessible via the NYC open data portal
and is provided under the NYC Open Data Terms of Use, which generally allow use,
modification, and redistribution for both commercial and non-commercial purposes,
with attribution.
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://opendata.cityofnewyork.us/overview/#termsofuse

• Chicago Taxi Dataset: This dataset is publicly available via the city of Chicago data
portal. While no specific license is listed, it is intended for public access and use. The
city’s data disclaimer outlines general terms that typically allow use, modification, and
redistribution with appropriate attribution.
https://data.cityofchicago.org/Transportation/
Taxi-Trips-2013-2023-/wrvz-psew/about_data
https://www.chicago.gov/city/en/narr/foia/data_disclaimer.html

• DeepSeek-R1-Distill-Qwen-32B: We utilize this publicly available large language
model via the Hugging Face platform API for prompt optimization and LLM-based
decision making. The model is released under the MIT License. DeepSeek-R1-Distill-
Qwen-32B is derived from the Qwen-2.5 series (originally licensed under the Apache
2.0 License) and further fine-tuned on 800k curated samples by DeepSeek-R1. We cite
the official model repository in our manuscript and adhere to all licensing terms.
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

20

https://github.com/higgsfield/np-hard-deep-reinforcement-learning/tree/master
https://github.com/higgsfield/np-hard-deep-reinforcement-learning/tree/master
https://github.com/callmespring/MDPOD/tree/main
https://github.com/FeiLiu36/EoH/blob/main/LICENSE
https://github.com/FeiLiu36/EoH/blob/main/baseline/funsearch/LICENSE
https://github.com/FeiLiu36/EoH/blob/main/baseline/funsearch/LICENSE
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://opendata.cityofnewyork.us/overview/#termsofuse
https://data.cityofchicago.org/Transportation/Taxi-Trips-2013-2023-/wrvz-psew/about_data
https://data.cityofchicago.org/Transportation/Taxi-Trips-2013-2023-/wrvz-psew/about_data
https://www.chicago.gov/city/en/narr/foia/data_disclaimer.html
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our codebase accompanied with comprehensive documentation is now avail-
able in https://github.com/yizhangele/llm-guided-mod-optimization.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

21

paperswithcode.com/datasets
https://github.com/yizhangele/llm-guided-mod-optimization

Answer: [NA]
Justification: The research does not involve human subjects, therefore IRB approval is not
applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The core contribution of our paper is the integration of LLM into an online
optimization framework for ride-hailing platforms. LLMs are not just used for writing or
formatting but play a central, original role in the methodology. Specifically, our proposed
framework employs LLM as a meta-optimizer that generate high-level semantic heuristics to
guide a lower-level mathematical optimizer responsible for real-time decision-making under
operational constraints. This approach addresses key limitations in traditional reinforcement
learning and decomposed optimization methods by removing the need for training data and
enabling adaptive objective formulation.
The usage of the LLM is described in detail in Section 3.2, where we introduce the hybrid
LLM+optimizer framework. The full closed-loop mechanism, including how prompts are
refined using evolutionary feedback, is further detailed in Algorithm A.4. We also discuss
our prompt engineering strategies in Appendix A.9. These components demonstrate a novel
and non-standard use of LLMs that directly impacts the originality, methodological rigor,
and performance of our system.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Technical Appendices

A.1 Discussion

A.1.1 Further studies

Figure 5: Zone-based Manhattan downtown map

Spatiotemporal analysis To il-
lustrate the spatial-temporal dis-
tribution of passenger waiting
times across different methods,
Figure 7 and Figure 8 present
the results for Scenario 9 (as de-
fined in Table 2 and Table 3) for
Downtown Manhattan and Cen-
tral Chicago, respectively, where
200 passenger requests are dis-
patched within a 1200-second
time window and served by 100
taxis. To facilitate spatial inter-
pretation of the study area, Fig-
ures 5 and 6 show the zone-based
maps of Downtown Manhattan
and extended Central Chicago,
respectively, with each study area partitioned into 19 predefined zones used as both origins and
destinations for passenger trips.

Figure 6: Zone-based Chicago extended central
map

Compared to the zoning structure of Manhattan,
Chicago’s zones, also referred to community
areas, are generally larger in spatial extent, es-
pecially outside the central business district. In
particular, OD trip patterns reveal a notable con-
trast between the two cities: while Manhattan
demonstrates a relatively balanced distribution
of taxi trips across its zones, Chicago’s taxi ac-
tivity is highly concentrated within a few central
areas, most prominently in zones 8, 32, and 28.
Further details on the OD distribution are pro-
vided in Appendix A.3.

Figures 7 and 8 illustrate the spatiotemporal
distribution of passenger waiting delays across
zones in Downtown Manhattan and Central
Chicago, respectively. Both figures correspond
to the high-demand Scenario 9, as defined in
Table 2 and Table 3. The passenger waiting de-

lay is computed as delayp = max(tpickp − treqp , 0), where tpickp denotes the vehicle pickup time
and treqp the passenger request time. Delays are aggregated into 600-second temporal bins (e.g.,
tpickp ∈ [600s, 1200s] maps to Slot 1) and 800-second temporal bins (e.g., tpickp ∈ [800s, 1600s]
maps to Slot 1) for Figures 7 and 8, respectively. Based on the aggregated bins, delays are spatially
averaged over a set of predefined geographic zones. This joint spatiotemporal aggregation captures
localized service inefficiencies while preserving the dynamics of demand–supply imbalance over time.
The heatmaps quantitatively validate our framework’s advantage: under identical input conditions,
our method completes all passenger pickups within 4 time slots (4×600 seconds for Figure 7, 4×800
seconds for Figure 8), whereas baseline methods require 5 to 7 time slots in the Manhattan setting
and 5 to 9 time slots in the Chicago setting to fulfill all requests. As time progresses, the delays of
unserved passengers accumulate, resulting in significantly higher average waiting times in the later
time slots. This effect is reflected in the heatmap as progressively intensified red shading in the final
temporal bins. As manual objective methods (Tables 2 and 3) often yield high passenger delays, only
their best-performing approach (Distance × Temporal × Utilization) is included in Figures 7 and 8
for comparison.

