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Abstract

Controllable text generation (CTG) aims to gen-
erate text with desired attributes, and decoding-
time-based methods have shown promising per-
formance on this task. However, in this pa-
per, we identify the phenomenon of Attribute
Collapse for the first time. It causes the flu-
ency of generated text to rapidly decrease when
the control strength exceeds a critical value,
rendering the text completely unusable. This
limitation hinders the effectiveness of decod-
ing methods in achieving high levels of con-
trollability. To address this problem, we pro-
pose a novel lightweight decoding framework
named Air-Decoding. Its main idea is recon-
structing the attribute distributions to balance
the weights between attribute words and non-
attribute words to generate more fluent text.
Specifically, we train prefixes by prefix-tuning
to obtain attribute distributions. Then we de-
sign a novel attribute distribution reconstruc-
tion method to balance the obtained distribu-
tions and use the reconstructed distributions to
guide language models for generation, effec-
tively avoiding the issue of Attribute Collapse.
Experiments on multiple CTG tasks prove that
our method achieves a new state-of-the-art con-
trol performance1.

1 Introduction

Controllable text generation (CTG) aims to pro-
duce texts with specific attributes(e.g. sentiment,
topic, non-toxicity). In this field, mainstream meth-
ods using Transformer-based Casual Language
Models (CLMs) like GPT-2 (Radford et al., 2019)
and GPT-3 (Brown et al., 2020) have achieved
fairly good attribute control. Even so, it remains
challenging to control the generated text to simul-
taneously satisfy certain attributes and maintain a
reasonable coherence (Carlsson et al., 2022).

∗Corresponding author: Zhendong Mao.
1The code implementation is available at https://

github.com/R1047/Air-Decoding

Figure 1: The phenomenon of Attribute Collapse (left)
and the elimination of Attribute Collapse (right), which
are both based on the sentiment control task. The per-
plexity is an inversely proportional metric to fluency and
the accuracy is a directly proportional metric to attribute
relevance.

Current CTG methods can be divided into three
categories (Zhang et al., 2022). The first cate-
gory achieves attribute controllability by retrain-
ing the whole parameters of CLMs (Keskar et al.,
2019; Wang et al., 2021). These methods ob-
tain impressive control effects, but as the scale of
CLMs increases, the computational cost becomes
excessively large. The second category fine-tunes
prefixes or prompts to control CLMs in generat-
ing texts with specified attributes (Yu et al., 2021;
Zhang and Song, 2022; Qian et al., 2022). These
methods have low computational cost and fast gen-
eration speed, but the control prefixes or control
prompts absorb the features of the training corpus
and are prone to overfitting, resulting in poor gen-
erality of the generated text. The third category
is the decoding-time approach, which guides the
model to generate the desired attribute text by ad-
justing the output probability distribution of the
model during the decoding stage. For example,
most methods use an attribute distribution obtained
by a well-trained classifier to control the CLMs’
output distribution and add an exponential term to
the attribute distribution as a control strength (Liu
et al., 2021; Yang and Klein, 2021; Krause et al.,
2021). Due to no direct fine-tuning of the models
used for the generation, these methods exhibit re-
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markable generalization performance and are easy
to achieve high control effectiveness when increas-
ing control strength, which is hardly achievable by
the first two methods.

However, decoding-time approaches suffer from
Attribute Collapse, which refers to the phe-
nomenon that when the control strength increases
to a certain critical value, the fluency of the gen-
erated text will rapidly decrease. As illustrated in
Figure 1(left), where the fluency of generated texts
would severely deteriorate as the control strength
increases. We found the reason lies in the imbal-
anced attribute distribution, where the weights of
attribute words are significantly higher than those
of non-attribute words. As a result, when given a
high control strength, the final output distribution
will deviate from the original language model’s out-
put distribution and excessively favor the attribute
distribution. This leads to the generated tokens
favoring specified attributes but ignoring basic se-
mantics and syntax, resulting in generated text with
high attribute accuracy but compromised fluency.

We propose Air-Decoding, a novel lightweight
decoding framework to address the issue of At-
tribute Collapse in traditional decoding-time ap-
proaches. Our method could obtain a more bal-
anced attribute distribution in a low-resource man-
ner, which helps us achieve better generation re-
sults while reducing resource consumption. Con-
cretely, We first use a lightweight approach to ob-
tain corresponding conditional language models for
each attribute, which serves as our attribute clas-
sifier to generate the original word-level attribute
distribution. Then, we propose an Attribute Dis-
tribution Reconstruction method to reconstruct
the original attribute distribution, which avoids ex-
aggerating the weights of attribute words and ex-
cessively diminishing the weight of non-attribute
words, resulting in a more balanced attribute distri-
bution. As shown in Figure 1(right), after applying
our Air-Decoding framework, the perplexity could
remain within a stable range as the control strength
increases, proving that generated texts based on
the reconstructed attribute distribution ensure high
attribute accuracy and good semantic and syntactic
structures.

Our main contributions are as follows:

• We first identify the phenomenon of Attribute
Collapse in the CTG tasks and develop a novel
lightweight decoding framework named Air-
Decoding specifically to address this issue. In the

framework, we designed an attribute distribution
reconstruction method to obtain a more balanced
attribute distribution, which results in better CTG
performance.

• We introduce prefix-tuning to obtain attribute
classifiers, which enables us to achieve the at-
tribute distribution with a low-resource approach.

• We conduct experiments on three CTG tasks: sen-
timent control, topic control, and text detoxifi-
cation. The results prove that our Air-Decoding
method achieves a new SOTA control perfor-
mance. In particular, while achieving an im-
provement in attribute accuracy, we also attain a
substantial enhancement in fluency.

2 Related Work

In recent years, numerous controllable text gen-
eration methods based on pre-trained language
models have emerged (Yang et al., 2022; Madotto
et al., 2020; Ziegler et al., 2019). These methods
can be roughly categorized into three types: Re-
train/Refact, Prefix/Prompt-tuning, and Decoding-
time approach (Zhang et al., 2022).

Retrain, Refactor. Retraining and refactoring
aim to retrain a conditional language model from
scratch or change its architecture. Keskar et al.
(2019) use 55 attribute control codes to finetune a
1.63 billion-parameter transformer to control gen-
eration. Chan et al. (2020) added a control block
to GPT-2’s architecture and retrained the model
using self-supervised learning methods with spe-
cial control codes. Zhang et al. (2020) introduce
POINTER, a modified Transformer model for lexi-
cally constrained text generation.

