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ABSTRACT

In this paper, we study a novel inference paradigm, termed as schema inference,
that learns to deductively infer the explainable predictions by rebuilding the prior
deep neural network (DNN) forwarding scheme, guided by the prevalent philo-
sophical cognitive concept of schema. We strive to reformulate the conventional
model inference pipeline into a graph matching policy that associates the extracted
visual concepts of an image with the pre-computed scene impression, by analogy
with human reasoning mechanism via impression matching. To this end, we devise
an elaborated architecture, termed as SchemaNet, as a dedicated instantiation of
the proposed schema inference concept, that models both the visual semantics
of input instances and the learned abstract imaginations of target categories as
topological relational graphs. Meanwhile, to capture and leverage the compo-
sitional contributions of visual semantics in a global view, we also introduce a
universal Feat2Graph scheme in SchemaNet to establish the relational graphs that
contain abundant interaction information. Both the theoretical analysis and the
experimental results on several benchmarks demonstrate that the proposed schema
inference achieves encouraging performance and meanwhile yields a clear pic-
ture of the deductive process leading to the predictions. Our code is available at
https://github.com/zhfeing/SchemaNet-PyTorch.

1 INTRODUCTION

“Now this representation of a general procedure of the imagination for providing a
concept with its image is what I call the schema for this concept1.”

— Immanuel Kant

Deep neural networks (DNNs) have demonstrated the increasingly prevailing capabilities in visual
representations as compared to conventional hand-crafted features. Take the visual recognition task as
an example. The canonical deep learning (DL) scheme for image recognition is to yield an effective
visual representation from a stack of non-linear layers along with a fully-connected (FC) classifier
at the end (He et al., 2016; Dosovitskiy et al., 2021; Tolstikhin et al., 2021; Yang et al., 2022a),
where specifically the inner-product similarities are computed with each category embedding as
the prediction. Despite the great success of DL, existing deep networks are typically required to
simultaneously perceive low-level patterns as well as high-level semantics to make predictions (Zeiler
& Fergus, 2014; Krizhevsky et al., 2017). As such, both the procedure of computing visual represen-
tations and the learned category-specific embeddings are opaque to humans, leading to challenges in
security-matter scenarios, such as autonomous driving and healthcare applications.

∗Equal contribution.
†Corresponding author.
1In Critique of Pure Reason (A140/B180).
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Figure 1: An example showing how an instance IR-Graph is matched to the class imagination. The
vertices of IR-Graphs represent visual semantics, and the edges indicate the vertex interactions. The
graph matcher captures the similarity between the local structures of joint vertices (e.g., vertex #198
and vertex #150) by aggregating information from their neighbors as class evidences. The final
prediction is defined as the sum of all evidence.

Unlike prior works that merely obtain the targets in the black-box manner, here we strive to devise
an innovative and generalized DNN inference paradigm by reformulating the traditional one-shot
forwarding scheme into an interpretable DNN reasoning framework, resembling what occurs in
deductive human reasoning. Towards this end, inspired by the schema in Kant’s philosophy that
describes human cognition as the procedure of associating an image of abstract concepts with the
specific sense impression, we propose to formulate DNN inference into an interactive matching pro-
cedure between the local visual semantics of an input instance and the abstract category imagination,
which is termed as schema inference in this paper, leading to the accomplishment of interpretable
deductive inference based on visual semantics interactions at the micro-level.

To elaborate the achievement of the proposed concept schema inference, we take here image
classification, the most basic task in computer vision, as an example to explain our technical details.
At a high level, the devised schema inference scheme leverages a pre-trained DNN to extract feature
ingredients which are, in fact, the semantics represented by a cluster of deep feature vectors from
a specific local region in the image domain. Furthermore, the obtained feature ingredients are
organized into an ingredient relation graph (IR-Graph) for the sake of modeling their interactions
that are characterized by the similarity at the semantic-level as well as the adjacency relationship
at the spatial-level. We then implement the category-specific imagination as an ingredient relation
atlas (IR-Atlas) for all target categories induced from observed data samples. As a final step, the
graph similarity between an instance-level IR-Graph and the category-level IR-Atlas is computed
as the measurement for yielding the target predictions. As such, instead of relying on deep features,
the desired outputs from schema inference contribute only from the relationship of visual words, as
shown in Figure 1.

More specifically, our dedicated schema-based architecture, termed as SchemaNet, is based on vision
Transformers (ViTs) (Dosovitskiy et al., 2021; Touvron et al., 2021), which are nowadays the most
prevalent vision backbones. To effectively obtain the feature ingredients, we collect the intermediate
features of the backbone from probe data samples clustered by k-means algorithm. IR-Graphs are
established through a customized Feat2Graph module that transfers the discretized ingredients array
to graph vertices, and meanwhile builds the connections, which indicates the ingredient interactions
relying on the self-attention mechanism (Vaswani et al., 2017) and the spatial adjacency. Eventually,
graph similarities are evaluated via a shallow graph convolutional network (GCN).

Our work relates to several existing methods that mine semantic-rich visual words from DNN
backbones for self-explanation (Brendel & Bethge, 2019; Chen et al., 2019; Nauta et al., 2021; Xue
et al., 2022b; Yang et al., 2022b). Particularly, BagNet (Brendel & Bethge, 2019) uses a DNN as visual
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Figure 2: The overall pipeline of our proposed SchemaNet. Firstly, intermediate feature X from the
backbone is fed into the Feat2Graph module. The converted IR-Graph is then matched to a set of
imaginations, i.e., category-level IR-Atlas induced from observed data, for making the prediction.

word extractor that is analogous to traditional bag-of-visual-words (BoVW) representation (Yang et al.,
2007) with SIFT features (Lowe, 2004). Moreover, Chen et al. (2019) develop ProtoPNet framework
that evaluates the similarity scores between image parts and learned class-specific prototypes for
inference. Despite their encouraging performance, all these existing methods suffer from the lack
of considerations in the compositional contributions of visual semantics, which is, however, already
proved critical for both human and DNN inference (Deng et al., 2022), and are not applicable to
schema inference in consequence. We discuss more related literature in Appendix A.

In sum, our contribution is an innovative schema inference paradigm that reformulates the existing
black-box network forwarding into a deductive DNN reasoning procedure, allowing for a clear insight
into how the class evidences are gathered and deductively lead to the target predictions. This is
achieved by building the dedicated IR-Graph and IR-Atlas with the extracted feature ingredients and
then performing graph matching between IR-Graph and IR-Atlas to derive the desired predictions.
We also provide a theoretical analysis to explain the interpretability of our schema inference results.
Experimental results on CIFAR-10/100, Caltech-101, and ImageNet demonstrate that the proposed
schema inference yields results superior to the state-of-the-art interpretable approaches. Further,
we demonstrate that by transferring to unseen tasks without fine-tuning the matcher, the learned
knowledge of each class is, in fact, stored in IR-Atlas rather than the matcher, thereby exhibiting the
high interpretability of the proposed method.

