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Abstract

This paper introduces a universal approach to seamlessly combine out-of-distribution (OOD)
detection scores. These scores encompass a wide range of techniques that leverage the self-
confidence of deep learning models and the anomalous behavior of features in the latent
space. Not surprisingly, combining such a varied population using simple statistics proves
inadequate. To overcome this challenge, we propose a quantile normalization to map these
scores into p-values, effectively framing the problem into a multi-variate hypothesis test.
Then, we combine these tests using established meta-analysis tools, resulting in a more effec-
tive detector with consolidated decision boundaries. Furthermore, we create a probabilistic
interpretable criterion by mapping the final statistics into a distribution with known param-
eters. Through empirical investigation, we explore different types of shifts, each exerting
varying degrees of impact on data. Our results demonstrate that our approach significantly
improves overall robustness and performance across diverse OOD detection scenarios. No-
tably, our framework is easily extensible for future developments in detection scores and
stands as the first to combine decision boundaries in this context. The code and artifacts
associated with this work are publicly availabldT}

1 Introduction

Deploying AT systems in real-world applications is not without its challenges. Although these systems are
evaluated in static scenarios, they encounter a dynamic and evolving environment in practice. One of the
most pressing issues is preventing and reacting to data distribution shift (Quionero-Candela et al.l |2009)). It
occurs when the data distribution used to train an AT model no longer matches the data required to process
in test time. It can happen gradually or suddenly and can be caused by various factors, e.g., changes in
user behavior or degradation in operating conditions, which can have severe consequences in safety-critical
applications (Amodei et al., |2016) such as autonomous vehicle control (Bojarski et all [2016)) and medical
diagnosis (Subbaswamy & Saria, |2020)). For instance, a predictive model of the Earth’s temperature based
on historical data may face challenges due to the evolving nature of climate change. Historical patterns
and trends may become less reliable indicators of future temperature changes, which could undermine the
dangers of climate change unless a mechanism to detect such drifts is in place.

Modern machine learning models can be difficult and expensive to adapt. Even though shifts in distributions
can result in significant performance decline, in reality, distributions also undergo harmless shifts (Gemaque
et al., [2020)). As a result, practitioners should focus on discerning detrimental shifts that harm predictive
performance from unimportant shifts that have little impact. This paper explores ways to improve the
detection of performance-degrading shifts by ensembling existing detectors in an unsupervised manner. Each
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detector can be formalized as a test of equivalence of the source distribution (from which training data is
sampled) and target distribution (from which real-world data is sampled) through the lens of a predictive
model. Our approach is motivated by the fact that different detection algorithms may make trivial mistakes
in different parts of the data space without any assumptions on the test data distribution (Birnbaum, (1954).
The challenge is to develop a widely applicable method for combining detectors to alleviate individual
catastrophic mistakes.

Combine and Conquer draws inspiration from meta-analysis (Glassl, [1976)), which consolidates findings from
various statistical hypothesis tests to derive a unified estimate. To the best of our knowledge, this is the
first work employing such methodologies in out-of-distribution (OOD) and data distribution shifts detection.
Given that the underlying distributions (in-distribution and out distribution) are unknown and only partial
information (derived from the training and validating samples) is available about one of the hypotheses,
each score may carry relevant information for the decision. Each score induces a distinct probability mass
transformation of the same data point, contingent upon the underlying hypothesis under test. Viewed in
this light, this multi-score approach can be seen as a means of enhancing the diversity of the scores by
aggregating different scoring mechanisms, which is useful for testing different out-of-distribution scenarios.
Consequently, this increases the likelihood that at least one will successfully identify the correct hypothesis.

We summarize our contributions as follows:

1. We present a simple and convenient ensembling algorithm for combining existing out-of-distribution
data detectors, leading to better generalizability by incorporating effects that may not be apparent
in individual detectors.

2. A probabilistic interpretable detection criterion is obtained by adjusting the final statistics to align
with a distribution characterized by known parameters.

3. A framework to adapt any single example detector to a window-based data shift detector.

We validate our contributions through a comprehensive empirical investigation encompassing classic OOD
detection and introduce a benchmark on window-based data distribution shift detection.

2 Related Works

Window-based data shift detection. This line of work proposes methods for detecting shifts in data
distribution using multiple samples. |Lipton et al.| (2018]) presents a technique for detecting prior probability
shifts. |[Rabanser et al. (2019) studies two-sample tests with high dimensional inputs through dimensionality
reduction techniques from the input space to a projected space. (Cobb & Looveren| (2022 explores two sample
conditional distributional shift detection based on maximum conditional mean discrepancies to segment
relevant contexts in which data drift is diminishing. These studies, along with our own, demonstrate detection
methods for detecting shifts in windowed data. For a survey on adapting models to these shifts, please refer
to |(Gama et al|(2014) and |Lange et al.| (2022]).

Misclassification detection. Misclassification detection aims to reject in-distribution samples misclassified
in test time with roots in rejection option (Chowl|1957) and uncertainty quantification (Abdar et al2021). A
natural baseline is the classification model’s maximum softmax output (Hendrycks & Gimpel, |2017} |Geifman
& El-Yaniv, |2017). Other works (Granese et al., |2021)), introduced a framework that considers the entire
probability vector output to detect misclassifications. |Gal & Ghahramani| (2016)); |[Lakshminarayanan et al.
(2016) are popular approaches for estimating uncertainty from a Bayesian inference perspective. Even
though this line of work focuses mainly on detecting problematic in-distribution samples while we focus on
distributional drifts, our framework could be extended to it.