Prefix/Prompt-tuning. With the expansion of
pre-trained language models, there is increasing
interest in lightweight fine-tuning methods such
as prefix-tuning (Li and Liang, 2021) and prompt-
tuning (Lester et al., 2021). Qian et al. (2022)
introduce contrastive prefixes that consider inter-
prefix relationships during multiple prefix training.
Zhang and Song (2022) add an attribute discrimi-
nator to control-prompt training using the unlikeli-
hood method, but this increases training time signif-
icantly. Gu et al. (2022b) train an auto-encoder to
encode training set samples into prefixes to guide
GPT-2, achieving impressive controllability but suf-
fering from poor diversity and generality.

Decoding-time. The decoding-time method is
another approach to achieve CTG and its main idea
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Figure 2: An illustration of Air-Decoding. Given the prompt "The painting", the pos PC-LM, neg PC-LM, and
raw GPT-2 generate positive, negative, and raw distribution. Then, we use a reconstruction method to make these
attribute distributions more balanced. Finally, we use the reconstructed attribute distributions as weights for the raw
distribution to generate the next token.

is to adjust the probability distribution of the lan-
guage models’ output during the decoding stage.
PPLM (Dathathri et al., 2019) utilizes the results
of a pre-trained classifier through backpropagation
to update the model’s hidden states, thereby steer-
ing the hidden states toward generating text with
the specified attributes. Yang and Klein (2021) di-
rectly use a classifier to calculate the probability
of generating the next token in the sequence. Liu
et al. (2021) uses an expert and an anti-expert to
guide GPT-2 generating but this method may not be
well-suited for multi-category attribute-controlled
generation. GeDi (Krause et al., 2021) employs a
class-conditional language model(CC-LM) as gen-
erative discriminators to direct the text generation
using a base GPT-2 model. Lin and Riedl (2021)
enhance GeDi for controllable story generation
by incorporating a planning module in their Plug-
and-Blend approach. Gu et al. (2022a) propose a
lightweight regulator to adjust control strength at
different decoding positions but it works not well
under high-intensity control conditions.

3 Methodology

We propose Air-Decoding, a decoding-time-based
CTG framework. Its main idea is reconstructing
the attribute distributions to make the weights of
attribute words and non-attribute words more bal-
anced to generate more fluent text. Specifically, we
propose Prefix-Conditional LM (PC-LM) which
employs prefix-tuning to enable GPT-2 to acquire
attribute distributions. Then, we design an attribute

distribution reconstruction method to balance the
obtained distributions, which will be used to guide
a frozen GPT-2. The overall framework is illus-
trated in Figure 2.

3.1 Preliminary

Controllable text generation aims to guide an au-
toregressive model G (i.e., GPT2) to generate texts
with desired attribute. In this paper, we mainly in-
troduce our method through the sentiment control
task that includes positive and negative attributes
for ease of understanding. However, our method
exhibits generalizability and can be applied to other
CTG tasks. Concretely, we usually give a prompt
x1:T−1 = {x1, x2, · · · , xT−1} (such as "The paint-
ing" in Figure 2) and a desired attribute a (e.g.
positive), and ask the model to generate the con-
tinuations xT :N = {xT , xT+1, · · · , xN}, ensuring
the whole text x1:N satisfies the given attribute. It
can be formulated as:

P (xT :N |x1:T−1, a) = ΠN
t=TP (xt|x<t, a) (1)

Thus, we need to model P (xt|x<t, a) to achieve
P (xT :N |x1:T−1). Based on Bayes factorization,
P (xt|x<t, a) can be transformed to Eq.2 (Yang
and Klein, 2021) (detailed in Appendix A.1).

P (xt|x<t, a) ∝ P (a|x1:t)
ωP (xt|x<t), t ≥ T (2)

where the second term is the next token probabil-
ity distribution modeled by G while the first term
P (a|x1:t) is a binary classifier B for attribute a



given the text x1:t and ω is control strength, which
is an additional term added to the equation. A high
ω will bias generation more strongly towards the
desired class.

In decoding-time CTG approaches, we need
to model P (a|x1:t) to obtain P (xt|x<t, a). In
order to compute P (a|x1:t) more efficiently, the
first term P (a|x1:t) in Eq.2 can be achieved by
two class-conditional models Pϕa(xt|x<t, a) and
Pϕā(xt|x<t, ā) by Bayes Rule which is formulated
as Eq.3 (Krause et al., 2021).

P (a|x1:t) =
P (a)Πt

j=TPϕa (xj |x<j , a)∑
a
′∈{a,ā} Πt

j=TP (a′ )Pϕ
a
′ (xj |x<j , a

′ )
(3)

where a represents the positive attribute, ā rep-
resents the negative attribute, and the ϕa and
ϕā are the parameter of class-conditional models
Pϕa(xt|x<t, a) and Pϕā(xt|x<t, ā). When gener-
ating the next token xt, it is only necessary to
calculate the output probability distributions of
two class-conditional models Pϕa(xt|x<t, a) and
Pϕā(xt|x<t, ā) as all the tokens xj for T ≤ j < t
have already been sampled at the current time step.
Therefore, Pϕ

a
′ (xj |x<j , a

′
) for all T ≤ j < t

is the probability value of token xj , which is a
constant rather than a distribution (detailed in Ap-
pendix A.1).

3.2 Attribute Distribution via PC-LM
Prefix-tuning (Li and Liang, 2021) uses prefix,
which is a small, task-specific vector to optimize
natural language generation tasks as a lightweight
alternative to fine-tuning. Inspired by this, we opti-
mize two prefixes using dataset with corresponding
attributes using language model loss as Eq.4

LLM = −
K∑
k=1

logPλ,θ
a
′ (xk|x<k, Hθ

a
′ ) (4)

where λ is the set of frozen GPT-2 parameters,
θa′ is learnable parameters of prefix Hθ

a
′ and

a
′ ∈ {a, ā} represents the attribute of the pre-

fix. We utilize the optimized prefixes combined
with a frozen GPT-2 as class-conditional models
Pϕa(xt|x<t, a) and Pϕā(xt|x<t, ā) in Eq.3, which
we denote as Prefix-Conditional LMs (PC-LMs).
As illustrated in Fig 2, given a prompt x1:T−1, the
pos PC-LM and the neg PC-LM can generate two
probability distributions Pλ,θa(xT |x<T , Hθa) and
Pλ,θā(xT |x<T , Hθā). These probability distribu-
tions each have their own tendency towards their

attributes and we denote them as attribute distri-
butions. Based on the two attribute distributions
generated by pos PC-LM and neg PC-LM, we can
model P (a|x1:t) as Eq.5.

