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ABSTRACT

We address the challenge of efficient exploration in model-based reinforcement
learning (MBRL), where the system dynamics are unknown and the RL agent must
learn directly from online interactions. We propose Optimistic-MBRL (OMBRL),
an approach based on the principle of optimism in the face of uncertainty. OMBRL
learns an uncertainty-aware dynamics model and greedily maximizes a weighted
sum of the extrinsic reward and the agent’s epistemic uncertainty. Under common
regularity assumptions on the system, we show that OMBRL has sublinear regret
for nonlinear dynamics in the (i) finite-horizon, (ii) discounted infinite-horizon,
and (iii) non-episodic setting. Additionally, OMBRL offers a flexible and scalable
solution for principled exploration. We evaluate OMBRL on state-based and visual-
control environments, where it displays favorable performance across all tasks and
baselines. In hardware experiments on a dynamic RC car, OMBRL outperforms
the state-of-the-art, illustrating the benefits of principled exploration for MBRL.

1 INTRODUCTION

Figure 1: Top: We showcase scalability of the OMBRL on visual control tasks from DMC and Atari.
Bottom: We evaluate OMBRL on a highly dynamic RC car where we learn to perform a complex
parking maneuver in only 20 real-world episodes.

Reinforcement learning (RL) has been successfully applied to a variety of sequential-decision
making problems like games (Silver et al., 2017), robotics (Brohan et al., 2023), mobile health inter-
ventions (Yom-Tov et al., 2017; Liao et al., 2020), and fine-tuning of large language models (Ouyang
et al., 2022). RL offers a flexible learning paradigm, enabling agents to learn directly by interacting
with their environment. However, this potential is often not fully realized in practice, as most widely
used RL methods (Schulman et al., 2017) are highly sample-inefficient. This mostly rules out their
direct application to real-world settings where data is scarce or expensive to acquire.
Model-based RL approaches (Moerland et al., 2023) offer a more sample-efficient alternative and
have been successfully used for learning directly in the real-world Hansen et al. (2022); Wu et al.
(2023); Rothfuss et al. (2024). However, these methods are mostly based on naive exploration
strategies, such as Boltzmann exploration, which are provably sub-optimal Cesa-Bianchi et al. (2017)
and often struggle in the presence of sparse rewards.
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Several works study principled exploration approaches in RL (Even-Dar & Mansour (2001); Jaksch
et al. (2010); Abbasi-Yadkori & Szepesvári (2011); Cohen et al. (2019); Dean et al. (2020); Kakade
et al. (2020); Curi et al. (2020); Neu & Pike-Burke (2020); Eberhard et al. (2023); Wagenmaker et al.
(2023); Sukhija et al. (2024c), see Section 3 and Section 7 for more details). In particular, optimism
in the face of uncertainty is a celebrated exploration principle with strong theoretical guarantees
for model-based RL (Brafman & Tennenholtz, 2002; Jaksch et al., 2010; Kakade et al., 2020; Curi
et al., 2020; Moulin & Neu, 2023; Sukhija et al., 2024b). However, in practice, these algorithms are
computationally prohibitive. As a result, naive exploration techniques remain dominant in real-world
applications due to their simplicity. We address this gap between theory and practice and propose a
simple yet principled method for exploration. Our approach combines the extrinsic reward from the
environment with an intrinsic reward, the model epistemic uncertainty/disagreement. We show that
greedily maximizing the weighted sum of extrinsic and intrinsic reward indeed results in optimistic
exploration. Leveraging this key insight, we derive first-of-its-kind regret bounds for our approach.
Our key contributions are summarized below.
Contributions

1. We propose OMBRL, a principled yet efficient exploration strategy for model-based RL. OMBRL
is based on the principle of optimism in the face of uncertainty and jointly maximizes a weighted
sum of the extrinsic reward and the agent’s epistemic uncertainty/disagreement. Therefore, the
agent selects policies that maximize rewards while also exploring less visited areas of the state
space that yield high uncertainty.

2. We show that combining extrinsic rewards with the agent’s epistemic uncertainty gives anytime
high probability value-function bounds, which could be of independent interest to applications
such as safe RL (Brunke et al., 2022) and offline RL (Levine et al., 2020). We leverage this key
insight and show that OMBRL has sublinear regret for finite-horizon, discounted infinite-horizon,
and nonepisodic settings with continuous state and action spaces. Our regret bounds are
comparable to the ones derived by prior work (Kakade et al., 2020; Curi et al., 2020; Sukhija
et al., 2024b), but our algorithm is considerably simpler and more scalable.

3. We validate OMBRL on standard deep RL benchmarks, showing that it outperforms several
naive exploration baselines and scales effectively to high-dimensional tasks, such as visual
control. We also demonstrate its real-world applicability by evaluating it on a dynamic RC
car (see Figure 1), where it learns an agile parking maneuver in 20 trials, outperforming the
state-of-the-art (Rothfuss et al., 2024) w.r.t. performance and sample efficiency. To the best of
our knowledge, this is the first empirical demonstration of optimistic exploration in model-based
RL for high-dimensional and real-world settings.

