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Abstract

Offline reinforcement learning (RL) algorithms can learn better decision-making compared
to behavior policies by stitching the suboptimal trajectories to derive more optimal ones.
Meanwhile, Decision Transformer (DT) abstracts the RL as sequence modeling, showcasing
competitive performance on offline RL benchmarks. However, recent studies demonstrate
that DT lacks of stitching capacity, thus exploiting stitching capability for DT is vital to
further improve its performance. In order to endow stitching capability to DT, we abstract
trajectory stitching as expert matching and introduce our approach, ContextFormer, which
integrates contextual information-based imitation learning (IL) and sequence modeling
to stitch sub-optimal trajectory fragments by emulating the representations of a limited
number of expert trajectories. To validate our approach, we conduct experiments from
two perspectives: 1) We conduct extensive experiments on D4RL benchmarks under the
settings of IL, and experimental results demonstrate ContextFormer can achieve competitive
performance in multiple IL settings. 2) More importantly, we conduct a comparison of
ContextFormer with various competitive DT variants using identical training datasets. The
experimental results unveiled ContextFormer’s superiority, as it outperformed all other
variants, showcasing its remarkable performance.

1 Introduction

Depending on whether direct interaction with an environment for acquiring new training samples, reinforcement
learning (RL) can be categorized into offline RL (Kumar et al., 2020; Kostrikov et al., 2021) and online
RL Haarnoja et al. (2018); Schulman et al. (2017). Among that, offline RL aims to learn the optimal policy
from a set of static trajectories collected by behavior policies without the necessity to interact with the
online environment Levine et al. (2020). One notable advantage of offline RL is its capacity to learn a more
optimal behavior from a dataset consisting solely of sub-optimal trials Levine et al. (2020). This feature
renders it an efficient approach for applications where data acquisition is prohibitively expensive or poses
potential risks, such as with autonomous vehicles and pipelines. The success of these offline algorithms is
attributed to its stitching capability to fully leverage sub-optimal trails and seamlessly stitch them into
an optimal trajectory, which has been discussed by Fu et al. (2019; 2020) Different from the majority of
offline RL algorithms, Decision Transformer (DT) Chen et al. (2021) abstracts the offline RL problems
as a sequence modeling process. Such paradigm achieved commendable performance across various offline
benchmarks, including d4rl Fu et al. (2021). Despite its success, recent studies suggest a limitation in DT
concerning a crucial aspect of offline RL agents, namely, stitching Yamagata et al. (2023). Specifically, DT
appears to fall short in achieving the ability to construct an optimal policy by stitching together sub-optimal
trajectories. Consequently, DT inherently lacks the capability to obtain the optimal policy through the
stitching of sub-optimal trials. To address this limitation, investigating and enhancing the stitching capability
of DT, or introducing additional stitching capabilities, holds the theoretical promise of further elevating its
performance in offline tasks.

To endow the stitching capability to the Transformer for decision making, QDT Yamagata et al. (2023) utilizes
Q-networks to relabel Return-to-Go (RTG), endowing the stitching capability to DT. While experimental
results suggest that relabeling the RTG through a pre-trained conservative Q-network can enhance DT’s
performance, this relabeling approach with a conservative critic tends to make the learned policy excessively
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Figure 1: Demonstration of Context Transformer (ContextFormer). (Right) ContextFormer utilizes the
contextual information z∗ derived from the divergence-based sequential expert matching process to enhance
its inference capabilities with the environment. (left) z∗ should aim to converge towards the expert contex-
tual information (I∗) while distancing itself from sub-optimal contextual information (I−). Consequently,
ContextFormer can effectively integrate and stitch together fragments of the in-expert distribution to produce
more robust expert-level inferences. Note: For a more comprehensive understanding of trajectory stitching,
kindly refer to the section Analysis of Stitching.

conservative while being suffered from out-of-distribution (OOD) issues. Consequently, the policy’s ability to
generalize is diminished. To further address this limitation, we approach it from the perspective of supervised
and latent (representation)-based imitation learning (IL), i.e. expert matching, and propose ContextFormer.
Specifically, we utilize the representations of a limited number of expert trajectories as demonstrations to
stitch sub-optimal trajectories in the latent space. This approach involves the joint and supervised training
of a latent-conditioned sequential policy (transformer) while optimizing contextual embedding. By stitching
trajectory fragments in the latent space using a supervised training objective, ContextFormer eliminates the
need for conservative penalization. Therefore, ContextFormer serves as a remedy for common issues found in
both return-conditioned DT and QDT.

To summarize, the majority contribution of our studies can be summarized as follows:

• We propose a novel IL framework that can endow stitching capability to the transformer
for decision making with both theoretical analysis and numerical support. Specifically,
on the theoretical aspect, we demonstrate that expert matching can extract valuable in-expert
distributed HI from sub-optimal trajectories, supplying the expert contextual information stitching
the in-expert distribution fragments together. On the experimental aspect, extensive experimental
results showcase ContextFormer surpass multiple DT variants.

• Our stitching method is a supervised method, thus getting rid of the limitations of
conservatism inherit from offline RL algorithms. Specifically, our method represents a
departure from conservative approaches by adopting a fully supervised objective to enhance the
stitching capacity of the Transformer policy. This approach aren’t suffered from the OOD samples
and the conservatism inherited from the conservative off-policy algorithms.