2 SCHEMANET

In this section, we introduce our proposed SchemaNet in detail. The overall procedure is illustrated
in Figure 2, including a Feat2Graph module that converts deep features to instance IR-Graphs, a
learnable IR-Atlas, and a graph matcher for making predictions. The main idea is to model an
input image as an instance-level graph in which nodes are local semantics captured by the DNN
backbone and edges represent their interactions. Meanwhile, a category-level graph is maintained
as the imagination for each class driven by training samples. Finally, by measuring the similarity
between the instance and category graphs, we are able to interpret how predictions are made.

2.1 PRELIMINARY

We first give a brief review of the ViT architecture. The simplest ViT implementation for image
classification is proposed by Dosovitskiy et al. (2021), which treats an image as a sequence of
independent 16× 16 patches. The embeddings of all patches are then directly fed to a Transformer-
based network (Vaswani et al., 2017), i.e., a stack of multiple encoder layers with the same structure:
a multi-head self-attention mechanism (MHSA) followed by a multilayer perceptron (MLP) with
residual connections. Additionally, they append a class token (CLS) to the input sequence for
classification alone rather than the average pooled feature. Following this work, Touvron et al. (2021)
propose DeiT appending another distillation token (DIST) to learn soft decision targets from a teacher
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model. This paper will mainly focus on DeiT backbones due to the relatively simple yet efficient
network architecture.

Let X ∈ R(n+ζ)×d denotes the input feature (a sequence of n visual tokens and ζ auxillary tokens,
e.g., CLS and DIST, each of which is a d-dimensional embedding vector) to a MHSA module. The
output can be simplified as MHSA(X) =

∑H
h=1 Ψ̃hXWh, where Ψ̃h ∈ R(n+ζ)×(n+ζ) denotes the

self-attention matrix normalized by row-wise softmax of head h ∈ {1, . . . ,H}, and Wh ∈ Rd×d is a
learnable projection matrix. As the MLP module processes each token individually, the visual token
interactions take place only in the MHSA modules, facilitating the extraction of their relationships
from the perspective of ViTs.

For convenience, we define some notations related to the self-attention matrix. Let Ψ̄ be the average
attention matrix of all heads and Ψ be the symmetric attention matrix: Ψ = (Ψ̄ + Ψ̄⊤)/2. We
partition Ψ into four submatrices:

Ψ =

[
Ψ∗ ΨA

ΨA⊤
ΨV

]
, (1)

where ΨA ∈ Rζ×n is the attention to the auxiliary tokens, ΨV ∈ Rn×n represents the relationships
of visual tokens, and Ψ∗ ∈ Rζ×ζ . Finally, let ψCLS ∈ Rn represent the attention values to the CLS
token extracted from ΨA.

2.2 FEAT2GRAPH

As shown in Figure 2, given a pre-trained backbone and an input image, the intermediate feature
X is converted to an IR-Graph G for inference by the Feat2Graph module which includes three
steps: (1) discretizing X into a sequence of feature ingredients with specific semantics; (2) mapping
the ingredients to weighted vertices of IR-Graph; (3) assigning a weighted edge to each vertex pair
indicating their interaction. We start by defining IR-Graph and IR-Atlas mathematically.
Definition 1 (IR-Graph). An IR-Graph is an undirected fully-connected graph G = (E, V ), in which
vertiex set V is the set of feature ingredients for an instance or a specific category, and edge set E
encodes the interactions of vertex pairs.

In particular, to indicate the vertex importance (for instance, “bird head” should contribute to the
prediction of bird more than “sky” in human cognition), a non-negative weight λ ∈ R+ is assigned to
each vertex. Let Λ ∈ R|V |

+ = {λi}|V |
i=1 be the collection of all vertex weights. Besides, the interaction

between vertex i and j is quantified by a non-negative weight ei,j ∈ R+. With a slight abuse of
notation, we define E ∈ R|V |×|V |

+ as the weighted adjacency matrix in the following sections.

The IR-Atlas is defined to represent the imagination of all categories:

Definition 2 (IR-Atlas). An IR-Atlas Ĝ of C classes is a set of category-level IR-Graphs, in which
element Ĝc = (Êc, V̂c) for class c has learnable vertex weights Λ̂c and edge weights Êc.

Discretization. The main purpose of feature discretization is to mine the most common patterns
appearing in the dataset, each of which corresponds to a human understandable semantic, named
visual word, such as “car wheel” or “bird head”. However, local regions with the same semantic
may show differently because of scaling, rotation, or even distortion. In our approach, we utilize the
DNN backbone to extract a relatively uniform feature instead of the traditional SIFT feature utilized
in (Yang et al., 2007). To be specific, a visual vocabulary Ω = {ωi}Mi=1 (ωi ∈ Rd) of size M is
constructed by k-means clustering running on the collection X of visual tokens extracted from the
probe dataset2. Further, a deep feature X (CLS and DIST are removed) is discretized to a sequence
of feature ingredients by replacing each element x with the index of the closest visual word

Ingredient(x) = argmin
i∈{1,...,M}

∥x− ωi∥2. (2)

Strictly, the ingredient is referred to as the index of visual word ω. With the entire ingredient set
M = {1, . . . ,M}, the discretized sequence is denoted as X̃ = (x̃1, . . . , x̃n), where x̃i ∈ M is
computed from Equation (2). The detailed settings of M are presented in Appendix E.1.

2For probe dataset with D instances, the collection X has n×D visual tokens (ignoring CLS and DIST).
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Feat2Vertex. After we have computed the discretized feature X̃ , the vertices of this feature are
the unique ingredients: V = Unique(X̃). The importance of each vertex is measured from two
criterions: the contribution to the DNN’s final prediction and the appearance statistically. Formally,
for vertex v ∈M, the importance is defined as

λv = α1λ
CLS
v + α2λ

bag
v = α1

∑
i∈Ξ(v|X̃)

ψCLS
i + α2|Ξ(v|X̃)|, (3)

where Ξ(v|X̃) is the set of all the appeared position of ingredient v in X̃ , ψCLS
i is the attention

between the i-th visual token and the CLS token, and α1,2 ≥ 0 are learnable weights balancing the
two terms. When α1 = 0, Λ is equivalent to BoVW representation.

Feat2Edge. With the self-attention matrix ΨV extracted from Equation (1), the interactions
between vertices can be defined and computed with efficiency. For any two different vertices
u, v ∈ V , the edge weight is the comprehensive consideration of the similarity in the view of ViT
and spatial adjacency. The first term is the average attention between all repeated pairs Π[(u, v)|X̃]:

eattn
u,v =

1

Π[(u, v)|X̃]

∑
(i,j)∈Π[(u,v)|X̃]

ΨV
i,j , (4)

whereΠ[(u, v)|X̃] is the Cartesian product ofΞ(u|X̃) andΞ(v|X̃), and ΨC
i,j is the attention between

the visual tokens at i and j positions. Furthermore, we define the adjacency as

eadj
u,v =

1

Π[(u, v)|X̃]

∑
(i,j)∈Π[(u,v)|X̃]

1

ϵ+ ∥Pos(i)− Pos(j)∥2
, (5)

where function Pos(·) returns the original 2D coordinates of the input visual token with regard to the
patch array after the patch embedding module of ViTs. Eventually, the interaction between vertices u
and v is the weighted sum of the two components with learnable β1,2:

eu,v = β1e
attn
u,v + β2e

adj
u,v . (6)

Equations (4) and (5) are both invariant when exchanging vertex u and v, so our IR-Graph is
equivalent to undirected graph.

