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ABSTRACT

The lack of group robustness has emerged as a critical concern in machine
learning, as conventional methods like Empirical Risk Minimization (ERM) can
achieve high overall accuracy while yielding low worst-group accuracy in minor-
ity groups. This issue often stems from spurious correlations—non-essential fea-
tures that models exploit as shortcuts—which can compromise deep learning mod-
els in high-stakes applications. Previous works have found that simply retraining
classifiers with reweighted datasets or rebalanced samples could significantly im-
prove robustness. However, existing methods lack a unified framework, as they
often exhibit inconsistent performance across datasets, and sometimes rely heav-
ily on hyperparameter tuning, making them impractical for real-world datasets. In
this work, we first argue that existing methods can be unified as one Empirical
Bayesian framework, where a priori of group information is not specified. We
then propose our method Learn from Known Unknowns under this framework by
quantifying the epistemic uncertainty of biased ERM models and introducing a
selective reweighting technique for retraining. Our empirical results demonstrate
that this approach improves group robustness across diverse datasets and reduces
reliance on hyperparameter tuning, offering a more efficient and scalable solution
to spurious correlations.

1 INTRODUCTION

Machine learning models are notoriously sensitive to spurious correlations—brittle associations be-
tween prediction targets and non-essential features of the input, such as background, texture, or
secondary objects (Geirhos et al., 2019; Stock & Cisse, 2018; Baker et al., 2018; Beery et al.,
2018; Sagawa et al., 2020). These correlations can lead to models achieving high average accu-
racy but failing on specific groups, especially when those groups differ from the majority in ways
that the model has incorrectly learned to associate with the target label. This problem is generally
described as group robustness in machine learning. A prominent example is in the healthcare do-
main, where convolutional neural networks trained for pneumonia detection mistakenly relied on
hospital-specific metal tokens in chest X-rays rather than focusing on the pathological features of
the disease (Zech et al., 2018). This problem is exacerbated by imbalanced group representation
in the training data and the use of standard Empirical Risk Minimization (ERM) (Vapnik, 1999),
which can cause models to be overly dependent on these spurious features as predictive shortcuts.
As a result, model robustness and interpretability are severely compromised in critical, real-world
applications.

To mitigate the effects of spurious correlations, a plethora of approaches have been developed. It
has been shown that simply retraining classifiers with a reweighted dataset or learned failures from a
biased classifier can significantly improve group robustness (Liu et al., 2021; Nam et al., 2020a; Yao
et al., 2022). A notable line of work is Deep Feature Reweighting (DFR) (Kirichenko et al., 2023;
Izmailov et al., 2022) and its variants like SELF (LaBonte et al., 2024b), which achieve state-of-the-
art group robustness by retraining the last layer of a model using a group-balanced held-out dataset.
While effective in reducing worst-group errors, these methods still face significant practical chal-
lenges. Specifically, obtaining accurate group labels requires expert knowledge and labor-intensive
annotations, which is infeasible for large-scale datasets. Therefore, most recent works (Qiu et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2023; Li et al., 2024) have moved the focus to improving group robustness without any group annota-
tions. However, class-balancing techniques during fine-tuning have shown inconsistent performance
across datasets (LaBonte et al., 2024a), highlighting the urgent need for a better understanding of
this problem and more adaptive methods that learn the latent group information by themselves.

To address these challenges, we propose to unify existing methods under an Empirical Bayes frame-
work, which provides a principled approach to estimate and adjust for unknown group biases (Rob-
bins, 1992; Efron, 2024). In this framework, we estimate its beliefs on group information as latent
variables based on observed training data. Methods like JTT (Liu et al., 2021), LfF (Nam et al.,
2020a), LISA (Yao et al., 2022), and SELF (LaBonte et al., 2024b) can be interpreted within this
framework, where they attempt to mitigate spurious correlations by indirectly inferring group la-
bels and reweighting the data. However, because the prior distributions over group assignments
are not specified or heuristically chosen, these methods may not achieve the optimal solution under
the framework. They often rely heavily on hyperparameter tuning and exhibit inconsistent perfor-
mance across different datasets, indicating that they do not fully exploit the posterior distribution
over group assignments. This underscores the limitations of current approaches within the Empir-
ical Bayes framework and highlights the need for a more principled method that can effectively
utilize posterior information to improve robustness.

Motivated by this, we explore the integration of uncertainty quantification into the proposed Em-
pirical Bayes framework to achieve a near-optimal solution under it. Uncertainty quantification,
particularly epistemic uncertainty, provides valuable information about the model’s confidence in
its predictions due to limited knowledge or data (Kendall & Gal, 2017; Hüllermeier & Waegeman,
2021). By quantifying epistemic uncertainty, we can better identify instances where the model is
likely relying on spurious correlations, which can inform a more effective reweighting strategy.
Recent advances in evidential deep learning offer scalable methods for estimating epistemic uncer-
tainty without the need for specifying priors (Sensoy et al., 2018; Amini et al., 2020), making them
well-suited for our approach within the Empirical Bayes framework.