23

Figure 7: Spatial-temporal distribution of passenger waiting times across optimization methods in
Scenario 9 (P200_C100_T1200) under New York taxi dataset. Each row represents a method: (1)
Manual composite objective (Distance × Temporal × Utilization), (2) Default + RL-Seq, (3) Full
RL, (4) FunSearch, (5) EoH, (6) Our LLM-Optimizer approach. Columns show 600-second time
windows. Heatmap colors show average waiting times per zone.

In Figure 7, first approach (Row 1) exhibit persistent hotspots for Zones 144, 79 and 249, due to
static designed objective. RL methods (row 2-3) show temporal degradation, especially row 2, where
expanding high-delay regions in Slot 5 (3000–3600s) highlight RL’s limitations in enforcing hard
constraints (e.g., detour limits) and generalize to unseen demand patterns. LLM-based methods,
notably EoH, perform moderately better, completing all requests within 5 time slots. Although
FunSearch is the best overall baseline across scenarios, as it outperforms our method in Scenario 1
(0.77 min) and Scenario 3 (1.55 min) as shown in Table 2, its performance degrades significantly
under high-demand conditions, particularly in Scenario 9, captured in Figure 7. In contrast, our
proposed framework completes all requests within 4 time slots while maintaining spatially consistent
low delays (light yellows) through closed-loop LLM-optimizer interaction. This analysis quantifies
how our framework overcomes RL’s data dependency, the rigidity of manually decomposed objectives,
and the constraint unawareness of LLM-only methods. The heatmaps align with Scenario 9 results
in Table 2, proving that semantic reasoning (LLMs) and symbolic grounding (solvers) effectively
mitigate delay accumulation in large-scale urban mobility systems.

A similar pattern is observed in Figure 8. Unlike the results on the Manhattan dataset, the Chicago
scenario requires more time to complete all requests, primarily due to a more imbalanced trip
distribution and longer average travel times between origin-destination pairs. Specifically, the first
(Row 1) and second (Row 2) baseline approaches require 9 and 8 time slots to serve all passengers,
respectively. Full RL (Row 3) and EoH (Row 5) demonstrate improved performance, completing
the task in 5 time slots, while FunSearch (Row 4) shows moderate degradation with 6 time slots. In
contrast, the proposed method completes all requests within only 4 time slots, indicating enhanced
adaptability to complex urban topologies and demand heterogeneity. This highlights the effectiveness
of integrating LLM as a data-driven prior with mathematical optimization for robust and efficient
decision-making.

24

Figure 8: Spatial-temporal distribution of passenger waiting times across optimization methods in
Scenario 9 (P200_C100_T1200) under Chicago taxi dataset. Each row represents a method: (1)
Manual composite objective (Distance × Temporal × Utilization), (2) Default + RL-Seq, (3) Full
RL, (4) FunSearch, (5) EoH, (6) Our LLM-Optimizer approach. Columns show 800-second time
windows. Heatmap colors show average waiting times per zone.

Query comparison Figure 9 illustrates the cost changes under different iterations for multi-query
and single-query, corresponding to the scenarios described in Table 5. Across all runs, multi-query
achieves steeper convergence trajectories, reducing costs by an average of 50% (relative to single-
query) within 10 iterations, which aligns with Table 5. This results from the closed-loop interaction
between the LLM and the optimizer in the multi-query framework, in contrast to the open-loop
configuration of the single-query approach.

(a) Run1 (b) Run2 (c) Run3

Figure 9: Cost changes through iterations between multi-call and single-call approaches.

Evolutionary hyperparameter study As captured in Figure 10, a grid search is performed for
the hyperparameters HMCR and PAR in the harmony search algorithm for P100_C80_T900. The
HMCR values tested are 0.1, 0.5, and 0.9, while PAR values tested are 0.2, 0.5, and 0.8. Figure 10a
and Figure 10b depict the best individual cost in last iteration and the mean cost of entire population
in last iteration. The results demonstrate significant performance improvements under high HMCR
(HMCR = 0.9), suggesting effective exploitation of high-quality parent solutions from memory. This

25

(a) Min cost at last iteration (b) Mean cost at last iteration

Figure 10: Hyperparameter sensitivity analysis on HMCR and PAR - Cost at last iteration.

aligns with our hypothesis that preserving promising solution components through frequent memory
recall (via operator W2 and W3) substantially enhances convergence properties. On the other hand,
while lower PAR value (0.2) yield optimal results at HMCR = 0.9, this relationship no longer exists
for HMCR ≤ 0.5. Consequently, operator selection frequency between W2 and W3 appears governed
more by solution quality feedback than fixed parameterization. A similar pattern in cost reduction is
observed in Figure 11a, 11b and 11c, with a significant decrease in cost when HMCR is high.

(a) PAR is 0.2 (b) PAR is 0.5 (c) PAR is 0.8

Figure 11: Hyperparameter sensitivity analysis on HMCR and PAR - Costs at various iterations.

LLM temperature study We evaluate the impact of LLM temperature (τ ∈ {0.1, 0.5, 0.9, 1.3})
on optimization efficiency across three scenarios, as captured in Figure 12. The contour plots
depict cost landscapes over 10 iterations and 4 temperatures, revealing that extreme temperatures
(τ = 0.1 and τ = 1.3) consistently lead to higher overall costs, whereas τ = 0.9 yields the
lowest values, indicating more effective optimization. Across all settings, convergence occurs
rapidly, with trajectories stabilizing within 2–3 iterations. When τ = 1.3, high stochasticity disrupts
objective function coherence, generating infeasible or unstable formulations. While τ = 0.1 overly
constrains diversity, causing premature convergence to suboptimal basins. The intermediate setting
of τ = 0.9 strikes an effective balance between exploitation (leveraging high-likelihood tokens for
constraint adherence) and exploration (sampling novel objective structures). These findings highlight
temperature as a critical hyperparameter for regulating LLM-optimizer symbiosis.

Error rate study As discussed in experiment 4.3, Table 6 quantifies the failure rates of LLM-
generated objective functions across four scenarios and three prompt compositions, measured at
the last iteration (10th iteration). For each scenario, LLM queries scale with time window duration:
P50_C30_T300 (1 query per individual, 5 total responses for entire popsize) to P130_C80_T1200 (4
queries per individual, 20 total responses). Error rates are computed as # invalid objectives

total responses .