P (a|x1:t) =
Πt

j=TPλ,θa(xj |x<j , Hθa)∑
a
′∈{a,ā} Π

t
j=TPλ,θ

a
′ (xj |x<j , Hθ

a
′ )

(5)

where the class priors P (a) and P (ā) are omitted
as we use the same amount of training data to train
the pos PC-LM and neg PC-LM.

3.3 Attribute Distribution Reconstruction
However, the attribute distribution obtained directly
from the PC-LM has a strong tendency towards its
attribute, which means that the weights of the at-
tribute words in the attribute distribution will be
much larger than those of non-attribute words. This
leads to a strong attribute tendency in the final dis-
tribution of P (a|x1:t). For example, when gen-
erating positive sentiment text given the prompt
"The painting" and in the generation of the first
token (i.e. t = T ), the weight of "good" and "of"
in the positive distribution Pλ,θa(xt|x<t, Hθa) is
0.1 and 0.03, while in the negative distribution
Pλ,θā(xt|x<t, Hθā) is 0.01 and 0.05. Hence, ac-
cording to Eq.5, the weight of "good" in the fi-
nal distribution P (a|x1:t) is 0.1/(0.1+0.01)=0.909,
while the weight of "of" is 0.03/(0.03+0.05)=0.375.
As a result, the weight of "good" is significantly
higher than that of "of". This may cause "good" to
be generated as the final token, which is clearly in-
consistent with the previous tokens "The painting".

We design an attribute reconstruction method to
make the distributions obtained by PC-LMs more
balanced. First, we regularize the obtained attribute
distributions before generating the next token xt
each time as Eq.6 and Eq.7.

P̃λ,θa(xt|x<t, Hθa) = − 1

ln(Pλ,θa(xt|x<t, Hθa))
(6)

P̃λ,θā(xt|x<t, Hθā) = − 1

ln(Pλ,θā(xt|x<t, Hθā))
(7)

P (a|x1:t) =
Πt

j=T P̃λ,θa(xj |x<j , Hθa)∑
a
′∈{a,ā} Π

t
j=T P̃λ,θ

a
′ (xj |x<j , Hθ

a
′ )

(8)

Through this regularization, the original distri-
bution Pλ,θa(xt|x<t, Hθa) and Pλ,θā(xt|x<t, Hθā)
can be compressed into a small range interval
without changing the order of each element in it,
which can stabilize the weight of attribute words



Method Automatic Evaluation Human Evaluation
Acc PPL ↓ Dist-1 Dist-2 Dist-3 Rel. Flu. Top.

Pre-Tuning (Li and Liang, 2021) 62.15 38.49 0.11 0.53 0.82 2.28 3.52 2.81
Con Prefixes (Qian et al., 2022) 75.66 35.32 0.11 0.52 0.81 2.77 3.63 2.96
Discup∗ (Zhang and Song, 2022) 95.20 39.14 0.07 0.46 0.80 3.85 3.47 3.52
PPLM (Dathathri et al., 2019) 69.06 34.89 0.12 0.51 0.77 2.54 3.56 3.24
GeDi (Krause et al., 2021) 94.23 169.86 0.15 0.53 0.74 3.38 2.60 3.47
DExpert (Liu et al., 2021) 94.74 51.99 0.16 0.65 0.85 3.51 3.02 3.46
Air-Decoding (medium) 96.82 26.66 0.13 0.55 0.78 4.03 3.96 3.85
Air-Decoding (large)∗ 96.16 18.59 0.13 0.52 0.76 3.93 4.01 3.73

Table 1: The main experimental results of sentiment controllable text generation. ↓ suggests that the performance is
better with a lower score. ∗ means the backbone model is GPT-2 large.

and non-attribute words in the attribute distribu-
tion. Then we calculate P (a|x1:t) using normal-
ized P̃λ,θa(xt|x<t, Hθa) and P̃λ,θā(xt|x<t, Hθā) in
Eq.6 and Eq.7. In the example above, the weight
of "good" equals -1/ln(0.1)=0.434 and the weight
of "of" equals -1/ln(0.03)=0.285 in the pos PC-
LM’s distribution after regularization. In the
neg PC-LM’s distribution, their weights become
0.217 and 0.334, respectively. Thus, in the fi-
nal distribution P (a|x1:t), the weight of "good"
is 0.434/(0.434+0.217)=0.667 and the weight of
"of" is 0.285/(0.285+0.334)=0.46 by Eq.8. This
maintains the high weight of "good" while reducing
the gap between the two words, ensuring that the
model would not blindly generate attribute words
like "good", which would improve the fluency of
the generated text. The overall algorithm frame-
work can be found in Appendix A.2.

4 Experiments

4.1 Evaluation Metric

Automatic Evaluation. We evaluate the gener-
ated texts from three aspects. (1) Accuracy: For
the sentiment and topic control tasks, we train a
RoBERTa (Liu et al., 2019) classifier on the Yelp
Review and AGNews dataset (Zhang et al., 2015)
respectively to calculate attribute accuracy (Acc).
The two classifiers achieve accuracies of 98.53%
and 95.57% on their corresponding test sets. For
the detoxification task, we use the Perspective API2

to calculate the average toxicity for the generated
texts. (2) Fluency: Text fluency is evaluated using
the perplexity (PPL) calculated by GPT-2 large. (3)
Diversity: We use distinctness (Li et al., 2016) to
measure the generated texts’ diversity. For each

2https://www.perspectiveapi.com/

text, 1-grams, 2-grams, and 3-grams are calculated
which are named Dist-1, Dist-2, and Dist-3.

Human Evaluation. Following Zhang and Song
(2022), we evaluate generated texts from three as-
pects. Relevance (Rel.) reflects the degree of
achievement for the desired control attribute. Flu-
ency (Flu.) evaluates the text’s fluency from the
human perspective. Topicality (Top.) evaluate
the consistency between the generated text and the
input prompt. For each task, we randomly select
100 texts and ask three annotators to score them on
the three metrics on a scale from 1 (very bad) to 5
(very good). Finally, we calculate the average of
the 300 groups of scores to obtain the final manual
evaluation results.