To this end, we build on these insights by leveraging epistemic uncertainty to address the limitations
of current group robustness techniques. Specifically, we propose a novel selective reweighting tech-
nique that quantifies the epistemic uncertainty of biased ERM models and uses this information to
create a self-adaptive held-out set for retraining. Our approach not only enhances model robustness
across various datasets but also reduces reliance on hyperparameter tuning, offering a more scalable
and generalizable solution to addressing spurious correlations.

In summary, we make the following contributions:

• We unify current popular group robustness methods under the Empirical Bayes framework,
where the group information is not given or from a held-out set.

• Based on this framework, we propose the method Learn from Known Unknowns that
achieves optimal performance by inferring the posterior distribution through epistemic un-
certainty quantification on the ERM model.

• We demonstrate through empirical results that our method improves robustness across di-
verse datasets using the uncertainty-informed group estimation and reduces dependence on
hyperparameter tuning.

2 RELATED WORKS

Group Robustness Methods. Group robustness methods focus on training models that perform
consistently across predefined groups within a dataset, especially when some groups are underrep-
resented or prone to spurious correlations. Traditional methods like Group Distributionally Robust
Optimization (Group DRO) (Sagawa et al., 2020) utilize explicit group annotations to minimize
worst-case group loss, while Deep Feature Reweighting (DFR) (Kirichenko et al., 2023) retrains
the final layer using a group-balanced dataset to reduce reliance on spurious features. In scenarios
without group labels, approaches such as Invariant Risk Minimization (IRM) (Arjovsky et al., 2019)
and Learning from Failure (LfF) (Nam et al., 2020a) attempt to learn invariant representations or use
failure patterns to mitigate spurious correlations. However, these methods often depend on strong
assumptions or heuristics that may not generalize well, highlighting the need for adaptive techniques
that can construct reliable fine-tuning sets without group annotations (LaBonte et al., 2024a). Our

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

work addresses this gap by leveraging epistemic uncertainty to identify samples affected by spurious
correlations, enabling a self-adaptive retraining process.

Empirical Bayes Methods. Empirical Bayes (EB) methods combine frequentist and Bayesian
ideas by estimating priors directly from data, allowing for adaptive inference without a fully spec-
ified prior (Robbins, 1992). Widely used in areas like shrinkage estimation (James & Stein, 1992)
and false discovery rates (Efron, 2024), EB methods excel in settings where the distribution of some
random variables are not obtainable and latent. Thus, it must be inferred from observations. One
example would be the James-Stein estimator (James & Stein, 1992) which exemplifies the EB prin-
ciple by shrinking estimates toward a common mean to reduce variance. In group robustness, EB
provides a natural framework for learning group-specific parameters without explicit group labels.
Methods like JTT (Liu et al., 2021) and LfF (Nam et al., 2020a) implicitly use empirical Bayes-like
principles, updating group information based on model failures. Our work formally gives an Empir-
ical Bayes Framework to summarize previous methods and extends this perspective by leveraging
epistemic uncertainty to guide group-balanced training set reconstruction, improving robustness to
spurious correlations across groups without relying on additional annotations.

Uncertainty Quantification. Uncertainty quantification is crucial for assessing the reliability of
deep learning models, particularly in safety-critical applications. It is typically divided into aleatoric
uncertainty, arising from inherent data noise, and epistemic uncertainty, stemming from limited
knowledge about model parameters (Kendall & Gal, 2017). Methods like Bayesian Neural Net-
works (Blundell et al., 2015), Monte Carlo Dropout (Gal & Ghahramani, 2016), and Deep Ensem-
bles (Lakshminarayanan et al., 2017) estimate uncertainty with multiple model parameters and can
be computationally intensive. Evidential deep learning (Sensoy et al., 2018) offers an efficient yet
effective alternative by modeling evidence as parameters of a Dirichlet distribution, capturing both
uncertainties without the need for sampling or ensembles. While uncertainty quantification has been
applied to model calibration, active learning, and out-of-distribution detection, its use in improving
group robustness is less explored. Building on these insights, our method employs epistemic uncer-
tainty to selectively reweight samples during retraining, reducing the model’s reliance on spurious
features without requiring explicit group labels or extensive hyperparameter tuning.

3 EMPIRICAL BAYESIAN FRAMEWORK

3.1 PRELIMINARIES

We consider classification problems with training data points (x, y) ∈ X × Y , where the data
is divided into multiple groups (subpopulations) g ∈ G. These groups g = (y, a) are typically
characterized by a tuple of a label y ∈ Y and a spurious attribute a ∈ A. The attribute a represents
features that are predictive but non-essential to the label and are spuriously correlated with y in
the training set. These correlations, however, may not hold in the test set. Each data point (x, y)
belongs to one group g ∈ G. Given the training dataset Dtrain = {(x1, y1), . . . , (xn, yn)} with n
samples. Our goal is to learn a model fθ∗ : X → Y , parameterized by θ∗ ∈ Θ, that achieves good
performances across all groups on the test set Dtest. The standard approach to training classification
models is using Empirical Risk Minimization (ERM): given a loss function ℓ, find the model θ that
minimizes the average training loss (Sagawa et al., 2020):

L̂ERM(fθ;x, y) = min
θ∈Θ

1

n

n∑
i=1

ℓ(fθ(xi), yi). (1)