When only Psys ∪ Pgeo ∪ Pdata are provided, error rates reach 100% in all scenarios, as inadequate
prompts yield semantically invalid formulations. Replacing Pdata with Pmodel reduces errors to 20%
(P50) and 36.7% (P130), demonstrating the necessity of task grounding via structural priors. Further

26

(a) P50_C30_T300 (b) P70_C60_T600 (c) P100_C80_T900

Figure 12: Cost landscape across temperature settings and iterations.

incorporation of Prestriction minimizes errors to 0.0% in smaller scenarios (P50–P100) and 8.3% in
P130, highlighting the role of constraint formalization. This indicates the critical role of progressive
prompt enrichment, via model structuring and constraint formalization, in ensuring feasible and
valid outputs from LLM-driven optimization pipelines. Additionally, for the latter two prompt
compositions, error rates exhibit an upward trend with increasing scenario complexity (rising from
20.0% in P50 to 36.7% in P130 for Pmodel, 0.0% in P50 to 8.3% in P130 for Prestriction), reflecting the
escalating fragility of LLM-generated objectives in high-dimensional spaces.

Table 6: Error rate analysis of LLM-generated solutions across prompt compositions
Scenario Prompt Composition Run1 Run2 Run3 Avg.

P50_C30_T300
Psys ∪ Pgeo ∪ Pdata 100% 100% 100% 100.0%
Psys ∪ Pgeo ∪ Pmodel 0% 0% 60% 20.0%
+ Prestriction 0% 0% 0% 0.0%

P70_C60_T600
Psys ∪ Pgeo ∪ Pdata 90% 100% 100% 96.7%
Psys ∪ Pgeo ∪ Pmodel 0% 0% 0% 0.0%
+ Prestriction 0% 0% 0% 0.0%

P100_C80_T900
Psys ∪ Pgeo ∪ Pdata 100% 100% 100% 100.0%
Psys ∪ Pgeo ∪ Pmodel 13.3% 60% 26.7% 33.3%
+ Prestriction 0% 0% 0% 0.0%

P130_C80_T1200
Psys ∪ Pgeo ∪ Pdata 100% 100% 100% 100.0%
Psys ∪ Pgeo ∪ Pmodel 55% 25% 30% 36.7%
+ Prestriction 0% 15% 10% 8.3%

Note: Scenarios denote passenger counts (P), taxis (C), and time windows (T). Prompt components: system
(Psys), geometry (Pgeo), argument/variable format(Pdata), model blueprint (Pmodel), and constraints (Prestriction).
+Prestriction denotes Psys ∪ Pgeo ∪ Pmodel ∪ Prestriction.

A.1.2 Future work

Application layer scalability and simulation fidelity Our experiments demonstrate effective
optimization using a 32B-parameter LLM, suggesting smaller models can achieve comparable
performance when properly constrained to domain-specific reasoning. In the future, we will integrate
microscopic traffic simulators (e.g., SUMO [43]) to enable high-fidelity modeling of road network
dynamics, including congestion, signal timing, and stochastic travel times with spatial correlations.
This integration will support evaluation of our framework under realistic operational conditions,
accounting for transient disruptions (e.g., accidents, road closures) that require dynamic re-planning.

Reinforcement learning for LLM-Optimizer co-adaptation The current framework treats the
LLM as a fixed agent that iteratively adapts its objective-generation behavior through prompt-based
interactions, it does not modify the model’s internal parameters. However, the structure of our system,
where the LLM proposes objectives and an external optimizer evaluates them, mirrors the actor-critic
paradigm in reinforcement learning. This opens a promising direction: leveraging optimizer feedback
(e.g., fitness costs) to directly fine-tune the LLM, potentially enabling efficient training with smaller

27

models. By integrating the optimizer as a critic that evaluates the LLM’s proposed objectives, we can
move beyond prompt engineering and into a setting where the LLM is explicitly trained to generate
more effective objectives over time. Given previous success in using RL to effectively fine-tune LLMs
[44], such optimizer-guided fine-tuning could enable more sample-efficient and domain-adaptive
optimization pipelines, further bridging large language models and traditional solvers.

Quantum-enhanced hierarchical optimization The proposed framework leverages LLM and
classical optimization solvers in a hierarchical interaction to address sequential decision-making
problems, we envision that advances in quantum computing could significantly enhance this paradigm.
Although quantum computing is still in its early stages, it has shown strong potential in solving
combinatorial and discrete optimization problems more efficiently than classical computers. As
quantum hardware matures, it could accelerate both sides of the LLM-optimizer interaction, providing
faster inference for LLM-guided heuristics and more efficient solutions from quantum-enhanced
optimizers. This would enable tighter integration and more frequent interactions between the
reasoning and solving components, opening the door to real-time implementations of our framework
and its deployment in dynamic decision environments.

A.2 Baseline Methods

Manual-designed objectives: We construct a set of handcrafted objective baselines by combining
different dispatching priorities (e.g., Distance, Temporal, and Utilization) motivated by two prior
works: [2], which proposes a distance-based assignment in modeling (used as our Distance-only
baseline), and [24], which introduces MILP models incorporating temporal and utilization aspects
(reflected in our Temporal × Utilization baseline). Building on these, we also include two additional
combinations: Distance × Utilization, Distance × Temporal × Utilization. These rule-based objectives
form the manual objectives baselines used to evaluate performance across various dispatching
scenarios. The second-level routing adopts the optimization model from formulation 1.

Default + RL-Seq: As the name suggests, Default + RL-Seq uses the default objective
Distance×Temporal ×Utilization for first-level assignment. However, for second-level routing,
it utilizes the RL-based method proposed in [23] instead. More specifically, we trained a policy model
to stochastically predict the order to pick up passengers grouped together after first-level assignment
optimization, minimizing the total travel time. In our implementation, for both passengers and taxis,
we use travel times to and from all possible locations as their input features to the policy model. And
we use an architecture similar to [23] but disable glimpsing to enhance learning. During inference, a
search-based strategy is used to decide the final pickup order.

