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Abstract

Mainstream LLM research has primarily fo-001
cused on enhancing their generative capabili-002
ties. However, even the most advanced LLMs003
experience uncertainty in their outputs, often004
producing varied results on different runs or005
when faced with minor changes in input, de-006
spite no substantial change in content. Given007
multiple responses from the same LLM to the008
same input, we advocate leveraging the LLMs’009
discriminative capability to reduce this gen-010
erative uncertainty, aiding in identifying the011
correct answers. Specifically, we propose and012
analyze three discriminative prompts: Direct013
Prompt, Inverse Prompt, and Combination,014
to explore the potential of both closed-source015
and open-source LLMs in self-improving their016
generative performance on two benchmark017
datasets. Our insights reveal which discrim-018
inative prompt is most promising and when to019
use it. To our knowledge, this is the first work020
to systematically analyze LLMs’ discriminative021
capacity to address generative uncertainty.022

1 Introduction023

Generative AI is revolutionizing various fields by024

utilizing large language models (LLMs) trained025

to generate human-like responses based on given026

instructions. Despite the increasing strength of027

existing LLMs in terms of generation capability,028

a widely recognized issue is their uncertainty in029

responses to inputs—the same model may produce030

significantly different responses on different runs031

or to equivalently varied inputs.032

Previous studies have either relied on external033

human/tool supervision (Wang et al., 2023a; Paul034

et al., 2024; Gou et al., 2023; Chen et al., 2023b;035

Olausson et al., 2023; Gao et al., 2023) or have036

not successfully explored the inner capabilities of037

LLMs, such as their own discriminative capability,038

to reduce uncertainty (Jiang et al., 2024). We argue039

that LLMs should focus on both their generative040

and discriminative capabilities. In this work, we ex- 041

plore various discriminative capabilities of LLMs 042

to reduce the uncertainty of their generations. 043

Specifically, we propose and analyze three types 044

of discriminative prompts to identify the most 045

promising answer from a group of generated re- 046

sponses: Direct Prompt: directly asking the LLM 047

which responses are correct; Inverse Prompt: 048

contrasting Direct Promptby asking which re- 049

sponses are incorrect; Combination: combining 050

Direct Promptand Inverse Prompt, since intu- 051

itively they perform the same reasoning process 052

from complementary perspectives. 053

We conduct analyses with two closed-source 054

LLMs (GPT-4 (OpenAI, 2023) and GPT-4o (Ope- 055

nAI, 2024)) and two open-source LLMs (Llama-3- 056

8B-Instruct (Meta, 2024) and MetaMath-7B-V1.0 057

(Yu et al., 2023)) on two math-related datasets, 058

MATH (Hendrycks et al., 2021) and MathQA 059

(Amini et al., 2019). We observe: i)For closed- 060

source LLMs, using discriminative capability, ei- 061

ther Direct Prompt or Inverse Prompt, is highly 062

effective for reducing generative uncertainty. ii) 063

For open-source LLMs, if not instruction-tuned, us- 064

ing discriminative capability is not recommended. 065

Even if instruction-tuned, only Direct Prompt is 066

recommended due to likely issues with understand- 067

ing negation in Inverse Prompt. 068

Our contributions are threefold: 069

• Proposing Direct-Inverse 070

Discriminative Prompting, a multi- 071

angle complementary method, to assess 072

LLMs’ discriminative capability; 073

• The first systematic analysis of the potential 074

of LLMs’ discriminative capability to reduce 075

generative uncertainty; 076

• Providing insights and suggestions for future 077

users on how to effectively utilize LLMs’ dis- 078

criminative capability in practice. 079
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2 Related Work080