• Our approach can extract in-expert distribution information from sub-optimal trails to
supplement the contextual embedding which is more informative than Prompt-DT and
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GDT. Consequently, ContextFormer can utilize HI from entire dataset for better decision making
than Prompt-DT and GDT. Additionally, our method overcomes the constraints posed by scalar
reward functions, mitigating information bottlenecks.

2 Related Work

Offline Reinforcement Learning (RL). Offline RL learns policy from a static offline dataset and lacks
the capability to interact with environment to collect new samples for training. Therefore, compared to online
RL, offline RL is more susceptible to out-of-distribution (OOD) issues. Furthermore, OOD issues in offline
RL have been extensively discussed. The majority competitive methods includes adding regularized terms to
the objective function of offline RL to learn a conservative policy Peng et al. (2019); Wu et al. (2022); Chen
et al. (2022) or a conservative value network Kumar et al. (2020); Kostrikov et al. (2021); An et al. (2021).
By employing such methods, offline algorithms can effectively reduce the overestimation of OOD state actions.
Meanwhile, despite the existence of OOD issues in offline RL, its advantage lies in fully utilizing sub-optimal
offline datasets to stitch offline trajectory fragments and obtain a better policy Fu et al. (2019; 2021). The
ability to enhance the offline learned policy beyond the behavior policy by integrating sub-optimal trajectory
fragments is referred to as policy improvement. However, previous researches indicate that DT lacks of
stitching capability Therefore, endowing stitching capability to DT could potentially enhance its sample
efficiency in offline problem setting. Meanwhile, in the context of offline DT, the baseline most relevant
to our study is Q-learning DT Yamagata et al. (2023) (QDT). Specifically, QDT proposes a method that
utilizes a conservative critic network trained offline to relabel the RTG in the offline dataset, approximating
the capability to stitch trajectories for DT. Unlike QDT, we endow stitching capabilities to DT from the
perspective of expert matching that is a supervised and latent-based training objective.

Imitation Learning (IL). Previous researches have extensively discussed various IL problem settings and
mainly includes LfD Argall et al. (2009); Judah et al. (2014); Ho and Ermon (2016); Brown et al. (2020);
Ravichandar et al. (2020); Boborzi et al. (2022), LfO Ross et al. (2011); Liu et al. (2018); Torabi et al.
(2019); Boborzi et al. (2022), offline IL Chang et al. (2021); DeMoss et al. (2023); Zhang et al. (2023) and
online IL Ross et al. (2011); Brantley et al. (2020); Sasaki and Yamashina (2021). The most related IL
methods to our studies are Hindsight Information Matching (HIM) based methods Furuta et al. (2022); Paster
et al. (2022); Kang et al. (2023); Liu et al. (2023); Gu et al. (2023), in particular, CEIL Liu et al. (2023) is
the novel expert matching approach considering abstract various IL problem setting as a generalized and
supervised HIM problem setting. Although both ContextFormer and CEIL share a commonality in calibrating
the expert performance via expert matching, different from CEIL that our study focuses on endowing the
stitching capabilities to transformer, we additionally utilize sub-optimal trajectory representation to supply
the contextual information. Besides, the core contribution of our study is distinct to offline IL that we don’t
aim to enhance the IL domain but rather to endow stitching capability to transformer for decision making.

3 Preliminary

Before formally introducing our framework, we first introduce the basic concepts, which include RL, IL, HIM,
and In-Context Learning (ICL).

Reinforcement Learning (RL). We consider the sequential decision making process can be represented
by a Non-Markov Decision Processing (MDP) tuple, i.e. M :=

(
S, A, R, dM(st+1|st, at), r, γ, p(s0)

)
, where S

denotes observation space, A denotes action space, and dM(st+1|st, at) : S × A → S denotes the transition
(dynamics) probability, r(st, at) : S × A → R denotes the reward function, γ ∈ [0, 1] denotes the discount
factor, and s0 ∼ p(s0) is the initial observation, p(s0) is the initial state distribution. The goal of sequential
decision making is to find the optimal sequence model (policy) termed π∗(·|τ) : T × S × A → A that
can bring the highest accumulated return R(τ) =

∑t=T
t=0 (st,at)∼π

γt · r(st, at), i.e. π∗ := arg maxπ R(τ)|τ∼π,
where τ ∼ π :=

{
s0, a0, r(s0, a0), · · · , st, at, r(st, at)

}
is the rollout trajectory. Furthermore, DT abstracts

offline RL as sequence modeling i.e. at := π(·|R̂0, s0, a0, · · · , R̂t, st), where R̂t′ =
∑t=T

t=t′ γt−t′
r(st, at) denotes

Return-to-Go (RTG).
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Imitation Learning (IL). In the IL problem setting, the reward function r(st, at) can not be accessed.
However, the demonstrations Ddemo =

{
τdemo = {s0, a0, · · · , st, at}|τdemo ∼ π∗}

or observations Dobs ={
τobs = {s0, · · · , st}|τobs ∼ π̂

}
are available. Accordingly, the goal of IL is to recover the performance

of expert policy by utilizing extensive sub-optimal trajectories τ̂ ∼ π̂ imitating expert demonstrations or
observations, where π̂ is the sub-optimal policy. Meanwhile, according to the objective of IL, it has two
general settings: 1) In the setting of LfD, we imitate from demonstration. 2) In the setting of LfO, we imitate
from observation.