FullRL: FullRL is an implementation of an online order dispatch policy [6], where decisions are made
in a rolling horizon based on advantage function estimation Aπ(i, j) = γ∆tjV (s′ij)−V (si)+Rγ(j),
where γ is the discount factor, and ∆tj is the picking up time for the matched pair of driver i and
order j. The reward Rγ(j) is the reward for dispatching a driver i to order j. To sync with the
problem settings in this paper, we modify the reward to reflect the waiting time of order j instead of
using the default value of 1. Consequently, the objective shifts from maximizing the service rate (as in
the original paper) to minimizing total waiting times. The current state of a driver i is represented as
a two-dimensional vector (location and time). The value function of a driver’s current state negatively
impacts the advantage function (-V (si)). An action that assigns an order to a driver whose destination
is in a more valuable region results in higher advantages, denoted as V (S′

ij). Finally, dispatching
decisions at each timestamp are based on advantage function estimation.

FunSearch: FunSearch [15] utilizes LLM as well to produce methods for given problems. During
testing, we made several adjustments to adapt to our taxi-passenger assignment problem. More
specifically, expanding a generic prompt, we provided information on method input and output
formats and more clearly defined the optimization purpose. Furthermore, we also adjusted the
hyperparameters to encourage more explorations while searching for the final method. For each
scenario, we sampled 20 methods before reporting the final results.

EoH EoH [16] is a framework that combines LLM and evolutionary computation to automate heuristic
design. It utilizes five prompt-driven strategies and expresses heuristic ideas as natural language
’thoughts’. These thoughts are then converted by LLM into executable code, which helps improve and
refine the original heuristics. In our experiments, we evaluate EoH on the taxi-passenger assignment
problem using a constrained functional prompt. The goal is to minimize passenger waiting time while

28

ensuring balanced and efficient taxi utilization. We conduct evaluations across 9 scenarios, with 10
evolutionary iterations and a population size of 5.

A.3 Dataset Description and Testing Scenario Generation

We use the New York taxi trip data from January to June 2024, publicly available
from the NYC taxi and Limousine commission (https://www.nyc.gov/site/tlc/about/
tlc-trip-record-data.page), and Chicago taxi trip data from January to June 2023, publicly
available from Chicago data portal (https://data.cityofchicago.org/Transportation/
Taxi-Trips-2013-2023-/wrvz-psew/about_data), to generate realistic simulation scenarios.
For Manhattan, our analysis focuses on trips that originate and terminate within the downtown area.
For Chicago, we focus on central district including Loop community (zone 32) and 18 neighboring
communities. Rather than replaying historical trajectories, we extract key statistical properties from
the dataset and use them to generate randomized scenarios.

Figure 13a illustrates the average spatial distribution of taxi trips over the six-month period in
Downtown Manhattan area. Based on this distribution, we define peak hours as the time interval
from 12:00 a.m. to 10:00 p.m. We further compute the empirical frequency of each OD pair, shown
in Figure 13b. For each synthetic scenario, travel tasks are sampled according to the normalized
OD frequency distribution, thereby preserving realistic spatial and temporal patterns observed in the
real-world data.

In Figure 14a we show similar statistics of Chicago central district. The peaks hours in these areas
are defined as from 8:00 a.m. to 7:00 p.m. Also, notice that taxi trips are highly concentrated on
origin-destination pair (32, 8) and (32, 28), which is due to the fact that Loop (zone 32) is the central
business district of Chicago and Near North Side (zone 8) and Near West Side (zone 28) are two
regions next to Loop with large population.

(a) Manhattan downtown average task distribution

(b) Manhattan downtown travel time and frequency

Figure 13: Average task (passenger request) distribution and travel time and frequency statistics in
Manhattan downtown

We construct two sets of nine synthetic simulation scenarios, derived separately from the statistical
distributions of the New York TLC trip data and the Chicago taxi trip data. Each set consists of
scenarios that share identical configurations in terms of passenger demand, taxi fleet size, and request

29

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://data.cityofchicago.org/Transportation/Taxi-Trips-2013-2023-/wrvz-psew/about_data
https://data.cityofchicago.org/Transportation/Taxi-Trips-2013-2023-/wrvz-psew/about_data

(a) Chicago central district average task distribution

(b) Chicago central district travel time and frequency

Figure 14: Average task (passenger request) distribution and travel time and frequency statistics in
Chicago extended central district

time windows, but differ in spatial and temporal distribution characteristics specific to each city.
Each scenario is parameterized by the following variables: (1) Passenger volume (P): Ranging from
35 to 200 requests, reflecting varying demand intensities. (2) Taxi fleet size (C): From 60 to 100
vehicles, testing scalability under resource constraints. (3) Request time window (T): 600s (10min),
900s (15min), or 1200s (20min), is the time window for distributing passenger request. Scenarios
1-9 in Table 2 and Table 3 corresponds to P35_C60_T600, P65_C80_T600, P100_C100_T600,
P50_C60_T900, P100_C80_T900, P150_C100_T900, P70_C60_T1200, P130_C80_T1200, P200_-
C100_T1200. For example, P200_C100_T1200 denotes a simulation scenario with 200 passenger
requests occurring within a 20-minute time window, 100 available taxis in the system, and stochastic
request generation based on the origin-destination distribution. The scenarios incrementally stress-test
the system along these dimensions (Tables 2 and 3), avoiding historical replay while maintaining
fidelity to real-world trip dynamics.

A.4 Full Loop of Algorithm

The complete algorithmic process is outlined in Algorithm 2.

A.5 Search Space of Dynamic Systems

A dynamic system in real-time decision-making (e.g., ride-hailing dispatching) is characterized
by time-evolving states and sequential interdependent decisions. Unlike static OR problems (e.g.,
traveling salesman problem or bin packing), dynamic systems require continuous adaptation to
changing environments, leading to exponentially growing search spaces. The problem at time t can
be formulated as: St = {Vt,Pt, Ct,Dt}, where St is the system state at time t, is composed by the
vehicle set Vt (taxis with locations and status), the passenger set Pt (pending passenger requests with
pickup/dropoff locations in time windows), constraint set Ct (environment constraints) and historical
decision trajectories up to t - Dt.

