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Abstract

Active learning has proven to be useful for minimizing labeling costs by
selecting the most informative samples. However, existing active learning
methods do not work well in realistic scenarios such as imbalance or rare classes,
out-of-distribution data in the unlabeled set, and redundancy. In this work, we
propose SIMILAR (Submodular Information Measures based actIve LeARning), a
unified active learning framework using recently proposed submodular information
measures (SIM) as acquisition functions. We argue that SIMILAR not only works in
standard active learning but also easily extends to the realistic settings considered
above and acts as a one-stop solution for active learning that is scalable to large
real-world datasets. Empirically, we show that SIMILAR significantly outperforms
existing active learning algorithms by as much as ≈ 5%− 18% in the case of rare
classes and ≈ 5%− 10% in the case of out-of-distribution data on several image
classification tasks like CIFAR-10, MNIST, and ImageNet. SIMILAR is available
as a part of the DISTIL toolkit: https://github.com/decile-team/distil.

1 Introduction

(a) Rare Classes (b) Redundancy (c) Out-of-distribution

Figure 1: Motivating scenarios for realistic active
learning: (a) rare classes: digits 5 and 8 are rare;
(b) redundancy: digits 0 and 1 are redundant; (c)
out-of-distribution (OOD): letters A, R, B, F in
digit classification.

Deep neural networks (DNNs) have had a lot of
success in a wide variety of domains. However,
they require large labeled datasets which are
often taxing, time-consuming, and expensive to
obtain. Active learning (AL) [12, 13, 39, 3, 9] is
a promising approach to solve this problem. It
aims to select the most informative data points
from an unlabeled dataset to be labeled in an
adaptive manner with a human in the loop. The
goal of AL is to achieve maximum accuracy of
the model while minimizing the number of data
points required to be labeled.

Current AL methods have been tested in rel-
atively simple, clean, and balanced datasets.
However, real-world datasets are not clean and
have a number of characteristics that makes
learning from them challenging [10, 46, 47, 38,
1, 8]. Firstly, these real-world datasets are im-
balanced, and some classes are very rare (e.g., Fig 1(a)). Examples of this imbalance are medical
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imaging domains where the cancerous images are rare. Secondly, real-world data has a lot of redun-
dancy (e.g., Fig 1(b)). This redundancy is more prominent in datasets that are created by sampling
frames from videos (e.g., footage from a car driving on a freeway or surveillance camera footage).
Thirdly, it is common to have out-of-distribution (OOD) (e.g., Fig 1(c)) data, where some part of the
unlabeled data is not of concern to the task at hand. Given the amount of unlabeled data, it is not
realistic to assume that these datasets can be cleaned manually; hence, it is the need of the hour to
have active learning methods that are robust to such scenarios. We show that current AL approaches
(including the state-of-the-art approach BADGE [3]) do not work well in the presence of the dataset
biases described above. In this work, we address the following question: Can a machine learning
model be trained using a single unified active learning framework that works for a broad spectrum of
realistic scenarios? As a solution, we propose SIMILAR1, a unified active learning framework which
enables active learning for many realistic scenarios like rare classes, out-of-distribution (OOD) data,
and redundancy.

1.1 Related Work

Active learning has enabled efficient training of complex deep neural networks by decreasing
labeling costs. The most commonly used approach is to select the most uncertain items. Examples
of uncertainty strategies include ENTROPY [41], LEAST CONFIDENCE [44], and MARGIN [37].
One challenge of this approach is that all the samples within a batch can be potentially similar
even though they are uncertain. To overcome this problem in batch active learning, many recent
works have attempted to select diverse yet informative data points. [45, 22] propose a simple
approach: Filter a set of points using uncertainty sampling and then select a diverse subset from
the filtered set. [40] propose CORESET, which forms core-sets using greedy k-center clustering while
maintaining the geometric arrangement. BADGE [3], another recent approach, proposes to select
data points corresponding to high-magnitude, diverse hypothesized gradients by using K-MEANS++
[2] initialization to distance from previously selected data points in the batch. Most existing AL
approaches fail to ensure diversity across AL selection rounds and do not perform as well when
there is a lot of redundancy. Sinha et al. [42] used a variational autoencoder (VAE) [25] to learn
a feature space and an adversarial network [32] to distinguish between labeled and unlabeled data
points. However, their approach is computationally expensive and requires extensive hyperparameter
tuning. Similarly, BATCHBALD [26] does not scale to larger batch sizes since their method would
need a large number of Monte Carlo dropout samples to obtain a significant mutual information.
Such limitations reduce the scope of applying these methods to realistic settings.