2 PROBLEM SETTING

We consider a discrete-time dynamical system of the form xt+1 = f∗(xt,ut) +wt, where xt ∈
X ⊆ Rdx is the state, ut ∈ U ⊆ Rdu the control input, and wt ∈ W ⊆ Rw the process noise1. The
dynamics f∗ are unknown.
Task In the finite-horizon RL setting (Puterman, 2014), we are given a reward function r : X×U →
R, and want to learn a policy that maximizes the following objective

J(π∗) = max
π∈Π

J(π) = max
π∈Π

Eπ

[
T−1∑
t=0

r(xt,ut)

]
, (1)

where action ut follows policy π, i.e., ut ∼ π(xt). Moreover, we consider the episodic RL setting,
with episodes n ∈ {1, . . . , N}, and study a model-based approach. Accordingly, at the beginning
of episode n, we select and roll out a policy πn for T steps on the true system. We then use the
data collected from the rollouts to estimate the true dynamics f∗. The goal is to find a policy that
performs as well as π∗, as quickly as possible. Therefore a natural performance metric in this context
is the cumulative regret RN =

∑N
n=1 J(π

∗)− J(πn). In the following sections, we show that our
proposed algorithm achieves sublinear regret. While in the main text for clarity we focus on the
finite-horizon episodic setting, in Section 5, we show that our approach has sublinear regret also for

1For our theory, we assume the process noise to be known, but our algorithm can learn it from data.
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1. γ-discounted infinite-horizon, episodic setting:

Jγ(π
∗) = max

π∈Π
Eπ

[ ∞∑
t=0

γtr(xt,ut)

]
(2)

2. Average reward, nonepisodic setting:

Javg(π
∗) = max

π∈Π
lim sup
T→∞

1

T
Eπ

[
T−1∑
t=0

r(xt,ut)

]
(3)

3 EXPLORATION STRATEGIES IN MBRL

In MBRL, we learn a model of the true dynamics f∗ and use our learned model to select/update the
next policy for data acquisition. Exploration algorithms for MBRL determine how the policy should
be chosen given our learned model. Common strategies for this choice are (i) greedy planning, (ii)
Thompson sampling, and (iii) optimistic exploration. We discuss these in detail below.
Let J(π,f) be the the expected returns under the policy π and dynamics f , that is

J(π,f) = Eπ

[
T−1∑
t=0

r(x′
t,ut)

]
x′
t+1 = f(x′

t,ut) +wt;x
′
0 = x0,

and µn our estimate of the dynamics f∗ at episode n.
Greedy planning The simplest selection strategy is to pick the policy πn that maximizes the
expected returns for our estimated dynamics µn.

πMEAN
n = argmax

π∈Π
J(π,µn) (4)

This strategy is greedy as it does not directly encourage exploration in areas where we have limited
data or where our model has high uncertainty. Instead, it exploits our estimate µn of the dynamics.
This is the basis of methods such as those of Janner et al. (2019); Hafner et al. (2023), where
exploration is induced using a stochastic policy that is optimized with an entropy bonus.
To incorporate epistemic uncertainty in our learned model and avoid overfitting to misestimated
dynamics, Deisenroth & Rasmussen (2011); Chua et al. (2018); Rothfuss et al. (2024) learn a
Bayesian model of f∗: p(f |D1:n). Here D1:n = ∪i≤nDk, and Di = {(xt,i,ut,i,xt+1,i)}T−1

t=0 is
the data collected in episode i. The policy πn is then selected as

πGREEDY
n = argmax

π∈Π
Ef∼p(f |D1:n)[J(π,f)]. (5)

Curi et al. (2020) show that greedy planning may fail to perform well in practice, especially for
difficult exploration problems (e.g., in context of action penalties).
Thompson Sampling In Thompson sampling (TS), we also learn a Bayesian model p(f |D1:n) and
pick policies by maximizing the reward under f sampled from the posterior

πTS
n = argmax

π∈Π
J(π,f), f ∼ p(f |D1:n). (6)

While TS encourages exploration in a theoretically grounded manner (Russo et al., 2018), in practice,
it is often intractable to sample a function f from p(f |D1:n).
Optimistic Exploration This strategy is based on the principle of optimism in the face of uncer-
tainty. Optimistic exploration approaches maintain a set of plausible dynamics models Mn at each
episode n, e.g., the set of functions that have a high probability w.r.t. a learned Bayesian model
p(f |D1:n). The policy is then selected according to

πn = argmax
π∈Π,f∈Mn

J(π,f) (7)

There are several works that study optimistic exploration theoretically (Jaksch et al., 2010; Kakade
et al., 2020; Curi et al., 2020; Treven et al., 2024; Sukhija et al., 2024b). However, optimizing f
over Mn, typically a difficult non-convex constraint, is often computationally prohibitive, restricting
the application of these methods to fairly low-dimensional settings. The most efficient solvers of
the optimization problem (7), to the best of our knowledge, are based on a reparametrization trick
which introduces additional hallucinated controls (Curi et al., 2020). This increases the total control
dimension from du to du + dx, which is prohibitive in high-dimensional domains.
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4 OMBRL: OPTIMISTIC-MBRL