While ERM-trained models can achieve high overall accuracy, they tend to rely heavily on spurious
features and underperform on minority groups, evaluated by the worst-group accuracy (WGA). It is
defined as the minimum accuracy across groups of test samples, i.e.,

WGA(fθ;x, y) := min
g∈G

E(x,y)∼Dg
[ℓ0−1(x, y; θ)], (2)

where Dg is the data distribution for group g and ℓ0−1(x, y; θ) = 1[fθ(x) ̸= y] is the 0-1 loss. We
will use it as the main metric to evaluate the performance of group robustness.
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3.2 AN EMPIRICAL BAYESIAN PERSPECTIVE OF GROUP ROBUSTNESS

Assume we already have the ERM models with parameter θ as discussed. It has been shown that
despite the reliance on unknown spurious features a, ERM models can still learn high-quality rep-
resentations of the core features (Kirichenko et al., 2023). Thus, improving the biased ERM models
with better estimated group knowledge (informative prior) could break the spurious correlations and
improve the group robustness of the models. In this section, we formulate this problem from an
Empirical Bayesian perspective.

In the group robustness problem, we model the generation of data points (x, y) using latent group
variables g ∈ G, which are imbalanced and unknown. These latent groups reflect the challenges of
group robustness, as certain groups might be overrepresented (majority) or underrepresented (minor-
ity) in the training data, contributing to the spurious bias in the model. The data generation process
is described as follows:

g ∼ p(g), (x, y) ∼ p(x, y|g), (3)
where p(g) is the prior distribution over groups, and p(x, y|g) is the likelihood of observing the data
point (x, y) given group g.

We compute the predictive distribution p(y|x, θ) through the marginalization of group g:

p(y|x, θ) =
∫
g

p(g|x, θ)p(y|x, θ, g)dg (4)

Given the probability of trained ERM models p(θ), the main objective of improving group robust-
ness is to find an updated model θ∗ from the ERM models such that:

θ∗ = argmax
θ

p(θ|y, x) = argmax
θ

p(y|x, θ)p(θ)
p(y)

(5)

= argmax
θ

p(θ) ·
∫
p(g|x, θ)p(y|x, θ, g) dg

p(y)
(6)

∝ argmax
θ

p(θ) ·
∫
p(g|x, θ)p(y|x, θ, g) dg (7)

However, we have no prior knowledge of the group information p(g|x, θ) and the distribution on the
model weight p(θ). In practice, p̂(θ) can be estimated by multiple runs of optimization, while there
is no direct way to estimate p̂(g|x, θ). Thus, the estimation of p̂(g|x, θ) will decide how well the
model can learn robust group representation.

3.3 THEORETICAL GUARANTEE FOR EMPIRICAL BAYES ESTIMATION

In this section, we show that using the observations (e.g. the prediction results) from the trained
model can infer a good estimation of p̂(g|x, θ) under exponential family, inspired by Tweedie’s
formula (Efron, 2011) in the context of statistics.
Theorem 3.1. Assume that the data generation process is that each data point (x, y) is associated
with a latent group variable g ∈ G, where g ∼ p(g) and (x, y) ∼ p(x, y|g) under exponential
family. Suppose that:

1. The marginal likelihood p(y|x, θ) is differentiable with respect to y.
2. The conditional distribution p(y|x, g, θ) belongs to an exponential family.
3. The variance σ2 of the conditional distribution p(y|x, g, θ) can be estimated.

The posterior mean of the group variable g given x, y, and θ can be estimated as:

E[g|x, y, θ] ≈ E[g] + σ2 ∂

∂y
log p(y|x, θ), (8)

where E[g] is the prior mean of the group variable. This estimation allows us to infer p̂(g|x, y, θ)
from the observed behavior of the model fθ. The detailed proof is provided in Appendix D.
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Method p̂(θ) p̂(g | x, θ) Remark

LfF Minimize weighted loss using another biased
model to calculate the weight:

p̂(θ) ∝ exp

(
−
∑
i

wi ℓ(fθ(xi), yi)

)
The weight wi is calculated by the relative
difficulty score between the biased and
debiased models.

Estimate minority probability
using the prediction from another
biased ERM:
p̂(g | x, θbias) ∝ ℓbias(x, y)

Samples with high loss under the
biased model are likely from the
minority group. The debiased
model upweights the loss for
these samples.

JTT Identify the error set:
M = {i | fθ(xi) ̸= yi} Retrain on
unweighted misclassified samples:

p̂(θ) ∝ exp

−
∑
i∈M

λupℓ(fθ(xi), yi)


Indicated by misclassified
samples from the ERM model:
p̂(g | x, θERM) =
I[fθERM (x) ̸= y]

Misclassified samples are treated
as minority groups. Retraining
on these samples improves
robustness without explicit group
labels.

CnC Train the encoder using a supervised
contrastive loss:
p̂(θ) ∝

exp

(
−
∑
i

ℓ(fθ(xi), yi) + λLcontrast(θ)

)
Identify groups by clustering
learned representations from
contrastive learning:
p̂(g | x, θ) = Cluster(fθ(x))

Learn group-invariant
representations using contrastive
learning. Cluster features from
the representation to infer
groups.

