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ABSTRACT

Black-box model sharing is a preferable alternative to data sharing because of prac-
tical considerations (e.g., administrative regulation and data expiration). However,
previous works may neglect the self-interests of individual parties. To encourage
self-interested parties to contribute predictions in the ensemble, it is crucial to
provide incentives, such as fairness: allocating higher reward/payoff to parties
with more contributions, and individual rationality: ensuring guaranteed model
performance improvement for each party. This paper presents a novel incentivized
black-box model sharing framework that fairly distributes ensemble predictions
and monetary payoffs commensurate to each party’s contribution. We propose
a contribution measure using the average ensemble weight of black-box models.
Subsequently, we derive a closed-form solution that explicitly determines the fair
reward and payoff allocation given the contribution and payment. By incorporating
ensemble predictions and analyzing the generalization error bound, we theoret-
ically show approximate individual rationality is guaranteed. Furthermore, we
empirically demonstrate our proposed method achieves incentive guarantee using
real-world datasets.

1 INTRODUCTION

Collaborative machine learning is a promising approach that allows different parties to collaboratively
build ML models. Although it is possible for parties to facilitate data sharing (Doel et al., 2017;
Tenopir et al., 2020), they may not share or sell their private data due to administrative regulation
and/or data expiration (GDPR.EU, 2018). For example, different hospitals cannot share data to
optimize patient treatment, if data sharing is prohibited due to confidentiality concerns (Mulligan,
2001) or the training data are expired at the end of clinical studies (Hulsen, 2020). As ML models are
built to learn from the training data, model sharing can help address concerns of data sharing and
offer a more attractive collaboration method (Li et al., 2022). Nevertheless, parties may also hesitate
to disclose their model parameters due to concerns about potential information leakage (Hitaj et al.,
2017; Zhu et al., 2019). Therefore, sharing black-box models (i.e., the internal parameters are not
disclosed, and only the predictions given input data can be observed) is a more appealing choice
because it discloses less model information.

Current works on black-box model sharing (Feng et al., 2021; Chang et al., 2021; Lin et al., 2020;
Li et al., 2021; Papernot et al., 2017) aggregate (e.g., mean or weighted average) the predictions of
individual models into ensemble predictions, which are then distributed to all parties as synthetic data
to improve their respective model performance. These works rely on an assumption that all parties
willingly contribute their predictions, which is unfortunately difficult to satisfy in practice. Consider
a hypothetical scenario in which one primary party, such as Alice, contributes her predictions, while
the remaining parties contribute nothing (e.g., multiple student models distill one teacher model
(Chang et al., 2022; You et al., 2018)). As Alice cannot improve her model from such collaboration,
she is not motivated to contribute her predictions, especially since the data collection and training
computation of ML models can incur substantial costs. In this regard, self-interested parties require
suitable incentives (e.g., an improved model or financial rewards) to collaborate (Lo & DeMets,
2016), motivating the need for an incentive scheme in black-box model sharing.

Drawing parallels between data sharing (Sim et al., 2020) and black-box model sharing, we identify
two similar key incentives as fairness and individual rationality (IR). Fairness suggests that every
party should receive a reward proportional to its contribution (Sim et al., 2020). To distribute a fair
reward, it is imperative to first determine the contribution of each party to the collaboration. Existing
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works of data sharing use data quality as the contribution measure, which requires partial/full access
to private data (Ghorbani & Zou, 2019; Yoon et al., 2020) or model-related information, such as
Bayesian networks (Sim et al., 2020) and K-nearest neighbor classifiers (Jia et al., 2019b). However,
such access to data or information on models is not available in black-box model sharing. Then, (1)
how should we measure the contributions in black-box model sharing?

Furthermore, the type of reward offered in collaboration is a crucial factor in incentivizing collabo-
ration. While monetary payoffs are often used in collaboration (Han et al., 2023; Liu et al., 2021),
where less-contributing parties are required to compensate top contributors financially, some parties
may lack sufficient budget to cover the costs or prefer improving model performance to acquiring
payoffs (Sim et al., 2020). On the other hand, non-monetary reward schemes, such as rewarding by
varying sizes of synthetic data (Tay et al., 2022), aim to ensure fairness by proportionally distributing
rewards. However, this may restrict parties with adequate monetary resources from leveraging their
budgets to obtain additional rewards. For instance, a reward mechanism that incorporates monetary
payoffs can extend to model marketplaces (Liu et al., 2021; Agarwal et al., 2019), where it allows
non-contributing parties with ample financial budgets to compensate model sellers for their con-
tributed models. Accordingly, jointly considering monetary payoffs and non-monetary rewards can
address these restrictions, and enable the parties to acquire what they lack by offering what they have.
To satisfy fairness in this joint allocation scheme, a crucial question is: (2) what is a fair payment for
acquiring additional rewards in the collaborative setting?

Finally, IR suggests that no party will be worse off by collaborating (Sim et al., 2020). In black-box
model sharing, it means the model performance of each party will be improved after receiving rewards
(in the form of predictions). However, if the ensemble predictions (i.e., rewards) are of low quality
(e.g., many inaccurate models are involved in collaboration), model performance might degrade when
ensemble predictions are directly used as additional training data by the parties and violate IR. Thus,
(3) how can IR be satisfied in black-box model sharing?

The address the three questions, we propose a framework of incentivized black-box model sharing.
For (1), we introduce a Weighted Ensemble Game (WEG) using the average ensemble weight to
quantify the contribution of black-box models towards the ensemble predictions, which is validated by
our study showing the quality of ensemble predictions depends on individual ensemble weights. For
(2), we suggest that the sum of the reward and payoff of each party is proportional to its contribution.
To ensure a fair ratio between payments and rewards, we then propose Fair Replication Game (FRG)
to characterize the value of the bought rewards and payoffs. We show that the Shapley value for the
combined game of WEG and FRG has a closed-form solution that concisely specifies the allocation
of reward and payoff, and satisfies fairness. For (3), we theoretically show ϵ-IR, a relaxed version of
IR, is satisfied by analyzing the generalization (error) bound. We also empirically demonstrate the
appealing attributes and efficacy of our proposed scheme in collaboration using real-world datasets.

2 RELATED WORK

Black-Box Model Sharing. In the study of unsupervised domain adaptation from black-box models,
numerous works (Feng et al., 2021; Ahmed et al., 2021; Liang et al., 2022) have facilitated black-box
model sharing to improve model performance and address privacy concerns, where they transfer
knowledge to the unlabeled target domain from black-box models. Concurrently, federated learning
with ensemble distillation (Chang et al., 2021; Lin et al., 2020; Li et al., 2021; Li & Wang, 2019) has
also attracted considerable attention for its ability to produce a single, distilled model from multiple
black-box models in a distributed manner. The literature in this domain has primarily concerned
the performance improvement of ensemble distillation while adhering to the restrictions on privacy
preservation and communication efficiency. The primary motivation behind these preceding works
has been to address practical concerns (e.g., privacy). However, it is essential to recognize that parties
might also have self-interested motivations in practice. Our study serves as the first exploration of
incentive-aware collaboration within the context of black-box model sharing.

Valuation Problem. Various methods (Ghorbani & Zou, 2019; Jia et al., 2019a; Xu et al., 2021;
Kwon & Zou, 2022; Wu et al., 2022) have been proposed for data valuation for a variety of tasks.
These methods, which have been proven both accurate and beneficial, are particularly relevant in the
context of data sharing. Yet, little research has explored the topic of black-box model valuation. To
the best of our knowledge, a solitary study (Rozemberczki & Sarkar, 2021) has considered black-box
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model valuation within an ensemble game framework, employing weighted voting to quantify the
value of multiple binary classifiers. However, our work covers a more general classification problem
and theoretically studies how model contributions affect ensemble performance.

Incentive Mechanism in CML. Prior work focused on how to distribute only either monetary payoffs
(Han et al., 2023; Cai et al., 2015; Jia et al., 2019c; Zhan et al., 2020) or non-monetary rewards (Sim
et al., 2020; Tay et al., 2022; Karimireddy et al., 2022) while ensuring some incentive objectives
(e.g., fairness and IR). In particular, (Sim et al., 2020; Tay et al., 2022) distribute rewards based on
Shapley value to incentivize collaboration. There lacks a unified scheme to fairly bridge monetary
payoffs and non-monetary rewards in the collaboration. Towards this goal, (Nguyen et al., 2022)
proposed conditional Shaley value to adjust model rewards by using linear programming under budget
constraints, but we will show that it did not satisfy Shapley fairness in jointly allocating rewards
and payoffs. However, our method theoretically and empirically satisfies the Shapley fairness. We
also empirically show we satisfy the fairness incentive compared to this baseline method. Moreover,
our method has a closed-form solution that specifies the exact reward and payoff allocation. We
also recognize a distantly related study on the model-sharing game (Donahue & Kleinberg, 2021).
However, their research framework focuses on sharing white-box models and does not address
fairness and IR incentives.

3 SETTING, BACKGROUND AND OVERVIEW

We consider a set N := {1, ..., n} of n self-interested parties. Each party i ∈ N has a predictive
model hi ∈ H : X 7→ △K−1 where H is the hypothesis space, X is the input space, and △K−1 is
the K-probability simplex. The predictive model hi is trained to minimize the empirical risk with mi

sample sizes on its source domain ⟨Di, f⟩ where Di is its data distribution and f is the same labeling
function across all source domains. We denote by ⟨D, f⟩ the target domain on which all parties want
to predict well, and U ∼ D a set of unlabeled data of size T i.i.d. sampled from D.

Updated: An overview of our proposed 2-stage mechanism is illustrated in Fig. 1: In stage 1 (in
Sec. 4), a trusted host queries all the parties on each x ∈ U to obtain their corresponding predictions
{hi(x)}ni=1, to produce an ensemble prediction hN (x) =

∑n
i=1 βi,xhi(x) where βi,x is the ensemble

weight of hi(x) determined by a given choice of the ensemble (elaborated later). In this way, each
party i makes contributions by providing predictions hi(x), and we make use of the Shapley value
ϕi (Shapley, 1953) to fairly quantify the value of their contributions (where the fairness is formalized
via certain properties in App. B.1) by designing a suitable valuation function V (that depends on
hi(x)): ϕi(V) := (1/n!)