It is worth noting that only semantics and their relationships are preserved in IR-Graphs for further
inference rather than deep features.

2.3 MATCHER

GraphConv

WAP

GraphConv

Sim

G
C
N

Figure 3: Illustration of the matcher.

After converting an input image to IR-Graph, the matcher
finds the most similar category-level graph in IR-Atlas.
The overall procedure is shown in Figure 3, which is com-
posed of a GCN module and a similarity computing mod-
ule (Sim) that generates the final prediction. Detailed
settings of the matcher are in Appendix E.3.

For feeding IR-Graphs to the GCN module, we assign each
ingredient m ∈ M (i.e., graph vertices) with a trainable
embedding vector, each of which is initialized from an
dG-dimensional random vector drawn independently from
multivariate Gaussian distribution N (0, IdG

).

In the GCN module, we adopt GraphConv (Morris et al.,
2019) with slight modifications for weighted edges. Let
F ∈ R|V |×dG be the input feature of all vertices to a
GraphConv layer, the output is computed as

GraphConv(F ) = Norm (σ ((IdG
+ E)FW )) , (7)

where σ denotes a non-linear activation function, Norm
denotes feature normalization, and W ∈ RdG×dG is a
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learnable projection matrix. After passing through total LG layers of GraphConv, a weighted average
pooling (WAP) layer summarizes the vertex embeddings F (LG) weighted by Λ, yielding the graph
representation z = ΛF (LG). Now we have z for G and Ẑ ∈ RC×dG = (ẑ1, . . . , ẑC) for all graphs in
Ĝ. By computing the inner-product similarities, the final prediction logits is defined as y = Ẑz⊤.

Prediction interpretation. Given an instance graph G and a category graph Ĝ, we now analyze
how the prediction is made based on their vertices and edges. We start with analyzing the similarity
score s = ẑz⊤, where z = ΛF (LG) and ẑ = Λ̂F̂ (LG) are weighted sum of the vertex embeddings
respectively. For the sake of further discussion, let f (l)v denotes the embedding vector of vertex v
output from the l-th GraphConv layer, and λ(l)v denotes its weight. The original vertex embedding
of v is defined as f (0)v , which is identical for the same ingredient in any two graphs. Besides, let
Φ = V ∩ V̂ be the set of shared vertices in G and Ĝ. The computation of s can be expanded as

s =
∑

(u,v)∈V̂×V

λ̂uλv f̂
(LG)
u f (LG)

v

⊤
. (8)

Since directly analyzing Equation (8) is hard, we show an approximation and proof it in Appendix B.
Theorem 1. For a shallow GCN module, Equation (8) can be approximated by

s =
∑
ϕ∈Φ

λ̂ϕλϕf̂
(LG)
ϕ f

(LG)
ϕ

⊤
. (9)

Particularly, if LG = 0 and α1 = 0, our method is equivalent to BoVW with a linear classifier.

Further, as delineated in Corollary 1, the interpretability of the graph matcher with a shallow GCN
can be stated as: (1) the final prediction score for a category is the summation of all present class
evidence (shared vertices ϕ in Φ) represented by the vertex weights; (2) the shared neighbors (local
structure) connected to the shared vertex ϕ also contribute to the final prediction.

2.4 TRAINING SCHEMANET

Except for training SchemaNet by cross-entropy loss LCE between the predictions and ground truths,
we further constrain the complexity of IR-Atlas. More formally, the complexity is defined for both
edges and vertex weights of all graphs in IR-Atlas as

Lv =
1

C

C∑
c=1

H(Λ̂c), Le =
1

C|V̂ |

C∑
c=1

∑
u∈V̂

H(Êc,u), (10)

where functionH(x) computes the entropy of the input vector x ∈ Rk
+ normalized by its sum of k

components, and Êc,u denotes the weighted edges connected to vertex u in Ĝc of class c. The final
optimization goal is

L = LCE + γvLv + γeLe, (11)
where γv and γe are hyperparameters. The overall training procedure is shown in Appendix C.

Sparsification. Each graph in IR-Atlas is initialized as a fully-connected graph with random vertex
and edge weights. However, this requiresO(C|V |2) memory space for storage and training the whole
set of edges. To alleviate this issue, we initialize IR-Atlas by averaging the instance IR-Graphs for
each class and remove the edges connected to vertices whose weights are below a given threshold
δt = 0.01 from the category-specific graph. Such a procedure will not only dramatically decrease the
learnable parameters but also boost the final performance, as shown in Table 1.

3 EXPERIMENTS

3.1 IMPLEMENTATION

Datasets. We evaluate our method on CIFAR-10/100 (Krizhevsky et al., 2009), Caltech-101 (Li
et al., 2022), and ImageNet (Deng et al., 2009). Particularly, Caltech-101 has around 9k images, and
we manually split it into a training set with 7.4k images and a test set with 1.3k images.
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Table 1: Comparison results on CIFAR-10/100 and Caltech-101 with different backbones. We report
the top-1 accuracy, number of learnable parameters, and FLOPs. The results in gray color are merely
for listing the accuracy of ViTs rather than for making comparisons.

Backbone Method CIFAR-10 CIFAR-100 Caltech-101
Acc #param. FLOPs Acc #param. FLOPs Acc #param. FLOPs

- BoVW-SIFT 20.20 - - - - - - - -

DeiT-Tiny

Base 96.69 5.53M 1.27G 82.88 5.54M 1.27G 92.53 5.54M 1.27G
Backbone-FC 94.58 1.93K 1.06G 76.74 19.3K 1.06G 76.71 19.5K 1.06G
BoVW-Deep 94.95 10.3K 1.06G 75.45 103K 1.06G 60.82 104K 1.06G
BagNet 70.27 5.73M 1.10G 42.90 5.84M 1.10G 72.54 5.85M 1.10G
SchemaNet 95.92 396K 1.19G 77.11 105M 2.40G 83.24 106M 2.40G
SchemaNet-Init 95.96 234K 1.06G 78.45 573K 1.06G 87.57 564K 1.06G

DeiT-Small

Base 97.77 21.7M 4.63G 87.65 21.7M 4.63G 94.96 21.7M 4.63G
Backbone-FC 96.62 3.85K 3.87G 82.44 38.5K 3.87G 86.94 38.9K 3.87G
BoVW-Deep 95.61 10.3K 3.89G 77.39 103K 3.89G 65.54 104K 3.89G
BagNet 83.90 22.1M 3.95G 50.49 22.2M 3.95G 78.13 22.2M 3.95G
SchemaNet 97.42 396K 4.00G 82.21 105M 5.21G 84.66 106M 5.21G
SchemaNet-Init 97.35 235K 3.89G 82.46 591K 3.89G 90.09 589K 3.89G

DeiT-Base

Base 98.41 85.8M 17.6G 89.17 85.9M 17.6G 95.83 85.9M 17.6G
Backbone-FC 97.04 7.69K 14.7G 81.66 76.9K 14.7G 88.20 77.7K 14.7G
BoVW-Deep 95.50 10.3K 14.7G 72.23 103K 14.7G 66.17 104K 14.7G
BagNet 90.71 86.6M 14.9G 67.84 86.8M 14.9G 86.55 86.8M 14.9G
SchemaNet 97.26 396K 14.8G 79.26 105M 16.1G 81.12 106M 16.1G
SchemaNet-Init 97.07 235K 14.7G 79.36 606K 14.7G 90.72 593K 14.7G

Selection of the hyperparameters. Several hyperparameters are involved in our method, including
λv,e in Equation (11) for adjusting the sparsity of IR-Atlas. We set λv = 0.5 and λe = 0.75 as the
default value for the following evaluation and the sensitive analyses are presented in Appendix H. The
initial values of learnable α1,2 and β1,2 are set to 0.5, and we show their learning curves in Figure 9.