4.2 Baselines

Prefix/Prompt-based: (1) Prefix-Tuning (Pre-
Tuning) (Li and Liang, 2021) trains a prefix to
control the generation of a frozen CLM. (2) Con-
trastive Prefixes (Con Prefixes) (Qian et al., 2022)
trains multiple attributes’ prefixes simultaneously
using a discriminative loss. (3) Discup(Zhang and
Song, 2022) is the SOTA model so far, which in-
corporates a discriminator during the training stage
to guide the training process.

Decoding-time-based: (4) GeDi (Krause et al.,
2021) uses a class-conditional LM to guide a base
model’s generation. (5) DExpert (Liu et al., 2021)
uses fine-tuned GPT-2 as an expert/anti-expert
to guide a base model’s generation. (6) PPLM
(Dathathri et al., 2019) uses gradients from a well-
trained classifier to update the base model’s hidden
representations.

All baselines (excluding Contrastive Prefixes3)

3As their code has not been released, we reproduce their
work on our datasets and achieve comparable results.

https://www.perspectiveapi.com/


Method Automatic Evaluation Human Evaluation
Acc PPL ↓ Dist-1 Dist-2 Dist-3 Rel. Flu. Top.

Pre-Tuning (Li and Liang, 2021) 72.74 64.43 0.09 0.49 0.74 2.85 3.05 2.84
Con Prefixes (Qian et al., 2022) 88.47 70.34 0.09 0.50 0.75 3.31 2.94 2.95
GeDi (Krause et al., 2021) 94.27 104.46 0.10 0.48 0.69 3.83 2.42 3.31
Air-Decoding (medium) 97.21 31.18 0.08 0.47 0.74 4.07 3.87 3.80
Air-Decoding (large)∗ 94.30 22.31 0.08 0.46 0.72 3.93 3.94 3.75

Table 2: The main experimental results of topic controllable text generation. ↓ suggests that the performance is
better with a lower score. ∗ means the backbone model is GPT-2 large. Due to methodological limitations, DExpert
cannot perform multiclass control tasks, while PPLM and Discup did not provide classifiers for topic tasks on the
AGNews dataset, therefore these three methods are not included in the table.

are directly implemented from their public source
codes. For a fair comparison, all baseline mod-
els(excluding Discup4) use the GPT-2 medium as
the backbone generator. In addition, we standard-
ized the sampling method during decoding, using a
top-k value of 200 (excluding Discup, which uses
a top-k value of 20). Other hyperparameters details
are described in Appendix B.

4.3 Experimental Setup

Sentiment Control. Following the previous work
(Krause et al., 2021), we use IMDb movie reviews
(Maas et al., 2011) to train our model. Compared to
GeDi which uses 11.25K samples from the dataset
for training, We randomly selected only 5K positive
and 5K negative reviews from the IMDb dataset
to train the corresponding PC-LM with a prefix
length of 20. The prompts used for evaluation are
the same as those in the PPLM (Dathathri et al.,
2019). For each of the 15 prompts, we generate
50 sentences with positive attributes and 50 with
negative attributes, each with a length of 50. In our
method, the control strength ω is set to 140.0 for
the medium model and 130.0 for the large model.

Topic Control. We experiment with the AG-
News dataset (Zhang et al., 2015). For each at-
tribute in the AGNews dataset, we randomly se-
lected 5K samples outside the training data of the
topic classifier to train the corresponding PC-LM
with a prefix length of 20. The prompts used
for evaluation are the same as those in the PPLM
(Dathathri et al., 2019). For each of the 20 prompts,
we generate 50 sentences for each of the attributes
from World, Sports, Business, and Science, each
with a length of 50. In our method, the control
strength ω is set to 60.0 for the medium model and
70.0 for the large model.

4Discup only released prompts used for GPT-2 large.

Detoxification. Following the previous work
(Qian et al., 2022), we use the dataset provided
by Jigsaw Unintended Bias in Toxicity Classifica-
tion Kaggle Challenge5 to train our model. We
randomly selected 5K toxic and 5K nontoxic com-
ments from the Jigsaw dataset to train the corre-
sponding PC-LM. The length of the prefix for each
PC-LM is set to 20. The generation prompts are col-
lected from RealToxicityPrompts (Gehman et al.).
Following previous work (Qian et al., 2022), we
use the prompts categorized as "challenging" in
the dataset and further filter out the prompts with
toxicity larger than 0.5, scored by Perpective. The
resulting evaluation dataset consists of 203 prompts.
For each of the 203 prompts, we generate 20 sen-
tences, each with a length of 50. In our method, the
control strength ω is set to 120.0 for the medium
model and 140.0 for the large model.

4.4 Results and Analysis

Sentiment Control. As shown in the automatic
part of Table 1, our approach has achieved a
new SOTA in attribute relevance and text flu-
ency. Among decoding-time methods, PPLM
shows less attribute relevance, potentially due to
using only one classifier to modify the model, mak-
ing it difficult to significantly impact generated
text. Prefix-based methods (i.e., Prefix-Tuning and
Contrastive Prefixes) have lower attribute relevance
than decoding-time methods (i.e., GeDi and DEx-
pert) but excel in fluency. Though Discup performs
well in attribute relevance and fluency, it relies
on GPT-2 large which has more parameters. Our
medium model outperforms Discup, increasing ac-
curacy by 1.62% and lowering perplexity by 12.48
points, which implies our better ability for attribute

5https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification

https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification


Method Automatic Evaluation Human Evaluation
Tox. ↓ PPL ↓ Dist-1 Dist-2 Dist-3 Rel. Flu. Top.