∑
π∈ΠN

[V(Cπ,i ∪ {i}) − V(Cπ,i)] where ΠN is the set of all possible
permutations of N and Cπ,i is the coalition of all parties preceding i in the permutation π. In stage 2
(in Sec. 5), based on the contribution ϕi of each party, we design a fair reward (of value) ri ∈ R+ and
realize the reward in the form of an i.i.d. subsampled set of the ensemble predictions {xt, hN (xt)}Tt=1.
Moreover, we enable each party to make monetary payment pi ∈ R+ (through the trusted host) to
other parties to obtain additional rewards (of value) r+i ∈ R+. In particular, we show that the reward
and payoff allocation satisfies fairness and ϵ-IR incentives.

Figure 1: Overview of incentivized black-box model sharing framework. Stage 1 (left) uses the parties’
predictions hi(x)’s to obtain the contributions ϕi’s (Sec. 4). Stage 2 (right) uses the contributions ϕi

and payments pi to realize the reward Ui (of value ri + r+i ) and compensation p+i (Sec. 5).

4 CONTRIBUTION EVALUATION IN BLACK-BOX MODEL ENSEMBLE

4.1 ENSEMBLE METHOD

We observe that the weighted sum formulation hN (x) =
∑n

i=1 βi,xhi(x) appears in many existing
ensemble methods: In average ensemble (AVG) (Lin et al., 2020), hN (x) = n−1

∑n
i=1 hi(x) where
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βi,x = 1/n. In multiplicative weight update (MWU) (Blum et al., 2021), βt
i,x = − log(∥ht

N (x)−
hi(x)∥2/

∑n
i=1 ∥ht

N (x)−hi(x)∥2) at each weight update step t. More examples are in App. B.2. As
different ensemble methods may yield predictions of varying qualities, we introduce here an optimal
ensemble method used in our experiments in Sec. 6. When the ground truth of U is known by the
host, the optimal ensemble weight {β∗

i,x}ni=1 for x ∈ U is obtained by solving the following linear
optimization problem: minimize |f(x)−

∑n
i=1 β

∗
i,xhi(x)| over {β∗

i,x}ni=1 ∈ △n−1 .

4.2 FAIR CONTRIBUTIONS IN ENSEMBLE

We first identify the additive structure from ensemble predictions and further exploit the additivity to
define a novel class of cooperative games, where parties aggregate their predictions via weighted sum
for a given distillation dataset (e.g., U ).
Definition 4.1 (Weighted Ensemble Game). For the ensemble weight β specified by certain ensemble
methods, the weighted ensemble game for a given dataset U with size T is G = (N,V, U, β) and the
valuation function V is given by

V(C;U) :=
∑

x∈U

∥∥∑
i∈C βi,xhi(x)

∥∥
1
/T =

∑
x∈U

∑
i∈C βi,x/T, ∀C ⊆ N .

Let us first consider the simplest case when only one data point is given for the game (i.e., T = 1).
Thus, the ℓ1-norm of the weighted prediction

∑
i∈C βi,xhi(x) measures the importance/weight of

coalition C to the ensemble prediction hN (x). Note that V(C; {x}) is equivalent to
∑

i∈C βi,x as
each hi(x) is a probability vector and βi,x is non-negative. So, if V(C; {x}) is large, the coalition
C contributes more valuable predictions to hN (x). In black-box model sharing, the host gathers
the predictions {hi(x)}x∈U from each party for the dataset U . Therefore, V(C;U) measures the
contribution of coalition C to all ensemble predictions. We let Vi = V({i};U) to ease notation. As
a concrete example, Vi =

∑
x∈U βi,x/T , which is the average ensemble weight of model hi and

represents the contribution of party i to ensemble predictions.

The function V satisfies the standard assumptions of CGT, i.e. V(∅) = 0 and V(C) ≥ 0 ∀C ⊆ N ,
making it compatible with solution concepts from CGT. To fairly measure the contribution of each
party in the grand coalition N , we use the Shapley value recalled in Sec. 3, which is unfortunately
computationally expensive to calculate (Kwon & Zou, 2022). By exploiting the additivity of V (i.e.,
V(C1 ∪ C2) = V(C1) + V(C2) for every coalition C1 ⊆ N and C2 ⊆ N \ C1), we can obtain
the Shapley value in linear time, and its analytic form for each party i is given as ϕi(V) = Vi =∑

x∈U βi,x/T . The proof is in App. C.5. We use the shorthand ϕi = ϕi(V) only for V when the
context is clear. Therefore, the fair contribution of a black-box model in the ensemble is measured
by its average ensemble weight. One might initially think our formulation of V as simplistic, but its
additive property enables us to obtain the closed form of ϕi. A recent work Drungilas et al. (2023)
proposed to determine the ensemble weight βi,x by measuring the contribution of a learner to an
ensemble with the Shapley value. Therefore, our valuation method that directly uses the ensemble
weight as the contribution is meaningful. Moreover, the formulation of V can also be broadly applied
to numerous ensemble methods as shown in Table 1, 4, and 5.

4.3 GENERALIZATION BOUND FOR WEIGHTED ENSEMBLE

Next, we provide further justification of our model valuation method by analyzing the generalization
bound for the virtual ensemble model hN . We first introduce some notations: the error of a hypothesis
h on the target domain ⟨D, f⟩ is LD(h, f) := Ex∼D[ℓ(h(x), f(x))] where ℓ is the loss function and
f is the labeling function. We use the shorthand LD(h) = LD(h, f) next.
Proposition 1. For the ensemble model hN and for any δ ∈ (0, 1), with probability ≥ 1− nδ:

LD (hN ) ≤
∑n

i=1

(
Vi +

√
2 log(2/δ)/T

)
LD (hi) + ΣN

where ΣN :=
∑n

i=1 Ex∼D[(βi,x − ED[βi,x])(|hi(x)− f(x)| − LD(hi))] .

The proof is given in App. C.1. The constant δ is due to the probability over the choice of samples,
and ΣN is the sum of some covariances. The (upper bound of) generalization error of the ensemble
model hN depends on the average ensemble weights (i.e., Vi), since LD (hi) and T are fixed in
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collaboration. The bound in Proposition 1 suggests that different {Vi}i∈N could lead to different
LD (hN ). Therefore, Vi indeed quantifies the influence of party i to LD (hN ) or its contribution to
the ensemble in collaboration.

As parties would be primarily interested in receiving high-quality ensemble predictions, their contri-
butions to an inferior ensemble are meaningless. For example, in a two parties’ collaboration (e.g., A
and B) where LD(hA) = 0 and LD(hB) = 1, if ϕB = 1 by a certain ensemble method, it does not
imply that party B possesses a better model. Additionally, party B cannot benefit from the wrong
ensemble predictions even if it receives all rewards. If a proper ensemble method (e.g., the optimal
ensemble method in Sec. 4.1) is used, Vi should be decreasing with respect to LD(hi). It implies that
a model with a large generalization error is assigned with a low average ensemble weight, such that
the ensemble generalization error LD(hN ) will be small and the ensemble predictions will be helpful
in improving the performance. Thus, for a high-quality ensemble, a larger Vi implies a more valuable
model with a smaller generalization error, which shows the usefulness of our valuation function V .
We have also empirically observed the validity of V in Sec. 6.

5 INCENTIVIZED BLACK-BOX MODEL SHARING

We identify that fairness and IR are the primary incentives for self-interested parties. In this section,
we first introduce the incentive definitions and then show how our reward and payoff allocation
scheme ensures fairness based on contributions and payments. Notably, our allocation scheme is also
applicable to other valuation functions (e.g., V in Tay et al. (2022)) when the reward can be replicated
(i.e., digital goods). Furthermore, we will theoretically examine how ϵ-IR is satisfied.

To precisely describe the incentives, some notations are required: let ri ∈ R+ denote the numerical
value of party i’s reward, and let pi ∈ R+ denote the value of the monetary payment that party i
makes to buy additional rewards. The payment pi is freely chosen by each party and it only flows to
other parties (i.e., N \ {i}) as compensation. Let r+i ∈ R+ denote the value of the additional rewards
that party i bought. Let p+i ∈ R+ denote the value of monetary compensation that party i receives
from other parties’ payments. Finally, let LD(h

′
i) represent the generalization error of party i’s new

model trained with additional ensemble predictions. Refer to Fig. 1 for a visual demonstration.

T1 Shapley Fairness. The rewards {ri}i∈N and the monetary gain {r+i − pi + p+i }i∈N should be
Shapley Fair: ∃k1, k2 > 0, s.t. ∀i ∈ N, (ri = k1ϕi) ∧ (r+i − pi + p+i = k2ϕi) .

T2 ϵ-Individual Rationality. Each party receives a reward that at least improves its model per-
formance and an additional reward that is at least as valuable as its payment: ∃ϵ > 0, s.t. ∀i ∈
N, (LD(h

′
i)− ϵ ≤ LD(hi)) ∧ (r+i ≥ pi).

T3 Weak Efficiency. At least one party in the collaboration should receive a reward that is as valuable
as all ensemble predictions: ∃i ∈ N, s.t. (ri = VN ) ∧ (p∗i = 0), where p∗i denotes the maximal
payment that party i can make to exchange for the remaining rewards (i.e., VN − ri).

Intuitively, T1 suggests that if a party i has a larger contribution, both its reward ri and monetary
payment gain r+i −pi+p+i should be proportional to its Shapley value to ensure fairness. For instance,
if two parties i and j make the same payment (i.e., pi = pj) and party i has a larger contribution (i.e.,
ϕi > ϕj), it is only fair for party i to receive more monetary gain (i.e., r+i −pi+p+i > r+j −pj +p+j ).
(r+i ≥ pi) means it only makes sense to pay if the additional reward is more valuable than the
payment. Besides, a self-interested party desires the strict IR (i.e., LD(h

′
i) ≤ LD(hi)) before it joins

the collaboration, which means the party always wants to be better off. However, it is generally
challenging to analyze the generalization error (Jiang et al., 2020). Thus, we propose a relaxed
version, namely ϵ-IR, for theoretical analysis. We also notice the similar ϵ-IR definitions from Roth
& Shorrer (2017); Mounir et al. (2018). Additionally, for the weak efficiency concept, we adopt
it from Sim et al. (2020), to ensure full utilization of the rewards and eliminate waste. From an
implementation perspective, T3 enables a unique k1, k2 to satisfy both T1 and T3, discussed later.