Closely related to our work are two recently proposed works. The first is GLISTER-ACTIVE [24],
which formulates the AL acquisition function by maximizing the log-likelihood on a held-out
validation set. This validation set could consist of examples from the rare classes or in-distribution
examples. The second approach is the work of Gudovskiy et al. [15], who study AL for biased datasets
using a self-supervised FISHER kernel and pseudo-label estimators. They address this problem by
explicitly minimizing the KL divergence between training and validation sets via maximizing the
FISHER kernel. Although their method shows promising results, they make multiple unrealistic
assumptions: a) They use a large labeled validation set, and b) they use feature representations from
a model pretrained using unsupervised learning on a balanced unlabeled dataset. In this work, we
compare against both GLISTER-ACTIVE [24] and FISHER [15] approaches in the more realistic
setting of a small held-out validation set (smaller than the seed labeled set) and an imbalanced
unlabeled set. Another work proposed a discrete optimization method for k-NN-type algorithms in
the domain shift setting [6]. However, their approach is limited to k-NNs.

This work utilizes submodular information measures (SIM) by [19] and their extensions by [23].
SIMs encompass submodular conditional mutual information (SCMI), which can then be used to
derive submodular mutual information (SMI); submodular conditional gain (SCG); and submodular
functions (SF). We discuss these functions in detail in Sec. 2. [23] also studies these functions on
the closely related problem of targeted data selection.

1.2 Our Contributions

The following are our main contributions: 1) Given the limitations of existing approaches in handling
active learning in the real world, we propose SIMILAR (Sec. 3), a unified active learning framework
that can serve as a comprehensive solution to multiple realistic scenarios. 2) We treat SIM as a
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common umbrella for realistic active learning and study the effect of different function instantiations
offered under SIM for various realistic scenarios. 3) SIMILAR not only handles standard active
learning but also extends to a wide range of settings which appear in the real world such as rare
classes, out-of-distribution (OOD) data, and datasets with a lot of redundancy. Finally, 4) we
empirically demonstrate the effectiveness of SMI-based measures for image classification (Sec. 4)
in a number of realistic data settings including imbalanced, out-of-distribution, and redundant data.
Specifically, in the case of imbalanced and OOD data, we show that SIMILAR achieves improvements
of more than 5 to 10% on several image classification datasets.

2 Background

In this section, we enumerate the different submodular functions that are covered under SIM and the
relationships between them.

Submodular Functions. We let U denote the unlabeled set of n data points U = {1, 2, 3, ..., n} and a
set function f : 2U −→ R. Formally, a function f is submodular [14] if for x ∈ U , f(A∪x)−f(A) ≥
f(B ∪ x)− f(B), ∀A ⊆ B ⊆ U and x /∈ B. For a set A ⊆ U , f(A) provides a real-valued score for
A. In the context of batch active learning, this is the score of an acquisition function f on batch A.
Submodularity is particularly appealing because it naturally occurs in real world applications [43, 4, 5,
20] and also admits a constant factor 1− 1

e [34] for cardinality constraint maximization. Additionally,
variants of the greedy algorithm maximize a submodular function in near-linear time [33].

Submodular Mutual Information (SMI). Given sets A,Q ⊆ U , the SMI [16, 19] is defined as
If (A;Q) = f(A) + f(Q) − f(A ∪ Q). Intuitively, SMI models the similarity between Q and A,
and maximizing SMI will select points similar to Q while being diverse. Q here is the query set.

Submodular Conditional Gain (SCG). Given sets A,P ⊆ U , the SCG f(A|P) is the gain in
function value by adding A to P . Thus, f(A|P) = f(A∪ P)− f(P) [19]. Intuitively, SCG models
how different A is from P , and maximizing SCG functions will select data points not similar to the
points in P while being diverse. We refer to P as the conditioning set.

Submodular Conditional Mutual Information (SCMI). Given sets A,Q,P ⊆ U , the SCMI is
defined as If (A;Q|P) = f(A∪P)+ f(Q∪P)− f(A∪Q∪P)− f(P). Intuitively, SCMI jointly
models the similarity between A and Q and their dissimilarity with P .

Function Setting Realistic Scenario
Submodular Q ← U ,P ← ∅ Standard AL
SMI Q ← Q,P ← ∅ Imbalance, OOD
SCG Q ← ∅,P ← P Redundancy
SCMI Q ← Q,P ← P OOD

Table 1: Relationship between SIM and their applica-
tions to realistic scenarios by choices of Q and P .

Relationship between SIM The rela-
tionship between the above measures is
the key component that unifies our AL
framework [19, 23]. The unification comes
from the rich modeling capacity of SCMI:
If (A;Q|P) where Q,P ⊆ U . This facili-
tates a single acquisition function that can
be applied to multiple scenarios. Concretely,
the submodular function f can be obtained
by setting Q ← U and P ← ∅. Next, the SMI can be obtained by setting Q ← Q and P ← ∅, while
we obtain SCG by setting Q ← ∅, P ← P . We summarize the relationships between SIM in Tab. 1.