At each decision step t, the dispatcher selects an action at ∈ At, whereAt represents the action space
(e.g., assigning taxis to requests and visiting order of each taxi). The system transitions to a new state

30

Algorithm 2 LLM-Optimizer Interaction Protocol

Require: Population size N , Control interval ∆t, Scenario Information U
Ensure: Evolved population of prompts and optimized dispatch strategies

1: Initialize population P with N individuals
2: for generation = 1 to max_generations do
3: for round i = 1 to Popsize N do ▷ Can trigger concurrently
4: parent response, evolution way list = GETNEWINDIVIDUAL(P) ▷ Current population
5: Initialize simulator with environment data E0
6: for step t = 1 to T do ▷ Inner simulation loop
7: Et ← GETSIMULATORSTATE() ▷ Current vehicles, requests, etc.
8: if way [t] = "way1" then ▷ Random generation
9: prompt t ← GENERATERANDOMPROMPT()

10: else if way [t] = "way2" then ▷ Memory consideration
11: prompt t ← GENERATEREVISEDPROMPT(parent response)
12: else ▷ ("way3")
13: prompt t ← GENERATEINNOVATEDPROMPT(parent response)
14: end if
15: prompt t ← prompt t + INJECTCONTEXT(U , Et) ▷ Add scenario and env data
16: responset ← QUERYLLM(prompt t) ▷ Call API
17: objective ← PARSERESPONSE(responset) ▷ Extract MILP objective
18: Solve first-level assignment MILP:
19: min objective
20: y∗ ← GUROBISOLVE(assign_model)
21: Solve second-level sequencing MILP: ▷ Can trigger concurrently for different taxis
22: min

∑
p
max(0, τ pickup

p − τ req
p)

23: x∗, τ∗ ← GUROBISOLVE(sequence_model)
24: Et+1 ← UPDATESIMULATOR(x∗, τ∗,∆t) ▷ Evolve ∆t seconds
25: end for
26: fitnessi ← COMPUTEFITNESS(E1, . . . , ET) ▷ Total system cost
27: Pnew ← Pnew + Pi ▷ Pi = (Et, objectivet, fitness)i for t ∈ T
28: end for
29: P ← SORTPOPULATION(P,Pnew) ▷ Sort combined population and reserve the top N
30: end for

St+1 based on the action at is governed by: St+1 = f(St, at). The search space S for a dynamic

system is the union of all possible state-action sequences over a finite horizon T : S =
T⋃

t=0
{(St, at)}.

The action space At at each step grows combinatorially with the number of vehicles |Vt| and the
number of passenger requests |Pt|.

• For the assignment between passengers and taxis at each step, its space can be O(|V||P|).

• Assume K requests assigned to each taxi, the number of valid sequences is K!, with |V|
taxis, we can have O((K!)|V|).

• Given T steps, the total search space grows as O((|V||P|K!|V|)T).

This results in an extremely larger search space compared to traditional one-time OR problems,
making it hard for direct resolution by LLM. While LLM continues to evolve, and current limitations
may not persist in future iterations, the complexity of the search space necessitates a hybrid approach
that integrates traditional optimization methods with LLM in a hierarchical framework. Therefore,
we partition the problem into two levels:

LLM-driven objective design in high-level assignment model LLM acts as meta-optimizer, dy-
namically proposing adaptive objectives to guide decision-making. The generated adaptive objective
functions Φh

t encoding high-level goals, with current states St and historical information Ht−1 as
inputs:

31

minΦh
t = LLM(St, Ht−1)

s.t.
∑
v

ypv = 1, ypv ∈ {0, 1}

On the one hand, the assignment layer’s variables ypv lack direct visibility into sequencing outcomes
(e.g., waiting times, route efficiency), on the other hand, a handcrafted objective (e.g., "minimize
assignment distance") is myopic, as it ignores downstream sequencing impacts. To address this limi-
tation, the LLM dynamically generates adaptive objectives ΦLLM

t that implicitly steer assignments
toward configurations favorable for low-level sequencing.

Low-level sequencing model Given a fixed assignment plan, each taxi shall solve a routing problem
to visit the assigned passenger one by one, aiming to minimize the total passenger waiting time:

minΦl
t(St, τt)

s.t. g(St, τt, a
l
t) ≤ 0

Where τt denotes the temporal variables (e.g., taxi arrival time), alt is the low-level action, namely,
routing variables.

A.6 Direct Modeling Approach

The complete taxi decision-making problem is formulated as a mixed-logic problem, where the
objective is to minimize the passenger waiting time, incorporating constraints such as initial car
and passenger location/time assignment, task connectivity constraint, vehicle travel dynamics and
passenger boarding dynamics. The network we considered is defined as a directed graph G = {S,L},
where S is the set of pick-up/dropoff stops in the network, with any stop i ∈ S. L is the route path
between any two stops. Multiple passengers (taxis) may share the same origins and/or destinations. we
utilize the service point sets P ({(p,Op)}, {(v, Sv)}, for origins) and D ({(p,Dp)}, {(v,Ev)}, for
destinations) to distinguish individual tasks while preserving both passenger geographical information.

Initial and final car location assignment Every time when a new planning occurs, the scheduler
needs to know the initial taxi location, whether it is in idle state or driving on the road at this moment,
we assume the time left for this taxi to arrive to its next immediate stop shall be known in advance,
as depicted in constraints (3a) and (3b), respectively. Also, the taxi shall finally go back to the sink
location after serving all assigned passengers, as captured in constraint (3c).∑

i∈P
xv
(v,Sv),i = 1 (3a)

ARv
(v,Sv)

= t̃v (3b)∑
i∈P

xv
i,(v,Ev) = 1 (3c)

where xv
ij indicates whether pick-up & dropoff pair ij is selected for taxi v. ARv

i is the arrival time
of car v for pick-up service i, where i ∈ P .

Passenger assignment constraints Each passenger can at most board on one car, as illustrated in
(4). ∑

v

ypv = 1 (4)

Also, whenever a taxi v is assigned to serve passenger p, it will firstly reach stop Op to pick up the
passenger, and subsequently proceed towards stop Dp to deliver the passenger to its destination.
Thus, the operating taxi v shall confirm the edge OD for the selected passenger p.

xv
(p,Op),(p,Dp) ≥ ypv (5)

32

Service connectivity constraints Whenever a group of services, each service incorporates a pick-
up point and a dropoff point, are assigned to the taxi, for any two services, the taxi must complete
one service before starting the next. In other words, if passengers p and p′ are both assigned to the
same taxi v, then either passenger p is served first or the passenger p′ is served first. This order is
reflected as a conservation law of typical Vehicle routing problem in current problem formulation, as
captured in constraint (6).