LLM self-improves generation. Various meth-081

ods are being devised to increase the certainty082

of LLM-generated answers. Chain-of-Thought083

(Wei et al., 2023) tries to add a detailed reason-084

ing path from the input to the output answer so that085

the answer is more explainable and certain. Self-086

Consistency (Wang et al., 2023b) has the LLM087

solve the same problem multiple times to obtain088

several results. A majority vote is then conducted089

to choose the most consistent result as the final090

answer. This approach guarantees a higher success091

rate than Chain-of-Thought. Based on this, diverse092

variants of Self-Consistency exist; for example,093

Universal Self-Consistency (Chen et al., 2023a),094

which includes reasoning to select the most consis-095

tent value as the final answer, or Early Stop Self-096

Consistency (Li et al., 2024), which reduces the097

number of answer sets used in the majority vote to098

save cost and time. It is worth mentioning that the099

above approaches are fully unsupervised, namely100

no human or external signals are needed.101

Exploring LLM discriminative capability to en-102

hance generation. To assess the generative and103

discriminative capabilities of LLMs, Liu et al.104

(2023) and Arora and Kambhampati (2023) car-105

ried out experiments on summarization and plan-106

ning problem, respectively. The most related work,107

(Jiang et al., 2024), concluded that LLMs struggle108

to enhance their generation performance through109

discriminative capability because their discrimina-110

tive capability is not stronger than their genera-111

tive capability. Our work differs from this study112

in two key ways: i) Jiang et al. (2024) only con-113

sidered a simplified discriminative prompt similar114

to our Direct Prompt. They provided the dis-115

criminative prompt with all the generated final an-116

swers without the reasoning paths. In contrast, our117

Direct Prompt includes reasoning-path equipped118

answers, which we believe can help LLMs better119

determine the correct answer. ii) We further ana-120

lyze another complementary discriminative capabil-121

ity expressed by Inverse Prompt. While Inverse122

Prompt should theoretically yield the same con-123

clusions if applied to humans, the inconsistency124

between Direct Prompt and Inverse Prompt in125

LLMs allows us to better understand their discrimi-126

native potential in reducing generative uncertainty.127

iii) Our findings suggest a different conclusion:128

LLMs’ discriminative capabilities can indeed en-129

hance their generation if used skillfully.130

3 Direct-Inverse Discriminative 131

Prompting 132

Given multiple answer options by LLMs’ gener- 133

ative process (here uses five for example), this 134

section introduces our discriminative approach 135

Direct-Inverse Discriminative Prompting, 136

that asks LLMs with Direct Prompt, Inverse 137

Prompt, and finally combines their lens to find the 138

most certain answer. 139

Direct Prompt. Here, we directly ask LLMs 140

which options are correct with the following 141

prompt: 142

This problem [problem description] has the
following reasoning paths you generated: “
A: [path1]”, “B: [path2]”, “C: [path3]”, “D:
[path4]”, “E: [path5]”. Please output the cor-
rect ones.

143

Inverse Prompt. Here, we ask LLMs which op- 144

tions are incorrect with the following prompt: 145

This problem [problem description] has the
following reasoning paths you generated: “
A: [path1]”, “B: [path2]”, “C: [path3]”, “D:
[path4]”, “E: [path5]”. Please output the in-
correct ones.

146

Combination. As humans, when asked 147

using both Direct Prompt and Inverse 148

Prompt prompts, their answers should be consis- 149

tent. However, this is not the case with LLMs, as 150

our analysis in Section 5.2 shows. For instance, 151

using Direct Prompt, an LLM may believe 152

“A and B” are correct, but when asked using 153

Inverse Prompt, it might believe “B and C” are 154

incorrect, implying that “A, D, and E” are correct. 155

Direct Prompt and Inverse Prompt reflect 156

LLMs’ discriminative analysis of the problem from 157

different perspectives, and we combine their results 158

to improve accuracy. Specifically, we run Direct 159

Prompt and Inverse Prompt separately multiple 160

times and select the final answer by identifying the 161

most consensus among the responses. 162

4 Experiments 163

Datasets. Two datasets. An example of each 164

dataset is given in appendix A. 165

• MATH (Hendrycks et al., 2021): This dataset 166

contains 7 types of open-ended math problems, in- 167

cluding algebra and geometry, with average high 168

school difficulty. For this project, we selected the 169

entire test dataset of 5,000 problems. Each problem 170
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MATH MathQA
GPT4 GPT-4o Llama3 MetaMath GPT4 GPT-4o Llama3 MetaMath

Chain-of-Thought 47.58 50.67 21.55 10.83 72.57 82.73 39.03 11.96
Uni. Self-Consist. 55.14 54.72 26.72 12.04 79.50 85.33 42.58 11.79
Direct Prompt 54.18 57.44 27.54 0.18 81.64 86.73 46.40 0.00
Inverse Prompt 54.62 55.48 18.08 0.06 82.34 86.40 37.45 0.00
Combination 56.44 56.82 25.98 0.24 82.04 86.63 42.98 0.00

Table 1: Comparing discriminative prompts Direct Prompt, Inverse Prompt, and Combination on LLMs. Bold:
top score. Underline: surpass the Universal Self-Consistency.