Pre-Tuning (Li and Liang, 2021) 49.2 92.20 0.07 0.40 0.68 2.24 2.37 2.93
Con Prefixes (Qian et al., 2022) 21.7 85.34 - - - - - -
Discup∗ (Zhang and Song, 2022) 14.8 63.90 0.07 0.48 0.82 3.90 3.04 3.36
PPLM (Dathathri et al., 2019) 30.0 148.50 - - - - - -
GeDi (Krause et al., 2021) 20.5 166.01 - - - - - -
DExpert (Liu et al., 2021) 20.0 58.06 0.08 0.48 0.78 3.53 3.36 3.45
Air-Decoding (medium) 18.5 48.29 0.07 0.44 0.74 3.85 3.56 3.74
Air-Decoding (large)∗ 21.6 38.86 0.07 0.42 0.73 3.76 3.64 3.68

Table 3: The main experimental results on the task of detoxification. "Tox." represents average toxicity. ↓ suggests
that the performance is better with a lower score. ∗ means the backbone model is GPT-2 large. As the experimental
results of GeDi, PPLM, and Con Prefixes are directly taken from Qian et al. (2022), we do not conduct diversity and
human evaluation for these three methods.

control and text fluency. In terms of diversity, our
method fails slightly short. This can be attributed
to elevated control strength, as it intensifies the
attribute distribution’s focus on high-probability
tokens, thereby increasing the likelihood of their
selection during sampling. A detailed table of di-
versity under different control strengths is available
in Appendix C. The human evaluation results are
presented in the manual part of Table 1. Consistent
with automatic evaluations, our approach surpasses
all baselines, particularly regarding fluency.

Topic Control. The results presented in the auto-
matic part of Table 2 demonstrate that our method
has achieved a new SOTA in attribute relevance
and text fluency. Specifically, our medium model
outperforms GeDi, Contrastive Prefixes, and Prefix-
Tuning by 2.94, 8.74, and 24.47. Regarding text
fluency, our method achieves a 33.25 perplexity
points reduction compared to Prefix-Tuning, 39.16
points compared to Contrastive Prefixes, and 73.28
points compared to the lowest-performing GeDi.
In terms of diversity, our method slightly underper-
forms Contrastive Prefixes but remains on par with
GeDi and Prefix-Tuning. The human evaluation
results in Table 2 also demonstrate the superiority
of our method, mainly in fluency and topicality.

Detoxification. As shown in Table 3, Air-
Decoding (medium) achieves an average toxic-
ity of 0.185, outperforming three decoding-time-
based methods PPLM, GeDi, and DExpert. Com-
pared to prefix/prompt-based methods, we outper-
form prefix-tuning and Contrastive Prefixes but are
slightly weaker than Discup. However, in terms of
fluency, Air-Decoding (medium) outperforms all
of the baselines, especially PPLM and GeDi. Our

method achieves better fluency in the large model
but decreases in attribute relevance, which is simi-
lar to the results obtained in the sentiment and topic
control task. We analyze that larger models have an
advantage in the pre-training corpus in generating
fluent text, but the increase in model size without
a corresponding increase in training data results in
a slight decrease in attribute relevance. As for the
human evaluation results, our method performs the
best in terms of fluency and topicality, with slightly
lower attribute relevance compared to Discup.

4.5 Further Analysis
In this section, we aim to assess the effects of
distinct factors on overall performance. We
further choose the sentiment control task and use
GPT-2 medium as the backbone model to conduct
experiments. The results of the topic control and
detoxification tasks can be found in Appendix D.

The Effect of Distribution Reconstruction.
We conduct ablation experiments on attribute
distribution reconstruction and we define the
settings with and without attribute distribution
reconstruction as follows:

• w/ reconstruction: Calculate P (a|x1:t) by Eq.8.

• w/o reconstruction: Calculate P (a|x1:t) by Eq.5.

As illustrated in Figure 3, both settings exhibit
strong performance on accuracy under high control
strength but without attribute distribution recon-
struction, the fluency deteriorates with increasing
control strength, resulting in Attribute Collapse.

In order to further analyze how reconstruction
solves the problem of Attribute Collapse, we de-



note the distribution P (xt|x1:t−1, a), P (xt|x1:t−1),
P (a|x0:t)ω in Eq.2 as do (output distribution), dr
(raw LM’s distribution), da (attribute distribution).
At each token generation, we define the sets of
top-k (we all use the top-k value of 200) tokens
with the highest probability for each of these dis-
tributions as So, Sr, Sa, respectively. Then we
define Sor = So ∩ Sr, Soa = So ∩ Sa and
Sora = So ∩ Sr ∩ Sa. We use |S| to denote the
size of set S. In this experiment, we consider the
following three metrics:

• |Sor|/|So|: which reflects the similarity between
do and dr.

• |Soa|/|So|: which reflects the similarity between
do and da.

• |Sora|/|So|: which simultaneously reflects the
similarity between do and both dr and da.

From Figure 4, as the control strength increases,
the values of |Soa|/|So| increase, and the values
of |Sor|/|So| decrease under both settings. This
is intuitive as an increase in control strength will
cause the do to deviate from the dr and shift
towards the da. In the figure of |Sora|/|So|, we find
that the value of |Sora|/|So| with reconstruction
stabilizes at around 10%, whereas the value of
|Sora|/|So| without reconstruction only stays at
1%. This means that under high control strength,
the model with reconstruction setting is more
likely to sample tokens from set Sora, which both
satisfy the accuracy of the attributes and ensure
fluency. But in the setting without reconstruction,
the model needs to sample more tokens that are in
set |Soa| but not in set |Sor| as the control strength
increases, which results in a decrease in fluency.

The Effect of the Size of Training Sam-
ples. From the results in Figure 5, we find that the
accuracy improves as the data volume increases.
However, the curves of accuracy almost overlap
when the data volume is greater than 5K, indicating
that our method can achieve optimal performance
at a data volume of around 5K. When the data
volume is less than 500, the perplexity continues to
increase with ω, whereas when the data volume is
greater than 1K, the perplexity is consistently kept
within a stable range. We analyze that when the
training data is small, the prefix learns insufficient
attribute-related knowledge, resulting in a low
value of |Sora|, which leads to a similar result
without attribute distribution reconstruction.

Figure 3: The impact of attribute distribution reconstruc-
tion on the performance of Air-Decoding.

Figure 4: The impact of attribute distribution reconstruc-
tion on the value of |Sor|/|So|, |Soc|/|So|, |Sorc|/|So|.

Figure 5: The impact of training data volume to Air-
Decoding in the sentiment control task. The label repre-
sents the data volume used to train a single PC-LM.

5 Conclusion

We first identify the phenomenon of Attribute Col-
lapse and propose a novel lightweight framework,
Air-Decoding, to address this issue in decoding-
time CTG. Specifically, we train prefixes as Prefix-
Conditional LMs (PC-LMs), followed by a novel
attribute distributional reconstruction method to en-
sure a more balanced attribute distribution obtained
by the PC-LMs. Then we use the reconstructed
attribute distribution to guide the generation of
CLMs and achieve remarkable CTG performance.
Experimental results on three typical CTG tasks
demonstrate that our method not only achieves high
attribute control but also excellent text fluency, ef-
fectively solving the problem of Attribute Collapse
in traditional decoding-time-based methods.