∀v ∈ V,∀i ∈ P,∀j ∈ D∑
i∈P

xv
ij =

∑
q∈P

xv
jq (6a)

∑
j∈D

xv
ji =

∑
k∈D

xv
ik (6b)

Also, each passenger must be served by one taxi, as illustrated in (4), accordingly, each pick-up or
dropoff service point can only be visited one time by any of the taxi, as described below:

∀v ∈ V,∀i ∈ P,∀j ∈ D∑
v

∑
i∈P

xv
ij = 1 (7a)∑

v

∑
j∈D

xv
ij = 1 (7b)

Arrival and departure time constraints If the route edge OD for passenger p is selected for taxi
v, then arrival time at dropoff point is equal to the sum of the pick up time at origin point and the OD
travel time. Also, departure time at dropoff point is larger than its arrival time.

xv
(p,Op),(p,Dp) = 1→

ARv
(p,Dp) = DP v

(p,Op) + TROpDp (8a)

DP v
(p,Dp) ≥ ARv

(p,Dp) (8b)

where DP v
j is departure time of car v for dropoff service j, where j ∈ D. A → B is a logic

constraint, indicating if A is true, then implies B.

Also, if passenger p′ is served immediately after passenger p for taxi v, then arrival time at pick-up
point for passenger p′ is equal to the sum of the departure time of passenger p at its dropoff point and
the edge travel time. Also, departure time at pick-up point shall equal to the maximum value between
the taxi arrival time and the passenger arrival/request time.

xv
(p,Ep),(p′,Op′)

= 1→

ARv
(p′,Op′)

= DP v
(p,Dp) + TRDpOp′ (9a)

DP v
(p′,Op′)

= max(ARv
(p′,Op′)

, T p′
) (9b)

Objective function The goal is to minimize the total passenger waiting time, as captured below:

J =
∑
p

∑
v

WT pv
(10)

where waiting time WT pv is obtained from constraints below, only if passenger p is assigned to taxi
v, corresponding waiting time WT pv shall exist, otherwise, should be 0:

ypv = 1→WT pv = DP v
(p,Op) − T p (11a)

ypv = 0→WT pv = 0 (11b)

While alternative objectives, such as platform profit or driver earnings, can be incorporated to account
for broader stakeholder impacts, this work does not aim to design a comprehensive or multi-faceted
objective. Instead, it focuses on the interaction between the LLM and the optimizer, demonstrating
how high-level goals specified via natural language can evolve into low-level objectives that guide
decision-making. Extensions to other objectives are straightforward and left for future work.

33

The proposed models above is formulated as a mixed logical model, incorporating both linear
constraints and logical constraints (8) (9), and (11). These logical constraints can be equivalently
transformed into linear constraints using the big-M method [45], with detailed formulations provided
in Appendix A.7. Although the problem can be reformulated as a MILP model and solved directly
using commercial solvers such as Gurobi to obtain optimal results, its large scale presents significant
computational challenges. For instance, in a taxi-hailing system, each time can trigger a scenario with
80 taxis and 50 passenger requests, the decision variables xv

ij alone result in 200,000 (80*50*50)
variables in MILP. Given the short decision-making intervals required in real-time operations, solving
such a large-scale MILP optimally within the available time frame is impractical. Therefore, the
problem is typically formulated as a sequential approach: first, solving an assignment problem to
allocate a subset of passengers to a group of taxi drivers, followed by solving a traveling salesman
problem with additional time constraints for each taxi independently in parallel.

A.7 Logic Constraints Conversion

In Section A.6, the problem has been formulated as a mixed logical dynamic model, which involves
logic constraints, e.g.,arrival and departure time constraints (8), (9), and waiting time constraints (11).
All these logic constraints can be converted to linear constraints via big-M method as follows.

Proposition 1 Replacing logic constraints (8) with Inequalities (12) in the model leads to the same
solution.

Proof: Let M1 be sufficiently large, and satisfies M1 ≥ max{±(ARv
(p,Dp) − DP v

(p,Op) −
TR(Op,Dp)),±(ARv

(p,Dp) −DP v
(p,Dp))} for v ∈ V, p ∈ P}, then constraint (8) can be rewritten as:

∀v ∈ V, p ∈ P

ARv
(p,Dp) −DP v

(p,Op) − TR(Op,Dp) ≤M1(1− xv
(p,Op)(p,Dp)) (12a)

−ARv
(p,Dp) +DP v

(p,Op) + TR(Op,Dp) ≤M1(1− xv
(p,Op)(p,Dp)) (12b)

ARv
(p,Dp) −DP v

(p,Dp) ≤M1(1− xv
(p,Op)(p,Dp)) (12c)

−ARv
(p,Dp) +DP v

(p,Dp) ≤M1(1− xv
(p,Op)(p,Dp)) (12d)

Proposition 2 Replacing logic constraints (9) with Inequalities (13) in the model leads to the same
solution.

Proof: Let M2 be sufficiently large, and satisfies M2 ≥ max{±(ARv
(p′,Op′)

− DP v
(p,Dp) −

TR(Dp,Op′)), ARv
(p′,Op′)

− DP v
(p′,Dp′)

, T p′ − DP v
(p′,Dp′)

} for v ∈ V, p ∈ P}, then constraint
(8) can be rewritten as:

∀v ∈ V, p ∈ P

ARv
(p′,Op′)

−DP v
(p,Dp) − TR(Dp,Op′) ≤M2(1− xv

(p,Ep)(p′,Dp′)
) (13a)

−ARv
(p′,Op′)

+DP v
(p,Dp) + TR(Dp,Op′) ≤M2(1− xv

(p,Ep)(p′,Dp′)
) (13b)

DP v
(p′,Dp′)

−ARv
(p′,Op′)

≥ −M2(1− xv
(p,Ep)(p′,Dp′)

) (13c)

DP v
(p′,Dp′)

− T p′
≥ −M2(1− xv

(p,Ep)(p′,Dp′)
) (13d)

Proposition 3 Replacing logic constraints (11) with Inequalities (14) in the model leads to the same
solution.