3.2 EXPERIMENTAL RESULTS

We evaluate our method and comparison baselines with the following settings:

• BoVW-SIFT: the traditional BoVW approach that utilizing SIFT feature for constructing
the visual vocabulary (Yang et al., 2007).

• Base: the base ViT model directly trained on the benchmark datasets with initial weights
obtained from the official repository in (Touvron et al., 2021), which is our backbone.

• Backbone-FC: the frozen backbone with an FC layer. The intermediate features extracted
from the frozen backbone are then fed to a global average pooling layer followed by a linear
classifier, similar to the standard CNN protocol.

• BoVW-Deep: the BoVW approach with our extracted visual vocabulary.

• BagNet: the implementation of BagNet (Brendel & Bethge, 2019) with ViT backbone
which is constructed following our “Base” setting.

• SchemaNet: our proposed SchemaNet without initialization.

• SchemaNet-Init: our proposed SchemaNet initialized by the average instance IR-Graphs.

The comparison results are shown in Table 1, where we demonstrate the top-1 accuracy, the number
of learnable parameters, as well as the FLOPs for each setting. It is noticeable that the proposed
SchemaNet consistently outperforms the baseline methods. Specifically, for the backbone of DeiT-
Tiny, ours achieves significant improvement (i.e., about 25.7% and 35.3% absolute gain on CIFAR-10
and CIFAR-100, respectively) over BagNet. With a larger backbone such as DeiT-Small and DeiT-
Base, though the performance gap slightly shrinks, our SchemaNet with initializations still yields
results superior to BagNet, by an average absolute gain of 12.7%. The reason is that, unlike BagNet
that uses summation to obtain the similarity map as the BoVW representation (without feature
discretization), “BoVW-Deep” is implemented with the discretized visual words. As such, both of
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(a) Accuracy curves on CIFAR-10.

0 10 20 30 40 50 60 70 80 90 100
Drop Rate (%)

0

10

20

30

40

50

60

70

80

A
cc

 (%
)

BoVW-Deep+
BoVW-Deep
BagNet+
BagNet
Ours+
Ours

(b) Accuracy curves on CIFAR-100.

Figure 4: Accuracy decay curves of perturbation tests. The curve name ending with “+”/“−”
represents positive/negative perturbation, accordingly.

the approaches do not consider the visual word interactions, leading to the inferior performance
especially when the size of the visual vocabulary expands on CIFAR-100 and Caltech-101.

Moreover, compared with “Backbone-FC” that merely relies on intermediate deep features, the
proposed SchemaNet also demonstrates encouraging results, achieving about a 1.4% absolute gain.
Furthermore, when initialization and redundant vertices are removed as indicated in Section 3.1,
our “SchemaNet-Init”, with an even less learnable number of parameters, still leads to a higher
accuracy. The proposed method also delivers gratifying performance, on par with the prevalent deep
ViT especially on CIFAR-10, but gives a clear insight on the reasoning procedure.

We present more experimental results in Appendix F, including the comparison results on Ima-
geNet (Appendix F.1), employing other attribution methods (Appendix F.2), attacking with adver-
sarial images (Appendix F.3), the extendability analysis of our SchemaNet (Appendix F.4), and the
inference cost of all components (Appendix F.5).

3.3 EVALUATION OF THE INTERPRETABILITY

To figure out how interpretability contributes to the model prediction, we adopt the positive and
negative perturbation tests presented in (Chefer et al., 2021) to give both quantitative and qualitative
evaluations on the interpretability. For a fair comparison, the attention values to the CLS token ϕCLS

are extracted as the pixel relevance for BoVW-Deep, BagNet, and SchemaNet-Init with the DeiT-Tiny
backbone. During the testing stage, we gradually drop the pixels in relevance descending/ascending
order (for positive and negative perturbation, respectively) and measure the top-1 accuracy of the
models. We plot the accuracy curves in Figure 4, showing that: (1) in the positive perturbation test,
our method behaves similarly to BoVW while outperforming BagNet; (2) in the negative perturbation
test, our method achieves better performance by a large margin (the area-under-the-curve of ours is
about 5.71% higher than BagNet on CIFAR-10, and 11.23% higher than BagNet on CIFAR-100).

3.4 VISUALIZATION

In Figure 5, we show the examples including instance IR-Graphs and learned IR-Atlas with DeiT-Tiny
backbone trained on Caltech-101 dataset (for visualization purposes, the number of ingredients is set
to 256, which are shown entirely in Figure 11). Each row shows several instances of a specific class.
The first column includes the category graphs and excerpts of appeared ingredients in Figure 11 for
quicker reference. We further render the vertices, i.e., ingredients, in the category graph with different
colors, and the appeared ingredients in the instance images and graphs are colored uniformally
corresponding to the category graph.

We interpret the visualization from three perspectives: the interpretability of the ingredients, the
interpretability of the edges, and the consistency between instance and category graphs. (1) Thanks
to the powerful representation learning capability of DNNs, the extracted ingredients are able to
represent explicit semantics (such as “fuselage”, “bird legs”, etc.) with robustness. Besides, the
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Figure 5: Examples of the learned IR-Atlas and instance IR-Graphs randomly sampled from three
categories (“panda”, “flamingo”, and “airplanes”) on Caltech-101. Please zoom in for a better view.

learned weight of each vertex is also consistent with human intuition as the object ingredients get
higher weights than the background ones. (2) The learned edge weights tend to connect object parts
to the adjacent background and other object parts while ignoring the background connections, which
helps distinguish fine-grain categories with the perception of the surroundings. (3) As the category
graphs are driven by the instances, they learn to capture and model the general character of instances
and eventually form the abstract imaginations of all categories. More examples are in Appendix I.

4 CONCLUSION AND OUTLOOK

In this paper, we propose a novel inference paradigm, named schema inference, guided by Kant’s
philosophy towards resembling human deductive reasoning of associating the abstract concept image
with the specific sense impression. To this end, we reformulate the traditional DNN inference
into a graph matching scheme by evaluating the similarity between instance-level IR-Graph and
category-level imagination in a deductive manner. Specifically, the graph vertices are visual semantics
represented by common feature vectors from DNN’s intermediate layer. Besides, the edges indicate
the vertex interactions characterized by semantic similarity and spatial adjacency, which facilitate
capturing the compositional contributions to the predictions. Theoretical analysis and experimental
results on several benchmarks demonstrate the superiority and interpretability of schema inference.
In future work, we will implement schema inference to more complicated vision tasks, such as visual
question answering, that enables linking the visual semantics to the phrases in human language,
achieving a more powerful yet interpretable reasoning paradigm.
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A ADDITIONAL RELATED WORK

In this section, we introduce literature that is related to our method.