Out-of-distribution detection. OOD detection is also referred to in the literature as open-set recognition
(Geng et al., 2021)), one-class novelty detection (Pimentel et al., 2014]), or semantic anomaly detection
(Wang et al.l [2020). Overall, methods are taxonomized into confidence-based |[Hein et al.| (2019)); [Hendrycks
& Gimpell (2017); Liang et al.| (2018)); Hsu et al.| (2020)); |Liu et al.| (2020)); [Hendrycks et al.| (2022); |Sun & Li
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2022)), which rely on the logits and softmax outputs; feature-based (Sastry & Oore, [2020; (Quintanilba et al.,
2019; [Huang et all 2021} [Zhu et all, [2022} [Colombo et all, 2022} [Dong et all 2021} [Song et al., [2022}
et al., 2021} [Djurisic et al.,|2023; [Lee et al.,|2018; |Ren et al., [2021; [Sun et al.l 2022} Darrin et al.| [2023]), which
explores latent representations; mixed feature-logits (Sun et al., 2021; |Gomes et all, [2022; Wang et al., [2022}
Dadalto et al., [2023; |Djurisic et al., 2023); training, likelihood estimation and reconstruction based (Schlegl|
et all 2017 [Vernekar et all [2019; Xiao et all [2020; [Ren et all 2019} [Zhang et all 2021} [Kirichenko et all]
@ methods. We consider these methods to be complementary to our work as they focus on developing
single discriminative OOD scores. The authors in Haroush et al.| (2022)) propose a comparable approach
for OOD detection, framing it as a statistical hypothesis testing issue. They aggregate p-values based on
statistics obtained from various channels of a single convolutional network in a hierarchical manner. However,
this approach is heavily reliant on the architecture of convolutional neural networks and dimension reduction
functions. It does not account for the correlation between the test statistics, as highlighted in Section 4.2
therein. Moreover, a recent benchmark (Zhang et al. [2023) shows no evident winner in detecting OOD
data. In this paper, we introduce a novel approach that involves combining multiple detectors to enhance
performance and mitigate the risk of catastrophic failures when a specific method fails to detect certain
types of data.

3 Preliminaries and Methodology

This section discusses the methodology for detecting distribution shifts in high dimensional data streams
inputted to deep neural networks. We define data stream in Section [3.1] we recall the various types of shifts
in Section [3:2] and we formalize single sample and window-based detection in Section [3.3]

3.1 Background

Let X C R? be a continuous feature space, and let Y = {1,...,C} denote the label space related to some
task of interest. We denote by pxy and gxy the underlying source and target probability density functions
(pdf) associated with the distributions P and @ on X x Y, respectively. We assume that a machine learning
model f: X — Y is trained on some training set D,, = {(x1,y1),- .., (Tn,Yn)} ~ pxy, which yields a model
that, given an input @ € X, outputs a prediction on Y, i.e., f(z) = argmaxyecy pY‘X(y | ). At test time,
an unlabeled sequence of inputs or data stream is expected, sampled from the marginal target distribution
ax-

Definition 3.1 (Data stream). A data stream S is a finite or infinite sequence of not necessarily independent

observations typically grouped into windows (i.e., sets Wi = {zj, ..., xj1m—1} ~ qx) of same size m,
o]
S={z1,. ... Tm,...} = |JW]" (1)
j=1

3.2 Data-Shift

In real-world applications, data streams usually suffer from a well-studied phenomenon known as data dis-
tribution shiﬁﬂ (or data shift for short). Data shift occurs when the test data joint probability distribution
differs from the distribution a model expects, i.e., pxy (€, y) # gxv (x,y). Due to this mismatch, the model’s
response may suffer a drop in accuracy. Let 8 € [0, 1] be a mixture coefficient, we will write the true joint
test pdf gxy as a mixture of pdfs p and Lﬂ

qXY(way) = (]—_ﬁ)pXY(wvy)—i_ﬁUXY(wvy) (2)

Note that when 8 = 0, the test distribution matches the training distribution, i.e., there is no shift. Con-
versely, when 8 = 1, we have the largest shift between training and testing environments. In this work, we

2 Also referred to in the literature as data distribution drift.
3We assume that v is unknown and differs significantly from p, i.e., % fXxy Ip(2) —v(z)|dz > 6.
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focus on detecting when any kind of data shift happens between the training and testing distributions and
not estimating the mixing parameter 8 or the true pdfs involved.

One could categorize different kinds of shifts that may happen by decomposing a joint pdf into

(X.Y)=QY|X) ¢(X) =q(X[Y)Q(Y). 3)
——— N~ ——
posterior covariate likelihood prior

Briefly, novelty drift, also referred to as concept evolution (Masud et al. 2011)), is usually attributed to
the presence of novel classes or concepts. As a result, the conditional distribution is not adapted anymore,
ie, P(Y|X) # Q(Y|X). Naturally, ¢(X1]Y), Q(Y), and Q(X) are allowed to change. Cowvariate shift often
happens because the input data comes from a different domain as ¢(X) changes, e.g., in image recognition, the
drawing of concepts are introduced in testing, while the training features are natural pictures only. Finally,
a prior shift or label shift usually occurs when the test label distribution is biased towards some classes, e.g.,
the majority of samples in testing come from a class in which the predictive model is less proficient, causing
overall accuracy degradation. All of these data shifts may have negative impacts on the model. Shifts that
do not affect the classifier’s performance are referred to virtual drifts, e.g., mild corruptions to images may
result in ¢(X) drifting but without affecting Q(Y|X). However, this list is not exhaustive as the principal
objective of this paper does not lie in the precise categorization of diverse drift phenomena but rather in the
establishment of a more robust detection framework for distinct scenarios.

Considering our objective of enhancing the overall reliability of Al systems in real-world applications, our
focus is detecting any form of data drift that might result in model deterioration without having access
to labeled samples. Consequently, our primary emphasis will be on detecting data drift by examining the
discriminative model, as the high dimensionality of the input data poses significant challenges for generative
modeling approaches. Through empirical validation, we demonstrate that our strategy can proficiently
detect novelty and covariate shifts by measuring detection performance on provoked covariate shift and
when introduced novel concepts.

3.3 Detection Framework

Predictions on a production Al system can be made sample by sample or window by window in a data
stream. Both can be interpreted as a statistical hypothesis test.