We now present OMBRL, our approach for efficient optimistic exploration in MBRL, which alter-
nates between two steps. First, given a dataset of transitions D1:n, we learn an uncertainty-aware
model of the unknown dynamics f∗. That is, after each episode n, we learn a mean estimate µn of
f∗ and quantify our epistemic uncertainty σn over the estimate. Models such as Gaussian processes
(GPs) (Rasmussen & Williams, 2005) can be directly used for this purpose. Bayesian deep learning ap-
proaches such as deep ensembles are also commonly used to quantify epistemic uncertainty or model
disagreement in RL (Chua et al., 2018; Pathak et al., 2019; Curi et al., 2020; Sekar et al., 2020; Sukhija
et al., 2024c). In the second step, we solve the following optimization problem for the policy πn

πn=argmax
π∈Π

Jn(π)

:=Eπ

[
T−1∑
t=0

r(x′
t,ut)+λn∥σn(x

′
t,ut)∥

]
(8)

x′
t+1=µn(x

′
t,ut) +wt,

where λn is a positive constant which is used to trade off maximizing the extrinsic reward and model
uncertainty (see Appendix A for how λn is defined in theory and Section 5.2 and Appendix C for
how it is selected empirically). Note that in Equation (8), we use the mean dynamics for planning
and only use the epistemic uncertainty as an additional intrinsic reward. Compared to the principled
exploration strategies from Section 3, our approach does not require sampling from or maximizing
over the dynamics. This makes OMBRL much simpler and more scalable. Moreover, OMBRL
can be combined with any model-based algorithm such as those of Deisenroth & Rasmussen (2011);
Janner et al. (2019); Hafner et al. (2023); Rothfuss et al. (2024). The only additional modification we
make to these methods is that we add the epistemic uncertainty to the extrinsic reward. Also note that
without the epistemic uncertainty reward, i.e., λn = 0, the agent follows the greedy strategy discussed
in Section 3. Therefore, we use the model uncertainty to facilitate principled exploration for the agent.
The exploration objective in Equation (8) has also been studied by the control and deep RL
community (Åström & Wittenmark, 1971; Chiuso et al., 2023; Grimaldi et al., 2024; Abeille &
Lazaric, 2020; Sukhija et al., 2024a). We discuss their connection to our work in Section 7.
In the following, we show that by optimizing our objective in Equation (8), we are effectively
maximizing an optimistic estimate of J(π∗), i.e., we are also performing optimistic exploration.
Accordingly, our approach enjoys the same guarantees as other optimistic MBRL algorithms but is
much simpler and computationally cheaper.

5 THEORETICAL RESULTS

For our analysis, we make some common assumptions on the underlying dynamics f∗.

5.1 ASSUMPTIONS

Assumption 5.1 (Continuous closed-loop dynamics, bounded rewards, and Gaussian noise.). The
dynamics model f∗ and all π ∈ Π are continuous. Furthermore, we assume that the reward is
bounded, i.e., r : X × U → [0, Rmax], and process noise is i.i.d. Gaussian2 with variance σ2, i.e.,
wt

i.i.d∼ N (0, σ2I).

Next, we make an assumption that allows us to learn an uncertainty-aware model of f∗ from data.
More formally, we assume we learn a well-calibrated statistical model of f∗ as defined in the
following.

Definition 5.2 (Well-calibrated statistical model of f∗, Rothfuss et al. (2023)). Let Z def
= X × U . A

sequence of sets {Mn(δ)}n≥0, where
Mn(δ)

def
=
{
f : Z → Rdx | ∀z ∈ Z,∀j ∈ {1, . . . , dx} :

|µn,j(z)− fj(z)| ≤ βn(δ)σn,j(z)} ,
is an all-time well-calibrated statistical model of the function f∗, if, with probability at least 1− δ,
we have f∗ ∈ ⋂n≥0 Mn(δ). Here, fj , µn,j and σn,j denote the j-th element in the vector-valued

2For clarity of exposition we focus on the setting with Gaussian noise. In Appendix A, we also perform the
analysis for the more general sub-Gaussian noise case.

4



Published at the 7th Robot Learning Workshop at ICRL 2025

functions f , µn and σn respectively, and βn(δ) ∈ R≥0 is a scalar function that depends on the
confidence level δ ∈ (0, 1] and which is monotonically increasing in n.

While our theoretical guarantees can be extended to other classes of well-calibrated models, similar
to Curi et al. (2020), here we focus on GPs where µn and σn have a closed-form solution. Moreover,
we assume that f∗ resides in a Reproducing Kernel Hilbert Space (RKHS) of vector-valued functions
and show that this is sufficient for us to obtain a well-calibrated model.
Assumption 5.3. We assume that the functions f∗

j , j ∈ {1, . . . , dx} lie in a RKHS with kernel k
and have a bounded norm B, that is f∗ ∈ Hdx

k,B , with Hdx

k,B = {f | ∥fj∥k ≤ B, j = 1, . . . , dx}.
Moreover, we assume that k(z, z) ≤ σmax for all x ∈ X .