A.1 VISUAL CONCEPT ANALYSIS

Visual concept analysis aims to interpret the behavior of pre-trained deep models by extracting
and tracking intuitive visual concepts during the DNN’s inference procedure. Previous works use
masks (Zhang et al., 2020b), explanatory graphs (Zhang et al., 2020a) and probabilistic models (Kon-
forti et al., 2020) to interpret the internal layers of convolutional neural networks (CNNs) (Liu et al.,
2022; Yu et al., 2023). Further, Deng et al. (2022) propose to capture and analyze the interaction of
visual concepts contributing cooperatively to the prediction results for CNNs. However, they use
Shapley values to compute the interaction, which is computationally expensive. Consequently, we
adopt vision Transformers (ViTs) (Dosovitskiy et al., 2021; Touvron et al., 2021) as the DNN back-
bone of our method instead of conventional CNNs thanks to the multi-head self-attention (MHSA)
mechanism (Vaswani et al., 2017) that explicitly encodes the interactions of visual tokens in the
similarity level.

More recently, VRX (Ge et al., 2021) is proposed to use a graphical model to interpret the prediction
of a pre-trained DNN, in which edges are constructed to represent the spatial relation of visual
semantics. They further utilize a GCN module to make a prediction with the input structural concept
graphs by training to mimic DNN’s prediction. Nevertheless, their approach requires training a graph
for every input sample, which is extremely expensive for applying to large-scale datasets. Besides,
VRX does not construct the class imagination that carries the category-specific knowledge, meaning
that the GCN predictor must learn to memorize and distinguish all the class-specific graphs, which
impairs the overall interpretability. Our proposed schema inference, however, explicitly creates an
interactive matching procedure between the instances and category imagination. Moreover, our GNN
model only captures the local structure for gathering class evidence, which is easier to accomplish.

A.2 VISUAL CONCEPT LEARNING

Visual concept learning refers to a range of methods that mine semantic-rich visual words from a
DNN, which are further utilized to make interpretable predictions towards a self-explanatory model
in reality. Concept bottleneck models (CBMs) (Koh et al., 2020; Zarlenga et al., 2022; Deng et al.,
2022; Wong & McPherson, 2021) link the neurons with human-interpretable semantics explicitly,
encouraging the trustworthiness of DNNs. Human interventions of learned bottleneck layers can
fix the misclassified concepts to improve the model performance. Another line of visual concept
learning, part-prototype-based methods, collectively makes predictions on target tasks with DNN and
semantic-rich prototypes, which can be divided into two schools according to their prototypes. (1)
Bag-of-Visual-Word (BoVW) approaches (Brendel & Bethge, 2019; Gidaris et al., 2020; Tripathi et al.,
2022) obtain prototypes with semantics through passively clustering the hand-crafted features (Yang
et al., 2007) or deep features into a set of discrete embeddings (visual words) that relate to specific
visual semantics. The prediction procedure of these approaches is analog to the BoW model in
natural language processing (NLP), in that an interpretable representation is constructed based on the
statistics of the occurrence of the visual words, and then fed to an interpretable classifier, such as the
linear classifier or decision trees. (2) In contrast, part-prototypical networks (ProtoPNets) (Chen et al.,
2019) and the following works (Nauta et al., 2021; Xue et al., 2022a; Zhang et al., 2022; Peters, 2022;
Rymarczyk et al., 2021) jointly train DNN (as the feature extractor) and parameterized prototypes.
Then decisions are made based on the linear combination of similarity scores between prototypes
and feature vectors at all the spatial locations. Despite the relatively high performance, as discussed
in (Brendel & Bethge, 2019; Hoffmann et al., 2021), the similarity of the learned prototypes and
deep features in the embedding space may be significantly different in the input space. As such, we
only compare those approaches in which prototypes are generated based on clustering for the same
level of interpretability. To the best of our knowledge, none of the existing works have explored a
deductive inference paradigm based on the interaction of visual semantics.
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A.3 SCENE GRAPH GENERATION

A scene graph can be generated from an input image to excavate the collection of objects, at-
tributes, and relationships in a whole scene. Typical graph-based representations and learning
algorithms (Herzig et al., 2018; Chang et al., 2021; Shit et al., 2022; Zhong et al., 2021; Zareian
et al., 2020) adopt graph neural networks (GNNs) (Kipf & Welling, 2016; Jing et al., 2021a; Yang
et al., 2020b; Jing et al., 2021b; Yang et al., 2020a; Jing et al., 2022; Yang et al., 2019) to model
the relationships between objects in a scene. Similar to scene graphs, our proposed SchemaNet also
utilizes GNNs to represent the relationships between ingredients related to local semantics. However,
the nodes in GNNs of SchemaNet represent more fine-grained representations, i.e., local semantics of
objects, compared to those relating to the whole objects in scene graphs. Moreover, in SchemaNet, the
trained GNN is responsible for estimating the similarity between an instance IR-Graph and category
IR-Graphs and making classification based on the similarity scores.

A.4 FEATURE ATTRIBUTION FOR EXPLAINABLE AI

In the “Feat2Vertex” module, we extract the attention to the CLS token as one important component
of the ingredient importance. Currently, plenty of approaches have been proposed for indicating local
relevance (forming saliency maps) to the DNN’s prediction, termed feature attribution methods. Most
existing works can be roughly divided into three classes: perturbation-based, gradient-based, and
decomposition-based approaches. Perturbation-based approaches (Strumbelj & Kononenko, 2010;
Zeiler & Fergus, 2014; Ancona et al., 2019; Zintgraf et al., 2017) compute attribution by evaluating
output differences via removing or altering input features. Gradient-based approaches (Simonyan
et al., 2014; Shrikumar et al., 2017; Sundararajan et al., 2017; Selvaraju et al., 2017; Feng et al.,
2022) compute gradients w.r.t. the input feature through backpropagation. Decomposition-based
approaches (Bach et al., 2015; Montavon et al., 2017; Chefer et al., 2021) propagate the final prediction
to the input following the Deep Taylor Decomposition (Montavon et al., 2017). Besides, CAM (Zhou
et al., 2016) and ABN (Fukui et al., 2019) provide interpretable predictions with a learnable attribution
module. As most previous methods focus on CNNs, Chefer et al. (2021) propose ViT-LRP tailored
for vision Transformers. However, most of the methods mentioned above are designed to generate a
saliency map for a particular class, making them inefficient in our implementation due to the O(C)
computational complexity or dependency on gradients.

B PROOF OF THEOREM 1

We first restate the theorem:
Theorem (Theorem 1 restated). For a shallow GCN module, Equation (8) can be approximated by

s =
∑
ϕ∈Φ

λ̂ϕλϕf̂
(LG)
ϕ f

(LG)
ϕ

⊤
. (12)

Particularly, if LG = 0 and α1 = 0, our method is equivalent to BoVW with a linear classifier.