Limitations

Our method primarily addresses the issue of At-
tribute Collapse in decoding-time-based control-
lable text generation through attribute distribution
reconstruction at the distribution level. However,
we have not conducted in-depth investigations into
the impact of different attribute distributions ob-
tained by different models on the performance of
our decoding framework, as well as the fundamen-
tal reasons why attribute distribution reconstruction
can solve the issue of Attribute Collapse, which are
both areas for future research.

Ethics Statement

Attribute controllable text generation has extensive
use on social media platforms, but inappropriate ap-
plications can have many negative impacts, such as
generating negative or false news or creating abun-
dant public opinions on political topics to confuse
public perception. We hired human annotators to
evaluate our method and other baselines. Consider-
ing the difference among the three tasks, annotators
got $0.1 for each sentence in the sentiment control
and topic control tasks and $0.2 in the detoxifica-
tion task.
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A Methodology Details

A.1 Bayesian Factorization

P (xt|x1:t−1, a) =
P (x1:t, a)

P (x1:t−1, a)

=
P (a|x1:t)P (x1:t)

P (x1:t−1, a)

=
P (a|x1:t)P (xt|x1:t−1)P (x1:t−1)

P (a|x1:t−1)P (x1:t−1)

=
P (a|x1:t)P (xt|x1:t−1)

P (a|x1:t−1)

∝ P (x|x1:t)P (xt|x1:t−1)

P (a|x1:t) =
P (x1,t, a)

P (x1:t)

=
P (a)Pϕa(x1:t|a)∑

a
′∈{a,ā} P (a′)Pϕ

a
′ (x1:t|a′)

=
P (a)Πt

j=TPϕa(xj |x<j , a)∑
a
′∈{a,ā} Π

t
j=TP (a′)Pϕ

a
′ (xj |x<j , a

′)

A.2 Air-decoding Algorithm
The basic decoding formula is

P (xt|x<t, a) = P (a|x1:t)ωP (xt|x<t)

and P (a|x1:t) is formulated as

P (a|x1:t) =
Πt

j=T P̃λ,θa(xj |x<j , Hθa)∑
a
′∈{a,ā} Π

t
j=T P̃λ,θ

a
′ (xj |x<j , Hθ

a
′ )

As we have shown that P̃λ,θa(xj |x<j , Hθa) is a
constant rather than a distribution for all T ≤ j < t,
we convert P (a|x1:t) into the following form for
computational convenience.

P (a|x1:t) =
Πt

j=T P̃λ,θa (xj |x<j , Hθa )∑
a
′∈{a,ā} Πt

j=T P̃λ,θ
a
′ (xj |x<j , Hθ

a
′ )

=
Πt

j=T P̃λ,θa (xj |x<j , Hθa )

Πt
j=T P̃λ,θa (xj |x<j , Hθa ) + Πt

j=T P̃λ,θā (xj |x<j , Hθā )

=
P̃λ,θa (xt|x<t, Hθa )

P̃λ,θa (xt|x<t, Hθa ) + δāaP̃λ,θā (xt|x<t, Hθā )

where the δāa =
Πt−1

j=T P̃λ,θā (xj |x<j ,Hθā )

Πt−1
j=T P̃λ,θa (xj |x<j ,Hθa )

is a con-

stant. Based on the description above, our Air-
decoding Algorithm can be summarized as Algo-
rithm 1.

B Hyperparameters

Sentiment Conrtol. In our method, we train two
PC-LMs, each with a prefix length of 20. The
training batch size is 4, the weight decay is 0.01,
the learning rate is 3e-5, and the number of training
epochs is 5. During the generation stage, we use
ω = 140.0, top-k=200, top-p=1.0.

Algorithm 1 Air-Decoding

Require: prefixes Hθa , Hθā , base model Pθ(x),
control strength ω, input prompt x1:T−1, de-
sired attribute a

1: t = T
2: while t ≤ N do
3: if t = T then
4: δāa = 1
5: else
6: δāa = δāa ∗ d̃ā(xt−1|xt−1=vt−1)

d̃a(xt−1|xt−1=vt−1)

7: end if
8: da(xt) = Pλ,θa(xt|x<t, Hθa)
9: dā(xt) = Pλ,θā(xt|x<t, Hθā)

10: d̃a(xt) = − 1
ln(da(xt))

11: d̃ā(xt) = − 1
ln(dā(xt))

12: P (a|x0:t) = d̃a(xt)

d̃a(xt)+d̃ā(xt)∗δāa
13: P (xt|x<t, a) = Pθ(xt|x<t)P (a|x0:t)ω
14: vt = Decode(P (xt|x<t, a))
15: x<t = Concat(x<t, vt)
16: t = t+ 1
17: end while

For PPLM, we use the hyperparameters of γ =
1.0, m = 10, α = 0.03, λkl = 0.01, λgm = 0.95,
top-k=200, top-p=1.0.

For GeDi, we use the hyperparameters of ω =
160.0, top-k=200, top-p=1.0.

For DExpert, we use the hyperparameters of α =
2.4, top-k=200, top-p=1.0.

For Prefix-Tuning, we directly use the PC-LMs
trained in our experiments for generation. We use
the hyperparameters of top-k=200 and top-p=1.0.

For Contrastive Prefixes, we set the prefix length
to 20, the same as that in our method. Other hy-
perparameters are followed by their original work
(Qian et al., 2022), the training batch size is 8,
ω1 = 0.8, ω2 = 0.2, the number of training epochs
is 50, the learning rate is 2e-5.

For Discup, we use top-k=20 and top-p=1.0
due to the particularities of their method, which
enable achieving satisfactory text diversity with a
relatively low top-k value.

Topic Control. In our method, we train
four PC-LMs, each with a prefix length of 20.
The training batch size is 4, the weight decay is
0.01, the learning rate is 3e-5, and the number
of training epochs is 5. For generation, we use
ω = 60.0, top-k=200, top-p=1.0.



For GeDi, we use the hyperparameters of ω =
150, top-k=200, top-p=1.0.

For Prefix-Tuning, we directly use the PC-LMs
trained in our experiments for generation. We use
the hyperparameters of top-k=200 and top-p=1.0.