Instantiations of SIM. The formulations for Facility Location (FL), Graph Cut (GC) and Log
Determinant (LOGDET) are as in [19, 23] and we adapt them as acquisition functions for batch active
learning. We use two variants for FL: FLQMI, which models pairwise similarities of only the query set
Q to the unlabeled dataset, and FLVMI, which additionally considers the pairwise similarities within
the unlabeled dataset U . The SCG and SCMI expressions corresponding to FL are referred as FLCG
and FLCMI, respectively (see row 1 in Tab. 2a and 2b). For LOGDET, we refer to the SMI, SCG and
SCMI expressions as LOGDETMI, LOGDETCG and LOGDETCMI, respectively (see row 5 in Tab. 2a
and row 2 in Tab. 2b). Similarly, the SMI and SCG expressions are respectively referred to as GCMI
and GCCG for GC (see row 3 in Tab. 2a and 2b). For notation in Tab. 2, the pairwise similarity matrix
S between items in sets A and B is denoted as SA,B. Also, we denote Sij as the (i, j) entry of S.

3 SIMILAR: Our Unified Active Learning Framework

In this section, we propose a unified active learning framework SIMILAR, which uses SIMs to address
the limitations of the current work (see Sec. 1.1). We show that SIMILAR can be effectively applied
to a broad range of realistic scenarios and thus acts as one-stop solution for AL.
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Table 2: Instantiations of SIM. Note how the relationships in Tab. 1 can be applied to SCMI
instantiations to obtain SMI and SCG instantiations.

(a) Instantiations of SMI functions.

SMI If (A;Q)
FLVMI

∑
i∈U

min(max
j∈A

Sij ,max
j∈Q

Sij)

FLQMI
∑
i∈Q

max
j∈A

Sij+
∑
i∈A

max
j∈Q

Sij

GCMI 2
∑
i∈A

∑
j∈Q

Sij

LOGDETMI log det(SA)− log det(SA−
SA,QS

−1
Q ST

A,Q)

(b) Instantiations of SCG and SCMI functions.

SCG f(A|P)
FLCG

∑
i∈U

max(max
j∈A

Sij−max
j∈P

Sij , 0)

LogDetCG log det(SA − SA,PS
−1
P ST

A,P)

GCCG f(A)− 2
∑

i∈A,j∈P
Sij

SCMI If (A;Q|P)
FLCMI

∑
i∈U

max(min(max
j∈A

Sij ,max
j∈Q

Sij)−max
j∈P

Sij , 0)

LogDetCMI log
det(I−S

−1
P SP,QS

−1
Q ST

P,Q)

det(I−S
−1
A∪PSA∪P,QS

−1
Q ST

A∪P,Q
)

The basic idea behind our framework is to exploit the relationship between the SIMs (Tab. 1) such
that it can be applied to any real-world dataset. Particularly, we use the formulation of SCMI
and appropriately choose a query set Q and/or a conditioning set P depending on the scenario at
hand. Towards this end, we use the inspiration from [3] where they select data points based on
diverse gradients. The SIM functions (see Tab. 2) are instantiated using similarity kernels computed
using pairwise similarities Sij between the gradients of the current model. Specifically, we define
Sij = 〈∇θHi(θ),∇θHj(θ)〉, where Hi(θ) = H(xi, yi, θ) is the loss on the ith data point. Similar
to [45, 3], we use hypothesized labels for computing the gradients, and the corresponding similarity
kernels. The hypothesized label for each data point is assigned as the class with the maximum
probability. We then optimize a SCMI function:

max
A⊆U,|A|≤B

If (A;Q|P) (1)

with appropriate choices of query setQ and conditioning set P . In the context of batch active learning,
A is the batch and B is the budget (batch size in AL). We present our unified AL framework in
Algorithm 1 and illustrate the choices of query and conditioning set for realistic scenarios in Fig. 2.

Algorithm 1 SIMILAR: Unified AL Framework
Require: Initial Labeled set of data points: L, large unlabeled dataset: U , Loss function H for

learning modelM, batch size: B, number of selection rounds: N
1: for selection round i = 1 : N do
2: Train modelM with lossH on the current labeled set L and obtain parameters θ
3: Using model parameters θi, compute gradients using hypothesized labels

{∇θH(xj , ŷj , θ),∀j ∈ U} and obtain a similarity matrix X .
4: Instantiate a submodular function f based on X .
5: Ai ← argmaxA⊆U,|A|≤BIf (A;Q|P) (Optimize SCMI with an appropriate choice of Q and

P , see Tab. 1)
6: Get labels L(Ai) for batch Ai and L ← L ∪ L(Ai), U ← U −Ai
7: end for
8: Return trained modelM and parameters θ.