5.1 FAIR REWARD AND PAYOFF ALLOCATION

A party i can make payment pi to acquire additional reward r+i to “top-up” its received reward ri, as
long as ri < VN . However, to continue to ensure fairness it is necessary to determine a fair exchange
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ratio between the payment pi and the additional rewards r+i . To this end, we first present a new game
that quantifies the fair value of the monetary gain (i.e., r+i − pi + p+i ):
Definition 5.1 (Fair Replication Game). The fair replication game, for a given Shapley vector
{ϕi}ni=1 and a payment vector {pi}ni=1, is Gp = (N,Vp, ϕi) and the characteristic function Vp is:

Vp(C) =
(∑

i∈Cϕi

)
× γ, ∀C ⊆ N where γ =

∑
j∈Npj/(VN − ϕj) .

FRG shows that the total monetary gain is Vp(N) = VN × γ, where the formulation
(∑

i∈Cϕi

)
× γ

of Vp suggests that each party shares a monetary gain of ϕi × γ from Vp(N). Especially, γ help
establish a fair exchange ratio VN/(VN − ϕi) between pi and r+i , shown later in Theorem 1. This
exchange ratio is also intuitive, as it implies that, for the same reward, a higher-contributing party
will need less payment to acquire the reward, because the party has contributed more to the ensemble
prediction (i.e., the source of the reward).

Intuitively, the overall gain of party i in the collaboration is quantified by the sum of its reward ri
and monetary gain (r+i − pi + p+i ). To analyze such value in the cooperative setting, we consider
the combined game of both the weighted ensemble game G and the fair replication game Gp. We
denote the corresponding Shapley value ϕi(V + Vp) of party i in the combined game as ui, termed
the utility. It represents the fair division of the overall gain from the combined game. We show in
Theorem 1 that ui specifies both reward allocation and payoff flow, which exactly represents our
reward and payoff allocation scheme.
Theorem 1. Given V and Vp, the utility ui := ϕi(V + Vp) for each party i ∈ N can be decomposed
as ui = ri + r+i + p+i − pi. Specifically,

ui = ri +
VN × pi
VN − ϕi︸ ︷︷ ︸

r+i

+
∑

j∈N\{i}
ϕi × pj
VN − ϕj︸ ︷︷ ︸

p+
i

−pi

where ri = ϕi is the Shapley value from the game G. Also, it satisfies
(a) payoff balance:

∑
i∈N (p+i −pi) = 0, (b) dummy payment: ∀C ⊆ N \{i}, V(C ∪ i) = V(C) ⇒

ui = 0, r+i = pi, (c) semi-symmetry: ∀C ⊆ N \ {i, j}, V(C ∪ i) = V(C ∪ j) ⇒ ui = uj , and (d)
strict monotonicity: (∃j ∈ N p′j > pj) ∧ (∀k ∈ N p′k ≥ pk) ⇒ ∀i ∈ N u′

i > ui.
Remark 1. The four properties indicate: (a) The host does not collect any payment; instead,
payments made by any party only serve as compensations to other parties; (b) A dummy party (i.e.,
where ϕi = 0) receives a utility of zero; (c) When two parties contribute equally, the payments they
make do not influence their relative utility values, which shows a fair trade-off between payoffs and
rewards; (d) Should a single party increase its payment, it results in a rise in utility for all parties.

The proof is given in App. C.2. Allocating rewards and payoffs based on utility directly satisfies the
fairness incentive T1, where party i receives a reward of value ri + r+i = ri + VN × pi/(VN − ϕi),
and a payoff of value p+i − pi =

∑
j∈N\i

ϕi×pj

VN−ϕj
− pi. Especially, there are infinitely many k1

such that ri = k1ϕi to satisfy T1. Enforcing T3, by using the scaled reward ri = (ϕi/ϕ
∗) × VN

where ϕ∗ = maxi∈N ϕi, leads to a unique k1 = VN/ϕ∗ that jointly satisfies T1 and T3. It allocates
the maximal reward VN to the most-contributing party. This scaled reward is the result of ui :=
ϕi(k1V + Vp) in Theorem 1. As the maximum value of reward cannot exceed VN , the maximal
payment that each party can make to increase its reward is p∗i = (ϕ∗ − ϕi)(VN − ϕi)/ϕ

∗. When all
parties make their maximal payments, each party i ∈ N receives all ensemble predictions of value
VN and a payoff of nϕi − VN . To elaborate on T2, as the exchange ratio VN/(VN − ϕi) between pi
and r+i is greater than 1, r+i ≥ pi is always satisfied. The proofs of the above incentive guarantee
are given in App. C.6. Notably, our allocation scheme does not depend on any particular ensemble
method. Given any contribution measure (i.e., ϕi), our allocation scheme satisfies T1&T3, as it
essentially establishes a fair trade-off between rewards and payoffs.

Reward Realization After determining the rewards {ri}ni=1 and collecting the payments {pi}ni=1,
the host can realize the reward and payoff allocation. The final payoff for party i is its compensation
offsetting its payment: p+i − pi. When p+i − pi > 0, party i receives monetary profit. The
reward ri + r+i is realized as a set of data of size Ti uniformly randomly sampled from the ensemble
predictions {xt, hN (xt)}Tt=1. We then have Ti := (ri+r+i )×T = (ϕi/ϕ

∗+pi/(VN−ϕi))×VN×T .
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Note that ϕi =
∑

x∈U βi,x/T shown in Sec. 4.2. This shows a party with a larger average ensemble
weight and payment will be rewarded with more ensemble predictions (i.e., a larger Ti).

5.2 GUARANTEEING ϵ-INDIVIDUAL RATIONALITY

As r+i ≥ pi is always satisfied by our allocation scheme above, we will only focus on how LD(h
′
i)−

ϵ ≤ LD(hi) is satisfied to guarantee ϵ-IR. The ϵ-IR incentive ensures that parties participating in
collaboration will not experience more than ϵ “regret” of generalization error. Therefore, the regret
ϵ has to be minimized to incentivize participation. We next give our exact expression of ϵ. Denote
h′
i ∈ H as the empirical minimizer of the risk L̂D′

i
(h) := (1− αi)L̂Di

(h) + αiL̂D(h, hN ) for each
party i ∈ N and αi ∈ [0, 1] the mixing value for balancing training data. Therefore, LD(h

′
i) is the

generalization error of model h′
i trained on its source data Di and ensemble predictions of size Ti.

By leveraging technical results from domain learning theory (Ben-David et al., 2010) and utilizing
the ensemble domain ⟨D, hN ⟩, we provide a specific result of ϵ-IR in Proposition 2.
Proposition 2. Let H be a hypothesis space of VC dimension d . Given mi the data size of Di,
and a distribution divergence measure dH∆H (Di,D) := 2 suph,h′∈H |LDi

(h, h′)− LD(h, h
′)|,

with probability at least 1 − nδ, ϵ-IR is satisfied such that ∀i ∈ N LD (h′
i) − ϵ ≤ LD (hi) with

ϵ = maxi∈N ϵi and

ϵi = 4

√
2d log(2(Ti +mi + 1)) + 2 log(

8

δ
)

√
α2
i

Ti
+

(1− αi)2

mi

+ (1− αi)dH∆H (Di,D) + 2αiLD(hN ) .

The proof is given in App. C.3. As ϵ = maxi∈N ϵi, to minimize ϵ it is equal to minimize ϵi. Thus,
a smaller ϵi for all i ∈ N indicates a stronger ϵ-IR guarantee. Proposition 2 shows that ϵi mainly
depends on the ensemble error LD(hN ), the mixing value αi, and its reward size Ti, as dH∆H (Di,D)
is fixed. For a given collaboration, LD(hN ) (due to ensemble method) and Ti (due to fixed ϕi and pi)
are also fixed. We can write ϵi(αi) as a function of αi. When αi = 1, it implies h′

i is only trained on
the ensemble predictions, and ϵi(1) mainly depends on LD(hN ) the error of ensemble predictions;
when αi = 0, h′

i is the same as hi, and ϵi(0) mainly depends on dH∆H (Di,D) the distribution
divergence. As ϵi(αi) varies with different αi, we will next analyze the minimum of ϵi(αi). To ease
the notation, we omit the subscript i and rewrite ϵi(αi) as:

ϵi(α) = B
√
α2/T + (1− α)2/m+ αA+ dH∆H (Di,D) (1)

where A = −dH∆H (Di,D) + 2LD(hN ), and B = 4
√

2d log(2(T +m+ 1)) + 2 log( 8δ ). Let C

denote the ratio A2/B2. We can find the optimal value α∗ that minimizes ϵi(α):

α∗ =

{
1 T > m(Cm− 1)−1

min {1, ξ} T ≤ m(Cm− 1)−1 where ξ =
T

m+ T

(
1 +

m
√
C√

m+ T − CTm

)
. (2)

The proof is shown in App. C.4. First, α∗
i provides insights regarding the parameter choice in

balancing the training data, which would serve practitioners well. If mi = 0 or Ti = 0, then α∗
i = 1

or 0 accordingly, which intuitively suggests that party i should train its model with whatever data it
has. If Ti > mi(Cimi−1)−1, it implies that there are enough rewards (i.e., the ensemble predictions)
that party i gets from the collaboration, its source data should be ignored in training the model h′

i.

Besides, if α∗
i is used to minimizes ϵi for all i in N , we then have the strongest ϵ-IR guarantee where

ϵ = maxi∈N ϵi is minimized. In the ideal case if ϵi = 0 ∀i ∈ N , the strict IR (i.e., LD(h
′
i) ≤ LD(hi))

is satisfied; however, the minimum of ϵi is generally positive, and the strict IR is hard to achieve
theoretically. We will later empirically show that the virtual regret ϵ is not needed and the strict IR is
satisfied in Figs. 2, 7 and 10, which suggests parties will never be worse off from collaboration. We
will also empirically show in Fig. 3 that α∗

i not only results in the strict IR, but also could bring the
largest performance improvement (i.e., the strongest strict IR).

6 EXPERIMENTS AND DISCUSSION

Valuation To justify our valuation method, we examine the correlation between the average
ensemble weight Vi (ϕi = Vi) and the generalization error LD(hi) of each party i. We perform
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experiments on different datasets including MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al.,
2009), and SVHN (Netzer et al., 2011). The training dataset is divided into 5 random i.i.d. subsets,
representing a hypothetical collaboration among n = 5 parties, with each party having access to a
distinct (i.e., non-overlapping) subset of the data. Each party adopts a neural network with two fully
connected layers to fit their respective data. Vi is calculated on a validation dataset of size 5000, and
LD(hi) is estimated over the test dataset. When different ensemble methods (refer to App. B.2 for
more details) are used in Table 1, the AVG method reports near zero correlation, as it is ineffective in
identifying models with lower LD(hi). When the optimal ensemble method is used, Table 2 shows
Vi and LD(hi) is highly correlated. This result helps validate Proposition 1 and helps justify our
valuation method. We also examine our valuation function under the model/data heterogeneous
settings and study how different ensemble methods affect both average ensemble weight Vi and the
accuracy of ensemble predictions in App. D.1.