DFR Retrain the last layer using weights derived
from a group-balanced validation set:
p̂(θlast) ∝

exp

(
−
∑
i

vgi ℓ(fθlast (xi), yi)

)
Use ground truth group labels
from the validation set:
p̂(g | x, θ) = δ(g = gi)

Group annotations from the
validation set are used to retrain
the last layer, correcting for bias
by balancing group
contributions.

SELF Retrain the last layer using either misclassified
samples or those with model disagreement:

p̂(θ) ∝ exp

−
∑
i∈D

wi ℓ(fθ(xi), yi)


, where D =
argmaxS⊆X,|S|=n

∑
x∈S c(f(x), g(x))

Infer group labels through
disagreement:
p̂(g | x, θ) ∝
Disagreement(fθ(x), gθ(x)) is
measured by KL divergence.

Use one-half of the validation
data with group label group
labels with the early-stop
disagreement criterion for
selecting retraining samples.
Fine-tune the last layer based on
disagreement.

Table 1: A brief discussion on how existing methods can be integrated into the Empirical Bayesian
framework in terms of p̂(θ) and p̂(g |x, θ). Refer to the original papers for detailed implementations.

3.4 PREVIOUS METHODS UNDER THE FRAMEWORK

Previous representative methods (Nam et al., 2020a; Liu et al., 2021; Zhang et al., 2022; Kirichenko
et al., 2023; LaBonte et al., 2024b) follow this paradigm where each method tries to use different
approaches to estimate p̂(g|x, θ) and optimize p̂(θ). In Table 1, we show the implementation of
each approach on the estimation, which aligns with the non-parametric Empirical Bayes methods.
These methods demonstrate that estimating p̂(g|x, θ) enables models to adjust training procedures
to improve group robustness without explicit group labels.

4 LEARN FROM KNOWN UNKNOWNS

Building upon the insights from the Empirical Bayesian framework presented in the previous sec-
tion, we explore a probabilistic approach to estimate p̂(g |x, θ) instead of relying solely on rule-
based methods. To this end, we propose a novel method, Learn from Known Unknowns, which
leverages model uncertainty to estimate latent group probabilities and addresses selection biases in-
herent in training data. We then utilize these uncertainty-informed empirical priors to retrain the
ERM model under the Bayesian Model Averaging (BMA) through reweighting. By adopting an
Empirical Bayesian perspective, the proposed method improves robustness across all groups with-
out requiring explicit group labels.

4.1 EVIDENTIAL SECOND-ORDER RISK MINIMIZATION

First, we employ evidential deep learning (Sensoy et al., 2018; Ulmer et al., 2021) as a proxy to
estimate the probability p(y|x, θ, g). The predictions with high uncertainty indicate that the corre-
sponding sample is more probable to the minority groups. The trained evidential ERM model can
capture both the prediction and the epistemic uncertainty, which is crucial for empirically inferring
latent group probabilities. For a classification task with K classes, the model outputs non-negative
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evidence values ek(x) ≥ 0 for each class k. The parameters of the Dirichlet distribution are defined
as:

αk(x) = ek(x) + 1, for k = 1, . . . ,K.

The Dirichlet distribution over the class probabilities p(x) = [p1(x), p2(x), . . . , pK(x)] is given by:

Dir(p(x) |α(x)) =
1

B(α(x))

K∏
k=1

pk(x)
αk(x)−1,

where B(α(x)) is the multivariate Beta function. The expected class probabilities are:

E[pk(x)] =
αk(x)

S(x)
, where S(x) =

K∑
k=1

αk(x).

We formulate the loss function as:

L(xi, yi) = − log(E[pyi
(xi)])︸ ︷︷ ︸

Classification Objective

+λ · KL(Dir(α(xi)) ∥Dir(1))︸ ︷︷ ︸
Evidence Regularization

,

where λ is a regularization coefficient and Dir(1) represents a uniform Dirichlet prior with all con-
centration parameters equal to 1. The Evidence Regularization term penalizes overconfidence and
promotes uncertainty where appropriate. We define it using the Kullback-Leibler (KL) divergence
between the predicted Dirichlet distribution and a non-informative prior. The Cross-Entropy Loss
encourages the model to assign high probability to the true class:

LCE(xi, yi) = − log(
αyi(xi)

S(xi)
) = − log(

eyi(xi) + 1∑K
k=1(ek(xi) + 1)

).

The KL divergence is given by:

KL(Dir(α) ∥Dir(1)) = log(
B(1)

B(α)
) +

K∑
k=1

(αk − 1)(ψ(αk)− ψ(S)),

where ψ(z) = d
dz ln Γ(z) is the digamma function. The total loss for a single sample becomes:

L(xi, yi) = − log(
eyi

(xi) + 1

S(xi)
) + λ · KL(Dir(α(xi)) ∥Dir(1)).

4.2 UNCERTAINTY-GUIDED LAST LAYER RETRAINING

After training the evidential ERM model with the second-order risk, we leverage the estimated
epistemic uncertainty u(x) to empirically infer the posterior probabilities of the latent groups for
each training sample. Specifically, we interpret u(x) as an empirical prior over the group variable
g, indicating the likelihood that a sample belongs to a majority or minority group. The uncertainty
u(x) is computed as:

u(x) =
K

S(x)
=

K∑K
k=1 αk(x)

,

where S(x) is the sum of the Dirichlet parameters from the evidential model. Higher values of u(x)
suggest larger epistemic uncertainty in the prediction for sample x.