Hindsight Information Matching (HIM). Furuta et al. define the HIM as training conditioned policy
with HI i.e. learning a contextual policy π(·|z, s) : Z × S → A by Equation 1.

π(·|z, s) := arg minπEz∼p(z),τz∼πz [D(z, Iϕ(τz))], (1)

where Iϕ(τz) : S × A → Z denotes the statistical function that can extract representation or HI from the z
conditioned offline trajectory τz i.e. zτ = Iϕ(τz) (when utilizing τz to compute zτ , we remove z from τz) and
D denotes the metric used to estimate the divergence between the initialized latent representation z ∼ p(z)
and the trajectory HI i.e. Iϕ(τz), where πz := {z, s0, a0, · · · , z, st, at}. In particular, τz will be optimal once
we set up z as z := arg minz D(z, Iϕ(τ∗))|τ∗∼π∗(τ).

In-Context Learning (ICL). Xu et al. showcases that DT can be prompted with offline trajectory
fragments to conduct fine-tuning and adaptation on new similar tasks. i.e. at := π(·|τprompt ⊕{s0, a0, · · · , st}),
where ⊕ denotes concatenation, and the prompt is: τprompt = {ŝ0, â0, · · · , ŝk, âk}. Despite that ContextFormer
also utilizes the contextual information. However, it is different from Prompt-DT that ContextFormer condition
on the offline trajectory’s latent representation rather prompt to inference, which enables the long horizontal
information being embedded into the contextual embedding, and such contextual embedding contains richer
information than prompt-based algorithm, therefore, contextual embedding is possible to consider useful
samples with longer-term future information during the training process.

4 Can expert matching endow stitching to transformer for decision making?

DT lacks of stitching capacity has been noted in previous studies. Consequently, it is imperative to investigate
methods to augment this capability and enhance the overall performance of DT. One such proposed solution
is Q-learning DT Yamagata et al. (2023), which involves leveraging a pre-trained conservative Q network to
relabel the Return-to-Go (RTG) values of offline RL datasets. Subsequently, DT undergoes training on the
relabeled dataset to acquire stitching capacity. However, this approach has several limitations. During the
evaluation process, DT may encounter out-of-distribution samples, potentially disrupting its decision-making
process. In contrast to Q-DT, ContextFormer utilizes divergent sequential expert matching (definition 2) to
endow DT with stitching capacity. In particular, different from previous expert matching approach Liu et al.
(2023), which solely mimic the expert policy for decision-making, divergent sequential expert matching goes a
step further by harnessing in-expert distribution HI from sub-optimal datasets (Theorem 5.1). By seamlessly
stitching them together, it eliminates the overestimation of scarcity in expert demonstrations.

In the upcoming sections, we will elucidate how divergent sequential expert matching extracts in-expert HI
from sub-optimal datasets and adeptly integrates them.

Notations. In this section we provide the notations we utilized. Specifically, we define the expert policy
(sequential policy) as π∗(·|τ∗), the sub-optimal policy as π̂(·|τ̂), and the density functions of expert and
sub-optimal policies are respectively represented as P ∗(τ) ∼ π∗, P̂ (τ) ∼ π̂. Furthermore, we define the
optimal (expert) trajectory as τ∗ ∼ π∗(τ), the sub-optimal trajectory as τ̂ ∼ π̂(τ), and the mixture of expert
and sub-optimal trajectories as τ ∼ π∗(τ) and π̂(τ). Subsequently, we define latent conditioned sequence
modeling as Definition 1, expert matching based IL as Definition 2.

Definition 1 (Latent conditioned sequence modeling). Given the latent embedding z, the process of latent
conditioned sequence modeling can be formulated as at := πz(·|z, s0, a0, · · · , z, st), where D(z||Iϕ(τz)) ≤ ϵ, ϵ

4



Under review as submission to TMLR

is a very small threshold, D is divergence function, t ∈ [0, T ] Meanwhile, we define πIϕ(τ) as πz conditioned
on Iϕ(τ)

Previously, Liu et al. propose utilizing z∗ solely to mimic the expert HI. However, if the expert demonstrations
are not sufficient to estimate a robust representation, it may limit the generality of the contextual policy. In
order to further enhance the estimation of z∗, we propose divergent sequential expert matching as defined in
Definition 2.

Definition 2 (Divergent Sequential Expert Matching). Given the HI extractor Iϕ(·|τ), the process of
divergent sequential expert matching can be defined as: jointly optimizing the contextual information (or HI)
z∗ and contextual policy πz(·|τ) to robustly match the expert policy i.e. πz∗ := arg minπz∗ D(Iϕ(τ∗)||z∗) −
D(Iϕ(τ̂)||z∗) + D

(
πIϕ(τ)(·|τIϕ(τ))||π(·|τ)

)
.