3.3.1 Single Example Detection

On a single example level (equivalent to OOD detection), let s : (x, f) — R be a confidence-aware
score function that measures how adapted the input is to the model. A low score indicates the sample is
untrustworthy, and a high value indicates otherwise. This score can be simply converted to a binary detector
through a threshold v € R, i.e., d(-) = 1[s(+, f) < +]. Finally, the role of the system (d, f) is only to keep a
prediction if the input sample x is not rejected by the detector d, i.e., if d(x) = 0. This setup is identical to
novelty, anomaly, or OOD detection. Formally, the null and alternative hypothesis writes:

Hy: (X,Y) ~pxy and Ha : (X,Y) ~ gxy-. (4)

We assume that the score functions are confidence oriented, i.e., greater values indicate more confidence in
prediction. So, we frame the statistical hypothesis test as a left-tailed test (Lehmann & Romano, 2005)).
Even though single-sample detection is adapted for anomaly detection, it is not well adapted for detecting
distribution shifts.

3.3.2 Multiple Examples Detection

In a window based detection scenario, we make the assumptions that 1.) there are multiple reference sam-
ples available, 2.) the instance’s class label are not available right after prediction, and 3.) the model is not
updated. So, given a reference window Wy ~ pxy with r samples and test window W3 = {z!, ..., x/ .} ~ gx

with sample size m, our task is to determine whether they are both sampled from the source distribution or,
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equivalently, whether pxy (z,y) equals ¢, (2',9') where §' = f(z'). The null and alternative hypothesis
of the two-sample test of homogeneity writes:

HO :pXY(wvy) = qX? (w/’:gl) and Hx :pXY(:B7y) # qX? (:Blagl) . (5)

In this case, the null hypothesis is that the two distributions are identical for all (x, y); the alternative is that
they are not identical, which is a two-sided test. As testing this null hypothesis on a continuous and high
dimensional space is unfeasible, we will compute a univariate score on each sample of the windows. With a
slight abuse of notation let s W™, f) = {s(x1, f), ..., s(€m, f)} be a multivariate proxy variable to derive
a unified large-scale window-based data shift detector. To compute the final window score, we rely on the
Kolmogorov-Smirnov (Masseyl, [1951)) two-sample hypothesis test over the proxy variable. The test statistic
writes: N N
KSOW;, Wi) = sup | By (6) — F1(6)] (6)
deR

where 13{ and 132”‘ are the empirical cumulative distribution functions (ecdf) of the scores of each sample
of the first and the second widows, respectively, as defined in Equation . Finally, the KS statistic is
compared to a threshold v € R to obtain the window-based binary detector D(-) = 1 [KS(-, W]) < 4].

4 Main Contribution: Arbitrary Scores Combination

This section explains in detail the core contribution of the paper: an algorithm to effectively combine
arbitrary detection score functions from a diverse family of detectors. Section [£.I] discusses why basic
statistics may fail to combine OOD detectors and motivates a more principled approach based on meta-
analysis (Glass), [1976), a statistical technique that combines the results of multiple studies to produce a
single overall estimate.

The first step of our Combine and Conquer algorithm is to transform the individual scores into p-values
through a quantile normalization (Conover & Iman) [1981)) (cf. Section . Then, with multiple detectors,
the p-values can be combined using a p-value combination method (cf. Section . Finally, we introduce
an additional statistical treatment, since the p-values of the multiple tests over the same sample are often
correlated (cf. Section [£.4)).

4.1 Simple Normalization for Score Aggregation May Fall Short

0.25 1.0 1.0
Energy
>
% 0.20 Maha 0.8 0.8
o] VIM 2 =
0 015 Z 06 Z 06
z g — g
2 010 S 04 Energy | § g4
8 o Maha o —— Ours
nﬁ_’ 005 0.2 — VIM 0.2 Chi-squared
=== Uniform — = Brown's correction
0.00 0.0 0.0
-60 -40 -20 0 20 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30
Score Transformed Score Test Statistic
(a) Score’s pdf (in-distribution). (b) Quantile transformation’s cdf. (c) Combined p-value cdf.

Figure 1: Illustration of the three steps of the Combine and Conquer algorithm. This example shows three
disparate score functions evaluated on in-distribution data. Our main experiments combine 14 scores.

Common approaches for combining different detection scores often revolve around calculating a mean (de Car-
valho|, [2016|) of the scores while incorporating certain assumptions. These assumptions typically entail con-
siderations such as whether all scores should contribute equally to the final composite score, or if a weighted
sum should be computed, assigning greater importance to select methods. Additionally, there’s the question
of whether outlier score values should be favored over others, and whether a more conservative or permissive
approach should be adopted in score combination. For instance, using the product of available scores could
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yield a low combined score if any individual scores are low, while selecting the minimum or maximum value
among all anomaly scores can influence the method to be more conservative or permissive. While these
combination methods are all viable, their effectiveness heavily relies on the distributional characteristics of
the involved scores. Given that the choice of aggregation method hinges on the data’s characteristics, it’s
pertinent to delve into the unique attributes of OOD detection scores.

One inherent limitation in OOD detection is the absence of access to a sufficiently representative dataset
of outlier data, which poses challenges for techniques like metalearning |Opitz & Maclin (1999) and other
supervised ensembling methods that require data to train a meta-model. Additionally, detection scores
often exhibit distinet distribution shapes with varying moments, as illustrated in Figure [Ta] To mitigate
some of these effects, several simple statistical approaches are commonly employed. One such method is
normal standardization or z-score normalization, where each individual score random variable S; = s;(X, f)
is transformed into a standard score Z; = (S; — 5}) /os,, where Z; represents the distance between the raw
score and the population mean in units of the standard deviation og,. While this approach corrects for the
first two moments of the distributions, it does not account for skewness, kurtosis, or multimodality. Another
frequently used normalization technique is min-maz scaling, which involves transforming scores to fall within
the range of zero and one using statistics Z; = (S; — min S;)/(max S; — min ;). However, min-max scaling
fails to address many other characteristics and does not provide control over the resulting distribution’s
moments, making the task of combining scores more challenging. To tackle this issue, we emphasize the
importance of pre-processing the scores using quantile normalization instead.