In the scenarios below, we will discuss how this paradigm can provide a unified view of active
learning, handle aspects like standard active learning (Sec. 3.1), rare classes and imbalance (Sec. 3.2),
redundancy (Sec. 3.3) and, OOD/outliers in the unlabeled data (Sec. 3.4).

3.1 Standard Active Learning

We refer to standard active learning for ideal scenarios when there is no imbalance, redundancy or
OOD data in the unlabeled dataset. In such cases, there is no requirement for having a query set and
conditioning set. Hence, given a SCMI function If (A;Q|P), we get If (A;Q|P) = f(A) by setting
Q ← U (the unlabeled dataset) and P ← ∅. In a nutshell, the standard diversified active learning set-
ting can be seen as a special case of our proposed unified AL framework (Equ. (1)) by choosingQ,P
as above. Note that this approach is very similar and closely related to BADGE [3], where the authors
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also choose points based on diverse gradients. Furthermore, the authors discuss the use of Determinan-
tal Point Processes (DPP) [28] for sampling, and this is very similar to maximizing log-determinants.
In the supplementary paper, we compare the choice of different submodular functions for AL.

3.2 Rare Classes

A very common and naturally occurring scenario is that of imbalanced data. This imbalance is
because some classes or attributes are naturally more frequently occurring than others in the real-
world. For example, in a self-driving car application, there may be very few images of pedestrians at
night on highways, or cyclists at night. Another example is medical imaging, where there are many
rare yet important diseases (e.g., various forms of cancers), and it is often the case that non-cancerous
images are much more than compared to the cancerous ones. While such classes are rare, it is also
critical to be able to perform well in these classes. The problem with running standard active learning
algorithms in such a case is that they may not sample too many data points from these rare classes,
and as a result, the model continues to perform poorly on these classes. In such cases, we can create
a (small) held-out setR which contains data points from these rare classes, and try to encourage the
AL by sampling more of these rare classes by maximizing the SMI function If (A;R):

max
A⊆U,|A|≤B

If (A;R) (2)

This setting is shown in Fig. 2(a). R contains a small number of held-out examples of classes 5, 8
which are rare, and the AL acquisition function is Equ. (2). Note that this is exactly equivalent to
maximizing the SCMI function withQ ← R and P ← ∅ (i.e. Equ. (1) in Line 5 of Algorithm 1). Fur-
thermore, since the SMI functions naturally model query relevance and diversity, they will also try to
pick a diverse set of data points which are relevant toR. Finally, we also point out that this setting was
considered in [15] where they use a FISHER kernel based approach to sample data points. Note that for
this setting to be realistic, it is critical that the size of this validation set is very small – [15] uses a much
larger validation set which is not very realistic (e.g., 200× our set, see Appendix B for more details).

3.3 Redundancy in Unlabeled Data
(a) Rare Classes (b) Redundancy (c) Out-of-distribution

Figure 2: An illustration of realistic scenarios
where SIMILAR is applied with appropriate choices
of query and conditioning sets: a) SIMILAR finds
rare digits 5, 8 ∈ U , by optimizing the SMI func-
tion If (A;R) with R containing 5, 8 as queries,
b) select samples from U which are diverse among
themselves and also diverse w.r.t those in L by
optimizing f(A|L) (here, we want to avoid dig-
its 0, 1 ∈ U altogether because they are present
in L), c) select digits (in-distribution) and avoid
alphabets (out-of-distribution) in U by optimizing
If (A; I|O), where I are ID labeled points and O
are OOD points selected so far.

Another commonplace scenario is where we are
dealing with a lot of redundancy – e.g., frames
sampled from a video, where subsequent frames
are visually similar. In such cases, existing AL
algorithms tend to pick data points that are se-
mantically similar to the ones selected in some
earlier batch. This is true even for the state-of-
the-art AL algorithm BADGE [3] that attempts to
enforce diversity, but only in the current batch of
data points and not the already selected labeled
set. To illustrate this, consider the scenario in
Fig. 2(b). The digits 0, 1 are redundant in the
unlabeled set, and they are already present in
the labeled set L. Algorithms which just focus
on diversity in the current batch could fail at
ensuring diversity across batches. To mitigate
inter-batch redundancy, we use SCG acquisition
function and condition upon the already labeled
set L:

max
A⊆U,|A|≤B

f(A|L) (3)

Notice that this is a special case of our proposed
unified AL framework (Equ. (1)) since the SCG
function f(A|L) is basically a SCMI function
with Q ← ∅ and P ← L.