Table 1: Pearson correla-
tion between Vi and LD(hi)
on MNIST with different en-
semble methods. The value
is reported over 100 indepen-
dent evaluations.

Ensemble Correlation

AVG -0.02±0.54
MV -0.24±0.52
MWU -0.24±0.56

Table 2: Pearson correlation
between Vi and LD(hi) on
different datasets. The value
is reported with the mean
and standard error over 100
independent evaluations.

Dataset Correlation

MNIST -0.72±0.35
CIFAR-10 -0.90±0.06
SVHN -0.83±0.11

Figure 2: Test accuracy (ACC) of
five parties’ models before and after
incorporating fair ensemble predic-
tion rewards.

ϵ-IR To illustrate how rewards are fairly distributed to improve model performance, we experiment
on MNIST and CIFAR-10, and follow the same experimental setting as (Nguyen et al., 2022) to
partition the training dataset based on the class labels. A party, denoted as [s− e] (s ≤ e), owns a
subset of the training dataset that is labeled with classes s, s+ 1, . . . , e. We consider 5 parties in N :
[0], [1-2], [0-3], [3-5], and [6-9]. Each party uses a neural network with a single hidden layer to fit
its training data and only shares the predictions for an unlabeled dataset of size T = 5000 sampled
from the training data. With the optimal ensemble method, we obtain the Shapley value vectors
[0.087, 0.112, 0.200, 0.224, 0.377] on MNIST, and similarly [0.078, 0.136, 0.195, 0.208, 0.383] on
CIFAR-10, which are intuitively fair as the unique data is more valuable. This again justifies our
valuation method. The ensemble predictions are then distributed according to our allocation scheme
in Sec. 5.1 where we ignore the payment first. Fig. 2 shows that the test accuracy of all parties is
improved after incorporating the ensemble predictions, i.e., ∀i ∈ N,ACC(h′

i) ≥ ACC(hi). In other
words, we empirically achieve the strict IR (i.e., LD(h

′
i) ≤ LD(hi)). Although party [3-5] (i.e.,

i = 4) cannot achieve higher accuracy by itself due to fewer data than party [0-3], party [3-5]’s data
uniqueness helps it have larger marginal contributions and achieve higher accuracy after receiving
more rewards. This encourages collaboration among different organizations, particularly those with
diverse and unique data. The optimal α∗ is used in Fig. 2. Refer to App. D.2 for more results under
different T . We will next show how α∗ is closely related to ϵ-IR. With the optimal ensemble method,
LD(hN ) = 0. Through estimating dH∆H (Di,D) and the VC dimension d, we could find the optimal
value α∗ shown in Eqn. 2. We continue with the above experimental setting of MNIST, and use party
[0-3] with a median Shapley value as an example. Fig. 3a shows ϵi(αi) changes with αi and our
calculated α∗

i is indeed at its minimum. We can observe from Fig. 3b that αi affects the generalization
error drop LD(h

′
i) − LD(hi), and our optimal α∗

i results in the largest drop, which implies the
greatest model improvement. The best model performance should intuitively indicate the strongest
ϵ-IR guarantee, which is just reflected by Fig. 3c. As we should have LD (h′

i)− LD (hi)− ϵi ≤ 0
from ϵ-IR, the least value of (LD (h′

i)− LD (hi)− ϵi) represents the strongest ϵ-IR guarantee, and
our α∗

i also captures this. Refer to App. D.2 for more results on CIFAR-10.

Fair Allocation We again follow the above experimental setting of MNIST and demonstrate the
efficacy of our allocation scheme. From Fig. 4, we observe the strict monotonicity property defined
in Theorem 1: when only one party makes the payment (e.g., p1), the utility of each party linearly
increases with p1 and is proportional to contributions, which ensures fairness when other parties
acquire more rewards with payments. We next compare our allocation scheme against Nguyen et al.
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Figure 3: (a) The function value of ϵi(αi) and its minimum ϵi(α
∗
i ), (b)

the generalization error drop LD(h
′
i)− LD(hi) with different αi, and

(c) the ϵ-IR guarantee quantified by LD(h
′
i) − LD(hi) − ϵi(αi) with

different αi.

Figure 4: Utility gains
of five parties when
only party [0] makes
payment.

(2022), and to do so we assume every party wants to maximize its reward, in order to specifically
compare with the baseline. Note that this assumption is only to enable the comparison, as our
allocation allows parties to freely choose whether to accept p+i or use p+i to further increase its
reward (i.e., our allocation does not require this assumption). We first consider the example where
only party [0] makes a payment of value 0.5 (i.e., p1 = 0.5). Fig. 5a shows our allocation scheme
satisfies Shapley fairness while the baseline does not. As the corresponding payoff (i.e., p+i − pi)
vectors for both methods are the same [−0.5, 0, 0, 0, 0.5], we observe from Fig. 5b that the baseline
method violates fairness because of over distributing rewards. We then consider the example where
only party [0] and [0-3] make payments where p1 = 0.5 and p3 = 0.1. The payoff flows for both
methods are shown Fig. 5c (baseline) and Fig. 5d (ours). As party [6-9] is the most contributing
party and T3 ensures it receives the maximum reward (i.e., r5 = VN ), it intuitively has no need to
make any payments, which is justified by our payoff flow in the last row of Fig. 5d. However, the
payoff flow of the baseline method in Fig. 5c requires party [6-9] to unnecessarily have an outgoing
payment flow. When parties have no budget constraint, the utility in Nguyen et al. (2022) could
satisfy Shapley fairness (i.e., ∃k > 0, s.t. ∀i ∈ N, ui = kϕi), and its payoff flow is the same as ours.
However, its utility cannot satisfy Shapley fairness when budget constraints are applied. In contrast,
our allocation scheme ensures fair utility under any budget constraint. Refer to App. D.3 for more
examples demonstrating our fair utility.

Figure 5: (a) The ratio of the utility over the Shapley value of each party when only party [0] makes a
payment, (b) the total received reward of each party when only party [0] makes a payment, (c) the
payoff flow of baseline method when party [0] and [0-3] make payments, and (d) the payoff flow of
our method when party [0] and [0-3] make payments.

7 CONCLUSION

In this paper, we have introduced the novel collaborative framework of incentivized black-box model
sharing as an appealing choice for collaborative learning. We perform a fair contribution evaluation of
black-box models using the average ensemble weight and demonstrate its validity both theoretically
and empirically. We also derived a concise and closed-form solution to distribute rewards and payoffs
while guaranteeing fairness. Finally, we show ϵ-IR is satisfied theoretically and strict IR can be
achieved empirically. For future work, we will consider the collaboration setting where different
parties have different target domains and parties may not always respond to the host’s queries.
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REPRODUCIBILITY STATEMENT

To ensure the transparency and reproducibility of our work, we presented a detailed explanation of
our valuation method in Sec. 4, the fair allocation scheme in Sec. 5.1, and the ϵ-IR in Sec. 5.2. All
theoretical results were detailed with clarity in our main paper, including assumptions made for each
algorithm. Complete proofs of all our claims are also available in App. C. For the empirical results of
this study, we have included specific experimental settings in the main paper and App. D, and have
also made the source code of our model openly accessible in the supplementary material (i.e., the zip
file).
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A FURTHER CLARIFICATIONS

(This subsection of summary is added during the rebuttal)

Summary This paper proposes a theoretical framework for incentivized black-box model sharing
with a 2-stage mechanism as illustrated in Fig. 1. Below we describe clearly the steps of the proposed
mechanism.

In stage 1 (in Sec. 4),

1. Each party i ∈ N has an already trained multi-class classifier hi on its own source distribu-
tion Di, and is interested in maximizing the performance on the same target distribution D.

2. Each party i sends its prediction hi(x) to a trusted host for each x ∈ U where U ∼ D is the
distillation dataset whose size |U | = T .

3. The host produces the ensemble prediction hN (x) =
∑n

i=1 βi,xhi(x) for each x ∈ U where
βi,x is the ensemble weight of hi(x) determined by a given choice of the ensemble such as
AVG, MV, MWU or MV (see how to determine βi,x in App. B.2).

4. The fair contribution of each party i is defined as the Shapley value ϕi, using the valuation
function V in Def. 4.1.

In stage 2 (in Sec. 5),

1. Each party i can make an additional monetary payment pi ∈ R+ through the trusted host to
other parties to obtain additional rewards (of value) r+i ∈ R+. Each party i decides on its
own the exact amount pi.

2. Once all parties have finalized their payments {pi}ni=1, each party i will receive a total
reward of value (ri + r+i ), which is realized as an i.i.d. subsampled set Ui of the ensemble
predictions {xt, hN (xt)}Tt=1.

3. The payments made by other parties (i.e., N \ {i}) are allocated by the host to party i as its
monetary compensation p+i . The exact allocation, namely the value of (ri + r+i ) and p+i are
fully specified by Theorem 1.

A.1 LIMITATIONS

(App. A.1 is added during the rebuttal)

One limitation of this work is that the model valuation method only applies to the weighted sum
ensemble, which may limit its potential application to other black-box model sharing schemes
where different ensemble methods are used. Besides, our valuation method relies on the ensemble
method used in the collaboration to determine the ensemble weight βi,x. If the ensemble method
is defective, βi,x may not reflect the true quality of the black-box model, resulting in inaccurate
ensemble predictions. Future works may consider improving the ensemble method by utilizing our
optimal ensemble to learn model surrogates with a small set of labeled data. Those model surrogates
may serve as estimators to obtain accurate βi,x.

A.2 Q&A

Q1: What is the access to the host and each party?
A1: In the black-box model sharing, each party does not know any information about the others, and
the host only has access to the distillation dataset U and the predictions (i.e., hi(x)) from all parties.
Our theoretical results do not have assumptions on the difference across the source distribution Di.
We assume that each party wants to perform well on the same test dataset (i.e., the target distribution
D), but the ground truth (i.e., f(x) ∀x ∼ D) of the test dataset is unknown. Please also refer to Fig. 1
for the overview of the framework of incentivized black-box model sharing.