As mentioned in Definition 2, the optimal contextual embedding z∗ should have to be calibrated with the the
expert trajectory’s HI and away from the sub-optimal trajectory’s HI. Furthermore, based on Definition 2, we
propose a more concise expression i.e.

minJ (z∗) = min
z∗,Iϕ

Eτ∗∼π∗(τ)[λ1 · ||z∗ − Iϕ(τ∗)||]− Eτ̂∼π̂[λ2 · ||z∗ − Iϕ(τ̂)||], (2)

where λ1, λ2 separately denote the weight. Subsequently, we analyze why Equation 2 can stitch sub-optimal
fragments.

5 Analysis of stitching

We regard P ∗(τ) or P̂ (τ) as density function, separately estimating the probability of τ being sampled from
policies π∗(·|τ∗) and π̂(·|τ̂). Subsequently, we propose Theorem 5.1:
Theorem 5.1 (Expert Calibration). Given the expert policy π∗(·|τ), the sub-optimal policy π̂(·|τ), the HI
extractor Iϕ(·|τ), contextual embedding z∗. Minimizing Equation 2 is equivalent to:

min
z∗,Iϕ

K ·
( ∫

τ∼S×A
1(λ1 · P ∗(τ) ≥ λ2 · P̂ (τ))||z∗ − Iϕ(τ)||dτ︸ ︷︷ ︸

Jterm1

+
∫

τ∼S×A
1(λ1 · P ∗(τ) ≤ λ2 · P̂ (τ))||z∗ − Iϕ(τ)||dτ︸ ︷︷ ︸

Jterm2

)

, where 1 denotes indicator, and K = (λ1P ∗(τ) − λ2P̂ (τ)). Proof of Theorem 5.1 see Appendix.

Connection with Stitching. It can be concluded from Theorem 5.1 that when λ1 · P ∗(τ) ≥ λ2 · P̂ (τ)
i.e. current trajectory fragments are much more possible sampled from expert policy, z∗ will be away from its
hindsight information, vice visa. Therefore, Theorem 5.1 demonstrates the capability of divergent sequential
expert matching to leverage z∗ to extract HI from trajectory fragments aligning with expert HI within
trajectories (we provide a case in Figure 2). Consequently, πz can generate trajectories conforming to the
in-expert distribution when conditioned on z∗, and stitch the in-expert distribution fragments together. In
this following section, we propose our approach ContextFormer.

6 Context Transformer (ContextFormer)

We introduce ContextFormer, which utilizes divergent sequential expert matching to empower latent condi-
tioned Transformer with stitching capabilities, stitching the in-expert trajectory fragments in latent space.
Furthermore, compared to previous scalar-conditioned DT and its variants, ContextFormer is conditioned
on more informative factors, thereby overcoming the limitations of information bottlenecks. Meanwhile,
ContextFormer’s objective is entirely supervised, thus overcoming the conservatism limitations of DT variants
inherent in jointly utilizing offline RL algorithms.
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Figure 2: Demonstration of Stitching. I∗ represents the HI that is associated with being close to an expert
trajectory, while I− represents the HI that is associated with being far from an expert trajectory.

6.1 Method

Training Procedure. We model the contextual sequence model by the aforementioned latent conditioned
sequence modeling as defined in Definition 1, and the supervised policy loss defined as Equation 3. Meanwhile,
we optimize z∗ by training the contextual sequence model with the expert matching objective as defined in
Definition 2

Jπz,Iϕ
= Eτ∼(π∗,π̂)[||π(·|Iϕ(τ), s0, a0, · · · , Iϕ(τ), st) − at||], (3)

where τ =
{

s0, a0, · · · , st, at

}
is the rollout trajectory, while π̂ and π∗ are separated to the sub-optimal and

optimal policies, and πIϕ(τ)(·|τIϕ
) = π(·|Iϕ(τ t−k:t

z ), s0, a0, · · · , Iϕ(τ t−k:t
z ), st). Meanwhile, we also optimize

the HI extractor Iϕ and contextual embedding z∗ via Equations 3 and 4:

Jz∗,Iϕ
= min

z∗,Iϕ

Eτ̂∼π̂(τ),τ∗∼π∗(τ)[||z∗ − Iϕ(τ∗)|| − ||z∗ − Iϕ(τ̂)||] (4)

Evaluation Procedure. Based on the modeling approach defined in Definition 1, we utilize the contextual
embedding z∗ optimized by Equation 2 as the goal for each inference moment of our latent conditioned
sequence model, thereby auto-regressively rolling out trajectory in the environment to complete the testing
(Algorithm 1).

6.2 Practical Implementation of ContextFormer

We utilize BERT Devlin et al. (2019) as the defined HI extractor Iϕ, and randomly initialize a vector as the
contextual embedding z∗. Our contextual policy πz(·|τ t−k:t

z ) is modified from the DT Chen et al. (2021) that
we replace R̂ with z∗. The input of ContextFormer is a trajectory fragments with a window size of k i.e.
τ t−k:t