4.2 Quantile Normalization: Managing Disparate Score Distributions

Each detector’s score r.v. S; = s;(X, f) follows very different distributions depending on the model’s archi-
tecture, the dataset it was trained on, and the score function s;. To combine them effectively, we propose
first to apply a quantile normalization (Bolstad et al. |2003)), which exhibits interesting statistical properties
(Gallon et all [2013). Let S; : © — R be a continuous univariate r.v. captured by a cumulative density
function (cdf) F(6) = Pr(S; < 6) fori € {1,...,k} and § € R. Its empirical cdf F; : R — [0,1] is defined by

o) =3 uisi< . 7

which converges almost surely to the true cdf for every 0 by the Dvoretzky—Kiefer—Wolfowitz—Massart in-
equality (Massart], [1990). We are going to estimate this function using a subsample of size r of the training
or validation set if available. The resulting r.v. is uniformly distributed in the interval [0, 1]. As a result, for
each detector ¢ and sample x, we can obtain a p-value:

~

pi(z) = Pu, (Si < si(z, f)) = Pr(S; < si(z, f) | Ho) = F} (si(z, f)) . (8)

A decision is made by comparing the p-value to a desired significance level a. If p < «, then the null
hypothesis Hy is rejected, and the sample is considered OOD. Even though we derived everything for the
single example detection case, this formulation can be extended to the window-based scenario.

4.3 Combining Multiple P-Values

Our objective is to aggregate a set of k > 2 scores (or p-values) so that their synthesis exhibits better
properties, such as improved robustness or detection performance, by consolidating each method’s decision
boundaries. Unfortunately, since ¢ is unknown and p is hard to estimate, designing an optimal test is
unfeasible according to Neyman—Pearson’s Fundamental Lemma (Lehmann & Romano, |2005). However,
there are several possible empirical combination methods, such as Tippett| (1931) min; p,, Neyman & Pearson
(1933) 2Zf In(1 —p,), Wilkinson| (1951)) max; p;, [Edgington| (1972) 1/k Zle p;, and Simes| (1986) min; Zp,
for sorted p-values. We are going to explore in detail the Fisher’s method (Fisher, [1925 Mosteller & Fisher]
1948) in the main manuscript, also referred to as the chi-squared method, and Stouffer’s method (Stouffer
et al., [1949) in the appendix Appendix as they exhibit good properties that will be explored in the
following.
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If the p-values are the independent realizations of a uniform distribution, i.e., for in-distribution data,
-2 Zle Inp; ~ x3, follows a chi-squared distribution with 2k degrees of freedom. Finally, for a test input
x, Fisher’s detector score function can be defined as

k
se(@, ) = -2 In Filsi(a, ). (9)

i=1

Fisher’s test has interesting qualitative properties, such as sensitivity to the smallest p-value, and it is
generally more appropriate for combining positive-valued data (Heard & Rubin-Delanchy, [2017)) with matches
the properties of most OOD scores.

4.4 Correcting for Correlated P-Values

It should be noted that Fisher’s method depends on the assumption of independence and uniform distribution
of the p-values. However, the p-values for the same input sample are not independent. An in-distribution
data point (one with a high score) is likely to receive high scores across various useful score functions.
Therefore, if one score function produces a high score for a particular point, it’s reasonable to expect that a
second score function will also assign a high score to the same data point. |Brown|(1975) proposes correcting
the Fisher statistics for correlation by modeling the r.v sz () using a scaled chi-squared distribution, i.e.,

sp(-) ~ex?(K'), with ¢ = Var(Sp)/(2E[SF]) and k' = 2(E[SF])?/ Var(Sr). (10)

With this simple trick, we approach more interpretable results, as we know in advance the distribution
followed by the in-distribution data under our combined score. As such, we can leverage calibrated confidence
values given by the true cdf and leverage more powerful single-sample statistical tests for window-based data
shift detection.

Remark 1. Commonly, a score’s binary detection threshold =y is set based on a certain quantile of the
score’s value on an in-distribution validation set. Usually, this value is set to have 95% of entities correctly
classified. By combining p-values with Fisher’s method and correcting for correlation with Brown’s method,
we have that the detection threshold is given by v = Fc;é(k,)(a),

Remark 2. Given that Brown’s method involves only linear scaling, it does not lead to any reranking of the
scores. Consequently, any evaluation metric used for detection (e.g., AUROC) computed with this method will
yield results identical to those obtained with the original Fisher’s method statistic. Nevertheless, the benefit
of employing Brown’s correction lies in the calibration of scores based on a known underlying probability data
distribution, as depicted in Figure[Id This calibration enhances the interpretability of the results.

Algorithm [I] summarizes the offline steps of Combine and Conquer. Finally, at test time, the aggregated
binary detection function for an input sample @ writes for a given TPR desired performance « € [0, 1]:

k .
~ 1 shift detected,
chz(k/) (—2 E lnFl(Sl(il:,f))> < O;| = { (11)
i=1

dx) =1 .
0 no shift detected.

5 Experimental Setup

In this section, we present and detail the experimental setup from a conceptual point of view. For all our main
experiments, we set as in-distribution dataset ImageNet-1K (=ILSVRC2012; |Deng et al., [2009) on ResNet
(He et al., 2016) and Vision Transformers (Dosovitskiy et al.,[2021)) models. ImageNet is a large-scale image
classification dataset containing 14 million annotated images for training and 50,000 annotated images for
testing. It contains 1,000 different categories, one per image. Our experiments encompass a full-spectrum
setting on i.) classic OOD via single example detection (Section , ii.) novelty shift via independent
window-based detection (Section Par. 1), iii.) covariate shift via independent window-based detection
(Section[5.2} Par. 2), and iv.) sequential shift detection via sequential window-based detection (Section [5.3).
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Algorithm 1 Offline preparation algorithm for combining multiple detectors for OOD detection.