3.4 Out of Distribution Data

In real world scenarios, we often have out-of-
distribution (OOD) data or irrelevant classes in the unlabeled set. Such OOD data is not useful for
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the given classification task at hand. Using an acquisition function that selects a lot of OOD data
points will lead to a waste of labeling effort and time. This is because annotators have to spend time
in filtering out OOD data points and discard them from the training dataset. To account for OOD data,
we add an additional class called "OOD" in our model. Since the goal is to improve on in-distribution
classes , we ignore the prediction for the OOD class at test time. For our AL acquisition function,
we use the currently labeled OOD points O as the conditioning set P , and the currently labeled
in-distribution (ID) points I as the query setQ. In other words, our acquisition function is to optimize:

max
A⊆U,|A|≤B

If (A; I|O) (4)

This is illustrated in Fig. 2(c), where the labeled set consists of six examples, four of them being
ID data points (set I) and two being OOD data points (set O). In Fig. 2(c), the ID data are digits
(digit classification) and the OOD examples are alphabets. This SCMI based approach will naturally
pick points "close" to the ID data while avoiding the OOD points.

Another approach for designing the acquisition function is to not explicitly condition on the OOD
data points. In other words, we can just optimize the SMI function:

max
A⊆U,|A|≤B

If (A; I) (5)

We contrast the choices of SCMI (Equ. (4)) and SMI (Equ. (5)) functions in our experiments.

3.5 Multiple Co-occurring Realistic Scenarios

We can also apply SIMILAR to datasets where more than one realistic scenarios are co-occurring. As
illustrated in Tab. 3, we can use the formulation of SCMI and make appropriate choices of Q and P
to tackle multiple realistic scenarios.

Function Setting Realistic Scenario
If (A;R|O) Q ← R,P ← O Rare classes + OOD
If (A;R|L − R̃) Q ← R,P ← L− R̃ Rare classes + Redundancy
If (A; I|O ∪ I

′
) Q ← I,P ← O ∪ I

′
Redundancy + OOD

Table 3: Choices for Q and P for multiple co-occuring realistic scenarios

Rare classes and OOD: We set Q ← R and P ← O and maximize If (A;R|O). Intuitively, this
function would pick points close toR while avoiding the OOD points. In this scenario, we can also
optimize an SMI function If (A;R) if the data points belonging to the rare classes are not similar to
the OOD data points, meaning that only searching for rare classes may suffice. Regardless, the SCMI
approach above will further reinforce the avoidance of the OOD points.

Rare classes and Redundancy: We set Q ← R and P ← L − R̃. Here, R̃ is the subset of data
points from the labeled set L that belong to the rare classes. Intuitively, this function would pick
points close to R while avoiding points already in L − R̃, thereby avoiding redundant data. Just
focusing on R by optimizing If (A;R) is also a feasible option because rare classes are generally
not redundant. As before, the SCMI approach will only reinforce the avoidance of redundant samples
in any non-rare class instances selected.

Redundancy and OOD: This is a more challenging scenario than the ones above. We start with
using the SCMI formulation for the OOD scenario, i.e., If (A; I|O), where I is the set of ID samples
and O is the set of OOD samples. Optimizing this function will pick diverse in-distribution samples
within a batch. For selecting diverse samples across different batches, we can tackle this by using an
appropriate kernel for the conditioning set. For instance, consider the FLCMI function in Tab. 2(b).
On setting P ← O ∪ I, we can rewrite the FLCMI function by splitting the penalty term as follows:∑
i∈U

max(min(max
j∈A

Sij ,max
j∈I

Sij)−max(max
j∈O

Sij ,max
j∈I

S′ij), 0). While S is computed using cosine

similarity, we can compute S′ using an exponential kernel to magnify the value of S′ij using the
exponent when i and j are very similar. This exponent is a hyperparameter which can be tuned to
penalize selecting redundant samples from I (denoted as I

′
) in Tab. 3.

3.6 Realizing Realistic Scenarios in Applications

In this section, we discuss a few insights on how these realistic scenarios can be realized. To begin
with, the initial labeled set used in AL usually follows the distribution of the unlabeled set. The
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statistics of this set can be used to identify rare classes. If the initial seed set is small, the rare
classes/OOD data points can be realized after a few rounds of standard AL. Until such scenarios
are discovered, standard AL can be done using a diversity-based acquisition function like the log
determinant (LOGDET). For production-level models, they go through a test deployment phase.
During this phase, systematically recurring errors are often found. An example is of undetected
bicycles at night in an object detector (false negatives). Such recurring failure cases can be due to rare
classes in the labeled set. Moreover, we as users often know whether there are rare classes or if there
is redundancy from domain knowledge. For instance, in the biomedical domain, images of cancer
cells are typically rarer than ones of non-cancer cells because cancer inherently is a rare disease.