z = {z, st−k, z, at−k, · · · , z, st}. For more detials about ContextFormer’s hyperparameter, please refer
to Experimental Setup section of Appendix. In terms of our training framework, as shown in Algorithm 1,
the optimization of Iϕ involves the joint utilization of the divergent sequential expert matching objective as
formulated in Equation 2 and the latent conditioned supervised training loss as formulated in Equation 3.
Notably, Equation 2 and Equation 3 are not used simultaneously to optimize z∗. Instead, in each updating
epoch, we use Equation 3 to update Iϕ and πz. Subsequently, we freeze πz and then use Equation 2 to
update Iϕ. Finally, with Iϕ and πz frozen, we use Equation 2 to update z∗. The evaluation process has also
been depicted in Algorithm 1 that once we obtain z∗ and πz, we autoregressively utilize latent conditioned
sequence modeling to conduct evaluation.
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Algorithm 1 ContextFormer
Require: HIM extractor Iϕ(·|τ), Contextual policy πz(·|τ), sub-optimal offline datasets Dτ̂ ∼ π̂, randomly initialized

contextual embedding z∗, and demonstrations (expert trajectories) Dτ∗ ∼ π∗

Training:
1: Sample batch suboptimal trails τ̂ from Dτ̂ , and sampling batch demonstrations τ∗ from Dπ∗ .
2: Update HI extractor Iϕ by solving Equation 3, Equation 4. Update z∗ by solving Equation 4.
3: Update policy πz by solving Equation 3.

Evaluation:
1: Initialize t = 0; st ← env.reset(); τ = {s0}; done = False, R = 0, N = 0.
2: while t ≤ N or not done do
3: at ← π(·|τt);
4: st+1, done, rt ← env.step(at);
5: τ.append(at, st+1)
6: R+ = rt;t+ = 1
7: end while
8: Return R

6.3 Experimental settings

Table 1: Normalized scores (averaged over 10 trails for each task) when we vary the number of the expert
demonstrations (#5, #20). The highest scores are highlighted.

Offline IL Algorithm
Hopper Halfcheetah Walker2d Ant

sum
m mr me m mr me m mr me m mr me

Lf
D

#
5

ORIL (TD3+BC) 42.1 26.7 51.2 45.1 2.7 79.6 44.1 22.9 38.3 25.6 24.5 6.0 408.8
SQIL (TD3+BC) 45.2 27.4 5.9 14.5 15.7 11.8 12.2 7.2 13.6 20.6 23.6 -5.7 192.0
IQ-Learn 17.2 15.4 21.7 6.4 4.8 6.2 13.1 10.6 5.1 22.8 27.2 18.7 169.2
ValueDICE 59.8 80.1 72.6 2.0 0.9 1.2 2.8 0.0 7.4 27.3 32.7 30.2 316.9
DemoDICE 50.2 26.5 63.7 41.9 38.7 59.5 66.3 38.8 101.6 82.8 68.8 112.4 751.2
SMODICE 54.1 34.9 64.7 42.6 38.4 63.8 62.2 40.6 55.4 86.0 69.7 112.4 724.7
CEIL 94.5 45.1 80.8 45.1 43.3 33.9 103.1 81.1 99.4 99.8 101.4 85.0 912.5
ContextFormer 74.9 77.8 103.0 43.1 39.6 46.6 80.9 78.6 102.7 103.1 91.5 123.8 965.6

Lf
O

#
20

ORIL (TD3+BC) 55.5 18.2 55.5 40.6 2.9 73.0 26.9 19.4 22.7 11.2 21.3 10.8 358.0
SMODICE 53.7 18.3 64.2 42.6 38.0 63.0 68.9 37.5 60.7 87.5 75.1 115.0 724.4
CEIL 44.7 44.2 48.2 42.4 36.5 46.9 76.2 31.7 77.0 95.9 71.0 112.7 727.3
ContextFormer 67.9 77.4 97.1 43.1 38.8 55.4 79.8 79.9 109.4 102.4 86.7 132.2 970.1

Imitation Leaning (IL). These IL experiment aims to validate our claim (Section 5) that divergent
sequential expert matching can extract in-expert HI from sub-optimal trails to provide z∗. Intuitively, the
better performance achieved in these tasks, the stronger the validation of our claim. We utilize 5 to 20 expert
trajectories and conduct evaluations under both LfO and LfD settings. The objective of these tasks is to
emulate π∗(·|τ) by leveraging a substantial amount of sub-optimal offline dataset τ̂ ∼ π̂, aiming to achieve
performance that equals or even surpasses that of the expert policy π∗(·|τ). In particular, when conduct
LfO setting, we imitate from τobs, when conduct LfD setting we imitate from τdemo (both τdemo and τobs are
mentioned in section Preliminary). And we utilize τdemo/τobs as τ∗ (contextual optimization) in LfD and
LfO settings to optimize z∗ by Equation 4 and Equation 3. We optimize πz(·|τz) by Equation 3.

DT comparisons. These experiments are conducted to substantiate our contributions, as evidenced by
the expectation that ContextFormer should outperform various selected DT baselines. Note that, we are
disregarding variations in experimental settings such as IL, RL, etc. Our focus is on controlling factors
(data composition, model architecture, etc.), with a specific emphasis on comparing model performance. In
particular, ContextFormer is trained under the same settings as IL, while DT variants underwent evaluation
using the original settings.
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6.4 Training datasets

IL. Our experiments are conducted on four Gym-Mujoco Brockman et al. (2016) environments, including
Hopper-v2, Walker2d-v2, Ant-v2, and HalfCheetah-v2. These tasks are constructed utilizing D4RL Fu et al.
(2021) datasets including medium-replay (mr), medium (m), medium-expert (me), and expert (exp).