Require: Classifier f, in-distribution held-out data set D, = {xi,...,x,}, and k > 2 detection score
functions denoted by s1, ... sk.
S < 0,«k > Initialize empty r X k matrix
for x; € D, do > Fill the matrix with in-distribution scores

for j € {1,...,k} do
Si)j — sj(zcz)

end for

end for

for je{l,...,k} do > Define the empirical cdfs to compute p-values
Fi()«1/ry2i1[Si; <]

end for

> The following steps are for the Fisher-Brown method. They can be easily adapted to other methods

forie{l,...,r} do
k ~

p; <= =235 InFj(Si5)
end for
P13 P 0% 1m0 (P — )
c+0?/(2n), K < 2u%/o?
return Fy,... F,c k'

5.1 Classic Out-of-Distribution Detection

OOD detection benchmarks are created by appending in the same set in-distribution data (from the testing
dataset) and novelty from different datasets (Hendrycks & Gimpel, 2017). We evaluate the performance of
the detectors by mixing the 50,000 testing samples from ImageNet with the curated datasets from Bitterwolf
et al.| (2023)) that contain a clean subset without any semantic overlap with ImageNet of far-OOD datasets:
SSB-Easy (Vaze et al. [2022)) (farthest novelty from ImageNet-21K ranked by the total path distance between
their nodes in the semantic trees of the two datasets), Openlmage-O (OI-O) (Wang et all [2022) (images
belonging to novel classes from the Openlmage-v3 dataset (Krasin et all 2017)), Places (Zhou et al.| [2017)
(images of 365 natural scenes categories, e.g., patio, courtyard, swamp, etc.), iNaturalist (Horn et al., 2017)
(samples with concepts from 110 plant classes different from ImageNet-1K ones), and Textures (Cimpoi
et al.l 2014) (collection of textural pattern images observed in nature); and the near-OOD datasets: SSB-
Hard (Vaze et al.||2022) (closes novelty from ImageNet-21K ranked by the total path distance between their
nodes in the semantic trees of the two datasets), Species (Hendrycks et al.; [2022) (plant species sourced from
(Horn et al., 2017) not belonging to ImageNet-1K or ImageNet-21K), and finally NINCO (Bitterwolf et al.,
2023) (images from 64 categories manually curated from several popular datasets).

For the evaluation metrics, we consider the popular Area Under the Receiver Operating Characteristic
curve (AUROC), which measures how well the OOD score distinguishes between in-distribution and out-of-
distribution data in a threshold-independent manner (higher is better). The ROC curve is constructed by
plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold values. More
rigorously, the AUROC corresponds to the probability that a randomly drawn in-distribution sample has a
higher score than a randomly drawn OOD sample for a confidence-based score.

For the baselines, we consider the following post-hoc detection methods (14 in total): MSP (Hendrycks
& Gimpel, 2017)), Energy (Liu et all [2020), Mahalanobis or Maha for short (Lee et al., [2018)), Igeood
(Gomes et all [2022), MaxCos (Techapanurak et al., |2020), ReAct (Sun et al., 2021)), ODIN (Liang et al.,
2018), DICE (Sun & Li, [2022), VIM (Wang et al., [2022), KL-M (Hendrycks et al., 2022), Doctor (Granese
et al., 2021), RMD (Ren et al.l [2021)), KNN (Sun et al., |2022)), GradN (Huang et al., 2021)). We followed
the hyperparameter selection procedure suggested in the original papers when needed. New methods can
be easily integrated into our universal framework and should improve the robustness and, potentially, the
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performance of the group detector. In Section [6] we delve into the empirical findings and examine whether
an optimal subset of detectors exists that enhances detection performance.

5.2 Independent Window-Based Detection

Novelty shift. To simulate a novelty shift at test time, we fabricate fully ID windows and corrupted
windows formed by a mixture of ID and OOD data from the Openlmage-O (OI-O) (Wang et al. [2022)
dataset with mixing parameter 3 as defined in Equation . As a result, the model will encounter windows
that contain novelty from natural images. The objective of the detectors is to classify each test window as
being corrupted or not in order to secure the predictor. To do so, each test window is compared to a fixed
reference window of size r = 1000 extracted from a clean validation set. We ran experiments with 3 € [0, 1]
and with window sizes |W| € {1,...,1000}. We use the KS two sample test described in Section as
window-based test statistics. Evaluation metrics and baselines are the same as described in Section (.1l
Figure [2| shows the Fisher’s test statistic computed on windows with different mixture amounts and sizes.
Figure shows the distribution of the test statistics for different mixture values from g = 0 (fully ID
window) to 8 =1 (fully OOD window). Figure [2b| displays how the distribution of the test statistic changes
from flatter to peaky as we increase the window size in the simulations (better seen in color). Finally,
Figure demonstrates how the detection performance is affected by window size increase and mixture
coefficient. As expected, note an AUROC of 0.5 for the case with 5 = 0. With a window size as low as
8, we can perfectly distinguish fully corrupted windows from normal ones. Similar qualitative behavior is
observed for all detectors.
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Figure 2: Test statistic distributional behavior and detection performance as a function of the novelty shift
intensity and window size. Experiments ran for Fisher’s method on a ResNet-50.

Covariate shift. To simulate a covariate shift at test time, we ran experiments with
the ImageNet-R (IN-R) (Hendrycks et all [2021) dataset. This dataset contains images from
different domains than natural objects for 200 ID classes of ImageNet. The shifted do-

mains are, for instance, cartoons, graffiti, origami, paintings, plastic objects, tattoos, etc..
Similarly to the novelty drift setup described in the previ-

ous paragraph, we suppose that the windows arrive inde- Table 1: Top-1 accuracies in percentage.

pendently. We use the same reference window to compute

metrics and vary the mix parameter and window size in the — y1,qel Train Val. IN-R IN-R (m)

same way. Figure [§]is analogous to Figure [2| and shows the

behavior of the combined p-values for detecting covariate RN-50 875 761 1.33 36.2
RN-101 90.0 774 1.67 39.3

shift in windows of a data stream. We draw similar quali-
tative observations from it. Table [I] display the accuracy of
each model studied on the new domain. We can see that the ~ ViT-S-16 ~ 88.0 814  1.33 46.0
drift is severe without masking only the classes present on V%T—B—16 90.5 845 3.3 56.8
IN-R, with a top-1 accuracy of around 1% only. However, VIiT-L-16 923 8.8 167 64.3
as we compute the top accuracy only on the 200 classes by

RN-152 90.2 783 0.67 41.4
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(m)asking the other 800, we can observe an amelioration in performance. In our experiments, we simulate
the more realistic and challenging scenario by supposing this mask is unavailable.