includes a “problem” label, representing the math171

word problem, and a “solution” label, which pro-172

vides the explanation of how to solve the problem,173

including an answer formatted as $\boxed{A}$,174

where A is the answer. To maintain consistency, all175

models were instructed to return the final answer176

in the same format as the dataset.177

• MathQA (Amini et al., 2019): This dataset in-178

cludes 6 types of math problems, such as geometry179

and probability, with college-level difficulty. For180

this experiment, we selected all 2,985 problems181

from the test dataset. Each entry in MathQA con-182

tains a “problem,” a “rationale” explaining how183

to solve it, “options” that list possible answers,184

and “correct,” indicating the correct answer from185

the options. When models were asked to solve186

the MathQA problems, they were instructed to re-187

turn the correct option’s alphabet from the given188

choices.189

LLMs. i) Two closed-source LLMs: GPT-4190

(OpenAI, 2023) and GPT-4o (OpenAI, 2024). Both191

by OpenAI APIs. We do not consider more closed-192

source LLMs due to budget limits, and GPT-4193

and GPT-4o are already widely recognized as the194

strongest LLMs. ii) Open-source LLMs: Llama-3195

(Meta, 2024) and MetaMath (Yu et al., 2023)–a196

LLM specifically optimized for math problem solv-197

ing. In our experiments, five A100 GPUs were used198

for running Llama-3 and MetaMath inference.199

Baselines. i) Chain-of-Thought (Wei et al., 2022).200

We run it three times and report the average per-201

formance. ii) Universal Self-Consistency (Chen202

et al., 2023a), the state-of-the-art approach that runs203

Chain-of-Thought reasoning process five times,204

and finally choosing the answer with majority vot-205

ing.206

Setting. To prevent the LLMs’ responses to op-207

tions like “A, B, C, etc.” from being biased due to208

their pretraining, we will shuffle these options and209

re-index them for each run. The final performance 210

will be the average of three runs. 211

5 Results 212

5.1 Main Results 213

Table 1 presents the main results comparing dif- 214

ferent discriminative prompts (Direct Prompt, 215

Inverse Prompt, and Combination) of LLMs on 216

the MATH and MathQA datasets. Here are some 217

key observations: 218

• Discriminative prompts (Direct Prompt, 219

Inverse Prompt, and Combination) do not 220

work for MetaMath. This is because Meta- 221

Math was specifically optimized for solving 222

math problems rather than following instruc- 223

tions. In our experiments, MetaMath re- 224

sponded to our discriminative prompts with 225

noise and unstructured outputs, making an- 226

swer parsing impossible. 227

• Excluding MetaMath, Inverse Prompt out- 228

performs Direct Prompt in 2 out of 6 cases, 229

performs equally in one case (GPT-4o on 230

MathQA), and underperforms in the remain- 231

ing three cases. This is expected because nega- 232

tion is often more challenging for AI models 233

to understand. 234

• In most cases (except for MetaMath), both 235

Direct Prompt and Combination outper- 236

form Universal Self-Consistency (and even 237

Inverse Prompt generally surpasses it on 238

closed-source LLMs), indicating the effective- 239

ness of using LLMs’ discriminative capabili- 240

ties to find the most certain answer. 241

5.2 Analysis 242

Q1: How frequently do LLMs experience uncer- 243

tainty in their decisions, indicated by conflicts 244
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MATH MathQA
GPT-4 36.88 23.75
GPT-4o 46.00 23.85
Llama-3 97.34 97.96
MetaMath 100.00 100.00

Table 2: Conflicting percentage per dataset for each
LLM.

MATH MathQA
GPT-4 71.86 / 25.49 89.02 / 58.81
GPT-4o 77.93 / 30.30 93.36 / 62.64
Llama-3 76.69 / 23.07 73.77 / 42.23
MetaMath 0.00 / 0.12 0.00 / 0.00

Table 3: Fine-grained Combination performance on
Direct Prompt and Inverse Prompt agreed/disagreed
subsets.