For further discussion, we first prove the following lemma:
Lemma 1. For random vectors f , g ∈ RdG drawn independently from multivariate Gaussian
distribution N (0, I), we have

Ef,g

[
fW⊤Wg⊤

]
= 0

Ef

[
fW⊤Wf⊤

]
= ∥W∥2F ,

(13)

where ∥ · ∥F is the matrix Frobenius norm, and W ∈ RdG×dG is a projection matrix.

Proof. To begin with, we expand term fW⊤Wg⊤ as

fW⊤Wg⊤ =

dG∑
r=1

dG∑
s=1

dG∑
t=1

fsgtwr,swr,t. (14)

Therefore, the expectation

Ef,g

[
fW⊤Wg⊤

]
=

dG∑
r=1

dG∑
s=1

dG∑
t=1

wr,swr,tEfs [fs]Egt [gt] = 0, (15)
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(a) Raw vertex embeddings.
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Figure 6: Vertex embedding similarities between a vertex v in the instance IR-Graph and a vertex u
in the category IR-Atlas, which are extracted from the original vertex embeddings and output from
the last GraphConv layer. We show the average similarity over 1000 samples on the Caltech-101
dataset with a visual vocabulary size of 256.

while

Ef

[
fW⊤Wf⊤

]
=

dG∑
r=1

Ef

[
dG∑
s=1

dG∑
t=1

wr,swr,tfsft

]

=

dG∑
r=1

Ef

[
dG∑
s=1

w2
r,sf

2
s

]

=

dG∑
r=1

dG∑
s=1

w2
r,s = ∥W∥2F .

(16)

Particularly, if W is an identity matrix

Ef

[
fW⊤Wf⊤

]
= dG. (17)

Further, if the components of matrix W are drawn i.i.d. from Gaussian distribution N (0, 1) and are
independent with f ,

Ef,W

[
fW⊤Wf⊤

]
= d2G. (18)

Now we proof Theorem 1.

Proof. We start with a simple case that the depth of GCN module is zero.

As G and Ĝ share the same original vertex embeddings, we have

s =
∑

(u,v)∈V̂×V

λ̂uλv f̂
(0)
u f (0)v

⊤
=

∑
(u,v)∈V̂×V

λ̂uλvf
(0)
u f (0)v

⊤
. (19)

According to Lemma 1, the expectation of the same vertex term E
[
ff⊤

]
= dG is more significant

than different vertices terms λ̂uλvf
(0)
u f

(0)
v

⊤
for u ̸= v when G and Ĝ are constrained with sparsity.

In Figure 6(a), we visualize the vertex similarities f (0)u f
(0)
v

⊤
, showing that the similarities between

different vertices are significantly lower than that of the same vertex.
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Consequently, Equation (8) in the case of LG = 0 can be simplified as

s =
∑
ϕ∈Φ

λ̂ϕλϕ∥f (0)ϕ ∥
2
2, (20)

where Φ = V ∩ V̂ is the set of shared vertices of G and Ĝ.

With an extra assumption that α1 = 0, λϕ therefore represents the count of visual word ϕ. Combing
the learnable term λ̂ϕ∥f (0)ϕ ∥22 as wϕ, the prediction of the matcher is

y = ΛWFC, (21)

where WFC ∈ R|V |×C is the learnable projection matrix of a linear classifier.

Now, we prove the whole theorem. For different vertices u ∈ V̂ and v ∈ V , the summation term

su,v = λ̂uλv f̂
(LG)
u f

(LG)
v

⊤
can be rewritten as the aggregation form with feature output from the

(LG − 1)-th layer:

su,v = λ̂uλv
∑

(i,j)∈ṄĜ(u)×ṄG(v)

êu,iev,j f̂
(LG−1)
i W (LG)W (LG)⊤f

(LG−1)
j

⊤
, (22)

where ṄĜ(u) represent the neighbors of vertex u in Graph Ĝ and with u itself, and eu,u = 1 as the
self loop.

With the assumption that f̂ (LG−1)
i and f (LG−1)

j are whitened random vectors (we say a random vector
x ∈ Rd is whitened if all the components are zero mean and independent from each other, which can

be achieved by normalization), the summation term f̂
(LG−1)
i W (LG)W (LG)⊤f

(LG−1)
j

⊤
with vertex

i = j will be significantly larger than those with different vertices. We further illustrate the vertex

similarities output from the final layer in Figure 6(b), showing that f̂ (LG)
u f

(LG)
v

⊤
is conspicuous for

vertices u = v.

Corollary 1. Consequently, su,v is significant if ṄĜ(u) and ṄG(v) have shared vertices, relative
large edge weight product êu,iev,j , and vertex weight product λ̂uλv, which means u and v have
similar local structure, particularly in the case that u and v are the same vertex.

In conclusion, Equation (8) can be simplified as the summation of the joint vertices Φ = V̂ ∩ V of
the instance and category graph G and Ĝ.

C TRAINING ALGORITHM

The training algorithm of our proposed SchemaNet is shown in Algorithm 1 with initializing IR-Atlas
and sparsification.

D EFFECTIVE RECEPTIVE FIELD OF VITS

In this section, we discuss the effective receptive field (ERF) of ViTs, which is crucial as the visual
token in the intermediate layers of ViTs may relate to other positions due to MHSA, affecting the
interpretability of the ingredients (visual word semantics). Although Luo et al. (2016) propose to
measure the ERF for CNNs, it cannot be directly implemented to Transformer-base models. In this
section, we propose a relatively simple yet effective approach to measuring the ERF of ViTs.

Definition 3 (Transformer ERF). Supposed that visual sequence X ∈ Rn×d is fed into a ViT
backbone with N layers, x∗ is a randomly chosen anchor token in X , and ε ∈ Rd is the random
vector drawn from Gaussian distribution N (0, I) normalizing to the unit vector. The Transformer
ERF is the average Euclidean distance between the closest token y to x∗ in the 2D token array and
x∗ so that when y is disturbed to ŷ = y + ϵ the output change of token x∗ is less than a predefined
threshold δr > 0.
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Algorithm 1 SchemaNet optimizer with initialization and sparsification.

Input: D = {(xi, yi)}Di=1: the training dataset with D samples; Ĝ = {Ĝc}Cc=1: initial IR-Atlas;
Backbone(·): the ViT backbone; Matcher(·, ·): the graph matcher; Ω: the visual vocabulary; Θ:
the set of all trainable parameters; δt: the sparsification threshold.

1: procedure INITIALIZATION(D, Ω)
2: Sample a subset D̃ ⊂ D as the probe dataset.
3: S1, . . . , SC ← ∅, Ĝ ← ∅
4: for (x, y) ∈ D̃ do
5: G← FEAT2GRAPH(Backbone(x), Ω)
6: Sy ← Sy ∪G
7: end for
8: for c = 1, . . . , C do
9: Ĝ ← AVERAGE(Sc) ▷ compute average graph for each category

10: end for
11: return Ĝ
12: end procedure
13: procedure TRAINING(Ĝ, D, Ω)
14: for (x, y) ∈ D do
15: for êi,j ∈ Ê do ▷ Removing redundant edges
16: if λ̂i < δt or λ̂j < δt then
17: êi,j ← NIL
18: end if
19: end for
20: G← FEAT2GRAPH(Backbone(x), Ω)
21: ŷ ← Matcher(G, Ĝ)
22: Compute the final loss and gradient∇Θ w.r.t. parameters Θ.
23: Update parameters Θ with AdamW optimizer.
24: end for
25: end procedure
26: Ĝ ← INITIALIZATION(D, Ω)
27: TRAINING(Ĝ, D, Ω)

(a) DeiT-Tiny (b) DeiT-Small (c) DeiT-Base

Figure 7: The heat maps of the receptive field of an anchor token over its neighborhood region.
Averaged visualization results of 64 random images of three ViTs (DeiT-Ti, DeiT-S, and DeiT-B)
from Caltech-101 dataset are demonstrated. The full image size is 224× 224, and we crop a small
region with a size of 96× 96 with the anchor token as the center for better visualization.