5.3 Sequential Drift Detection

Unlike the independent window-based detection setting introduced in Section [5.2] in this setup, we im-
plement a sliding window of size 64 with a stride of one, so that the resulting windows contain over-
lapping data samples. We assume that the samples arrive sequentially and that the labels are unavail-
able to compute the true accuracy of the model on the current or past test windows. The objective is
to measure how well the moving average of the detection score will correlate with the moving accuracy
of the model. By having a high correlation with accuracy, a machine learning practitioner can use the
values of the score as an indicator if the system is suffering from any degrading data distribution shift.

To simulate a progressive sequential drift in a data strem, we ran

0 1 ——1 T -

experiments with the corrupted ImageNet (IN-C) (Hendrycks & Di- " i '\fw'n? Aveiragei *
etterichl 2019) dataset. This dataset contains corrupted versions of 081 3 A - %0
ImageNet test data by introducing image pre-processing functions, Sosii E i TS
such as adding noise, changing brightness, pixelating, compressing, g oadit AWMLY L 1008
etc. The intensity of the drift increases over time from intensity 0 oo W T E-ios
(training warmup set and part of the validation set without corrup- 27 :? :Movi:ng Aclcurai E i .
tions) to 5. Figure [3 illustrates the monitoring pipeline with the oo e T F) e

. . s . Time
moving accuracy on the left y-axis and the score’s moving average

on the right y-axis. The score’s moving average can effectively follow
the accuracy (hidden variable). The dashed lines are the timestamps Figure 3: Data stream monitoring
in which the drift intensity progressively increases. with correlation p = 0.98

6 Results and Discussion

Out-of-distribution detection. Table [2] displays the experimental result on classic OOD detection for a
ResNet-50 model on the setup described in Section [5.1] Fisher’s method achieves state-of-the-art results on
average AUROC, surpassing the previous SOTA by 1.4% (MaxCos). Also, the other six standard p-value
combination strategies also achieve great results, validating our proposed meta-framework of Section[d Sim-
ilar FPR and other architectures tables are available in the Appendix[A] Apart from achieving overall great
performance capabilities, the most compelling observed property is the robustness compared to individual
detection metrics. Figure [d] shows the ranking per dataset and on average for selected methods. We can ob-
serve that even though several detectors achieve top-1 performance in a few cases, there are several datasets
in which they underperform, sometimes catastrophically. This is not true for the group methods, which
can effectively combine the existing detectors to obtain a final score that successfully combines the multiple
decision regions. For instance, Combine and Conquer with Fisher/Brown keeps top-4 performance in all cases
on the ResNet-50 ImageNet benchmark and Stouffer/Hartung is top-5 in all cases.

Standard approaches for scores combination. Table [3|shows the performance of simple normalization
statistics (min-max scaling and standard normalization) combined with simple score combination methods
(mean, min, max). Note that the quantile normalization range is bounded, which helps the interpretability
of the scores in a model monitoring pipeline. The range for min-max scaling is not [0, 1] in this case because
the statistics are computed on a held-out validation set. We also observe better performance overall for the
Combine and Conquer methodology.

Independent window-based detection. Figure [5|displays results on novelty shift detection. Figure [5al)
shows the detectors’ performance with the window size, showcasing a small edge in performance for Vim,
Fisher’s, and Stouffer’s methods. Figure displays the impact of the mixture parameter. Figure [5dshows
that model size mildly impacts detection performance, with registered improvements for ResNet-152 and
ResNet-101 over ResNet-50 on Fisher’s method. The confidence interval bounds are computed over 10
different seeds and are quite narrow for all methods. Similar observations are drawn in the covariate shift
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Table 2: Numerical results regarding AUROC (values in percentage) comparing p-value combination methods
against literature for a ResNet-50 model trained on ImageNet. The left-hand side shows results on out-of-
distribution detection, and the right-hand side shows results on novelty (OI-O) and covariate (IN-R) shift
detection with [W| = 3 and 8 = 1. We recall the basic combination methods (with their equations):
Edgington (1/k Zle p;), Pearson (2 Zf In(1
and Wilkinson (max; p;).

p;)), Simes (min; %pi for sorted p-values), Tippet (min; p;),

Data Shift Detection

‘ Out-of-Distribution Detection ‘ ‘

Method Avg. ‘ SSB-H NINCO  Spec. SSB-E  OI-O Places iNat Text. IN-R OI-O
Fisher/Brown 89.8 75.8 84.3 88.7 91.0 93.0 93.1 95.9 96.4 94.3 (0.2) 95.7 (0.4)
Stouffer/Hartung | 89.6 75.5 84.6 89.0 90.9 92.8 92.7 95.8 95.5 92.8 (0 2) 955 (0.4)
Edgington 89.3 75.2 84.6 89.0 91.0 92.5 92.1 95.5 94.4 92.5 (0.2)  95.3 (0.3)
Pearson 89.2 74.6 84.9 89.4 90.9 92.4 91.8 95.5 94.1 92.2 (0.3)  93.9 (0.4)
Simes 89.2 75.0 83.0 87.6 89.5 92.3 93.1 95.7 97.0 83.6 (0.5)  86.6 (0.7)
Tippet 88.5 74.8 80.9 86.7 87.3 91.7 93.5 95.9 97.2 82.0 (1.0)  81.5 (0.7)
Wilkinson 86.5 68.7 83.3 89.0 88.1 89.5 86.3 93.6 93.1 71.2 (1.8)  77.4 (0.9)
MaxCos 88.4 69.6 82.7 88.2 89.9 92.2 89.7 96.1 98.4 92.2 (0.3)  95.5 (0.4)
ReAct 87.4 75.0 80.1 87.2 82.3 90.4 95.8 96.6  91.6 92.2 (0.3)  94.5 (0.4)
ODIN 85.4 72.9 80.3 83.9 87.7 88.8 90.0 91.4 88.3 92.2 (0.5)  93.6 (0.4)
DICE 85.1 70.2 77.4 84.1 82.5 88.6 91.6 94.4 91.9 85.5 (0.3)  90.1 (0.4)
Energy 85.0 72.1 79.6 83.1 87.2 88.7 90.0 90.7 88.4 91.9 (0.3)  93.4 (0.4)
Igeood 84.7 71.4 80.1 83.0 88.8 88.0 88.8 90.2 87.6 91.0 (0.3)  93.3 (0.3)
VIM 84.3 66.4 78.9 80.7 89.3 90.3 83.7 87.9 97.5 92.2 (0.5)  95.4 (0.4)
KL-M 84.3 73.9 80.7 86.1 87.3 85.7 85.2 90.0 85.3 86.9 (0.6)  91.4 (0.9)
Doctor 84.2 75.9 80.6 85.1 87.0 85.1 86.7 89.7 83.8 85.2 (0.6)  89.9 (0.4)
RMD 83.5 78.2 82.7 87.7 82.9 84.9 81.3 87.6 82.7 89.9 (0.3)  93.1 (0.6)
MSP 83.5 75.5 79.9 84.5 86.1 84.1 85.9 88.7 83.0 83.6 (0.5)  89.0 (0.4)
KNN 83.4 64.3 79.6 83.3 88.0 87.2 83.0 84.1 97.6 84.6 (0.5)  89.2 (0.8)
GradN 82.6 63.3 74.4 83.1 76.2 84.4 91.1 96.0 92.5 49.7 (1.0)  67.4 (1.2)
Maha 69.6 55.3 65.7 70.3 70.6 73.9 60.0 72.7 88.4 71.2 (1.8)  77.6 (1.8)
1 e} .
3 ‘:—' —&— Fisher
5 |-- -/ e @ O— A < ___| =¥ Stouffer
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Figure 4: Ranking in terms of AUROC for a few selected methods for the ResNet-50 model. Note that the
two displayed methods to combining tests obtain a top-5 ranking in every dataset, while state-of-the-art
individual detectors vary significantly in performance.