6
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We estimate the posterior group probabilities using these uncertainty-informed empirical priors:

p̂(g |x, θ) = u(x).

To perform Bayesian Model Averaging (BMA) during retraining, we integrate the estimated poste-
rior group probabilities by reweighting the loss contributions of each sample based on p̂(g |x, θ).
The updated objective function for retraining the model parameters θ becomes:

θ∗ = argmin
θ

N∑
i=1

u(xi) ℓ(fθ(xi), yi),

where ℓ(fθ(xi), yi) is the loss function for sample i. By reweighting the loss with the uncertainty
estimates, we effectively average over models corresponding to different group assignments, miti-
gating the influence of group imbalances.

In practice, we only retrain the last layer of the model to learn the representative features like pre-
vious works Kirichenko et al. (2023); LaBonte et al. (2024b). This approach enhances the model’s
robustness to spurious correlations and improves generalization across all groups without requiring
explicit group labels.

5 EXPERIMENTS

We evaluate Learn from Known Unknowns on a range of existing benchmarks and provide additional
results to further support our motivation and methodology designs.

5.1 DATASETS

We first describe five datasets that we use in the experiments. These datasets are known for ex-
hibiting poor worst-group performance due to spurious correlations, as highlighted in prior works.
Our evaluation focuses on group robustness across both vision and language tasks: (1) Colored
MNIST (Arjovsky et al., 2019) is a variant of the MNIST dataset for image classification where
the digit images are colored to introduce spurious correlations between the color and the class label.
(2) Waterbirds (Sagawa et al., 2020) is an image classification dataset with waterbird and landbird
classes selected from the CUB dataset Welinder et al. (2010). The spurious attribute is the water
or land backgrounds from the Places dataset Zhou et al. (2017), where more landbirds are present
on land backgrounds than waterbirds, and vice versa. (3) CelebA (Liu et al., 2015) is an image
classification with celebrity faces. The task is to identify whether the celebrity is blonde or not.
The spurious attribute is gender where the majority group is blonde women in the training set. (4)
MultiNLI (Williams et al., 2017) is a large-scale natural language inference dataset that contains
sentence pairs across multiple genres, annotated with entailment labels (entailment, contradiction,
or neutral). The spurious attribute involves syntactic or lexical patterns that correlate with specific
labels. (5) CivilComments (Borkan et al., 2019) is a text classification dataset sourced from online
comments. The task is to predict whether a comment is toxic or non-toxic. The spurious attributes
include demographic identity terms (e.g., gender, race) that correlate with the label.

5.2 EXPERIMENTAL SETUPS

We begin by training all ERM models for both image and text datasets. For image datasets, we use a
ResNet-50 (He et al., 2016) model pretrained on ImageNet as the backbone, while for text datasets,
we employ the BERT-base-uncased model (Kenton & Toutanova, 2019) pretrained on the BookCor-
pus and English Wikipedia. We train the ERM models incorporating the Evidence Regularization to
learn the uncertainty representations, as described in Section 4.1. Consistent with the approach in
(Yang et al., 2023), we don’t apply any data augmentations during ERM training. Model selection
is based on the highest average accuracy on the validation set. For Uncertainty-Guided Retraining,
we first estimate the uncertainty of the retraining samples using the ERM models, and then retrain
only the last layer of the model to enhance computational efficiency. The retraining samples are
randomly sampled from the misclassified portion of the training set and the validation set, which
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Figure 1: t-SNE visualization (Van der Maaten & Hinton, 2008) of the embeddings on the test set
(left panel). The right panel shows the uncertainty quantification of these samples.

generally have higher uncertainty. This will prevent the model from overfitting the correctly classi-
fied data. The regularization coefficient λ is dynamically set from 0 to 1 and the ratio of the current
epoch number to a predefined annealing step, allowing λ to smoothly increase from the initial value
to 1 during training. Other hyperparameters, such as learning rates, are randomly sampled from pre-
defined ranges at the start of training. We sample ten different hyperparameter configurations and
select the best one based on validation performance. The final models are trained using three dif-
ferent random seeds with the selected hyperparameters, and we report the average accuracies along
with the standard deviations. All experiments were conducted on NVIDIA A6000 GPUs. We add
the hyperparameter and full experimental details in Appendix C.

5.3 SYNTHETIC EXPERIMENT

To demonstrate the concept of Learn from Known Unknowns, we first conducted a simple synthetic
experiment using the Colored MNIST dataset (Arjovsky et al., 2019). In this experiment, we intro-
duced spurious correlations between the color and the class label, with 90% of the training samples
(pcorr = 0.9) exhibiting this color-class association, while only 10% of the test samples (pcorr = 0.1)
retained the same correlation, as shown in Figure 2. For Class 0, there are 6,398 red instances and
344 green instances. For Class 1, there are 325 red instances and 5,526 green instances. Notably,
the (0, green) and (1, red) represent the minority groups in this synthetic dataset.

We use Learn from Known Unknowns to learn group robustness models. First, we trained a LeNet-
5 model (LeCun et al., 1998) using ERM with second-order risk minimization. After obtaining
the uncertainty estimates from the ERM model, we retrained the last layer of the model with a
reweighted loss to mitigate the impact of the spurious correlations.