Assumption 5.3 allows us to model f∗ with GPs. The posterior mean µn(z) = [µn,j(z)]j≤dx and
epistemic uncertainty σn(z) = [σn,j(z)]j≤dx can then be obtained using the following formula

µn,j(z) = k⊤
n (z)(Kn + σ2I)−1yj

1:n,

σ2
n,j(z) = k(z, z)− k⊤

n (z)(Kn + σ2I)−1kn(z),
(9)

Here, yj
1:n corresponds to the noisy measurements of f∗

j , i.e., the observed next state from the
transitions dataset D1:n, kn(z) = [k(z, zi)]zi∈D1:n , and Kn = [k(zi, zl)]zi,zl∈D1:n is the data
kernel matrix. The restriction on the kernel k(z, z) ≤ σmax implies boundedness of f∗ and has also
appeared in works studying the episodic setting for nonlinear dynamics (Mania et al., 2020; Kakade
et al., 2020; Curi et al., 2020; Wagenmaker et al., 2023; Sukhija et al., 2024c). We can also define
f∗ such that xk = xk−1 + f∗(xk−1,uk−1) +wk−1 in which case the boundedness of f∗ captures
many real-world systems.

Lemma 5.4 (Well calibrated confidence intervals for RKHS, Rothfuss et al. (2023)). Let f∗ ∈ Hdx

k,B .
Suppose µn and σn are the posterior mean and variance of a GP with kernel k, Equation (9). There
exists βn(δ), for which the tuple (µn,σn, βn(δ)) is a well-calibrated statistical model of f∗.

In summary, in the RKHS setting, a GP is a well-calibrated model. Next, we present the following
Proposition, which states that Jn(πn) from Equation (8) is an optimistic estimate of J(π∗).
Proposition 5.5. Let Assumption 5.1 and Assumption 5.3 hold. Then, there exists a λn ∈ Θ(βn),
such that we have ∀n > 0, π ∈ Π, with probability at least 1− δ, that J(π) ≤ Jn(π). Moreover, we
have J(π∗) ≤ Jn(πn).

Proposition 5.5 shows that for all policies π ∈ Π, Jn(π) gives an upperbound on the true return
J(π). This result is of independent interest and can be applied to settings beyond online RL such
as safe RL (Brunke et al., 2022; As et al., 2024) and offline RL Levine et al. (2020); Yu et al. (2020);
Rigter et al. (2022). The exact bound for λn is provided in Lemma A.1 in Appendix A.
Finally, we present our main theorem, which bounds the regret of OMBRL. Our bound depends
on the maximum information gain of kernel k (Srinivas et al., 2012), defined as

ΓN (k) = max
A⊂X×U ;|A|≤N

1

2
log
∣∣I + σ−2KN

∣∣ .
ΓN is a measure of the complexity for learning f∗ from N episodes and is sublinear for many
kernels (e.g., O(logdx+du+1(N)) for the exponential (RBF) kernel, O((dx + du) log(N)) for the
linear kernel). In Appendix A, we report the dependence of ΓN on N in Table 1.
Theorem 5.6 (Finite horizon setting). Let Assumption 5.1 and Assumption 5.3 hold. Then we have
∀N > 0 with probability at least 1− δ

RN ≤ O
(
Γ

3/2
N

√
N
)
.

Theorem 5.6 guarantees sublinear regret for a rich class of RKHS functions. Accordingly, for many
RKHS, our algorithm enjoys the same asymptotic guarantees as Kakade et al. (2020). Note that
the regret bound from Kakade et al. (2020) is an order of

√
ΓN better. On the other hand, OMBRL

is a much simpler and more scalable algorithm. In Appendix A, we show that OMBRL improves
the regret bound from Curi et al. (2020) by a factor of ΓT

N . Below, we also provide our regret bounds
for the γ-discounted and the non-episodic setting.
In contrast to the finite-horizon case, where each episode has a fixed length T , in the γ-discounted
case, we care about the infinite horizon. To still maintain the episodic nature of the problem, while
also observing and learning the system for longer horizons, a crucial requirement for achieving
sublinear regret, we let the length of episode n grow logarithmically with n, i.e., T (n) ∈ Θ(log(n)).
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Theorem 5.7 (γ-discounted, infinite horizon setting). Let RN =
∑N

n=1 Jγ(π
∗)− Jγ(πn). Under

the Assumption 5.1 and Assumption 5.3, we have for the γ-discounted infinite (Equation (2)) horizon
setting ∀N > 0 that with probability at least 1− δ

RN ≤ O
(
Γ

3/2
N log(N)

√
N
)

In Theorem 5.7, we show that even though we truncate each episode after T (n) steps, OMBRL has
sublinear regret w.r.t. the infinite horizon objective. Moreover, the regret for this setting follows the
same structure as for the finite horizon case. To the best of our knowledge, we are the first to give a
regret bound for optimistic model-based RL algorithms for the γ-discounted setting.
Finally, we give our regret bound for the non-episodic setting. In this setting, we cannot reset the
agent and have to learn from a single trajectory. This is the most challenging and closest setting for
learning directly in the real-world (Kakade, 2003), as resets are often prohibitive for many real-world
applications (Sharma et al., 2021). Sukhija et al. (2024b) show that optimistic exploration methods
have sublinear regret for the nonepisodic setting. However, their proposed algorithm is intractable in
practice. We extend OMBRL to the nonepisodic case. In this setting, OMBRL also maximizes the
reward together with the model epistemic uncertainty. However, unlike the episodic case, where we
update our model and policy after every episode, for OMBRL we only update them once we have
accumulated enough information, i.e.,

∑Tn−1
t=0 ∥σn(xt,n,πn(xt,n))∥ > C, for a positive constant C.