Figure 7 shows the visualization heatmap w.r.t. the change of the output anchor with different ViT
backbones adopted in our method. As we can observe, for an input image size of 224 × 224, the
output tokens with relatively significant changes are mainly distributed in the circle with a radius of
25. Therefore, in our method, all the ingredients are in charge of 50× 50 patches corresponding to
the input image.
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E EXPERIMENTAL DETAILS

E.1 VISUAL VOCABULARY

Table 2: Visual vocabulary size.
Dataset Size M

CIFAR-10 128
CIFAR-100 1024
Caltech-101 1024

Thanks to the relatively uniform representation of visual seman-
tics generated by DNNs, our visual vocabulary size M can be
set to around 10 × C with competitive performance. Table 2
shows the default choice of M on different datasets. Results
with different vocabulary sizes are presented in Appendix G.
Furthermore, all the intermediate features are extracted from
the 9-th layer of the backbone ViTs, including DeiT-Tiny, DeiT-
Small, and DeiT-Base.

E.2 IR-GRAPH

Before an instance-level graph G and a category-level graph Ĝ are fed to the graph matcher, their
vertex weights and edge weights are normalized as follows. The vertex weights in Λ are divided by
the sum of Λ

Λnorm =
Λ∑|V |
i=1 λi

. (23)

The adjacency matrix E is divided by the row-wise summation:

Enorm =


E1,:∑|V |
i=1 e1,i

...
E|V |,:∑|V |
i=1 e|V |,i

 . (24)

Finally, the symmetric adjacency matrix Esym is defined as

Esym =
1

2
(Enorm + E⊤

norm) (25)

E.3 GCN SETTINGS

Now we describe the detailed settings of the GCN module in the graph matcher. We adopt Lay-
erNorm (Ba et al., 2016) as Norm(·) function and rectified linear unit (ReLU) as the activation
in Equation (7). Besides, the embedding dimension dG is set to 256 for all the experiments.

E.4 TRAINING DETAILS

The matcher and IR-Atlas in our method are optimized by AdamW (Loshchilov & Hutter, 2019) with
a learning rate of 10−3, weight decay of 5× 10−4, and cosine annealing as the learning rate decay
schedule. We implement our method with Pytorch (Paszke et al., 2019) and train all the settings for
50 epochs with the batch size of 64 on one NVIDIA Tesla A100 GPU. All input images are resized
to 224 × 224 pixels before feeding to our SchemaNet. We adopt ResNet-style data augmentation
strategies: random-sized cropping and random horizontal flipping.

F ADDITIONAL RESULTS

This section contains additional experimental results, highlighting the efficiency, robustness, and
extendability of our proposed schema inference.

F.1 RESULTS ON IMAGENET

We further implement SchemaNet on mini-ImageNet (Vinyals et al., 2016) and ImageNet-1k (Deng
et al., 2009). We adopt DeiT-Small as the backbone, and the visual vocabulary size is set to 1024
for mini-ImageNet and 8000 for ImageNet-1k (due to the memory constraint). Particularly, as
implementing 1000 fully-connected category-level IR-Graphs is expensive, we keep at most 500
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valid vertices for each class while all other vertices are pruned during the training process based on
the initialized vertex weights. All other settings are identical to the experiments on Caltech-101. The
results are presented in Table 3, drawing consistent conclusions as the main results in Table 1.

Table 3: Comparison results (top-1 accuracy) on ImageNet-1k and mini-ImageNet.
Dataset Base Backbone-FC BoVW-Deep BagNet SchemaNet SchemaNet-Init

mini-ImageNet 95.35 90.04 90.24 85.64 89.40 91.02
ImageNet-1k 79.90 69.23 58.95 68.92 - 74.05

F.2 COMPARISON RESULTS OF USING ATTRIBUTION METHODS

Instead of using raw attention extracted from the backbone in Equation (3), we further employ feature
attribution methods for computing the ingredient importance. Specifically, we compare the results
using raw attention, CAM (Zhou et al., 2016), and Transformer-LRP (Chefer et al., 2021) in Table 4.
We can observe that using raw attention is superior to the attribution methods in terms of accuracy
and running time. Such results can be explained that: (1) the attribution methods compute a saliency
map for each class (particularly, ViT-LRP conduct C-times backpropagation, consuming enormous
time), which is significantly slower than our implementation; (2) further, as the backbone predicts soft
probability distributions other than one-hot targets, the computed saliency maps for similar categories
will be highlighted to some extent, impairing the graph matcher.

Table 4: Comparison results (top-1 accuracy and running time) of using different attribution methods
on CIFAR-10 and CIFAR-100 datasets.

Dataset Raw Attention CAM ViT-LRP
Acc Time Acc Time Acc Time

CIFAR-10 95.96 0.8h 93.58 3.6h 91.28 53.8h
CIFAR-100 78.45 3.7h 77.55 15.3h - -

F.3 ADVERSARIAL ATTACKS

To analyze the robustness of our proposed SchemaNet, we evaluate the pre-trained SchemaNet (from
ImageNet-1k described in Appendix F.1) on two popular adversarial benchmarks: ImageNet-A (Djo-
longa et al., 2021) and ImageNet-R (Hendrycks et al., 2021). The comparison results are shown
in Table 5, revealing that our method is more robust than the baselines.

Table 5: Adversarial attack results (top-1 accuracy) on ImageNet-A and ImageNet-R datasets.
Dataset Backbone-FC BoVW-Deep BagNet SchemaNet-Init

ImageNet-A 5.41 7.36 5.53 13.05
ImageNet-R 31.21 24.17 30.93 33.46

F.4 EXTENDABILITY

We evaluate the extendability of our method by extending a trained SchemaNet to unseen tasks, while
keeping the original framework frozen. As such, only the category-level IR-Graphs for the new tasks
are optimized and inserted into the original IR-Atlas.

Specifically, the tasks are disjointly drawn from Caltech-101 dataset. The “Base” task has 21 classes,
and task 1 to 4 has 20 classes. The backbone model, i.e., DeiT-Tiny, is trained on the “Base” task and
then is kept unchanged for the new tasks.

The experimental results are presented in Table 6, revealing limited performance degradation for
incoming new tasks. Such results show that the graph matcher is only responsible for evaluating the
graph similarity, while the category knowledge is stored in the imagination, i.e., IR-Atlas.
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Table 6: Top-1 accuracy results when extending SchemaNet to unseen tasks. The accuracies are
evaluated on the corresponding task, and the average accuracy over all the tasks is given as well.