Proof: Let M3 be sufficiently large, and satisfies M3 ≥ max{±(WT pv − DP v
(p,Op) −

T p),±(WT pv)} for v ∈ V, p ∈ P}, then constraint (11) can be rewritten as:
∀v ∈ V, p ∈ P

WT pv −DP v
(p,Op) − T p ≤M3(1− ypv) (14a)

−WT pv +DP v
(p,Op) + T p ≤M3(1− ypv) (14b)

WT pv ≤M3y
pv (14c)

WT pv ≥ −M3y
pv (14d)

34

A.8 Dynamic Simulator Environment Setup

In the simulator, the state of the traffic network at time instant k is simplified as y(k) =
{di(k), tarr

i (k), i ∈ I}, where i is the index of the taxi, I is the set of all taxis, di(k) is the lo-
cation the i-th taxi at time instant k is travelling to, and tarr

i (k) is the time of the i-th taxi arriving that
location. The following conventions are made for state and task update in the simulation:

1): the task being executed will not be reassigned.

2): if taxi has no task assigned, it will stay at destination of the last task.

The command issued from optimizer is a set of task sequences for each taxi in the traffic sys-
tem. Each task has four parameters: origin o, destination d, passenger arrival time tstart, taxi
departure time tdep. We denote the command for the i-th taxi from the optimizer at time instant
k as uopt

i (k) and the command being executed as ui(k). When the command from optimizer is
issued to taxis, the command ui(k) will be set as uopt

i (k). The command ui(k) is defined as
ui(k) = {taski,0(k), . . . , taski,Ni

(k)}, where taski,j(k) = (oi,j(k), di,j(k), t
arr
i,j(k), t

start
i,j (k), tdep

i,j (k))
collecting origin, destination, taxi arrival time, passenger arrival time and taxi departure time from
task origin, respectively. With system state y(k) and command u(k) = {ui(k), i ∈ I), the state is
updated as y(k + 1) = f(y(k), u(k), k) where f(·, ·, ·) is given as in Algorithm 3 for each k. When
receiving new computed uopt(k) = {uopt

i (k), i ∈ I}, the state and command shall be updated as in
4.

Algorithm 3 State Transition Model

1: Input: Current state y(k), commands u(k)
2: Output: Next state y(k + 1)
3: k ← k + 1
4: for each taxi i ∈ I do
5: if ui(k) ̸= ∅ then
6: (oc, dc, t

arr
c , tstart

c , tdep
c)← head(ui(k))

7: if k = tarr
i then

8: if di = oc then
9: Update destination: di ← dc

10: Update arrival time: tarr
i ← tdep

c + TRoc,dc

11: else
12: pop(ui(k))
13: if ui(k) ̸= ∅ then
14: (oc, dc, t

arr
c , tstart

c , tdep
c)← head(ui(k))

15: Move to next task: tarr
i ← max{k, tstart

c }+ TRdi,oc , di ← oc
16: end if
17: end if
18: end if
19: else
20: Mark taxi i as idle
21: end if
22: end for

Algorithm 4 Command Update Protocol

1: Input: Optimized commands uopt(k), current state y(k)
2: Output: Updated commands u(k + 1)
3: for each taxi i ∈ I do
4: if ui(k) = ∅ then
5: ui(k + 1)← uopt

i (k)
6: else
7: Merge commands: ui(k + 1)← append(ui(k), u

opt
i (k))

8: end if
9: end for

35

A.9 Prompt Engineering

In this section, we provide the details of prompt strategies used in our method.

A.9.1 Scenario prompt compositions

Figure 15 illustrates the scenario prompt structure introduced in section 3.2.1, where the scenario
prompt is composed by Psys, Pgeo and Pmodel, respectively.

Figure 15: Scenario prompt structure provided to LLM, including system architecture and role
defintion (left panel), geospatical content (upper right panel), first-layer model blueprint (lower right
panel)

System architecture & role definition (Psys) The system architecture and role definition establish
the LLM as an adaptive objective designer rather than an end-to-end solver.

System Architecture: We provide a brief overview of the system architecture, including the commu-
nication between the simulator and the dispatcher, the two-level decomposition of the dispatching
problem, namely,Massign : miny Lassign(y|θLLM) andMroute : minx Lroute(x|y∗).
Role Specification: Define the LLM’s role to constrain its outputs to objective function components
compatible with the Gurobi [42] solver API using template-based generation.

Geospatial context Pgeo As the problem is related to ride-hailing services, incorporating geospatial
context is essential. Therefore, we provide the testing environment details to the LLM. Utilizing
the publicly available New York or Chicago taxi dataset, our analysis focuses on 19 zones in either
Downtown Manhattan or extended Central Chicago. Static map data is represented as an OD
matrix WOD, encoding spatial semantics via the Manhattan zone graph G = (V, E ,WOD) where
WOD[i, j] = tij ∈ R+, ∀(vi, vj) ∈ E .

First-layer model blueprint Pmodel The first-level assignment model class structure is exposed to
guide LLM-compatible objective design. This class structure provides a framework for the LLM to
work within, ensuring that its output is consistent with the overall model design. By having access to
the class structure, the LLM can understand the relationships between different variables and design
an objective function that takes these relationships into account.

36

A.9.2 Harmony search prompt instruction

As discussed in section 3.2.3, our evolutionary operators employ structured instruction blocks to
guide LLM-based prompt optimization. Specific instructions are listed as follows:

Heuristic Improvement (W2) Instruction Block: Focuses on incremental objective refinement:

(a) Temporal alignment: Incorporate taxi-passenger arrival time coordination.

(b) Resource weighting: Adaptive taxi utilization coefficients

(c) Structural preservation: Maintain 50% legacy objective components.