Theorem 5.8 (Informal statement; nonepisodic average reward case). Let RN =
∑N

n=1 E[Javg(π
∗)−

r(xn,πn(xn)]. Under the same assumptions as Sukhija et al. (2024b), we have for the average
reward setting (Equation (3)) ∀N > 0 that with probability at least 1− δ

RN ≤ O
(
Γ

3/2
N

√
N
)
.

In contrast to Sukhija et al. (2024b), OMBRL is much more tractable, and in Theorem 5.8 we show
that OMBRL also has sublinear regret in the nonepisodic setting and therefore offers a theoretically
strong and practical alternative for model-based exploration for this case.
In this section, we have shown that OMBRL offers a practical approach for exploration in MBRL
and enjoys the same guarantees, i.e., sublinear regret for common kernels and RL settings, as other
principled and often intractable/computationally prohibitive MBRL algorithms (Kakade et al., 2020;
Curi et al., 2020; Sukhija et al., 2024b). We present additional theoretical results, for example,
a sample complexity bound for pure intrinsic exploration algorithms such as Sekar et al. (2020);
Buisson-Fenet et al. (2020); Sukhija et al. (2024c) and a regret bound for the sub-Gaussian noise
setting in Appendix A. Our proofs are also provided in Appendix A.

5.2 SELECTING λn IN PRACTICE

The parameter λn controls the exploration-exploitation trade-off for OMBRL. In Appendix A we
provide the theoretical bound for λn, however in practice, λn is treated as a hyperparameter. This
is similar to other optimistic exploration and intrinsic exploration algorithms (Burda et al., 2018;
Kakade et al., 2020; Curi et al., 2020), which also heuristically select the amount of exploration.
Sukhija et al. (2024a) empirically study combining extrinsic and intrinsic rewards for model-free
algorithms and propose an approach for automatically tuning the intrinsic reward coefficient, i.e.,
λn. We find their approach works well for our state-based and visual control tasks. Moreover, we
describe their approach and how we choose λn for our experiments in Appendix C.

5.3 APPLICATION OF OMBRL WITH GP DYNAMICS

Finally, we empirically validate our theoretical findings for the GP case in Figure 2 and Figure 3,
where we compare OMBRL to HUCRL (Curi et al., 2020), PETS (Chua et al., 2018), and greedy
(mean) planning in the episodic setting. For the nonepisodic setting, we consider their nonepisodic
counterparts as proposed in Sukhija et al. (2024b). We evaluate the algorithms on the Pendulum and
MountainCar tasks from the OpenAI Gym benchmark (Brockman et al., 2016). From the experiments,
we conclude that OMBRL performs the best across all baselines for both the episodic and the non-
episodic setting. Moreover, while HUCRL and NEORL, which explore according to Equation (7),
perform better than other baselines, they are worse than OMBRL. We believe this is because of the
practical challenges associated with solving the optimization problem in Equation (7).
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Figure 2: Learning curves for the episodic setting with GP dynamics. We report the median episode
reward J(πN ) over an episode with 5 seeds and its standard deviation.
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Figure 3: Learning curves for the nonepisodic setting with GP dynamics. Similar to Sukhija et al.
(2024b), we report the average reward Javg(πN ) and regret RN . The curves are reported with 5
seeds and we plot the median return with its standard deviation.

6 EXPERIMENTS

In our experiments, we showcase the flexibility and scalability of OMBRL by combining it with
three different model-based RL algorithms; (i) MBPO (Janner et al., 2019) for state-based tasks,
DREAMER (Hafner et al., 2023) for visual control tasks, and SIMFSVGD (Rothfuss et al., 2024) for
our hardware experiment on the RC car. We consider the DeepMind control (DMC) benchmark (Tassa
et al., 2018) for the state-based and visual control tasks and test on environments with varying
dimensionality3. We also evaluate on several environments from the Atari benchmark (Bellemare
et al., 2013) for the visual control tasks. In all our experiments, we report the episodic returns using
the median over 5 seeds along with its standard deviation. We provide additional experiment details
in Appendix C.
State-based experiments We refer to the MBPO version of OMBRL as MBPO-OPTIMISTIC.
The resulting algorithm operates similarly to Janner et al. (2019) and trains a policy from real and
model-generated rollouts to maximize the extrinsic and intrinsic rewards. For the policy training,
we use the soft actor-critic (SAC) algorithm (Haarnoja et al., 2018), and for the intrinsic reward