3.7 Scalability and Computational Aspects of SIMILAR

Computational Complexity: The computational complexity of the different SMI functions are
determined by (1) the kernel computation time, and (2) the time complexity of the greedy algorithm.
All functions considered here are graph based functions and require computing a kernel matrix. The
LOGDET functions (LOGDET, LOGDETMI, LOGDETCG, LOGDETCMI), some FL functions (FL,
FLVMI, FLCMI), and GC, GCMI all require the n×n similarity matrix (n = |U| is the number of unla-
beled points) which entails a complexity ofO(n2) to construct the similarity kernel. Once constructed,
the complexity of the greedy algorithm for LOGDET class of functions is roughly O(B3n) [11],
while the complexity of the greedy algorithm with FL, FLVMI, and FLCMI is O(Bn2) [18, 20](B is
the batch size). Different from others, FLQMI does not require computing a n× n kernel, but only a
n× q kernel (where q = |Q| is the number of query points). Correspondingly, the complexity of the
greedy algorithm with FLQMI is O(nqB), and is linear in n. In Appendix. A, we provide a detailed
summary of the complexity of different SF, SMI, SCG, and SCMI functions.

Partition Trick: The deal with the high O(n2) of the LOGDET, GC, and some of the FL variants
(except FLQMI), we also propose the following partitioning algorithm: We randomly split the
unlabeled set U into p partitions U1, · · · ,Up, and we then define the corresponding function (SF,
SMI, SCMI, SCG) on each of the partitions and independently optimize them. In each partition, we
select B/p points. The complexity of this reduces from O(n2) to O(n2/p) and with an appropriate
choice of p, we can significantly reduce the computational complexity. We use this in our ImageNet
experiments (see Sec. 4.1), and observe that our approaches continue performing well while being
more scalable. We provide more details on partitioning in Appendix. A.

Last Layer Gradients: Deep models have numerous parameters leading to very high dimensional
gradients. Since our kernel matrix is computed using the cosine similarity of gradients, this becomes
intractable for most models. To solve this problem, we use last-layer gradient approximation by
representing data points using last layer gradients. BADGE [3], CORESET [40] and GLISTER [24] are
other baselines that also use this approximation. Using this representation, we compute a pairwise
cosine similarity matrix to instantiate acquisition functions in SIMILAR (see lines 3,4 in Algorithm 1).

4 Experimental Results

In this section, we empirically evaluate the effectiveness of SIMILAR on a wide range of scenarios
like rare classes (Sec. 4.1), redundancy (Sec. 4.2) and out-of-distribution (Sec. 4.3). We do so by
comparing the accuracy and selections of various SCMI based acquisition functions with existing AL
approaches. Using these experiments, we cover the issues with the current AL methods and show that
these issues can be mitigated by using a unified implementation using SCMI with appropriate choices
of query and/or conditioning sets. Although this section focuses on realistic scenarios, we also study
SIMILAR in a standard active learning setting and show that it performs at par with current AL methods
(see Appendix. C). Furthermore, we present some experiments on a real-world medical dataset in Ap-
pendix. H and some experiments on multiple co-occurring realistic scenarios (Sec. 3.5) in Appendix. I.

Baselines in all scenarios: We compare SCMI based functions against several methods. Particularly,
we compare against: (1) three uncertainty based AL algorithms: i)ENTROPY: Selects the top B data
points with the highest entropy [41], ii) MARGIN: Select the bottom B data points that have the
least difference in the confidence of first and the second most probable labels [37], iii)LEAST-CONF:
SelectB samples with the smallest predicted class probability [44], (2) state-of-the-art diversity based
algorithms: iv) BADGE [3] v) GLISTER [24] vi) CORESET [40] which are all discussed in section
Sec. 1.1, and, 3) RANDOM: Select B samples randomly. Additionally, in the rare classes scenario,
we compare against FISHER [15] which is also discussed in Sec. 1.1.
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Figure 3: Active Learning with rare classes on CIFAR-10 (top row), MNIST (middle row), and
ImageNet (bottom row). Left side plots (a,d,g) are rare class accuracies, center plots (b,e,h) are overall
test accuracies, right plots (c,f,i) are a number of rare class samples selected. The SMI functions
(specifically LOGDETMI, FLQMI) outperform other baselines by more than 10% on the rare classes.