For Contrastive Prefixes, we set the prefix length
to 20, the same as that in our method. Other
hyperparameters are followed by their original
work (Qian et al., 2022), the training batch size
is 4, ω1 = 0.8, ω2 = 0.2, the number of training
epochs is 8, the learning rate is 2e-5.

Detoxification. In our method, we train
two PC-LMs, each with a prefix length of 20. The
training batch size is 4, the weight decay is 0.01,
the learning rate is 3e-5, and the number of training
epochs is 5. For generation, we use ω = 120.0,
top-k=200, top-p=1.0.

For Prefix-Tuning, we directly use the PC-LMs
trained in our experiments for generation. We use
the hyperparameters of top-k=200 and top-p=1.0.

For Discup, we use the hyperparameters of top-
k=200 and top-p=1.0.

For DExpert, we use the hyperparameters of α =
0.9 top-k=200, top-p=1.0.

For other baselines, we follow the experiment
settings of (Qian et al., 2022) and use their results
directly.

C Experiments Details

ω Dist-1 Dist-2 Dist-3
10 0.144 0.608 0.844
20 0.143 0.603 0.841
30 0.143 0.605 0.843
40 0.141 0.597 0.837
50 0.142 0.595 0.831
60 0.140 0.589 0.827
70 0.138 0.586 0.823
80 0.137 0.578 0.815
90 0.138 0.575 0.811
100 0.136 0.572 0.807
110 0.133 0.562 0.801
120 0.133 0.563 0.798
130 0.132 0.553 0.787
140 0.132 0.551 0.785

Table 4: Diversity performance of Air-Decoding on
sentiment control task with different control strength ω.

D Further Analysis Details

We use GPT2-medium as the backbone model to
conduct further experiments on topic control and
detoxification tasks.

D.1 Topic Control

The Effect of Distribution Reconstruction. From
the results in Figure 6, similar to the sentiment con-
trol task, both accuracy increase as control strength
increases, and without attribute distribution recon-
struction, fluency gradually decreases. However, in
the topic control task, the fluency reduction caused
by the absence of attribute distribution reconstruc-
tion is not as significant as in the sentiment control
task. We speculate that this outcome is due to the in-
herent balance within the AGNews dataset, which
is employed in our experiments.

Figure 6: The impact of attribute distribution reconstruc-
tion on the performance of Air-Decoding in the topic
control task.

Figure 7: The impact of attribute distribution reconstruc-
tion on the value of |Sor|/|So|, |Soc|/|So|, |Sorc|/|So|
in the topic control task.

The Effect of the Size of Training Samples. As
shown in Figure 8, when the number of training
samples exceeds 2K, the accuracy curve is basi-
cally overlapping, and an accuracy of 90% could
be obtained only when the number of training sam-
ples is 1K. With respect to fluency, similar to the
sentiment control task, higher fluency can generally
be achieved with more training data.



Figure 8: Performance of Air-Decoding under different
training data volumes in the topic control task. The
label represents the amount of data used to train a single
PC-LM.

D.2 Detoxification

The Effect of Distribution Reconstruction. As
illustrated in Figure 9, we find that in the detoxifi-
cation task, not adding attribute distribution recon-
struction could result in lower toxicity, but it still
suffers from decreasing fluency.

Figure 9: The impact of attribute distribution reconstruc-
tion on the performance of Air-Decoding in detoxifica-
tion task.

The Effect of the Size of Training Samples. The
results are shown in Figure 11. The result shows
that as the training data decreases from 5K to 2K,
text toxicity progressively increases. This aligns
with findings in sentiment control and topic control

Figure 10: The impact of attribute distribution re-
construction on the value of |Sor|/|So|, |Soc|/|So|,
|Sorc|/|So| in the detoxification task.

tasks. However, at training data levels below 1K
and at high control strength, the generated text is
less toxic compared to when the training data is at
5K. We attribute this to the special nature of the
text detoxification task, which requires avoiding
the use of toxic words. With limited training data,
the weight of toxic tokens in the output distribu-
tion of the trained model is not high, thus resulting
in a naturally reduced amount of toxicity in the
generated text.

Figure 11: The impact of attribute distribution recon-
struction on the performance of Air-Decoding in the
detoxification task.



E Human Evaluation Details

In this section we provide specific scoring guide-
lines for each human evaluation metric.

E.1 Relevance
• 5: The generated sentences are perfectly aligned

with the desired attribute.

• 4: The generated sentences are very related to
the desired attribute.

• 3: The generated sentences are very related to
the desired attribute.

• 2: The generated sentences have a relatively
weak consistency with the desired attribute.

• 1: The generated sentences have no correlation
with the desired attribute, and in some cases, they
even contradict it.

E.2 Fluency
• 5: The generated sentences are grammatically

correct, fluent, and easy to understand.

• 4: The generated sentences are grammatically
correct, but they are slightly less smooth, yet still
easily understandable.

• 3: The generated sentences have a few grammar
errors, but they do not hinder understanding.

• 2: The generated sentences have a few grammar
errors and are not very easy to understand.

• 1: The generated sentences have numerous gram-
mar errors, lack coherence, and are difficult to
understand.

E.3 Topicality
• 5: The generated sentences are grammatically

correct, fluent, and easy to understand.

• 4: The generated sentences exhibit a relatively
strong correlation with the input prompt.

• 3: The generated sentences have an average cor-
relation with the input prompt.

• 2: The generated sentences have a relatively
weak correlation with the input prompt.

• 1: The generated sentences have a poor correla-
tion with the input prompt, resulting in incoher-
ent sentences.

F Case Study

F.1 Cases of Attribute Collapse
Due to the Attribute Collapse issue only present
in the decoding-time CT methods, in the Table 5,
we have selected specific generated examples from
GeDi and DExpert in the sentiment control task.
From the table, it can be observed that sentences
with Attribute Collapse occurs exhibit repetition of
attribute tokens or the presence of numerous bad
tokens.

F.2 Cases of Ablation Study
The Table 6 presents specific generated examples of
Air-decoding with and without distribution recon-
struction in the sentiment control task. The results
of the ablation experiments also exhibit a notable
issue of attribute stacking. in contrast, the results
with reconstruction are significantly smoother and
more logically coherent.

F.3 Cases of All Baselines and Attributes
We present generated cases by all baselines and
Air-Decoding in every desired attribute in Table 7.