3including the humanoid from DMC: dx = 67, du = 21
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coefficient, λn, we use the auto-tuning approach from Sukhija et al. (2024a). We train an ensemble of
dynamics models and use their disagreement to quantify the epistemic uncertainty. As baselines, we
consider (i) MBPO-MEAN, which maximizes only the extrinsic reward, i.e., λn = 0, and (ii) MBPO-
PETS, which is based on the PETS algorithm (Chua et al., 2018) maximizing the extrinsic rewards
in expectation over the ensemble dynamics (see Equation (5)). We report the results on the left side
of Figure 4. We conclude that across all tasks, MBPO-OPTIMISTIC performs the best. Particularly, in
sparse reward tasks such as the Mountaincar and CartPole, MBPO-OPTIMISTIC successfully solves
the task whereas the greedy baselines fail. MBPO-OPTIMISTIC also successfully scales to high
dimensional problems such as the Quadruped and Humanoid environments. We provide additional
experiments with MBPO-OPTIMISTIC in Appendix B, where we evaluate it on more environments
and compare it with pure off-policy algorithms SAC and MaxInfoRL (Sukhija et al., 2024a).
Visual control experiments We investigate the scalability of OMBRL to challenging and high-
dimensional problems by evaluating it on visual control tasks. We combine OMBRL with
DREAMER (Hafner et al., 2023), an MBRL algorithm for visual control problems, and call the
resulting algorithm DREAMER-OPTIMISTIC. We use the same approach as Sekar et al. (2020) for
quantifying the epistemic uncertainty and for selecting the intrinsic reward coefficient, λn, we use the
auto-tuning approach from Sukhija et al. (2024a). We report the results on the right side of Figure 4.
Overall, DREAMER-OPTIMISTIC performs on-par with DREAMER on most tasks and outperforms it
on the Finger-spin task from DMC and the Venture task from the Atari benchmark. Particularly, for
Venture, a sparse reward task, Dreamer fails to achieve any reward.
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Figure 4: Left: Learning curves for the state-based tasks from DMC using MBPO as the base
algorithm. Across all experiments, MBPO-OPTIMISTIC obtains the best performance compared
to its greedy variants. MBPO-OPTIMISTIC also scales to high-dimensional tasks, specifically the
humanoid environments from DMC. Right: Learning curves for the visual control tasks from DMC
and Atari using DREAMER as the base algorithm. DREAMER-OPTIMISTIC either performs on-par
or better than DREAMER in all our experiments. Particularly, in the Venture task from the Atari
benchmark, where DREAMER fails to obtain any rewards.

Curi et al. (2020) study the sensitivity of greedy exploration algorithms w.r.t. the action penalties
in the reward. Inspired by their experiments, we modify the reward for the CartPole and Finger spin
environments by adding an action cost, raction(a) = −K ∥a∥2, where K controls the penalty for
large actions. Curi et al. (2020) show that even for small action costs, greedy exploration methods
fail, converging to the sub-optimal solution of applying small actions. We observe a similar outcome
in Figure 5 (left side), where DREAMER fails to solve the tasks for both the Finger spin and CartPole
environments. On the other hand, DREAMER-OPTIMISTIC achieves much higher returns due to
its optimistic exploration.
We provide additional experiments with DREAMER-OPTIMISTIC, including more environments and
proprioceptive tasks in Appendix B. Even though DREAMER-OPTIMISTIC either performs on-par or
better than DREAMER, in some cases it also spends more interactions exploring. This is particularly
the case for the Finger turn hard and reacher hard environments (see Figure 8 in Appendix B). In
essence, instead of auto-tuning λn as proposed by Sukhija et al. (2024a), we can select a smaller
value for it to reduce the level of exploration. Overall, we believe investigating an instance-dependent
schedule for λn is an intresting direction for future work.
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Figure 5: Left: Learning curves with action costs, where we compare DREAMER with DREAMER-
OPTIMISTIC. DREAMER fails to explore sufficiently with action costs, whereas DREAMER-
OPTIMISTIC is able to explore and obtain much higher performance. Right: Learning curves
for our experiments with SIMFSVGD. Top row: We change the parameters of the reward function
from Rothfuss et al. (2024), and make it sparse, starting from their dense reward. We observe
that, as the reward gets sparser, SIMFSVGD drops in performance and SIMFSVGD-OPTIMISTIC
outperforms it. Bottom row: We run the sparse reward configuration on hardware (depicted on the
right side at the bottom), where we obtain similar results. As opposed to SIMFSVGD-OPTIMISTIC,
SIMFSVGD fails to solve the task.

Hardware experiments Rothfuss et al. (2024) propose a novel approach for training deep Bayesian
models that incorporates low-fidelity physical priors. Their approach significantly improves sample
efficiency, which they illustrate in their hardware experiments on an RC car. Inspired by their
experimental setup, we conduct a similar experiment on a highly dynamic RC car. The task is to
perform a complex parking maneuver with drifting as depicted in Figure 1. Similar to Rothfuss
et al. (2024), we use a simple bicycle model as the low-fidelity prior for SIMFSVGD. We use the
same reward function structure and hyperparameters as Rothfuss et al. (2024). First, we evaluate our
algorithm SIMFSVGD-OPTIMISTIC, a combination of OMBRL and SIMFSVGD, in simulation.
The simulation is based on a realistic race car simulation from Kabzan et al. (2020). For the
simulation experiments, we ablate different choices for the reward parameters, starting with the dense
reward configuration from Rothfuss et al. (2024) and adapt parameters to obtain sparser rewards (see
Appendix C for more detail). We report the results in the top row of Figure 5. We observe that, while
for the dense reward setting, SIMFSVGD and SIMFSVGD-OPTIMISTIC perform similarly, for
sparser rewards, SIMFSVGD-OPTIMISTIC outperforms SIMFSVGD. In particular, for the setting
with very sparse rewards, SIMFSVGD completely fails to solve the task. We conduct our hardware
experiments using the sparse reward configuration, and report the learning curve in the bottom row
of Figure 5. In line with the simulation experiments, we also observe similar behavior on hardware.
SIMFSVGD-OPTIMISTIC learns to solve the task, whereas SIMFSVGD completely fails. In fact,
out of 5 attempts, SIMFSVGD worked only once, and otherwise converged to a local optimum of
not moving from the starting position (see video in the supplementary material).