Average Base
Base 97.57 97.57 Task 1

+Task 1 94.68 95.95 93.69 Task 2
+Task 2 93.36 95.14 93.06 92.11 Task 3
+Task 3 93.63 95.55 93.06 92.47 93.75 Task 4
+Task 4 92.37 95.14 92.74 91.76 90.42 91.49
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Figure 8: Ablation study and sensitivity analysis of hyperparameters of our proposed SchemaNet on
CIFAR-100 backed with DeiT-Tiny.

F.5 FEAT2GRAPH EVALUATION

We here present a performance bottleneck of our method, i.e., the Feat2Graph module, in which a
feature ingredient array is converted to IR-Graph without benefiting from GPU parallel acceleration.
Specifically, as duplicated visual words may exist after the feature discretization, which happens
from time to time, we implement this module in C++ to achieve better random access performance.
The experiments are conducted on one NVIDIA Tesla A100 GPU platform with AMD EPYC 7742
64-Core Processor.

In Table 7, we show the average running time of each component with an input batch size of 64. We
can see that without acceleration in parallel, the running time for “Feat2Edge” is significantly longer
than others (about 1.75 ms per image). However, the inference time is still acceptable for real-time
applications.

Table 7: Time costing (ms) of the components in SchemaNet with input batch size of 64.
Dataset Backbone Feat2Vertex Feat2Edge Matcher

CIFAR-10 4.89 7.00 19.8 1.95
CIFAR-100 4.31 9.50 101.7 1.30
Caltech-101 4.12 8.12 111.7 1.42

G ABLATION STUDY

G.1 VISUAL VOCABULARY SIZE

Figure 8(a) shows SchemaNet accuracy when using different sizes of visual vocabulary. We can
observe that even with a relatively small size, e.g., M = 256 on CIFAR-100, the performance is
still competitive (about 7% absolute degradation). Besides, for the case of M = 2048, however, the
performance suffers from low generalizability of the vocabulary.
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Figure 9: Learning curves of α1,2 and β1,2 with DeiT-Tiny backbone on Caltech-101 dataset.

G.2 NUMBER OF GRAPHCONV LAYERS

The effect of using different depths of GCN is illustrated in Figure 8(b). As LG increases to
5, the accuracy on CIFAR-100 decreases rapidly, yielding that deep GCN matcher impairs the
graph matching performance, which has been explored due to the over-smoothing caused by many
convolutional layers (Zhao & Akoglu, 2020; Li et al., 2018). In our method, however, the graph
matcher with only two layers of GraphConv is proven to be adequate for high performance and
interpretability.

G.3 ABLATION OF WEIGHT COMPONENTS

Table 8: Ablation study of the components defining
the vertex and edge weights with DeiT-Tiny as the
backbone DNN.

Settings Accuracy
CIFAR-10 CIFAR-100

Learnable α1,2, β1,2 95.96 78.20
Fixed α1 = 0, α2 = 1 95.88 75.91
Fixed α1 = 1, α2 = 0 95.68 72.17
Fixed β1 = 0, β2 = 1 95.85 77.31
Fixed β1 = 1, β2 = 0 95.89 77.84
Fixed α1,2 = β1,2 = 0.5 95.92 75.62

The effect of λCLS and λbag defined in Equa-
tion (3), and eattn and eadj defined in Equation (6)
are shown in Table 8. By setting the correspond-
ing weight (α1,2 and β1,2) to zero once at a
time, we are able to analyze the components
individually. In general, removing any term will
lead to varying degrees of performance degra-
dation. More significantly, when removing the
term λbag, the accuracy decreases by 6.03% on
CIFAR-100, revealing that the statistics of the
ingredients help filter noisy vertices.

The learning curves of the learnable weights are
shown in Figure 9, from which we can observe that the model tend to adopt a relatively larger α2 (for
visual word count) while keep λCLS

v term for filtering noisy and background ingredients.

H SENSITIVITY ANALYSIS OF HYPERPARAMETERS

H.1 SPARSIFICATION THRESHOLD

Table 9 presents the SchemaNet-Init top-1 accuracy trained with different sparsification threshold δt.
We can observe that an appropriate value of δt, e.g., 0.01, will boost the model performance.

Table 9: Sensitivity analysis of sparsification threshold δt.
δt 0 0.001 0.01 0.02 0.05 0.1

Acc 77.27 77.96 78.45 78.43 77.51 76.92
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Figure 10: Illustration of misclassified samples. Better view in color.

H.2 LOSS WEIGHTS

Figure 8(c) shows the sensitivity analysis of λv and λe in Equation (11) that constrains the complexity
of IR-Atlas. We evaluate the top-1 accuracy performance on the CIFAR-100 dataset with DeiT-Tiny
as the backbone. The curve of λv shows that neither dense nor extreme sparse IR-Atlas impairs the
performance, while our method is more robust when changing λe.

I MORE VISUALIZATIONS

I.1 VISUALIZATION AND ANALYSIS OF MISCLASSIFIED EXAMPLES

Figure 10 shows two misclassified examples along with the classification evidence. In Figure 10(a),
the object is misclassified to a fine-grained category “rooster” because of a noise ingredient #240,
which should be #103. Unfortunately, ingredient #240 is a crucial vertex in the rooster’s IR-Graph,
contributing about 9.5 absolute gains in the logit, leading to misclassification. Figure 10(b) shows a
more complicated example. We can observe that instead of discretizing the appeared human face to
the “face” ingredients, the backbone provides features closer to #17, which is more similar to the
animal’s face. Moreover, some part of the object’s body is assigned to #240 rather than the panda’s
body (#204). Thus, it creates a remarkable pattern, i.e., the interaction between #17 and #240, which
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is the crucial local structure in the llama’s graph. As a result, #240 and its local structure contribute
about 14.9 gains in the logit. Although our schema inference framework is capable of revealing why
an image is misclassified by highlighting the key points, in future work, we must explore a more
compatible feature extractor that can generate more robust local features.

I.2 VISUALIZATION OF INGREDIENTS

In Figure 11, we visualize the whole set of ingredients on Caltech-101 for visualizations in Figure 5
and Figures 12 to 14. We extract 256 ingredients on Caltech-101 for a better view. For each cluster
center generated from k-means clustering, we select the top-40 tokens that are closest to it and show
the corresponding image patch (50× 50 in pixel, delineated in Appendix D). We can observe that
image patches of the same cluster share the same semantics.

I.3 VISUALIZATION OF IR-ATLAS AND INSTANCE IR-GRAPHS

We provide more visualization examples on Caltech-101 dataset, shown in Figures 12 to 14.
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Figure 12: Examples of the learned IR-Atlas and instance IR-Graphs randomly sampled from five
categories (“bass”, “bonsai”, “emu”, “euphonium”, and “grand piano”) on Caltech-101.
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Figure 13: Examples of the learned IR-Atlas and instance IR-Graphs randomly sampled from five
categories (“hawksbill”, “ibis”, “kangaroo”, “leopards”, and “llama”) on Caltech-101.
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Figure 14: Examples of the learned IR-Atlas and instance IR-Graphs randomly sampled from five
categories (“okapi”, “rooster”, “sunflower”, “water lilly”, and “wild cat”) on Caltech-101.
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