We first show that the second-order risk minimization can give a good estimate of minority groups in
Figure 1. As shown in Table 3, this approach significantly improved the performance for the minority
group (Class 1, Color 0), with accuracy increasing from 3.74% to 84.58%. The performance of the
majority groups remained unaffected by the retraining process. Here, the selection of digits 1 and 8
in this experiment is simply to provide a clear contrast between the two classes. Other digit pairs,
such as 0 and 7, would yield similar results.

5.4 COMPARISON WITH BASELINE METHODS

In this subsection, we address three key questions: (1) How does Learn from Known Unknowns
perform compared to methods that do not use group information during training? (2) What is the
performance gap between Learn from Known Unknowns and oracle methods that leverage group
annotations? (3) How efficient is our method compared to existing approaches?

8
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Table 2: Colored MNIST samples (two classes:
digit 1 as class 0 and digit 8 as class 1) with spu-
rious correlations by assigning the spurious at-
tribute (color) a to a portion pcorr of the samples.

Accuracy ERM Ours
Average 76.34 96.21

Class 0, Color 0 100.00 100.00
Class 0, Color 1 82.81 97.83
Class 1, Color 0 3.74 84.58
Class 1, Color 1 100.00 99.45

Worst Group 3.74 84.58

Table 3: Comparison of Test Accuracy
in each group between ERM and Ours
(%).

Comparison with Group-Label-Free Approaches: To answer the first question, we compare our
method against existing group-label-free approaches, including CVaR DRO (Levy et al., 2020),
LfF (Nam et al., 2020a), JTT (Liu et al., 2021), and the recently proposed AFR (Qiu et al., 2023), as
shown in Tables 4 and 5. Learn from Known Unknowns consistently achieves worst-group accuracy
across three datasets, except for CelebA. This exception arises because CnC adopts a self-supervised
learning paradigm, which is particularly effective for representation learning in CelebA. Notably,
our approach employs a straightforward uncertainty quantification mechanism without introducing
additional hyperparameters, which distinguishes it from other methods.

Performance Gap with Oracle Methods: Regarding the second question, we examine the per-
formance gap between current group robustness methods and the oracle methods such as Group
DRO (Sagawa et al., 2020), DFR (Kirichenko et al., 2023) and a recent method SELF (LaBonte
et al., 2024b), which only require few annotations to infer group information. Our findings indicate
that the performance gap is narrowing, suggesting that advancing group robustness requires a deeper
understanding of the underlying problems rather than merely combining existing techniques.

Computational and Memory Efficiency: Our method introduces minimal computational overhead
compared to existing approaches. It follows a two-phase process: training a standard ERM model
with evidence regularization in the first phase, and retraining only the final layer in the second phase.
In contrast, methods like JTT and CnC require retraining another new model from scratch. Thus,
our approach is more efficient in terms of both computation and memory.

Method Backbone Group Annotations Waterbirds CelebA
Train Val Worst(%) Average(%) Worst(%) Average(%)

ERM ResNet50 No No 72.6 97.3 47.2 95.6
CVaR DRO (Levy et al., 2020) ResNet50 No No 75.5 89.9 60.2 95.1
LfF (Nam et al., 2020a) ResNet50 No No 78.0 91.2 77.2 85.1
JTT (Liu et al., 2021) ResNet50 No No 86.7 93.3 81.1 88.0
CnC (Zhang et al., 2022) ResNet50 No No 88.5±0.3 90.9±0.1 88.8±0.9 89.9±0.5

AFR (Qiu et al., 2023) ResNet50 No No 90.4±1.1 94.2±1.2 82.0±0.5 91.3±0.3

Ours ResNet50 No No 91.2±0.6 95.3±0.3 84.3±2.3 91.6±0.9

Group-DRO† (Sagawa et al., 2020) ResNet50 Yes No 91.4 93.5 88.9 92.9
DFR† (Kirichenko et al., 2023) ResNet50 No Yes 92.9±0.9 94.2±0.3 88.3±1.1 91.3±0.5

SELF (LaBonte et al., 2024b) ResNet50 No Yes 93.0±0.3 94.0±1.7 83.9±0.9 91.7±0.4

Table 4: Comparison to other group robustness methods in the image datasets, including standard
deviations. † denotes oracle methods that use group annotations. The results of previous methods
are from Nam et al. (2020b) and Yang et al. (2023).