7 RELATED WORK

Deep model-based RL Model-based RL algorithms offer a sample-efficient solution for learning
directly in the real world Hansen et al. (2022); Wu et al. (2023); Rothfuss et al. (2024). Most widely
applied algorithms (Chua et al., 2018; Janner et al., 2019; Hafner et al., 2023; Hansen et al., 2023)
commonly rely on naive exploration techniques such as Boltzmann exploration and differ primarily in
the type of dynamics modeling and policy planners. Cesa-Bianchi et al. (2017) show that Boltzmann
exploration is suboptimal even in the simplified setting of stochastic bandits. OMBRL is agnostic to
the choice of modeling and planners, as we demonstrate in Section 5 and 6. Moreover, we focus on the
problem of exploration for MBRL and propose a principled exploration approach. We derive regret
bounds for our approach, showing that it is theoretically grounded. Furthermore, we illustrate the
benefits of principled exploration in our hardware experiment, where the naive exploration baseline
fails to obtain any meaningful exploration. To the best of our knowledge, we are the first to propose a

9



Published at the 7th Robot Learning Workshop at ICRL 2025

simple, flexible, scalable, and theoretically grounded approach for principled exploration and show
its benefits directly in the real world.
Theoretical results for Model-based RL There are numerous works that study MBRL for linear
dynamical systems theoretically (Abbasi-Yadkori & Szepesvári, 2011; Cohen et al., 2019; Simchowitz
& Foster, 2020; Dean et al., 2020; Faradonbeh et al., 2020; Abeille & Lazaric, 2020; Treven et al.,
2021), focusing primarily on the challenges of nonepisodic learning. In the nonlinear case, Kakade
et al. (2020); Curi et al. (2020); Mania et al. (2020); Wagenmaker et al. (2023); Treven et al. (2024)
analyze the finite-horizon episodic setting and provide regret bounds that are sublinear for many
RKHS. Recently, Sukhija et al. (2024b) extended these results to the nonepisodic setting. Crucially,
most of these algorithms are based on the principle of optimism in the face of uncertainty and require
solving the problem in Equation (7). As highlighted in Section 1 and 3, solving these problems is
often intractable or computationally expensive. Therefore, naive exploration techniques, such as
Boltzmann exploration are more widely used. OMBRL addresses this drawback and proposes an
alternative optimistic exploration method, which is much simpler and more scalable. Furthermore, it
enjoys the same asymptotic guarantees as these methods and hence is also theoretically grounded.
Intrinsic exploration in RL Intrinsic rewards are often used as a surrogate objective for principled
exploration in challenging tasks (see Aubret et al., 2023, for a comprehensive survey). Common
choices of intrinsic rewards are model prediction error or “Curiosity” (Schmidhuber, 1991; Pathak
et al., 2017; Burda et al., 2018), novelty of transitions/state-visitation counts (Stadie et al., 2015;
Bellemare et al., 2016), diversity of skills/goals (Eysenbach et al., 2018; Sharma et al., 2019; Nair
et al., 2018; Pong et al., 2019), empowerment (Klyubin et al., 2005; Salge et al., 2014), and informa-
tion gain of the dynamics (Sekar et al., 2020; Mendonca et al., 2021; Sukhija et al., 2024c). However,
these rewards are mostly used for pure exploration and rarely considered in combination with the
extrinsic reward. We show that combining the model epistemic uncertainty, an intrinsic reward, with
the extrinsic one, effectively performs optimistic exploration, thus, providing a theoretical grounding
for our approach. There are a few works from bandits (Auer, 2002; Srinivas et al., 2012), data-driven
control (Åström & Wittenmark, 1971; Chiuso et al., 2023; Grimaldi et al., 2024), and RL (Abeille &
Lazaric, 2020; Sukhija et al., 2024a) that have also proposed maximizing extrinsic rewards jointly with
epistemic uncertainty. The data-driven control community refers to this as the separation principle
between model identification and control design (Åström & Wittenmark, 1971; Chiuso et al., 2023;
Grimaldi et al., 2024). In RL, Abeille & Lazaric (2020) show duality between Equation (7) and Equa-
tion (8) for linear systems. For nonlinear systems and deep RL, Sukhija et al. (2024a) empirically study
combining extrinsic and intrinsic rewards. However, compared to these works, we additionally ground
this approach theoretically and provide regret bounds for nonlinear systems and common RL settings.