Q2: What would be a completely described motivating example of incentivized black-box model
sharing?
A2: For instance, hospitals with varying domain expertise and locations may aim to optimize patient
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treatment collectively while maintaining data and model privacy. This can be achieved through
black-box model sharing. A trusted host, like a government agency, can use a jointly accepted dataset
(i.e., U ) to distill individual model knowledge (i.e., acquire prediction hi(x)). Using an appropriate
ensemble method, the host can determine each hospital’s contribution (i.e., ϕi). Lesser contributing
hospitals can further compensate others through payments (i.e., pi) for more rewards (i.e., r+i ). The
host will distribute the ensemble predictions as rewards based on contributions and payments.

Q3: How should we choose the ensemble weight βi,x to satisfy both fairness and ϵ-IR?
A3: As stated in Sec. 4, the ensemble weight βi,x is specified by the ensemble method which is
used by the host to aggregate predictions. It only quantifies the contribution of any party to the
ensemble predictions (i.e., the contribution to collaboration). However, the contribution to a bad
ensemble might be meaningless, as the bad-quality ensemble predictions will not help improve the
model’s performance. In general, to have a good-quality ensemble prediction, the average ensemble
weight

∑
x∈U βi,x/T should be small when its generalization error LD(hi) is large, as suggested in

Proposition. 1. As the ensemble weight βi,x is only a measure of contribution, it does not affect the
fairness. In fact, fairness is always satisfied by our allocation scheme. For ϵ-IR, the ensemble weight
of party i will affect its Ti, and further influence ϵ. Thus, the larger the

∑
x∈U βi,x/T , the smaller

the ϵ.

Q4: Why can we value the payment and the reward together?
A4: Consider an example of collaboration where there are 3 parties with the monetary budget of
$100, $500, and $1000 respectively. Inspired by Han et al. (2023) which values the rewards using a
monetary value, we denote any monetary currency as s (e.g., $200), and further denote ν an exchange
ratio such that it projects the monetary currency s into the positive real domain R+ to align the reward
domain and the monetary domain. To normalize the scale, we need to have s/S = pi/VN , where S
is the normalization of the monetary domain, and ν = VN/S. For example, let S be the total budget
of all parties (i.e., $1600). If s =$200, pi = sν = 0.125. Note that we have VN = 1 in our setting.
As ri ∈ R+ and 0 ≤ ri ≤ VN , we can value the monetary payment and the reward together.

Q5: How is the reward related to the ensemble predictions?
A5: As we have defined Ti := (ri + r+i ) × T = (ϕi/ϕ

∗ + pi/(VN − ϕi)) × VN × T in Sec. 5.1,
the reward value (ri + r+i ) ∈ R+ is linearly mapped to the number of ensemble predictions.
While one might use other function g to map (ri + r+i ) to Ti, as long as VN is mapped to T ,
our linear mapping is more intuitive since fairness itself suggests the proportionality. Denote Ui

the set of ensemble predictions that party i receives. In our experiments, we also impose that
Ui ⊆ Uj ∀i, j ∈ N s.t. ϕi ≤ ϕj , which leads to strictly the same rewards for equally contributing
parties and strictly higher rewards for parties with larger contributions.

Q6: How meaningful is the additive structure of V and Vp?
A6: We identify the additive structure in existing ensemble methods (Feng et al., 2021; Chang et al.,
2021; Lin et al., 2020), where the additivity is naturally observed as the ensemble prediction is a
weighted sum of individual predictions. We further exploit the additivity to define the V , such that
the Shapley value can be efficiently obtained. Instead of directly measuring a model quality, our V
quantifies the importance/weights of predictions from coalition C in producing ensemble predictions.
We notice a recent work Drungilas et al. (2023) proposed to determine the ensemble weight βi,x

by measuring the contribution of a learner to an ensemble using Shapley value. Conversely, our
valuation method directly uses the ensemble weight as the contribution, where the ensemble weight
is the Shapley value in our formulation. Besides, our V is independent of the ensemble method used
by the host. If a proper ensemble method is used, Vi then implicitly reflects the quality of a model.
We have validated it with theoretical analysis in Proposition. 1 and empirical results in Table. 1&2.
Besides, our formulation of Vp is also meaningful, as its Shapley solution characterizes the fair
trade-off between reward and payoff, and also specifies the payoff flow as shown in Theorem. 1. It
also has nice properties (i.e., (a-d) in Theorem. 1) that are meaningful in promoting collaborations.

B ADDITIONAL DESCRIPTION

B.1 SHAPLEY VALUE

In the realm of cooperative game theory, the Shapley value has emerged as a primary solution concept
to ensure fairness when allocating resources among a group of individuals. With its interpretation
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as an expected marginal contribution of each player, the Shapley value is the unique solution that
satisfies four significant properties as elaborated below.

Efficiency. All of the collaborative gain VN is distributed to the parties:
∑

i∈N ϕi(V) = VN .

Symmetry. Parties with equal marginal contributions to any coalition in the collaboration receive the
same gain (i.e., reward/payoff): ∀C ⊆ N \ {i, j} V(C ∪ i) = V(C ∪ j) ⇒ ϕi(V) = ϕj(V).
Dummy Party. The dummy parties receives a gain of zero: ∀C ⊆ N \ {i} V(C ∪ i) = V(C) ⇒
ϕi(V) = 0.

Linearity.If two coalition games described by valuation functions V and Vp are combined, then
the distributed gains should correspond to the gains derived from V and the gains derived from Vp:
ϕi(V + Vp) = ϕi(V) + ϕi(Vp), ϕi(βV) = βϕi(V), ∀i ∈ N, ∀β ∈ R.

(The two more properties of Shapley value are newly added during the rebuttal.)

It is also shown in Sim et al. (2020) that Shapley value also satisfies two more properties:

Strict Desirability. If the marginal contribution of party i to at least a coalition is higher than that
of party j, but the reverse is not true, then party i should receive a higher gain than party j: For all
i, j ∈ N s.t. i ̸= j,

(∃B ⊆ N\{i, j} VB∪{i} > VB∪{j}) ∧ (∃C ⊆ N\{i, j} VC∪{i} ≥ VC∪{j}) ⇒ ϕi > ϕj .

Strict Monotonicity.. If the marginal contribution of party i to at least a coalition improves (e.g., by
sharing more accurate predictions), ceteris paribus, then party i should receive a higher gain than
before: Let {VC}C∈2N and {V ′

C}C∈2N denote two sets of values over all coalitions C ⊆ N , and ϕi

and ϕ′
i be the corresponding values of collaborative gain received by party i. For all i ∈ N ,

(∃B ⊆ N\{i} V ′
B∪{i} > VB∪{i})∧

(∀C ⊆ N\{i} V ′
C∪{i} ≥ VC∪{i})∧

(∀A ⊆ N\{i} V ′
A ≥ VA) ∧ (V ′

N ≥ ϕi) ⇒ ϕ′
i > ϕi.

B.2 ENSEMBLE METHOD

We introduce several ensemble methods that we consider in our experiments for prediction aggregation.
Generally, an ensemble method does not require knowing the precision of individual models on any
data. The host that facilitates the ensemble distillation only knows the prediction hi(x) of each agent
given a data x. A special case is made for the optimal ensemble method, where the labels of U are
assumed to be known by the host.

(The optimization objective of optimal ensemble is updated during the rebuttal, where we include a
regularization term.)

Optimal Ensemble. We introduce an ideal ensemble method to avoid the choice of different ensemble
methods in our main text. When the ground truth of U is known by the host, the optimal ensemble
weight {β∗

i,x}ni=1 for x ∈ U is given by solving the following linear optimization problem:

minimize
β∗
i,x∈[0,1],∀i∈N.

|f(x)−
∑n

i=1 β
∗
i,xhi(x)|+ λ

∑
i,i′∈N
i ̸=i′

(|βi,x − βi′,x|)(2−∥hi(x)−hi′ (x)∥1)

subject to
∑n

i=1 β
∗
i,x = 1

where λ is a parameter that controls the importance of the regularization term, and the hyperparameter
2 in (2− ∥hi(x)− hi′(x)∥1) is because the L-1 norm of the difference is upper bounded by 2. With
the regularization, we can ensure that the optimal weight β∗

i,x for different parties are close when
their prediction hi(x) are similar.

Average (AVG). It is the simplest ensemble method where the predictions from individual models
are averaged as hN (x) = n−1

∑n
i=1 hi(x) where each party has βi,x = 1/n.

Majority Vote (MV). The class or label with the greatest number of votes is chosen as the output of
MV, representing the consensus decision of the ensemble. Assume there are c models that vote for
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the consensus prediction, and denote such parties as coalition C. Then, we have βi,x = 1/c ∀i ∈ C
and βi,x = 0 ∀i ∈ N \ C.

Knowledge Vote (KV). The method KV was proposed (Feng et al., 2021) to assign low ensemble
weights to irrelevant and malicious models. The idea is that if a certain consensus prediction is
approved by more parties with high confidence (e.g., > 0.9), then it will be more likely to be the true
label. Assuming there are c models that vote for the consensus prediction, and denote such parties as
coalition C. Then, we have βi,x = 1/c ∀i ∈ C and βi,x = 0 ∀i ∈ N \ C.

Multiplicative Weight Update (MWU). We adopt MWU (Blum et al., 2021) to adaptively adjust
the ensemble weight for each prediction, where the weight update and aggregate computation are
given as:

βt+1
i,x = − log

(
∥ht

N (x)− hi(x)∥2∑n
i=1 ∥ht

N (x)− hi(x)∥2

)
ht+1
N (x) =

n∑
i=1

βt+1
i,x hi(x).

Our study shows how different ensemble methods affect both the average ensemble weight Vi and
the accuracy of ensemble predictions in App. D.1.