5.5 CAN UNCERTAINTY CORRECTLY INFER GROUP INFORMATION?

A crucial aspect of Learn from Known Unknowns is determining whether the model’s uncertainty
quantification can effectively identify latent group information. In our experiments on the Waterbirds
dataset, we used GradCAM visualizations (Figure 2) to examine the areas of focus for samples with
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Method Backbone Group Annotations MultiNLI CivilComments
Train Val Worst(%) Average(%) Worst(%) Average(%)

ERM BERT No No 67.9 82.4 57.4 92.6
CVaR DRO (Levy et al., 2020) BERT No No 68.0 82.0 60.5 92.5
LfF (Nam et al., 2020a) BERT No No 70.2 80.8 58.8 92.5
JTT (Liu et al., 2021) BERT No No 72.6 78.6 69.3 91.1
CnC (Zhang et al., 2022) BERT No No - - 68.9±2.1 81.7±0.5

AFR (Qiu et al., 2023) BERT No No 73.4±0.6 81.4±0.2 68.7±0.6 89.8±0.6

Ours BERT No No 74.5±1.2 80.6±0.8 69.8±1.6 92.2±0.8

Group-DRO† (Sagawa et al., 2020) BERT Yes No 77.7 81.4 69.9 88.9
DFR† (Kirichenko et al., 2023) BERT No Yes 63.8±0.8 80.2±0.6 64.4±1.1 80.7±0.2

SELF (LaBonte et al., 2024b) BERT No Yes 70.7±2.5 81.2±0.7 79.1±2.1 87.7±0.6

Table 5: Comparison to other group robustness methods in the text datasets, including standard
deviations. † denotes oracle methods that use group annotations. The results of previous methods
are from Nam et al. (2020b) and Yang et al. (2023).

the highest and lowest uncertainty. We observed that high-uncertainty samples tended to highlight
background regions associated with the spurious features, while low-uncertainty samples focused
more on the birds themselves, representing the core features. Additionally, t-SNE embeddings (Fig-
ure 1) in our synthetic experiment revealed that high-uncertainty samples clustered around minority
groups in the feature space, further supporting the correlation between uncertainty and group infor-
mation. Quantitative analysis showed correlations between uncertainty values and true group labels
across all datasets, indicating that uncertainty estimates are reliable proxies for identifying under-
represented groups. These findings validate our approach of using uncertainty-based reweighting
during retraining, as it allows the model to prioritize learning from challenging and minority group
samples, thereby enhancing overall group robustness.

High Uncertainty Low Uncertainty

Figure 2: GradCAM (Selvaraju et al., 2020) visualizations for the top-5 images with the highest and
lowest uncertainty in the Waterbirds dataset.

6 CONCLUSION

In this work, we introduce a new Empirical Bayesian perspective to enhance the understanding of
group robustness. Our framework demonstrates that leveraging existing observations from both the
ERM model and the dataset enables effective estimation of latent group information. Building on
this, we propose an uncertainty-informed group robustness method, Learn from Known Unknowns,
which utilizes epistemic uncertainty from biased ERM models to inform the retraining process.
Extensive experiments demonstrate the efficacy of our approach, achieving compelling worst-group
performance across diverse datasets. We believe this work provides valuable insights into developing
more adaptive and scalable methods to improve group robustness in real-world applications.
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APPENDIX

This Appendix is organized as follows:

• Appendix A shows the pseudo code of Learn from Known Unknowns.

• Appendix B provides the data distribution on all datasets we experimented on.

• Appendix C provides additional experimental details.

• Appendix D shows the proof for the Theorem 3.1

A PSEUDO CODE OF LEARN FROM KNOWN UNKNOWNS

Algorithm 1 Learn from Known Unknowns
1: Input: Dataset D = {(xi, yi)}Ni=1, model fθ, number of epochs T1, T2
2: Output: Updated model parameters θ∗
3: Step 1: Evidential ERM Training
4: for epoch t = 1 to T1 do
5: for each sample (xi, yi) ∈ D do
6: Estimate evidence ek(xi) for each class k
7: Compute Dirichlet parameters: αk(xi) = ek(xi) + 1

8: Compute expected class probabilities: E[pk(xi)] = αk(xi)
S(xi)

9: Compute classification loss: LCE(xi, yi)
10: Compute KL Divergence: KL(Dir(α(xi)) ∥Dir(1))
11: Minimize total loss: L(xi, yi) = LCE + λ · KL
12: end for
13: end for
14: Step 2: Uncertainty-Guided Retraining
15: for epoch t = 1 to T2 do
16: for each sample (xi, yi) ∈ D do
17: Estimate group probability: p̂(g |xi, θ) = u(xi) =

K
S(xi)

18: Reweight loss with uncertainty: u(xi) · ℓ(fθ(xi), yi)
19: end for
20: Update last layer parameters: θ∗ = argmin

θ

∑N
i=1 u(xi) · ℓ(fθ(xi), yi)

21: end for
22: Return: Updated model parameters θ∗

B DATASET DISTRIBUTIONS

By examining the distributions of the four datasets, we can observe distinct patterns of group/class
imbalance. For the Waterbirds and MultiNLI datasets, although group imbalances are present, the
overall class distribution is nearly balanced. In contrast, both group and class imbalances are ob-
served in the CelebA and CivilComments datasets. This variation suggests that applying simple
techniques, such as class-balancing or group-balancing, may have different impacts on improving
group robustness, depending on the specific characteristics of the dataset. Recent work by LaBonte
et al. (2024a) also emphasizes that existing class-balancing strategies can produce inconsistent re-
sults across these datasets. This underscores the need for a deeper understanding of group robust-
ness, particularly in real-world applications. Consequently, it is crucial to develop adaptive methods
that can more effectively address both class and group imbalances to enhance group robustness
across diverse datasets.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Dataset Class y Spurious a Train Val Test
Waterbirds