Innovative Generation (W3) Instruction Block: Promotes paradigm-level innovations:

(a) Emphasis on goals: design first-level decisions yv,p minimize expected second-level waiting:

min
∑
p∈P

E
[
max

(
DP (2nd)

p − tarr
p , 0

) ∣∣yv,p]
(b) Multi-horizon optimization: Joint current/future state consideration

(c) Dynamic weight adaptation: Time-varying priority coefficients

A.9.3 Gurobi format restriction

To ensure the objective function is compatible with Gurobi, additional constraints are introduced to
enhance its feasibility. Two types of restrictions are imposed: 1. Admissible Terms: These constraints
define the complete structure of the objective function, ensuring all components in the function
adhere to the class requirements. 2. Expression Construction Rules: Guidelines specifying the
valid operations and transformations permitted in Gurobi’s expression framework to maintain solver
compatibility.

Admissible components The generated objective functions must utilize only the following class
elements, which are also summarized in Table 7:

• Decision variables: Binary assignments: self.y[v,p] ∈ {0, 1}
• Static parameters:

Distance matrix: self.distMatrix[o][d]
Big-M constant: self.M

• Taxi state (read-only):
Current position: self.taxi[v].start_pos
Availability time: self.taxi[v].arrival_time

• Passenger state (read-only):
Origin/Destination: self.passenger[p].origin, self.passenger[p].destination
Request time: self.passenger[p].arrTime

Table 7: Model specification mapping
Concept Mathematical Form Code Implementation

Assignment variable yv,p self.y[v,p]
Travel time matrix TRo,d self.distMatrix
Taxi availability τ avail

v self.taxi[v].arrival_time
Passenger request time τ req

p self.passenger[p].arrTime
Weighted sum

∑
wici sum(w * c for w, c in zip(weights, costs))

37

Expression construction rules All objectives must adhere to:

1. Structural requirements:
Costs stored in list costs (1-5 elements)
Weights in list weights (length matching costs)
Final objective: sum(w*c for w,c in zip(weights, costs)

2. Gurobi expression rules:
• Use **gb.quicksum()/gb.max_()/gb.abs_()** only when containing variables
• Use **sum()/max()/abs()** when working with parameters
• Quadratic terms via variable multiplication (y[v,p]*y[v,q])
• Never multiply Gurobi variables with Gurobi expressions
- Invalid: y[v,p] * gb.max_(expression_with_vars, 0)

• Never use Python if/else with Gurobi variables/expressions

Generation protocol The following template is provided to LLM for valid objective construction:

def dynamic_obj_func(self):
cost1 = [Proper Gurobi expression]
cost2 = [Proper Gurobi expression]
Add more components as needed

Custom weights (match costs length)
weights = [

[Your custom weight 1],
[Your custom weight 2],
Add matching weights

]
objective = sum(w*c for w,c in zip(weights, costs))
self.model.setObjective(objective, gb.GRB.MINIMIZE)

A.9.4 LLM response examples

Figure 17 and Figure 18 illustrate four LLM response examples generated by the proposed method.
The first-layer model blueprint defines the default objective function, serving as a foundational
heuristic for the LLM, as captured in Figure 16. The listed four objective function variants capture
different optimization strategies:

Figure 16: Default objective code used in first-layer model blueprint

Weighted multi-objective with dynamic penalties As captured in left panel of Figure 17, unlike
the static weights in the default, this variant introduces dynamic penalties (e.g., time-scaled idle taxi
prioritization in cost2, future availability adjustments in cost5) and amplifies priority weights (e.g.,
80 for waiting time, 1000 for load imbalance). By dynamically scaling penalties based on real-time
conditions (e.g., taxi arrival vs. passenger request times), it adaptively balances short-term efficiency
and long-term fleet availability, addressing the default’s rigidity in handling time-dependent scenarios.

Quadratic load balancing with reassignment penalty While the default penalizes load imbalance
via cost4, this variant (shown in right panel Figure 17) explicitly enforces fairness through a squared
deviation from the average passenger-per-taxi ratio (load_balance). Furthermore, this variant incorpo-
rates a quadratic reassignment penalty (cost3) to minimize frequent taxi reassignments. This dual
focus effectively reduces reassignment churn and strengthens fairness, addressing the limitations of
the default model in enforcing balanced allocations.

38

Busy taxi penalty with load balancing Replacing the default’s simplistic waiting time penalty,
this variant (captured in left panel of Figure 18) directly penalizes assignments to busy taxis using
a > operator (cost4) to check if a taxi’s availability precedes the passenger’s request. This variant
incorporates the full trip duration into cost2, extending beyond the default model’s focus on pickup
times alone. Additionally, it maintains quadratic load balancing to distribute demand more effectively.
By considering both real-time availability and total trip effort, this approach prevents excessive
assignments to already occupied taxis, addressing a key limitation of the default model.

Sequential assignment with dropoff-pickup chaining Unlike the default’s isolated trip modeling,
this variant (captured in right panel of Figure 18) introduces a sequential chaining mechanism in
cost3, penalizing dropoff-to-pickup travel time between passengers (y[v, p] ∗ y[v, p_]). It also adds
bidirectional waiting time penalties (cost1 for taxi delay, cost5 for passenger earliness), whereas the
default only penalizes taxi delays. By optimizing trip sequences and accounting for both waiting
constraints, it enhances fleet utilization efficiency, which is an improvement over the default’s
single-trip optimization approach.

Figure 17: LLM response examples, including dynamic penalty variant (left panel) and quadratic
loading balancing variant (right panel)

39

Figure 18: LLM response examples, including busy taxi variant (left panel) and sequential assignment
variant (right panel)

40

	Introduction
	Related work
	Methodology
	Dynamic Hierarchical Optimization Problem
	LLM-Optimizer Interaction Protocol
	Scenario prompt setup
	Dynamic environment feedback
	Evolutionary prompt optimization

	Experiments
	Experiment Settings
	Experiment Comparison
	Ablation Study

	Conclusion
	Technical Appendices
	Discussion
	Further studies
	Future work

	Baseline Methods
	Dataset Description and Testing Scenario Generation
	Full Loop of Algorithm
	Search Space of Dynamic Systems
	Direct Modeling Approach
	Logic Constraints Conversion
	Dynamic Simulator Environment Setup
	Prompt Engineering
	Scenario prompt compositions
	Harmony search prompt instruction
	Gurobi format restriction
	LLM response examples