between Direct Promptand Inverse Prompt?245

When Inverse Prompt outputs, for instance, “B,246

C” as incorrect answers, we consider the remain-247

ing options, i.e., “A, D, E” as the correct answer248

inferred by Inverse Prompt. Conflicts arise when249

Direct Prompt and Inverse Prompt reach differ-250

ent conclusions. The conflict degree is calculated251

as the number of conflicts divided by the total num-252

ber of problems for each dataset.253

Table 2 provides a summary of the severity254

of self-conflict within each LLM. GPT-4 demon-255

strates the highest consistency and self-confidence,256

with the lowest conflict percentages across both257

datasets. GPT-4o shows moderate consistency, per-258

forming better on the MathQA dataset than on259

MATH. Llama-3 exhibits the weakest performance260

in terms of consistency on the MathQA dataset,261

with the second-highest conflict rates in the MATH262

dataset, indicating its unreliability in this analy-263

sis. Lastly, MetaMath shows the highest conflict264

rates in both datasets having 100% of conflict rates.265

These results underscore the enhanced reliability of266

advanced models like GPT-4. They also emphasize267

the interestingness of our work, which leverages268

the inconsistency in discriminative capability to en-269

hance the certainty in generative decision-making.270

Q2 : How are LLMs performing when271

their choice is agreed or disagreed by272

Direct Prompt and Inverse Prompt? To an-273

swer this question, we check the fine-grained274

Combination performance for the agreed and275

disagreed subsets between Direct Prompt and276

Inverse Prompt.277

Table 3 presents the performance of LLMs 278

when they are certain (both Direct Prompt and 279

Inverse Prompt agree) or uncertain (they con- 280

flict). It is clear that when Direct Prompt and 281

Inverse Prompt agree, the answers are more 282

likely to be correct, demonstrating significantly 283

higher performance than both their disagreed sub- 284

set and the overall dataset in Table 1. This fur- 285

ther suggests that combining Direct Prompt and 286

Inverse Prompt is an effective method for reduc- 287

ing uncertainty. If Direct Prompt and Inverse 288

Prompt disagree, a comparison between Table 1 289

and Table 3 indicates that Direct Prompt is the 290

preferred approach. These conclusions generally 291

apply to most LLMs, except for MetaMath, which 292

is non-functional due to its pretraining limitations. 293

Q3 : When to suggest using Direct Prompt and 294

Inverse Prompt to self-improve generation? 295

Based on Table 1, we can summarize two crite- 296

ria: i) For top-performing closed-source LLMs 297

like GPT-4 and GPT-4o, using either Direct 298

Prompt or Inverse Prompt, or their combina- 299

tion Combination, shows promise. These top 300

LLMs perform similarly when Direct Prompt and 301

Inverse Prompt are used separately. Com- 302

bining them can result in robust performance, 303

but the additional time and budget required for 304

Combination may not be appealing. Therefore, the 305

concise conclusion for the top-performing closed- 306

source models is that either Direct Prompt or 307

Inverse Prompt is sufficient. ii) For open-source 308

LLMs, the decision to try discriminative prompts 309

depends on two factors: a) If the LLMs are not op- 310

timized to follow instructions, such as MetaMath, 311

neither Direct Prompt nor Inverse Prompt is 312

recommended. b) Even if the model is instruction- 313

tuned, open-source LLMs are more likely to strug- 314

gle with understanding negation, so only Direct 315

Prompt is strongly and exclusively recommended. 316

6 Conclusion 317

This study analyzed the development of LLM’s 318

discriminative capability to enhance genera- 319

tion performance. Specifically, we introduce 320

Direct-Inverse Discriminative Prompting, 321

a multi-faceted complementary approach to evalu- 322

ating LLMs’ discriminative potential. Our find- 323

ings indicate that both Direct Prompt and 324

Inverse Prompt are effective for closed-source 325

LLMs, while for open-source LLMs, using Direct 326

Prompt is highly and solely recommended. 327
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Limitations328

Our study is limited by the fact that experiments329

were conducted using only two datasets. In ad-330

dition, if budget permits, exploring more closed-331

source LLMs is preferred.332

Ethics Statement333

This study uses publicly and automatically ac-334

cessed datasets, and no ethical issues are present.335
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A Example Appendix438

A.1 MATH439

Q: What is the 100th term of the
arithmetic sequence 6, 10, 14, 18, ...?
R: The common difference is $10−6 = 4$,
so the 100th term is $6 + 99 · 4 =
boxed{402}$.

440

441

where “Q” denotes questions and “R” for ratio-442

nale. “R” includes the answer in a specific format443

which is boxed{A}, where A is the answer for the444

problem.445

A.2 MathQA446

Q: what will be the difference between
simple and compound interest at 14 %
per annum on a sum of rs . 1000 after
4 years ?
R: s . i . = ( 1000 * 14 * 4 ) / 100 =
rs . 560 c . i . = [ 1000 * ( 1 + 14 /
100 ) 4 - 1000 ] = rs . 689 difference
= ( 689 - 560 ) = rs . 129 answer : a
O: a) 129 , b) 130 , c) 124 , d) 133 ,
e) 145
A: a

447

448

where "Q" denotes questions, "R" for rationale,449

"O" for options, and "A" for answers.450
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