C PROOFS

C.1 PROOF OF PROPOSITION 1

For our analysis, we assume the loss function defined as ℓ(h(x), f(x)) = |h(x)− f(x)|, which is
convex. Note that

∑n
i=1 βi,x = 1 and βi,x ≥ 0. We have:

LD (hN ) = Ex∼D

[∣∣∣∣∣
n∑

i=1

βi,xhi(x)− f(x)

∣∣∣∣∣
]

= Ex∼D

[
n∑

i=1

|βi,x(hi(x)− f(x))|

]
(hi(x) = 1)

=

n∑
i=1

Ex∼D[βi,x|hi(x)− f(x)|]

=

n∑
i=1

{Ex∼D[βi,x]LD (hi) + Ex∼D[(βi,x − ED[βi,x])(|hi(x)− f(x)| − LD(hi))]}

=

n∑
i=1

Ex∼D[βi,x]LD (hi) +

n∑
i=1

Ex∼D[(βi,x − ED[βi,x])(|hi(x)− f(x)| − LD(hi))]

where the third equality is based on E[XY ] = E[X]E[Y ] + E[(X − E[X])(Y − E[Y ])]. By

Hoeffding’s inequality, for any fixed i, we have Ex∼D[βi,x] ≤
∑

x∈U βi,x

T +

√
2 log 2

δ

T with probability
at least 1− δ over the random choice of samples. Taking the union bound over all i ∈ N , we have
with probability at least 1− nδ:

n∑
i=1

Ex∼D[βi,x] ≤
n∑

i=1

∑x∈U βi,x

T
+

√
2 log 2

δ

T


Finally, with probability at least 1− nδ, we have:
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LD (hN ) ≤
n∑

i=1

∑x∈U βi,x

T
+

√
2 log 2

δ

T

LD (hi) + ΣN

=

n∑
i=1

Vi +

√
2 log 2

δ

T

LD (hi) + ΣN

where ΣN =
∑n

i Ex∼D[(βi,x−ED[βi,x])(|hi(x)−f(x)|−LD(hi))]. Thus, we prove Proposition 1.

C.2 PROOF OF THEOREM 1

We will show ui = ϕi(V + Vp) as the Shapley value of the combined game of V and Vp, where we
simply use the shorthand ϕi to represent ϕi(V).
Recall that

Vp(C) =
(∑

i∈Cϕi

)
× γ, ∀C ⊆ N where γ =

∑
j∈Npj/(VN − ϕj) .

Following the original setting in the main text of Theorem 1 where ϕi = ϕi(V) and ri = ϕi, we have:

ui = ϕi(V) + ϕi(Vp) (linearity of Shapley)
= ϕi + Vp({i}) (additivity of Vp)

= ri +
∑

j∈N

ϕi × pj
VN − ϕj

= ri +
ϕi × pi
VN − ϕi

+
∑

j∈N\{i}
ϕi × pj
VN − ϕj

= ri +
ϕi × pi + VN × pi − VN × pi

VN − ϕi
+
∑

j∈N\{i}
ϕi × pj
VN − ϕj

= ri +
VN × pi − pi × (VN − ϕi)

VN − ϕi
+
∑

j∈N\{i}
ϕi × pj
VN − ϕj

= ri +
VN × pi
VN − ϕi︸ ︷︷ ︸

r+i

+
∑

j∈N\{i}
ϕi × pj
VN − ϕj︸ ︷︷ ︸

p+
i

−pi

(3)

which proves the utility ui as the Shapley value of the combined game, and it specifies the fair reward
and payoff allocation.

From the above results, we also have another representation:

ui =

(
1 +

∑
j∈N

pj
VN − ϕj

)
× ϕi . (4)
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C.2.1 PROOF OF PAYOFF BALANCE PROPERTY∑
i∈N

(p+i − pi)

=
∑
i∈N

 ∑
j∈N\i

ϕi × pj
VN − ϕj

− pi


=
∑
i∈N

∑
j∈N\i

ϕi × pj
VN − ϕj

−
∑
i∈N

pi

=
∑
i∈N

(∑
j∈N\i ϕj

)
× pi

VN − ϕi
−
∑
i∈N

pi

=
∑
i∈N

(VN − ϕi)× pi
VN − ϕi

−
∑
i∈N

pi

=
∑
i∈N

pi −
∑
i∈N

pi

=0.

C.2.2 PROOF OF DUMMY PAYMENT PROPERTY

Since ∀C ⊆ N \ {i}, V(C ∪ i) = V(C), we have ϕi = 0 by the definition of Shapley value. As
r+i = (VN × pi)/(VN − ϕi), we have r+i = (VN × pi)/VN = pi. Besides,

ui = ri + r+i +
∑

j∈N\{i}
ϕi × pj
VN − ϕj

− pi

(By T1, ri = k1ϕi = 0) = 0 + pi +
∑

j∈N\{i}
0× pj
VN − ϕj

− pi

= pi − pi

= 0

C.2.3 PROOF OF SEMI-SYMMETRY PROPERTY

Since ∀C ⊆ N \ {i, j}, V(C ∪ i) = V(C ∪ j), we have ϕi = ϕj by the definition of Shapley value.

By Equation 4, we have

ui =

(
1 +

∑
j∈N

pj
VN − ϕj

)
× ϕi =

(
1 +

∑
j∈N

pj
VN − ϕj

)
× ϕj = uj .

C.2.4 PROOF OF STRICT MONOTONICITY PROPERTY

When ∃j ∈ N p′j > pj and ∀k ∈ N p′k ≥ pk, we have

(By Equation 4) ui =

(
1 +

∑
j∈N

pj
VN − ϕj

)
× ϕi

=

(
1 +

pj
VN − ϕj

+
∑

k∈N\{j}
pk

VN − ϕk

)
× ϕi

<

(
1 +

p′j
VN − ϕj

+
∑

k∈N\{j}
p′k

VN − ϕk

)
× ϕi

= u′
i.
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C.3 PROOF OF PROPOSITION 2

We first introduce the definition of the divergence measure dH∆H.

Definition C.1 (H∆H-divergence (Ben-David et al., 2010)). Let h : X → {0, 1} be a function from
the hypothesis class H. H-divergence between Di and Dj is:

dH∆H (Di,Dj) := 2 sup
h,h′∈H

∣∣LDi
(h, h′)− LDj

(h, h′)
∣∣

By the definition of H∆H-divergence,

dH∆H (Di,Dj) ≥ 2
∣∣LDi

(h, h′)− LDj
(h, h′)

∣∣ . (5)

With the use of triangle inequality for classification error (Crammer et al., 2008), for any labeling
functions f1, f2, and f3, we have L(f1, f2) ≤ L(f1, f3) + L(f2, f3). Note that the combined
empirical risk is defined as L̂D′

i
(h) := (1− αi)L̂Di(h) + αiL̂D(h, hN ) for each party i ∈ N . For

any h, we have:

|LD′
i
(h)− LD(h)|

= |(1− αi)LDi
(h) + αiLD(h, hN )− LD(h)|

= |(1− αi)[LDi(h)− LD(h)] + αi[LD(h, hN )− LD(h)]|
≤ (1− αi)|LDi

(h)− LD(h)|+ αi|LD(h, hN )− LD(h)|

≤ 1

2
(1− αi)dH∆H (Di,D) + αi|LD(h, hN )− LD(h, f) + LD(h, f)− LD(h)| (E. 5)

≤ 1

2
(1− αi)dH∆H (Di,D) + αi [|LD(h, hN )− LD(h, f)|+ |LD(h, f)− LD(h)|]

≤ 1

2
(1− αi)dH∆H (Di,D) + αiLD(hN ) (Triangle inequality) (6)

where f is the true labeling function, LD(h, f) = LD(h), and LD(hN , f) = LD(hN ).

We can bound the combined risk with its empirical estimation through Hoeffding’s inequality, which
we state here:

Lemma 1. (Ben-David et al., 2010) For a fixed hypothesis h, if there are Ti random samples from
domain ⟨D, hN ⟩ and mi random samples from domain ⟨Di, f⟩, then for any δ ∈ (0, 1) and t > 0,
with probability at least 1− δ (over the choice of the samples),

P
(∣∣∣LD′

i
(h)− L̂D′

i
(h)
∣∣∣ ≥ t

)
≤ 2 exp

 −2t2

α2
i

Ti
+ (1−αi)2

mi

 .

Now we are ready to prove Proposition 2.

Proof. The proof is similar to the standard proof of uniform convergence for empirical risk minimizers.
For the hypothesis h′

i that minimizes the combined loss L̂D′
i
(h) := (1− αi)L̂Di

(h) + αiL̂D(h, hN ),
we first show here its proof of its generalization bound. With probability at least 1− δ, the generaliza-
tion inequality holds. The first and the last inequality are direct applications of the Inequality 6. The
second and the fourth inequality are based on Lemma 1, and also rely on sample symmetrization and
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bounding the growth function by the VC dimension (Anthony et al., 1999; Ben-David et al., 2010).

LD(h
′
i) ≤ LD′

i
(h′

i) +
1

2
(1− αi)dH∆H (Di,D) + αiLD(hN ) (Inequality 6)

≤ L̂D′
i
(h′

i) + 2

√
2d log(2(Ti +mi + 1)) + 2 log(

8

δ
)

√
α2
i

Ti
+

(1− αi)2

mi

+
1

2
(1− αi)dH∆H (Di,D) + αiLD(hN ) (Lemma 1)

≤ L̂D′
i
(hi) + 2

√
2d log(2(Ti +mi + 1)) + 2 log(

8

δ
)

√
α2
i

Ti
+

(1− αi)2

mi

+
1

2
(1− αi)dH∆H (Di,D) + αiLD(hN ) (h′ := argmin

h∈H
L̂D′

i
(h))

≤ LD′
i
(hi) + 4

√
2d log(2(Ti +mi + 1)) + 2 log(

8

δ
)

√
α2
i

Ti
+

(1− αi)2

mi

+
1

2
(1− αi)dH∆H (Di,D) + αiLD(hN ) (Lemma 1)

≤ LD(hi) + 4

√
2d log(2(Ti +mi + 1)) + 2 log(

8

δ
)

√
α2
i

Ti
+

(1− αi)2

mi

+ (1− αi)dH∆H (Di,D) + 2αiLD(hN ) (Inequality 6).

Therefore, we have
LD(h

′
i)− ϵi ≤ LD(hi)

where ϵi = 4
√
2d log(2(Ti +mi + 1)) + 2 log( 8δ )

√
α2

i

Ti
+ (1−αi)2

mi
+ (1 − αi)dH∆H (Di,D) +

2αiLD(hN ). Taking the union bound over all i ∈ N , we have probability at least 1− nδ:

LD(h
′
i)− ϵi ≤ LD(hi), ∀i ∈ N.

Define ϵ = maxi∈N ϵi. Then we have

∀i ∈ N LD (h′
i)− ϵ ≤ LD (hi) .

This concludes the proof of Proposition 2.

C.4 PROOF OF EQUATION 2

Recall that ϵi(α) = B
√
α2/T + (1− α)2/m+αA+dH∆H (Di,D), where A = −dH∆H (Di,D)+

2LD(hN ) and B = 4
√
2d log(2(Ti +mi + 1)) + 2 log( 8δ ). Let C = A2/B2.