DT comparisons. When comparing ContextFormer with DT, GDT, and Prompt-DT, we utilize the datasets
discussed in IL. Additionally, we compare QDT and ContextFormer on the maze2d domain, specifically
designed to assess their stitching abilities Yamagata et al. (2023). In terms of the dataset we utilize for
training baselines, we ensure consistency in our comparisons by using identical datasets. For instance, when
comparing ContextFormer (LfD #5) on Ant-medium, we train DT variants with the same datasets (5 expert
trails+ all medium trails).

6.5 Baselines

Imitation learning. Our IL baselines include ORIL Zolna et al. (2020), SQIL Reddy et al. (2019), IQ-
Learn Garg et al. (2022), ValueDICE Kostrikov et al. (2019), DemoDICE Kim et al. (2022), SMODICE Ma
et al. (2022), and CEIL Liu et al. (2023). The results of these baselines are directly referenced from Liu et al.
(2023), which are utilized to be compared with ContextFormer in both the LfO and LfD settings, intuitively
showcasing the transformer’s capability to better leverage sub-optimal trajectories with the assistance of
expert trajectories (hindsight information). DT comparisons. To further demonstrate the superiority
of ContextFormer, we carry out comparisons between ContextFormer and DT, DT variants (Prompt-DT,
PTDT-offline, and QDT), utilizing the same dataset. This involves comparing the training performance of
various transformers.

6.6 Results of IL experiments

ContextFormer demonstrates competitive performance in leveraging expert information to
learn from sub-optimal datasets. We conduct various IL task settings including LfO and LfD to assess
the performance of ContextFormer. As illustrated in table 6.6, ContextFormer outperforms selected baselines,
achieving the highest performance in both LfD #5 and LfO #20 settings, showcasing respective improvements
of 5.8% and 33.4% compared to the best baselines (CEIL). Additionally, ContextFormer closely approach
CEIL under the LfO #20 setting. These results demonstrate the effectiveness of our approach in utilizing
expert information to assist in learning the sub-optimal dataset, which is cooperated with our analysis
(Section 5).

Table 2: Comparison of performance between DT and ContextFormer (LfD #5).
Task DT+5 exp traj DT+10 exp traj ContextFormer (LfD #5)
hopper-m 69.5±2.3 72.0±2.6 74.9±9.5
walker2d-m 75.0±0.7 75.7±0.4 80.9±1.3
halfcheetah-m 42.5±0.1 42.6±0.1 43.1±0.2
hopper-mr 78.9±4.7 82.2±0.5 77.8±13.3
walker2d-mr 74.9±0.3 78.3±5.6 78.6±4.0
halfcheetah-mr 37.3±0.4 37.6±0.8 39.6±0.4
sum 378.1 388.4 394.9

6.7 ContextFormer showcase better performance than various DT baselines

ContextFormer vs. Return Conditioned DT. ContextFormer leverages contextual information as
condition, getting riding of limitations such as the information bottleneck associated with scalar return.
Additionally, we highlighted that expert matching aids the Transformer in stitching sub-optimal trajectories.
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Figure 3: (i) Total Normalized Scores of ContextFormer, GDT and Prompt DT. (i.a) Performance comparison
with Generalized DT. (i.b) Performance comparison with Prompt-DT. Specifically, we conducted a performance
comparison between ContextFormer (LfD #5) and GDT using the same six offline datasets: hopper-m (mr),
walker2d-m (mr), and halfcheetah-m (mr). Additionally, we compared ContextFormer (LfD #1) with
Prompt-DT and PTDT-offline on hopper-m, walker2d-m, and halfcheetah-m. The original experimental
results have been appended in Appendix. (ii) In this figure, we gradually increase the descriptions of expert
trajectories and further observe the performance of ContextFormer in the Learning from Demonstration
(LfD) setting.

Therefore, the performance of ContextFormer is expected to be better than DT when using the same training
dataset. To conduct this comparison, we tested DT and ContextFormer on medium-replay, medium, and
medium-expert offline datasets. As shown in table 2, ContextFormer (LfD #5) demonstrated approximately
a 4.4% improvement compared to DT+5 expert trajectories (exp traj) and a 1.7% improvement compared to
DT+10 exp traj.

ContextFormer vs. GDT and Prompt-DT. ContextFormer, Prompt-DT, and G-DT all use contextual
information for decision-making. However, ContextFormer differs from Prompt-DT and GDT in the way and
efficiency of utilizing contextual information. Firstly, The contextual information of ContextFormer fuses
in-expert HI extracted from entire datasets. But the Prompt-DT only encompass trajectory fragments, and
GDT only encompass local representations. Additionally, according to the insights of HIM, incorporating
richer and more diverse future information into the contextual information can help generate more varied
trajectories, thereby improving generality. Accordingly, since z∗ encompasses significantly more expert-level
HI than isolated trajectory fragments, it becomes easier to generate much more near-expert trajectories by
conditioning ContextFormer on z∗. As shown in Figure 3 (a), we conduct a performance comparison between
ContextFormer (LfD #5) and GDT (GDT includes BDT and CDT, we utilized BDT as our baseline) using the
same 6 offline datasets including hopper-m (mr), walker2d-m (mr), halfcheetah-m (mr). ContextFormer
demonstrates a remarkable 25.7% improvement compared to the best GDT setting. As shown in Figure 3
(b), we compare ContextFormer (LfD #1) with Prompt-DT and PTDT-offline on hopper-m, walker2d-m,
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halfcheetah-m. The experimental results demonstrate that ContextFormer outperforms PTDT-offline by
1.6%, Prompt-DT by 3.3%. Therefore, the ability of ContextFormer to utilize contextual information has
been validated.