Datasets, model architecture and experimental setup: We apply our framework to CIFAR-10 [27]
and MNIST [30] classification tasks. Additionally, we also evaluate our method on down sampled 32×
32 ImageNet-2012 [38] for the rare classes setting (Sec. 4.1). Due to the lack of test split on ImageNet,
we used the validation split for evaluation. In the sections below, we discuss the individual splits for
L, U ,R, I, and O in each realistic scenario. To ensure that all the selection algorithms that we are
studying are given fair and equal treatment across all realistic scenarios, we use a common training pro-
cedure and hyperparameters. We use standard augmentation techniques like random crop, horizontal
flip followed by data normalization except for MNIST which does not use horizontal flip to preserve
labels. For training, we use an SGD optimizer with an initial learning rate of 0.01, the momentum of
0.9, and a weight decay of 5e-4. We decay the learning rate using cosine annealing [31] for each epoch.
On all datasets except MNIST, we train a ResNet18 [17] model, while on MNIST we train a LeNet
[29] model. For all the experiments in a particular scenario (rare classes, redundancy and OOD), we
start with an identical initial modelM and initial labeled set D. We reinitialize the model parameters
at the beginning of every selection round using Xavier initialization and train the model until either the
training accuracy reaches 99% or the epoch count reaches 150. We run each experiment 3× on CIFAR-
10 and MNIST and 1× on ImageNet and provide error bars (std deviation). All experiments were run
on a V100 GPU. For more details on the experimental setup, baselines, and datasets see Appendix. B.

4.1 Rare Classes

Custom dataset: Following [15, 24], we simulate these rare classes by creating a class imbalance.
We initialize the batch active learning experiments by creating a custom dataset which is a subset
of the full dataset with the same marginal distribution. Given that C consists of data points from
the imbalanced classes and D consists of data points from the balanced classes, we create an initial
labeled set L such that |DL| = ρ|CL| and an unlabeled set |DU | = ρ|CU |, where ρ is the imbalance
factor. We use a small and clean validation/query setR containing data points from the imbalanced
classes (≈ 3 data points per imbalanced class). We create an imbalance in CIFAR-10 using 5 random
classes, ρ = 10 and for MNIST we create an imbalance using the same classes as in [15] (5 · · · 9)
and use ρ = 20. For both datasets: |CL|+ |DL| = 125, |CU |+ |DU | = 16.5K, B = 125 (AL batch
size) and, |R| = 25 (size of the held out rare instances). For MNIST, we also present the results
for B = 25 and ρ = 100 in the supplementary. On ImageNet, we randomly select 500 classes out
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Figure 4: Active Learning under 10× redundancy for CIFAR-10 and MNIST. The CG functions
(LOGDETCG, FLCG) pick more unique points and outperform existing algorithms including BADGE.

of 1000 classes for imbalance and ρ = 5 such that |CL| + |DL| = 102K, |CU | + |DU | = 664K,
B = 25K and, |R| = 2.5K. These data splits are chosen to simulate a low initial accuracy on the
rare classes and at the same time maintain the imbalance factor in the labeled and unlabeled datasets.

Results: The results are shown in Fig. 3. We observe that SMI based functions not only consistently
outperform uncertainty based methods (ENTROPY, LEAST-CONF and MARGIN) but also all the
state-of-the-art diversity based methods (BADGE, GLISTER, CORESET) by ≈ 5 − 10% in terms
of overall accuracy and ≈ 10− 18% in terms of average accuracy on rare classes (see Fig. 3a, 3d,
3g). The reason for the same can be seen in Fig. 3c, 3f, 3i which illustrates that they fail to pick
an adequate number of examples from the rare classes. Evidently, FLQMI and LOGDETMI which
balance between diversity and relevance perform better than GCMI which only models relevance.
Furthermore, DIV-GCMI which is a linear combination of GCMI and a diversity term performs
consistently worse, which suggest that a naive combination of the two may not be as effective. This
suggests the need of SMI based acquisitions functions (Equ. (2)) with richer modeling capabilities
like FLQMI and LOGDETMI within SIMILAR. Furthermore, all SMI based functions also outperform
the FISHER kernel based method when the validation set is small and realistic, i.e., |R| = 25. Since,
[15] use a very large validation set in their experiments, we try their method FISHER-LV with a 40×
larger validation set of size 1000 (which is not practical) and observe a comparable performance
with the SMI functions which use a small validation set. Furthermore, we see that FISHER-LV
actually picks significantly larger number of rare class instances in MNIST, but yet is comparable in
performance of FLQMI and LOGDETMI. This suggests that both these methods select higher quality
and diverse rare class instances. We observe that the GC SMI variants( GCMI and DIV-GCMI) do
not perform well on MNIST classification. Finally, we point out in the case of ImageNet, FLQMI
performs the best and outperforms FLVMI and LOGDETMI – this is because we do not need to do the
partition trick for FLQMI since it is already linear in time complexity. For FLVMI and LOGDETMI,
we set the number of partitions p = 50 for ImageNet. Finally, we do a pairwise t-test to compare the
performance of the algorithms (Appendix. D) and observe that the SMI functions (and particularly
FLVMI and LOGDETMI) statistically significantly outperform all AL baselines.