To find the optimal mixing value α∗ that minimizes ϵi(α), we take the derivative of ϵi(α) over α:

∂ϵi(α)

∂α
=

1

2
B

1√
α2

T + (1−α)2

m

(
2α

T
+

2(α− 1)

m

)
+A

=
B
(
α
T + α−1

m

)√
α2

T + (1−α)2

m

+A.

By setting ∂ϵi(α)
∂α = 0, we have (

α
T + 1−α

m

)√
α2

T + (1−α)2

m

= −A

B
.
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Squaring both sides results in

m2α2 + 2Tmα(α− 1) + T 2(α− 1)2

Tm2α2 + T 2m(α− 1)2
=

A2

B2
.

By setting C = A2/B2 and rearranging, we have

[(m+ T )2 − CTm(m+ T )]α2 + 2T (CTm−m− T )α+ T 2 − CT 2m = 0. (7)

The discriminant of this quadratic equation of α is ∆ = 4CT 2m2(m+ T − CTm). The equation
has real roots when ∆ ≥ 0, which is m+ T − CTm ≥ 0 ⇒ m ≥ (Cm− 1)T .

When Cm ≤ 1, no matter how large T is, ∆ ≥ 0 always holds, as m and T are positive integers.

When Cm > 1, ∆ ≥ 0 ⇒ m
Cm−1 ≥ T . As the training data size m is generally large enough such

that Cm > 1 always holds, we will not analyse the case when Cm ≤ 1.

Therefore, the above quadratic equation has real roots when m
Cm−1 ≥ T , with the corresponding

quadratic solution given as:

α∗ =
T

m+ T

(
1 +

m
√
C√

m+ T − CTm

)
.

It is not difficult to see that

∂2ϵi(α)

∂α2
=

B

Tm
(

α2

T + (1−α)2

m

)3/2 ≥ 0 .

Thus, the quadratic solution for ∂ϵi(α)
∂α = 0 is the minimum for ϵi(α).

When m
Cm−1 < T , Equation 7 has no real roots. As ∂ϵi(α)

∂α < 0, the minimum of ϵi(α) is found at the
boundary when α = 1. Finally, checking with the boundary [0,1] of α results in the exact solution of
α∗ which is:

α∗ =

{
1 for T > m(Cm− 1)−1

min {1, ξ} for T ≤ m(Cm− 1)−1 where ξ =
T

m+ T

(
1− m

√
C√

m+ T − CTm

)
.

This concludes our proof.

C.5 PROOF OF EFFICIENT CALCULATION OF MODEL SHAPLEY VALUE

ϕi(V) = (1/n!)
∑

π∈ΠN

[V(Cπ,i ∪ {i})− V(Cπ,i)]

= (1/n!)
∑

π∈ΠN

[
∑
x∈U

∑
j∈Cπ,i∪{i}

βj,x/T −
∑
x∈U

∑
j∈Cπ,i

βj,x/T ]

= (1/n!)
∑

π∈ΠN

 1

T

∑
x∈U

 ∑
j∈Cπ,i∪{i}

βj,x −
∑

j∈Cπ,i

βj,x


= (1/n!)

∑
π∈ΠN

[
1

T

∑
x∈U

βi

]

=
1

T

∑
x∈U

βi

which concludes the proof.
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C.6 PROOF OF INCENTIVE GUARANTEE OF OUR ALLOCATION SCHEME

We prove below that our allocation scheme satisfies incentives T1 to T3:

• T1. Note we use ri = (ϕi/ϕ
∗)× VN in our allocation scheme. By our definition of utility, for all

i ∈ N , we have

ri/ϕi = VN/ϕ∗ = k1

r+i − pi + p+i
ϕi

=
VN × pi − (VN − ϕi)× pi

(VN − ϕi)× ϕi
+

p+i
ϕi

=
pi

VN − ϕi
+

∑
j∈N\{i}

pj
VN − ϕj

=
∑
j∈N

pj
VN − ϕj

= k2.

• T2. Refer to Sec. 5.2 for details of LD(h
′
i)− ϵ ≤ LD(hi) guarantee. For all i ∈ N , we have

r+i − pi =
VN × pi − (VN − ϕi)× pi

VN − ϕi

=
ϕi × pi
VN − ϕi

≥ 0

where ϕi, pi, and VN − ϕi ≥ 0.

• T3. There exists a party i with ϕi = ϕ∗, such that

ri = (ϕi/ϕ
∗)× VN = (ϕ∗/ϕ∗)× VN = VN ,

p∗i = (ϕ∗ − ϕi)(VN − ϕi)/ϕ
∗ = (ϕ∗ − ϕ∗)(VN − ϕ∗)/ϕ∗ = 0.

D ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

All of our experiments are performed on a machine with AMD EPYC 7543 32-Core Processor,
256GB of RAM, and NVIDIA RTX 3080 GPU with 10GB memory.

D.1 VALUATION

To justify our valuation method under the heterogeneous data setting, we follow the same partition
scheme in (Lin et al., 2020) to synthesize some non-i.i.d source data distributions. Assume every
party’s training samples are drawn independently with class labels following a categorical distribution
over K classes. We draw τ ∼ Dir(τp) from a Dirichlet distribution, where p characterizes a prior
class distribution over K classes, and τ > 0 is a concentration parameter controlling the identicalness
among local parties. We use τ = 0.1 in our experiments. A neural network with two fully connected
layers and ReLU activation functions is employed by each party to fit their respective training data.
In Table. 3, we observe a strong negative correlation between Vi and LD(hi) on three datasets on 5
and 10 parties accordingly. The average ensemble weight Vi is calculated on a validation dataset of
size 5000 using the optimal ensemble method.

(Fig. 6 and the following paragraph are added during rebuttal.)

We emphasize that the requirement on the ground truth of our method is not very restrictive, where
the labeled data (i.e., ground truth) of size as small as 100 is sufficient to identify high-quality models,
as shown in Fig. 6. It is shown that the correlation is stronger and the standard deviation is smaller
when the size of labeled data becomes larger. Especially, we observe that the negative correlation of
size 100 is almost as good as that of size 4000. We will also demonstrate the effectiveness of our
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Table 3: Pearson correlation between Vi and
LD(hi) on different datasets with different num-
bers of parties under a heterogeneous data set-
ting. The value is reported with the mean and
standard error over 100 independent evaluations.

No. Parties

Dataset 5 10

MNIST -0.72±0.35 -0.72±0.35
CIFAR-10 -0.90±0.06 -0.90±0.06
SVHN -0.83±0.11 -0.83±0.11 Figure 6: Pearson correlation between Vi

and LD(hi) on MNIST with different ground
truth size. The scatter points represent dif-
ferent ground truth size of [10, 50, 100, 500,
1000, 4000] respectively.

method using several practical ensemble methods later. In practice, those weights estimated on the
small labeled dataset can be potentially used for other unlabeled data.

We also validate our valuation function on MNIST dataset under a heterogeneous model setting. The
training data is divided into five random subsets using a symmetric Dirichlet distribution. We use five
fully connected models to fit each subtset of the data, with hidden layer sizes {}, {1024}, {512, 256},
{1024, 256}, and {1024, 512, 256} respectively and the ReLU activation functions. The output layer
is a softmax layer that consists of 10 neurons. The parameters of the network are trained with the
Adam optimizer. The learning rate is set to 0.0001, batch size is 128, and number of epochs is 5. We
examine the Pearson correlation between Vi and LD(hi) over 100 independent evaluations, which
gives a strong negative correlation coefficient of -0.76±0.21. It justifies our analysis in Proposition 1
again. The average ensemble weight is calculated on a validation dataset of size 5000 using the
optimal ensemble method. Besides, we observe the average Shapley vector for the five models is
[0.11, 0.23, 0.23, 0.22, 0.21], which shows models with more parameters might overfit the training
data and may have a lower contribution in the collaboration.

As introduced in App. B.2, we further study how other different ensemble methods, instead of the
ideal optimal ensemble method, affect the average ensemble weight Vi and the test accuracy using
our model valuation function. We perform experiments on MNIST with 5 parties under both i.i.d.
and non-i.i.d. data setting (τ = 0.1). A neural network with two fully connected layers and ReLU
activation functions is employed by each party to fit their respective training data. The average
ensemble weight Vi is calculated on a validation dataset of size 5000 using different ensemble
methods, and the accuracy of ensemble predictions is measured based on the labels given for the
validation dataset. From Table. 4, we observe that the AVG method achieves comparable results
with other ensemble methods on the accuracy of ensemble predictions, but it has a weak correlation
coefficient, which shows that it is not suitable for contribution evaluation in collaboration. It is
interesting to note that MV has a slightly stronger correlation reported in Table. 5 but achieves a
lower accuracy. This seemingly counter-intuitive result can be attributed to the fact that its discrete
weight of MV may not capture the relation between Vi and LD(hi) when irrelevant parties contribute
to the ensemble prediction. We encourage further research to develop more sophisticated ensemble
methods that can effectively capture the value of individual models by approximating the optimal
ensemble method.
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Table 4: Pearson correlation between Vi and
LD(hi), and the corresponding accuracy of
ensemble predictions with different ensemble
methods under the i.i.d. data setting. The
value is reported with the mean and standard
error over 100 independent evaluations.

Ensemble Correlation Accuracy

AVG 0.02±0.54 0.95±0.01
MV -0.24±0.52 0.94±0.01
KV -0.25±0.46 0.95±0.01
MWU -0.24±0.56 0.95±0.01

Table 5: Pearson correlation between Vi and
LD(hi), and the corresponding accuracy of
ensemble predictions with different ensemble
methods under the non-i.i.d. data setting. The
value is reported with the mean and standard
error over 100 independent evaluations.

Ensemble Correlation Accuracy

AVG -0.02±0.50 0.72±0.09
MV -0.65±0.32 0.68±0.08
KV -0.40±0.49 0.80±0.05
MWU -0.68±0.32 0.72±0.09

D.2 GUARANTEE ϵ-IR

We perform additional experiments to illustrate how ensemble predictions are fairly distributed as
rewards to improve the model performance of individual parties, where the number of all ensemble
predictions (i.e., T can vary). We also show that the strict IR can be empirically satisfied and ϵ-IR
can have the strongest guarantee. In this section, we only consider the optimal ensemble method.
We have LD(hN ) = 0 for the optimal ensemble. Through estimating dH∆H (Di,D) and the VC
dimension d based on Ben-David et al. (2010), we could find the optimal value α∗ whose formulation
is shown in Eqn. 2. The dH∆H (Di,D) is estimated as 2 × (1 − 2err) where err is the loss from a
classifier that tries to separate the unlabeled data from Di and D. VC dimension d is estimated as
c ·W · L where c is some constant, W is the parameter size of the model, and L is the number of
layers.