Table 3: Comparison of the performance difference between QDT and ContextFormer (LfD #10). Con-
textFormer (LfD #10) performs the best. Notably, the experimental results of QDT, DT and CQL are
directly quated from Yamagata et al. (2023).

Task QDT DT ContextFormer (LfD #top 10 τ)
maze2d-open-v0 190.1±37.8 196.4±39.6 204.2±13.3
maze2d-medium-v1 13.3±5.6 8.2±4.4 63.6±25.6
maze2d-large-v1 31.0±19.8 2.3±0.9 33.8±12.9
maze2d-umaze-v1 57.3±8.2 31.0±21.3 61.8±0.1
sum 291.7 237.9 363.4

ContextFormer vs Q-DT. QDT utilizes a pre-trained conservative Q network to relabel the offline
dataset, thereby endowing stitching capability to DT for decision-making. Our approach differs from QDT in
that we leverage representations of expert trajectories to stitch sub-optimal trajectories. The advantages of
ContextFormer lie in two aspects. On the one hand, our method can overcome the information bottleneck
associated with the scalar reward function. On the other hand, our objective is a supervised objective, thereby
eliminating the constraints of a conservative policy. Meanwhile, as demonstrated in Table 3, we evaluate
ContextFormer on multiple tasks in the maze2d domain, utilizing the top 10 trials ranked by return as
demonstrations. Our algorithm achieves a score of 364.3, surpassing all DTs.

Impact of the number of demonstrations. We vary the number of τdemo to conduct evaluation.
Specifically, as illustrated in Figure 3 (ii), ContextFormer’s performance on medium-replay tasks generally
improves with an increasing number of demonstrations. However, for medium and medium-expert datasets,
there is only a partial improvement trend with an increasing number of τdemo. In some medium-expert tasks,
there is even a decreasing trend. This can be attributed to the diverse trajectory fragments in medium-replay,
enabling ContextFormer to effectively utilize expert information for stitching sub-optimal trajectory fragments,
resulting in improved performance on medium-replay tasks. However, in medium and medium-expert tasks,
the included trajectory fragments may not be diverse enough, and expert trajectories in the medium-expert
dataset might not be conducive to effective learning. As a result, ContextFormer exhibits less improvement
on medium datasets and even a decrease in performance on medium-expert tasks.

Impact of demonstrations’ diversity. Sown in Figure 4 (a). To demonstrate the influence of diversity
among demonstrations on ContextFormer’s performance, we initially identify a trajectory with the highest
return, denoted as the best traj. Subsequently, we select 100 trajectories with returns similar to, but varying
from, this reference trajectory (with differences in returns falling within the range [0, 100]). Following this, we
arrange all trajectories in ascending order based on the cosine similarity of their states with those of the best
traj in the sorted list. We then sample 10 trajectories using the following strategies: uniformly sampling
from the far left, left quarter, mid and right quarter. The experimental results suggest a positive
correlation between the diversity of demos and the performance of ContextFormer.

Impact of demonstrations’s quality. As shown in Figure 4 (b), we first arrange all expert trajectories
according to their returns. Subsequently, we sample four demonstration sets by shifting a window of 10 steps
across various starting points within the sorted queue: left quarter, mid, and the position ten steps before
the far right. The experimental demonstrates a trend: higher-quality demonstrations are generally related
to higher performance.
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Figure 4: Ablations of demonstration. (a) Impact of demonstrations’ diversity. (b) Impact of demonstrations’
quality.

7 Conclusions

We empower the Transformer with stitching capabilities for decision-making by leveraging expert matching
and latent conditioned sequence modeling. Our approach achieves competitive performance on IL tasks,
surpassing all selected DT variants on the same dataset, thus demonstrating its feasibility. Furthermore,
from a theoretical standpoint, we provide mathematical derivations illustrating that stitching sub-optimal
trajectory fragments in the latent space enables the Transformer to infer necessary decision-making aspects
that might be missing in sub-optimal trajectories.
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A Mathematics Proof.

A.1 Proof of Theorem 5.1

Given our contextual optimization objective:

JIϕ,z∗ = min
z∗,Iϕ

Eτ̂∼π̂z∗ ,τ∗∼π∗
[
λ1 ·

∣∣∣∣z∗ − Iϕ(τ∗)
∣∣∣∣− λ2 ·

∣∣∣∣z∗ − Iϕ(τ̂)
∣∣∣∣] (5)

we regard P ∗(τ) or P̂ (τ) as density function, separately estimating the probability of τ being sampled from policies
π∗(·|τ∗) and π̂(·|τ̂).

Then we first introduce importance sampling i.e.
∫

τ∗∼π∗(τ) f(τ∗)dτ∗ =
∫

τ̂∼π̂

P ∗(τ)
P̂ (τ) f(τ̂)dτ̂ .