Waterbirds landbird land 3498 467 2225
Waterbirds landbird water 184 466 2225
Waterbirds waterbird land 56 133 642
Waterbirds waterbird water 1057 133 642

CelebA
CelebA non-blond female 71629 8535 9767
CelebA non-blond male 66874 8276 7535
CelebA blond female 22880 2874 2480
CelebA blond male 1387 182 180

MultiNLI
MultiNLI contradiction no negation 57498 22814 34597
MultiNLI contradiction negation 11158 4634 6655
MultiNLI entailment no negation 67376 26949 40496
MultiNLI entailment negation 1521 613 886
MultiNLI neither no negation 66630 26655 39930
MultiNLI neither negation 1992 797 1148

CivilComments
CivilComments neutral no identity 148186 25159 74780
CivilComments neutral identity 90337 14966 43778
CivilComments toxic no identity 12731 2111 6455
CivilComments toxic identity 17784 2944 8769

Table 6: Data quantities for each group in the datasets. The detail numbers are credited to LaBonte
et al. (2024b)

C MORE EXPERIMENTAL DETAILS

Hyperparameters Waterbirds CelebA MultiNLI CivilComments

initial learning rate 3e-3 3e-3 1e-5 1e-3
number of epochs 100 20 10 10
learning rate scheduler CosineAnnealing CosineAnnealing Linear Linear
optimizer SGD SGD AdamW AdamW
weight decay 1e-4 1e-4 1e-4 1e-4
batch size 32 128 16 16
backbone ResNet-50 ResNet-50 BERT-base BERT-base

Table 7: Hyperparameters for evidential ERM training.

Hyperparameters Waterbirds CelebA MultiNLI CivilComments

learning rate 1e-3 1e-3 1e-5 1e-3
number of epochs 100 100 300 300
number of batches / epoch 200 200 300 300
optimizer SGD SGD SGD SGD
batch size 128 128 128 128

Table 8: Hyperparameters used in Uncertainty-guided Retraining.
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D PROOF OF THEOREM 3.1

Proof. We aim to show that under the given assumptions, the posterior mean of the group variable
g given x, y, and θ satisfies:

E[g|x, y, θ] = E[g] + σ2 ∂

∂y
log p(y|x, θ).

Starting with the definition of posterior expectation:

E[g|x, y, θ] =
∑
g∈G

g · p(g|x, y, θ).

Using Bayes’ theorem, the posterior probability p(g|x, y, θ) is:

p(g|x, y, θ) = p(g) · p(y|x, g, θ)
p(y|x, θ)

.

Substituting this into the expectation:

E[g|x, y, θ] = 1

p(y|x, θ)
∑
g∈G

g · p(g) · p(y|x, g, θ).

Next, consider the log-marginal likelihood:

log p(y|x, θ) = log

∑
g∈G

p(g) · p(y|x, g, θ)

 .

Differentiating both sides with respect to y:

∂

∂y
log p(y|x, θ) = 1

p(y|x, θ)
∑
g∈G

p(g) · ∂p(y|x, g, θ)
∂y

.

Given that p(y|x, g, θ) belongs to the exponential family, it can be expressed as:

p(y|x, g, θ) = h(y) exp
(
η(g, θ)⊤T (y)−A(g, θ)

)
,

where η(g, θ) is the natural parameter vector, T (y) is the sufficient statistic vector, A(g, θ) is the
log-partition function ensuring normalization.

Differentiating p(y|x, g, θ) with respect to y:

∂p(y|x, g, θ)
∂y

= p(y|x, g, θ) ·
(
∂ log h(y)

∂y
+ η(g, θ)⊤

∂T (y)

∂y

)
.

Assuming ∂ log h(y)
∂y = 0 for simplicity (i.e., h(y) is constant or its derivative does not depend on g):

∂p(y|x, g, θ)
∂y

= p(y|x, g, θ) · η(g, θ)⊤ ∂T (y)
∂y

.

Substituting this into the derivative of the log-marginal likelihood:

∂

∂y
log p(y|x, θ) = 1

p(y|x, θ)
∑
g∈G

p(g) · p(y|x, g, θ) · η(g, θ)⊤ ∂T (y)
∂y

.

Simplifying, we get:

∂

∂y
log p(y|x, θ) =

∑
g∈G

p(g|x, y, θ) · η(g, θ)⊤ ∂T (y)
∂y

.
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Assuming a linear relationship between the natural parameter and the group variable, i.e., η(g, θ) =
θ · g, we substitute:

∂

∂y
log p(y|x, θ) =

∑
g∈G

p(g|x, y, θ) · (θ · g)⊤ ∂T (y)
∂y

= θ⊤

∑
g∈G

g · p(g|x, y, θ)

 ∂T (y)

∂y
.

Rearranging the expression:

E[g|x, y, θ] = 1

θ⊤ ∂T (y)
∂y

· ∂
∂y

log p(y|x, θ).

Finally, introducing the prior mean E[g] and the variance σ2 of the sufficient statistics T (y), we
approximate:

E[g|x, y, θ] ≈ E[g] + σ2 · ∂
∂y

log p(y|x, θ).

Here, σ2 represents the variance of T (y) under p(y|x, g, θ), serving as a scaling factor analogous to
the variance in the original Tweedie’s formula.
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