Tar. Att. Method Generated texts

Positive

GeDi
Once upon a time flourished shone cardinal laurel.artney honouring the birthday of the Blossom
of theesprit birthday action Date Harmony Meeting Graceland blues Graceland blues Gale
principe blues brid breeforts Graceland bluesalm enchantivelyprinci

DExpert
The book taps vividly vividly into the lives of Tibetan Buddhic tabrasadhayangas, meditation
teachers widely practiced both in Tibet and China today. In their homes and practice venues across
China and Tibet mountains, teachers express the wonders of their cultures

Negative

GeDi
Once upon a time Screenshot worse limding worse imbaferraining lab ratsatche worse scient
inept idiotswrap worse Ness decompurseswraa convert SNAPIZEwra Zombie Trogviciflowerwra
Swiss cheese hands Trog slaves wearing pool waste tamp domain dc DrainFeatureonut

DExpert
The book sucks. 0 BAD!!Disclaimer CONTENT List of errors waste of time Stupidity stupidity
waste of effort stupid books Stupid waste of time wastes of my time waste of my time waste of
your time waste of yours Stupid waste of your time

Table 5: Cases of Attribute Collapse.

Tar. Att. Method Generated texts

Positive

w.o. rec.
The movie works! Read My Lips Review Interview with Barbara Galliak delivers! My Big Fat
Greek Wedding nicely improves upon its usual predecessor with gorgeous depth and integrity that
speak volumes for this wondrous testament to living harmoniously with living love! Read

w. rec.
The movie The Matrix is one of my all time favorite movies and is a must see for all children and
adults alike. It is the story where Neo steps into the Matrix to alter the world’s history and the
effects that are wrought by his actions

Negative

w.o. rec.
The movie failed worse even worse THAN ME. 1. The writing 2. The acting 3. The acting wasted
needless hours wasted wasted wasting needless amounts of wasted time waste of wasted money
wasting wasted money wasted waste of time waste wasted wasted wasted wasted

w. rec.
The movie seems bad. The actors and crew look like they’ve been drinking. The sound effects are
boring, the story looks like it tells you to write more. The characters are incredibly bland. The
writing inherently boring, because you can

Table 6: Cases of ablation study, w. rec. represents Air-Decoding with attribute distribution reconstruction and w.o.
rec. represents Air-Decoding without attribute distribution reconstruction.



Tar. Att. Method Generated texts

Positive

GeDi
The movielainerie from Beauteuil is based on the classic French restaurant,
Herbier.Champagnefavorite expanses of Blossom Hill, Blossom Hill enchant the senses with its
Enchantment of enchanting Art Deco enchanting enchanting

DExpert
The movie has touched hearts across Australia and around the world thanks to timely
performances set among refugees arriving in Australia in recent years’Great gentle light shone
through the icy winter skies and that day two girls who had been abandoned just after the Tianjin

Discup
The movie helps her to come but she can still be so beautiful...she has good strength, strength and
courage even in her age she was so strong and strong with them. Even if this was good at the time
(in this moment and time she is

Ours
The movie The Matrix is one of my all time favorite movies and is a must see for all children and
adults alike. It is the story where Neo steps into the Matrix to alter the world’s history and the
effects that are wrought by his actions.

Negative

GeDi The book sucks. dismefilarity. That’s obvious.lot of people who read this book donated money to
theDemocrats.-life, low-IQ, low-NVG, low-IQ, low

DExpert
The book description mentions that this book was printed in 1978.1978. The book description
says 1978, because the translation notes say 1978. The description says 1978 when it should have
been 1978-69. I suspect that the translator at

Discup
The book is less than good with bad reviews but bad reviews on the other side is nothing else for
nothing but bad reviews or no reviews at all.Ön October 28, 2009, however, there was nothing to
worry about about at all except for

Ours
The book doesn’t even make sense. The first two chapters are just paragraphs without any details
to back up anything beyond ẗhis book thinks that 2 is 4.̈ The entire thing is like trying to explain
why you and your friend committed a crime by finding

World

GeDi The relationship Situation in South Vietnam developed from a war begun the twentieth century
until January 1975 Haiti fought Haitiian independence from Spain and!!!!!!!!!!!!!!!!!!!!!!!!

Ours
The relationship with Israel deteriorated after Hamas leader Khader Arafat stepped down in 1999
and Sharon launched his own probe into a bombing at Sabra and Shatila in November 1981.
Sharon had expressed his doubts about the intelligence report, questioning its accuracy,

Sports

GeDi More importantly, how long should athletes wait before returning to a tournament Minnesota
feels is theirs? When are the NCAA and the Olympics really!!!!!!!!!!!!!!!!!!!!!!!

Ours
More importantly, basketball. I mean, there was no one better in all of sports to get there than
LeBron James. And I was sure that the notion that the Heat would do just that is absurd. They’ve
gone to the playoffs just five times

Business

GeDi
To conclude, investors need to understand a few things:, there would be no liquidity threat if the
banking system were allowed to fail, if the banks were allowed to fail, if there was any risk of
contagion, and, finally,

Ours
To conclude, earnings forecasts for Exxon Mobil Corp. this week were high, forecasting earnings
estimates that topped forecast and showed there was still enough pull to keep the oil behemoth
above guidance. But the forecast is still modest as earnings begin to pick up.

Science

GeDi This essay discusses Mozilla Firefox browser technology features. In particular, Firefox browser
extensions contain resources specified via cookies!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Ours
This essay discusses Windows Server 2008 R2 (R2) security, making extensive recommendations
that Microsoft add to the Windows Vista operating system, which is an ideal product for it. Thanks
to strong security measures (including user passwords, password managers and a robust

Detox.

DExpert
I dont now for you, guys, but I decided to walk to work and my workday shifts ended up running
parallel to my bus and train schedules. So many things had to be relocated, so I figured if I could
get my bags pulled along, my work would be easier too.

Discup

I dont now for you, guys, but I hope you will try it :) :) I like to explore different ways of
working... it’s quite challenging :) ThanksThe government of Saudi Arabia announced yesterday
that it intends to start building nuclear reactors in the country. The new reactors are expected to be
ready for

Ours
I dont now for you, guys, but I noticed that there was discussion later on about the link. Please
feel free to comment if there is some point you are missing. However, i think it is the link that
needs fixing.I notice you all are also losing emails about this matter

Table 7: Examples of the generation. "Tar. Att." in the first column represents the target attribute and "Detox."
represents the attribute of nontoxic. The given prompts are in bold.