D.2.1 MNIST

MNIST dataset (LeCun et al., 1998) consists of 70000 handwritten digits (0-9), each of which is a
28×28 grayscale image. There are 60000 training images and 10000 test images. We follow the
same experimental setting as (Nguyen et al., 2022) to partition the training dataset based on the class
labels. A party, denoted as [s− e] (s ≤ e), owns a subset of the training dataset that is labeled with
classes s, s + 1, . . . , e. We consider 5 parties in N : [0], [1-2], [0-3], [3-5], and [6-9]. Each party
uses a deep neural network to fit its training images and only shares the predictions for an unlabeled
dataset of size T sampled from the training images.

A neural network with two fully connected layers and ReLU activation functions is employed by
each party to fit their respective training data. The parameters of the network are trained with the
Adam optimizer. The learning rate is set to 0.001, batch size is 128, and number of epochs is 20.

Different T . We examine the experimental results of improved model performance with rewarded
ensemble predictions for varying values of T , specifically T = 1000, 5000, 10000. In this experi-
mental setting, the optimal ensemble method is used. As shown in Fig. 7a&b, the model performance
of all considered parties exhibits a notable improvement with an increase in the magnitude of T .
Furthermore, it is interesting to observe that fair reward distribution could lead to equality in model
performance when T attains a sufficiently large value, as shown in Fig. 7c.

(Experiments on accuracy gain with different ensembles and Fig. 8 are newly added during the
rebuttal, as shown in the following paragraph.)

Different Ensembles. In addition, we also present an examination of how various practical (non-
optimal) ensemble methods influence the enhancement in accuracy after the rewards are fairly
distributed. This experiment is conducted under the setting, where T = 5000 for the unlabeled
dataset U . The 5 parties share their predictions of U with the host, and the host uses some ensemble
methods to produce the ensemble predictions, which are then distributed to each party according to
our allocation scheme. For simplicity, we ignore the payment here. In Fig. 8, we demonstrate the
accuracy improvement for each party by studying different practical ensemble methods, including
AVG, KV, MWU, and MV. We observe that the strict IR (i.e., LD(h

′
i) ≤ LD(hi)) is always satisfied

with all ensemble methods. For the result with MV in Fig. 8d, we can see that party [6-9] did not
obtain a better performance after collaboration (i.e., LD(h

′
i) = LD(hi)). Since party [6-9]’s data is
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(a) (b) (c)

Figure 7: Plot of test accuracy of five parties’ models on MNIST before and after incorporating fair
ensemble prediction reward with different T : (a) T = 1000 (b) T = 5000, and (c) T = 10000.

unique, it cannot contribute to the ensemble predictions by the definition of MV. Therefore, it receives
no reward from the collaboration. This suggests we should use appropriate ensemble methods such
as KV or MWU in collaboration.

(a) (b) (c) (d)

Figure 8: Plot of test accuracy of five parties’ models on MNIST before and after incorporating
fair ensemble prediction reward with different practical ensemble methods: (a) Average (AVG), (b)
Knowledge Vote (KV), (c) Multiplicative Weight Update (MWU), and (d) Majority Vote (MV).

(The following paragraph and Fig. 9 are added during the rebuttal, where we empirically show how
to quantify the relation between payment and accuracy increase.)

As the payment pi affects the number of ensemble predictions Ti that party i receives, and hence
affects the accuracy gain, we will demonstrate the relation between payment and accuracy increase.
If we use LD(hi)+ ϵi as an approximation of LD(h

′
i), the change of ϵi denoted as ∆ϵi will represent

the reduction in error, which empirically reflects the accuracy increase. To quantify the relation
between payment and accuracy increase, we can write ∆ϵi as a function of pi shown below:

∆ϵi(pi) = M − 4
√
2d log(2(riT + piT

1−ϕi
+mi + 1)) + 2 log( 8δ )

√
α2

i

riT+piT/(1−ϕi)
+ (1−αi)2

mi

where M = 4
√
2d log(2(riT +mi + 1)) + 2 log( 8δ )

√
α2

i

riT
+ (1−αi)2

mi
is a constant. When pi = 0,

∆ϵi(pi) = 0. When pi is larger, ∆ϵi(pi) will be larger. To empirically demonstrate the relation,
we follow the previous five parties’ collaboration example and examine the effect on party [0-3]’s
payment. From Fig. 9, we observe that more payments lead to a higher accuracy increase, and ∆ϵi(pi)
can indeed empirically represent the accuracy increase.

D.2.2 CIFAR-10

We experiment on CIFAR-10 dataset (Krizhevsky et al., 2009), which consists of 60000 32×32 color
images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test
images in total. We follow the same experimental setting as (Nguyen et al., 2022) to partition the
training dataset based on the class labels. A party, denoted as [s− e] (s ≤ e), owns a subset of the
training dataset that is labeled with classes s, s + 1, . . . , e. We consider 5 parties in N : [0], [1-2],
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Figure 9: Plot of ∆ϵi(pi) and accuracy when party [0-3] makes different payment pi.

[0-3], [3-5], and [6-9]. Each party uses a deep neural network to fit its training images and only
shares the predictions for an unlabeled dataset of size T sampled from the training images.

The neural network has 2 convolutional layers with number of filters 6 and 16. The kernel size of the
two layers is set to (5,5). There are 2 max-pooling layers with size (2,2) after the 2 convolutional
layers. The output from the last convolutional layers is flattened and passed to 2 hidden linear layers
with the number of neurons 120 and 84, and the ReLU activation functions. The output layer is a
softmax layer that consists of 10 neurons. The parameters of the network are trained with the Adam
optimizer. The learning rate is set to 0.0001, batch size is 128, and number of epochs is 20.

We compare the experimental results when T = 1000, 5000, 10000, as shown in Fig. 10. At
T = 1000, every participating party experiences an improvement in model performance. Interestingly,
party [0-3], with relatively lesser contribution, achieves higher test accuracy than party [3-5] due
to more source data. However, when T increases to 5000 or 10000, party [3-5] attains superior test
accuracy due to the larger rewards it receives, which correspond to its more significant contribution.
This would promote more valuable parties like party [3-5] to collaborate.

(a) (b) (c)

Figure 10: Plot of test accuracy of five parties’ models on CIFAR-10 before and after incorporating
fair ensemble prediction reward with different T : (a) T = 1000 (b) T = 5000, and (c) T = 10000.

We continue with the above experimental setting of CIFAR-10 when T = 5000. We consider both
party [0-3] and party [6-9] as examples. Fig. 11a shows that our estimated α∗

i helps the party achieve
the lowest generalization error which means the best model performance. The optimal α∗

i will always
minimize ϵi(αi) as shown in Fig. 11b, which again validates the correctness of our solution in Eqn. 2.
We can observe from Fig. 11c that αi affects the generalization error drop LD(h

′
i)−LD(hi), and our

optimal α∗
i results in the largest drop, which implies the greatest model improvement. Therefore, the

strongest ϵ-IR guarantee is achieved by the optimal α∗
i . As we should have LD (h′

i)−LD (hi)−ϵi ≤ 0
from ϵ-IR, we observe from Fig. 11d that (LD (h′

i)− LD (hi)− ϵi) is always negative with different
αi. This means ϵ-IR is always satisfied. Similar analysis can be applied to party [6-9]; however,
there is a slight mismatch where α∗

i does not correspond to the least LD(h
′
i) in Fig. 12a, which

means the party might not achieve its best performance by using α∗
i . Nevertheless, α∗

i is still the
minimum of ϵ(αi), and ϵ-IR is still satisfied as shown in Fig. 12c&d. This mismatch might be from
the generalization error gap between LD (h′

i) and LD (hi).
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Figure 11: (a) The generalization error of h′
i with different αi, (b) the function value of ϵi(αi) and

its minimum ϵi(α
∗
i ), (c) the generalization error drop LD(h

′
i)− LD(hi) with different αi, and (d)

the ϵ-IR guarantee quantified by LD(h
′
i)− LD(hi)− ϵi(αi) with different αi, when party i is party

[0-3] in CIFAR-10.

Figure 12: (a) The generalization error of h′
i with different αi, (b) The function value of ϵi(αi) and

its minimum ϵi(α
∗
i ), (c) the generalization error drop LD(h

′
i)− LD(hi) with different αi, and (d)

the ϵ-IR guarantee quantified by LD(h
′
i)− LD(hi)− ϵi(αi) with different αi, when party i is party

[6-9] in CIFAR-10.

D.3 FAIR UTILITY

(a) (b) (c) (d)

Figure 13: (a) The payoff flow when all parties make their maximal payments, (b) the payoff flow
when party [0] makes less payment while others make their maximal payments, (c) the rewards that
the parties receive before and after the payment made by party 2, and (d) the utility, Shapley value
and utility of the parties when party 2 makes a payment.

We adopt the experimental setting of partitioned MNIST dataset where each party owns a subset
of digits: [0], [1-2], [0-3], [3-5], and [6-9]. We calculate the corresponding maximal payments
(ϕ∗ − ϕi)(VN − ϕi)/ϕ

∗ for the five parties: [0.702, 0.624, 0.376, 0.315, 0.0]. Fig. 13a shows the
payoff flow when parties make their maximal payments, where each entry shows the payment from
row party to column party. Parties with larger contributions (e.g., party [6-9]) benefit more from each
payment made by another party. Next, we assume there is a budget constraint of party [0] limiting it
to make half its maximal payment. The corresponding payoff flow in Fig. 13b shows the change of
payment from one party will not affect the payoff flow of other parties.

We then examine the semi-symmetry property of our utility function. We consider a hypothetical
collaboration for 5 parties (i.e., N = {1, ..., 5}), where the corresponding Shapley value vector is
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[0.05, 0.1, 0.1, 0.35, 0.4] and only party 2 makes a payment of 0.5. Fig. 13c shows the reward of party
1 increases after it makes the payment with the rewards of others remaining the same. From Fig. 13d,
we observe the semi-symmetry property, where party 2 and 3 have the same Shapley and utility
values, but different payoffs. It ensures fairness in collaboration when parties with same contributions
but different financial budgets.
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