results displayed in Figure [I0] except for the network scale impact, where we obtained more or less the same
results for all sizes. On the right-hand side of Table 2| we showed that for both shifts, we demonstrated
improved performance by combining p-values, especially with Fisher’s method. We also observe from the
table that the novelty shift benchmark is slightly easier than the covariate shift benchmark, which is probably
biased because most OOD detectors were developed for the novel class scenario. Additional results are
available in the Appendix [A]

Results in a sequential stream. Table[d]displays the average results for the ImageNet-C dataset, including
19 kinds of covariate drifts. We can observe that the most performing methods are the scores function
based on the softmax and logit outputs and that Fisher’s method is on par with top-performing methods.
We emphasize that, even though MSP and Doctor work well in this benchmark, they demonstrated poor
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Table 3: Comparative performance in terms of average AUROC for the OOD detection benchmark.

Simple Combination Ours
Normaliz. Range ‘ Mean Min Max ‘ Stouffer  Fisher
Min-Max  (—oo,00) | 89.1 87.9 85.6 - -
Standard (—oco,00) | 89.3 87.4  86.7 - -
Quantile [0,1] 89.3 885 86.5 89.6 89.8

10 mmmim ] 10 — 3 1.0 —
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(a) |W| impact with 5 = 0.8. (b) 8 impact with [W| = 10. (c) Model size impact (8 = 0.8).

Figure 5: Independent data shift (Openlmage-O) detection performance on a ResNet-50 model (ImageNet).

performance on other benchmarks, notably on Table This supports our claim that combining scores is
the most effective approach for improving robustness and performance in general data shift detection.

Table 4: Average Pearson’s correlation coefficient with the hidden accuracy with one standard deviation
in parenthesis for top and bottom performing detection methods across 19 different corruptions on the
sequential data shift detection scenario on a ResNet-50 model.

Fisher Doctor MSP Igeood .. KNN RMD GradN Maha

Avg. 0.96 (0.03) 0.96 (0.03) 0.96 (0.03) 0.95 (0.03) ... 0.92(0.07) 0.92 (0.03) 0.91 (0.07) 0.81 (0.21)

On the distillation of the best subset of detectors. We provide a supervised study to showcase the
potential impact of finding an optimal subset of detectors. We computed the performance of all possible
subsets of j < k methods, and we report our results in Figure@ We found out that 1.) surprisingly, removing
the worse detector from the pool does not necessarily increase performance; 2.) increasing the size of the
subset improves probable detection on average and on worst performance; 3.) best subset selection benefits
harder to find OOD samples; and 4.) not surprisingly, the best combination for the easy benchmark may be
very different from the best subset on the harder one. We also list the best subset of four methods on average
performance: {GradN, ReAct, MaxCos, RMD}, on an easy dataset (SSB-Easy): {DICE, MaxCos, KL-M,
VIM}, and on a hard dataset (SSB-Hard): {MSP, GradN, ReAct, RMD}. Their AUROC and relative gain
w.r.t all methods combined together are equal to 91.4 (+1.8%), 92.0 (+1.1)%, and 79.7 (+4.9%), respectively.
These observations support the main claim of the paper that in a data-free scenario with specialized methods,
combining all of them should greatly improve the safety of the underlying system.

Limitations. Our study acknowledges that there is no one-size-fits-all detector or a universally superior
combination method, a finding supported by previous research (Heard & Rubin-Delanchyl, [2017; [Fang et al.)
2022). This recognition underlines the inherent complexity of real-world ML applications. Additionally, we
recognize that the empirical cumulative distribution function may be susceptible to estimation errors, and
the effectiveness of individual detector score functions can influence the performance of the aggregated score.
Even though this work stands to improve the reliability of OOD and data-shift detection that allows for
safer deployment of machine learning models, there’s a risk associated with becoming too confident in the
ability of these detection mechanisms. If machine learning practitioners become overly reliant on the OOD
detector, they may deploy these models into domains or situations where the detection mechanism fails to
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Figure 6: Evaluation of all possible subsets of detectors on the OOD detection benchmark. The dashed red
line indicates the performance combining all detectors.

identify OOD data accurately. It is also important to note that although our investigation primarily focused
on computer vision applications, similar techniques can be applied to diverse scenarios and application
domains.