4.2 Redundancy

Custom dataset: To simulate a realistic redundancy scenario we create a custom dataset by duplicat-
ing 20% of the unlabeled dataset 10×. For CIFAR-10, the number of unique points in the unlabeled
set |U| = 5K, the initial labeled set |L| = 500, B = 500, whereas for MNIST |U| = 500, |L| = 50
and B = 50. For MNIST, we also present the results for 5× and 20× in the Appendix. E.

SCG vs Baselines: As expected, the diversity and uncertainty based methods outperform random.
Importantly, we observe that the SCG functions (FLCG and LOGDETCG) significantly outperform
all baselines by ≈ 3− 5% towards the end as the conditioning gets stronger with increase in L (see
Fig. 4a, 4b). This implies that simply relying on model parameters for diversity and/or uncertainty is
not sufficient and that conditioning on the updated labeled set L (Equ. (3)) is required in batch active
learning. In Fig. 4c we show that SCG based acquisition functions select significantly more unique
data points than other baselines. We also perform a pairwise t-test (Appendix. E), to prove that the
SCG functions consistently and statistically significantly outperform BADGE and other baselines.

4.3 Out-Of-Distribution

Custom dataset: We simulated a scenario where we convert the classification problem in CIFAR-10
and MNIST to a 8-class classification, where the first 8 classes represent the set IF of in-distribution
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Figure 5: Active Learning with OOD data in unlabeled set. Top row: CIFAR-10 results for (a) SCMI
vs Baselines, (b) SCMI vs SMI, and (c) variance comparison of different baselines, bottom row:
MNIST results for (d) SCMI vs Baselines, (e) SCMI vs SMI, and (f) Number of ID points selected.
We see that, i) the SCMI functions consistently outperform the baselines by 5%− 10%, ii) SCMI
functions outperform the corresponding SMI functions for later rounds, and (iii) SCMI functions
have the least variance compared to the rest, showing that they are more robust in performance.

(ID) data points and the last 2 represent the set OF of out-of-distribution(OOD) data points. The
initial labeled set L consists only of ID points, i.e. OF ∩ L = ∅. The unlabeled set is simulated to
reflect a realistic and somewhat extreme setting where the unlabeled ID data points |IF | is much
smaller than the unlabeled OOD data points |OF |. Additionally, we also assume we have a very small
validation set of ID points IV . For CIFAR-10: |L| = 1.6K, |IF | = 4K, |OF | = 10K, |IV | = 40,
B = 250 whereas for MNIST which is a relatively simpler task, we use a smaller initial labeled
sets and keep the unlabeled sets of the same size: |L| = 40, |IF | = 400, |OF | = 10K, |IV | = 16,
B = 20. Recall that our algorithm uses ID set I (initialized to IV ) and OOD set O which we build
as follows. Every time our selection approach selects a set A, we update I = I ∪ (A ∩ IF ) and
O = O ∪ (A ∩OF ), i.e. we augment the ID and OOD points in A to the sets I and O respectively.

SCMI vs Baselines: Since we care about the predictive performance of the ID classes, we report the
ID classes accuracy. We see that SCMI based acquisition functions significantly outperform existing
AL approaches by ≈ 5− 10% (see Fig. 5a, 5d). We also observe that existing acquisition functions
have a high variance, which is undesirable in real-world deployment scenarios where deep models
are being continuously developed. Our SCMI based acquisition functions (LOGDETCMI and FLCMI)
show the lowest variance in training (see Fig. 5c). This reinforces the need of having a framework
like SIMILAR that facilitates query and conditioning sets.

SCMI vs SMI: We compare SCMI functions against SMI functions to study the effect of conditioning
and observe that the SCMI functions are comparable to the SMI functions initially but in the later
selection rounds of active learning, the SCMI functions consistently outperform SMI functions. In
particular, we see an improvement of 2− 3% as the conditioning becomes stronger (see Fig. 5b, 5e).
We also observe the SCMI tends to select more ID points than SMI and other baselines (see Fig. 5f),
and SCMI functions have a lower variance overall compared to even the SMI functions (Fig. 5c).

5 Conclusion
In this paper, we proposed a unified active learning framework SIMILAR using the submodular
information functions. We showed the applicability of the framework in three realistic scenarios
for active learning, namely rare classes, redundancy, and out of distribution data. In each case, we
observed that the functions in SIMILAR significantly outperform existing baselines in each of these
tasks. Our real-world experiments on MNIST, CIFAR-10, and ImageNet show that many of the
SIM functions (specifically the LOGDET and FL variants) yield ≈ 5% − 18% gain compared to
existing baselines, particularly in the rare class scenario and ≈ 5%− 10% OOD scenarios. The main
limitations of our work is the dependence on good representations to compute similarity. A potential
negative societal impact of this work is the use of SIMILAR to perpetuate certain biases through a
malicious use of the query and conditioning set. We discuss this in more detail in Appendix. G.
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