And, we introduce: the transformation of sampling process from local domain to global domain i.e.
∫

τ∗∼π∗ f(τ∗) =∫
τ∼S×A P ∗(τ) · f(τ)dτ , where f(τ) denotes the objective function.

Based on above, we derivative:

JIϕ,z∗ = min
z∗,Iϕ

Eτ∗∼π∗(τ)[λ1 · ||z∗ − Iϕ(τ∗)||]− Eτ̂∼π̂(τ)[λ2 · ||z∗ − Iϕ(τ̂)||]

= min
z∗,Iϕ

Eτ̂∼P̂ (τ)[
λ1 · P ∗(τ)

P̂ (τ)
||z∗ − Iϕ(τ̂)||]− Eτ̂∼π̂(τ)[λ2 · ||z∗ − Iϕ(τ̂)||]

= min
z∗,Iϕ

Eτ̂∼π̂(τ)[(
λ1 · P ∗(τ)

P̂ (τ)
− λ2)||z∗ − Iϕ(τ̂)||]

= min
z∗,Iϕ

∫
τ∼S×A

P̂ (τ)
(

λ1 · P ∗(τ)
P̂ (τ)

− λ2

)
||z∗ − Iϕ(τ)||dτ

= min
z∗,Iϕ

∫
τ∼S×A

(
λ1 · P ∗(τ)− λ2 · P̂ (τ)

)
||z∗ − Iϕ(τ)||dτ

= min
z∗,Iϕ

∫
τ∼S×A

1(λ1 · P ∗(τ) ≥ λ2 · P̂ (τ))
(

λ1P ∗(τ)− λ2P̂ (τ)
)
||z∗ − Iϕ(τ)||dτ︸ ︷︷ ︸

Jterm1

+
∫

τ∼S×A
1(λ1 · P ∗(τ) ≤ λ2 · P̂ (τ))

(
λ1P ∗(τ)− λ2P̂ (τ)

)
||z∗ − Iϕ(τ)||dτ︸ ︷︷ ︸

Jterm2

,

(6)

where 1 denotes indicator.

B Experimental Setup

B.1 Model Hyperarameters

The hyperparameter settings of our customed Decision Transformer is shown in Table 4. And the hyperparameters of
our Encoder is shown in Table 5.

Table 4: Hyparameters of our latent conditioned model πz(·|τz).
Hyparameter Value

Num Layers 3
Num Heads 2

learning rate 1.2e-4
weight decay 1e-4
warmup steps 10000

Activation relu
z dim 16

Value Dim 64
dropout 0.1
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Table 5: Hyparameters of BERT model Iϕ.
Hyparameter Value

Num Layers 3
Num Heads 8

learning rate 1.2e-4
weight decay 1e-4
warmup steps 10000

Activation relu
z dim 16

Value Dim 64
dropout 0.1

B.2 Computing Resources

Our experiments are conducted on a computational cluster with multi NVIDIA-A100 GPU (40GB), and NVIDIA-V100
GPU (80GB) cards for about 20 days.

B.3 Codebase

For more details about our approach, it can be refereed to Algorithm 1. Our source code is complished with the
following projects: OPPO 1 , Decision Transformer 2.

C Supplemented Experiment Results.

In this section, we supplement all the experimental results used in Figure 4 of the main text. Table 7 corresponds to
Figure 4 (a), and Table 7 corresponds to Figure 4 (b).

Table 6: Comparison of performance between GDT (multiple settings) and ContextFormer (LfD #5).
Specifically, we Compare the ContextFormer and GDT with 5 expert and GDT with 5 best trajectories,
ContextFormer performs the best.

Task Offline IL settings GDT+5 demo GDT+5 best traj ContextFormer (LfD #5)

hopper

medium 44.2± 0.9 55.8± 7.7 74.9± 9.5
medium-replay 25.6± 4.2 18.3± 12.9 77.8± 13.3
medium-expert 43.5± 1.3 89.5± 14.3 103.0± 2.5

walker2d

medium 56.9± 22.6 58.4± 7.3 80.9± 1.3
medium-replay 19.4± 11.6 21.3± 12.3 78.6± 4.0
medium-expert 83.4± 34.1 104.8± 3.4 102.7± 4.5

halfcheetah

medium 43.1± 0.1 42.5± 0.2 43.1± 0.2
medium-replay 39.6± 0.4 37.0± 0.6 39.6± 0.4
medium-expert 43.5± 1.3 86.5± 1.1 46.6± 3.7

sum 399.2 514.1 644.9

Table 7: Comparison of performance between Prompt-DT, PTDT-offline and ContextFormer (LfD #1),
ContextFormer performs the best. Notably, the experimental results of Prompt-DT and PTDT-offline are
directly quated from Hu et al. (2023).

Dataset Task Prompt-DT PTDT-offline ContextFormer (LfD #1)

medium
hopper 68.9± 0.6 71.1± 1.7 67.8± 6.7

walker2d 74.0± 1.4 74.6± 2.7 80.7± 1.6
halfcheetah 42.5± 0.0 42.7± 0.1 43.0± 0.2

sum 185.4 188.4 191.5

1https://github.com/bkkgbkjb/OPPO
2https://github.com/kzl/decision-transformer
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