Future directions. Several avenues for future research remain open for exploration. One promising
direction involves investigating the performance patterns of detectors across various types of drifts to fa-
cilitate subset selection, ultimately improving detection accuracy. However, this may necessitate validation
on held-out labeled data or domain expertise to accurately reflect the prior importance of the p-values.
Additionally, our proposed algorithm could be integrated into incremental and online learning algorithms,
enhancing their adaptability to evolving data streams and offering exciting opportunities for advancing ma-
chine learning applications. Furthermore, an intriguing future direction entails designing a method that is
instance-dependent, yielding different detector weights for different instances, given our demonstration that
various scoring strategies are effective for different types of data inputs.

7 Summary and Concluding Remarks

This paper presents a versatile and efficient method for combining detectors to effectively handle shifts in
data distributions. By transforming diverse scores into p-values and leveraging meta-analysis techniques,
we have illustrated the creation of unified decision boundaries that mitigate the risk of catastrophic failures
seen with individual detectors. Our use of Fisher’s method, adjusted for correlated p-values, demonstrates
strong interpretability as a detection criterion. Through meticulous empirical validation, we’ve confirmed
the effectiveness of our approach in both single-instance out-of-distribution detection and window-based data
distribution shift detection, achieving notable robustness and detection performance across diverse domains.
Looking forward, our framework establishes a solid groundwork for enhancing the safety of Al systems.
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A Appendix

A.1 Combining Multiple P-Values with Stouffer’s method

The |Stouffer et al.|(1949) test statistics for combining p-values is given by:

k

ss() =D @7 () (12)

i=1

where ®~! is the probit, i.e., ® (o) = 2erf (20 — 1), where erf is the Gauss error function. If the
p-values are independent, sg(-) ~ N(0,1), where N (u,0?) is the normal distribution with mean p and
standard deviation o.

A.2 Correcting for correlated p-values with Hartung’s method

Hartung] (1999) method aims to correct Stouffer’s test for correlated p-values. The group statistics write:

k p—1 -
su (5w, p) = 2= 8 (0:0) 5~ N(0,1) (13)
\/(1 - p) Ef:l wi2 +p (Zf:l wi)

with p a real-valued parameter and Zle w; # 0. Hartung showed that an unbiased estimator of p based on
p; under Hy is given by:

L 2
p=1-E ﬁ Z (‘bl(Pi) - }{Z‘bl(mo : (14)

=1

Assuming equal weights, we repeated a similar experiment as the one of Figure [I] replacing the chi-squared
with a standard normal to see how well the correction works. We can observe in Figure [7| that the corrected
statistic indeed approximates a standard normal distribution. Unlike Brown’s method, Hartung’s method
corrects the statistics directly instead of correcting the parameters of the underlying distribution.
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Figure 7: Stouffer’s method corrected for correlated p-values with Hartung’s method to obtain a standard
normal distribution when evaluated on in-distribution data (null hypothesis), also obtaining interpretable
results.
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A.3 Additional Plots
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(b) ID vs. OOD windows.
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(c) Detection performance.

Figure 8: Test statistic behavior and detection performance in function of the covariate shift intensity and
window size. Experiments ran on a ResNet-50.
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(c) Detection performance.

Figure 9: Test statistic behavior and detection performance in function of the covariate shift intensity and
window size. Experiments ran on a ViT-L-16.
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Figure 10: Covariate shift (ImageNet-R) detection performance on a ResNet-50 model (ImageNet).
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Figure 11: Covariate shift (ImageNet-R) detection performance on a ViT-L-16 model (ImageNet).
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Figure 12: Evaluation of all possible subsets of detectors on the OOD detection benchmark for a ViT-L-16
model. The dashed red line indicates the performance combining all detectors.

A.4 Additional Tables

Table 5: Numerical results in terms of AUROC (values in percentage) comparing p-value combination
methods against literature for a ViT-L-16 model trained on ImageNet.

Method ‘ Avg. ‘ SSB-H NINCO  Spec. SSB-E OI-O Places iNat. Text.
Maha 96.8 92.7 94.8 96.6 97.4 98.6 96.9 99.8 97.6
VIM 96.6 92.1 93.9 95.6 97.7 98.5 96.7 99.7 98.2
RMD 96.1 92.4 94.8 96.2 96.3 97.9 95.7 99.5 95.6
Fisher/Brown 96.1 91.8 93.4 94.6 97.3 98.0 96.8 99.5 97.1
Vovk 96.1 91.8 93.4 94.6 97.3 98.0 96.8 99.5 97.1
Simes 96.0 91.7 93.4 94.6 97.1 98.0 97.0 99.5 97.0
Stouffer/Hartung 96.0 91.5 93.3 94.4 97.3 97.9 96.7 99.4 97.1
ReAct 95.9 93.9 94.7 96.9 96.6 97.8 91.1 99.5 96.3
Edgington 95.7 90.9 92.8 93.9 97.1 97.7 96.8 99.2 97.1
Energy 95.6 91.0 92.5 93.2 97.3 97.8 96.4 99.3 97.1
Tippet 95.5 90.9 92.3 94.6 96.4 97.6 96.9 99.3 96.2
Pearson 95.5 90.4 92.4 93.6 97.1 97.6 96.8 99.0 97.0
MaxL 95.5 91.2 92.6 93.2 97.0 97.6 96.1 99.3 96.8
ODIN 95.5 91.2 92.6 93.2 97.0 97.6 96.1 99.3 96.8
Igeood 95.4 90.8 92.6 93.2 97.1 97.6 96.0 99.2 96.7
MaxCos 94.9 89.7 91.2 92.9 97.0 96.9 96.2 98.2 97.1
GradN 94.9 90.1 91.4 91.8 96.6 97.3 96.1 99.2 96.3
KNN 93.4 85.4 89.2 91.9 96.3 96.1 94.3 97.6 96.4
Doctor 93.1 88.9 90.3 91.8 94.1 94.8 93.2 98.4 93.7
MSP 92.5 88.2 89.5 91.3 93.5 94.0 92.4 98.0 93.0
KL-M 92.1 85.4 89.0 90.6 93.5 94.2 92.5 98.0 93.7
Wilkinson 91.2 81.6 85.0 87.1 94.2 94.7 96.3 95.7 95.2
DICE 76.3 60.2 63.6 67.0 79.8 80.8 94.3 81.9 82.5
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