8 CONCLUSION

In this work, we propose OMBRL, which maximizes a weighted sum of the extrinsic reward and the
agent’s epistemic uncertainty. We show that OMBRL effectively performs optimistic exploration
and provide regret bounds for it in a variety of settings, in particular for continuous state-action
spaces and many common classes of RL problems, namely, finite-horizon, infinite horizon, episodic,
and non-episodic RL. Compared to prior optimistic exploration methods, OMBRL is much simpler,
more flexible, and scalable. We illustrate this in our experiments, where we combine OMBRL with
different model-based RL algorithms, evaluate it on tasks of varying dimensionality, including visual
control problems, and also illustrate the benefits of optimistic exploration on hardware. In all cases,
OMBRL achieves the best performance.
A limitation of OMBRL is its tendency to over-explore in certain scenarios, which can lead to
reduced sample efficiency compared to greedy approaches. This challenge could potentially be
addressed by tuning the schedule for the parameter λn. In this work, we use the auto-tuning
approach proposed in Sukhija et al. (2024a). However, we believe investigating other approaches for
selecting λn is a promising direction for future work. Another promising direction would be deriving
lower bounds on regret for OMBRL. As such bounds are not yet available for many model-based
algorithms, including those by Kakade et al. (2020), Curi et al. (2020), and Sukhija et al. (2024b),
this could provide valuable theoretical insights into the performance of these methods.
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A PROOFS

A.1 ANALYSIS FOR THE FINITE HORIZON CASE

Lemma A.1. Let Assumption 5.1 and Assumption 5.3 hold. Consider the following definitions

J(π,f∗) = Ef∗

[
T−1∑
t=0

r(xt,π(xt))

]
,

s.t., xt+1 = f∗(xt,π(xt)) +wt, x0 = x(0).

J(π,µn) = Eµn

[
T−1∑
t=0

r(x′
t,π(x

′
t))

]
,

s.t., x′
t+1 = µn(x

′
t,π(x

′
t)) +wt, x′

0 = x(0).

Σn(π,f
∗) = Ef∗

[
T−1∑
t=0

∥σn(xt,π(xt))∥
]
,

s.t., xt+1 = f∗(xt,π(xt)) +wt, x0 = x(0).

Σn(π,µn) = Eµn

[
T−1∑
t=0

∥σn(x
′
t,π(x

′
t))∥

]
.

s.t., x′
t+1 = µn(x

′
t,π(x

′
t)) +wt, x′

0 = x(0).

λn = CmaxT
(1 +

√
dx)βn−1(δ)

σ
,

where Cmax = max{Rmax, σmax}. Then we have for all n ≥ 0, π ∈ Π with probability at least
1− δ

|J(π,f∗)− J(π,µn)| ≤ λnΣn(π,µn)

|J(π,f∗)− J(π,µn)| ≤ λnΣn(π,f
∗)

Proof. We give the proof for |J(π,f∗)− J(π,µn)| ≤ λn(Lr,µn)Σn(π,µn). The same argument
holds for the second inequality. Let Jt+1(π,f

∗,x) denote the cost-to-go from state x, step t + 1
onwards under the dynamics f∗. Following the Policy difference Lemma from (Kakade & Langford,
2002) and Sukhija et al. (2024c, Corollary 2.)

J(π,µn)− J(π,f∗)

= Eµn

[
T−1∑
t=0

Jt+1(π,f
∗,x′

t+1)− Jt+1(π,f
∗, x̂t+1)

]
,

with x̂t+1 = f∗(x′
t,π(x

′
t)) +wt,
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and x′
t+1 = µn(x

′
t,π(x

′
t)) +wt.

Therefore,
|J(π,µn)− J(π,f∗)|

=

∣∣∣∣∣E
[
T−1∑
t=0

Jt+1(π,f
∗,x′

t+1)− Jt+1(π,f
∗, x̂t+1)

]∣∣∣∣∣
≤

T−1∑
t=0

E
[∣∣Ewt

[
Jt+1(π,f

∗,x′
t+1)− Jt+1(π,f

∗, x̂t+1)
]∣∣]

Next, we bound the last term using the derivation from Kakade et al. (2020). Let C(x) =
J2
t+1(π,f

∗,x).∣∣Ewt

[
Jt+1(π,f

∗,x′
t+1)− Jt+1(π,f

∗, x̂t+1)
]∣∣

≤
√
max

{
Ewt [C(x′

t+1)],Ewt [C(x̂t+1)]
}

×min

{∥f∗(x′
t,π(x

′
t))− µn(x

′
t,π(x

′
t))∥

σ
, 1

}
(Kakade et al., 2020, Lemma C.2.)

≤ RmaxT
(1 +

√
dx)βn−1(δ)

σ
∥σn−1(x

′
t,π(x

′
t))∥

Therefore, we have
|J(π,µn)− J(π,f∗)|

≤
T−1∑
t=0

E
[∣∣Ewt

[
Jt+1(π,f

∗,x′
t+1)− Jt+1(π,f

∗, x̂t+1)
]∣∣]

≤ λn

T−1∑
t=0

E [∥σn−1(x
′
t,π(x

′
t))∥] .

Note that Proposition 5.5 follows directly from Lemma A.1.
Lemma A.2. Let Assumption 5.1 and Assumption 5.3 hold and consider the simple regret at episode
n, rn = J(π∗,f∗)− J(πn,f

∗). The following holds for all n > 0 with probability at least 1− δ
rn ≤ (2λn + λ2

n)Σn(πn,f
∗)

Proof.
rn = J(π∗,f∗)− J(πn,f

∗)

≤ J(π∗,µn) + λnΣn(π
∗,µn)− J(πn,f

∗) (Lemma A.1)
≤ J(πn,µn) + λnΣn(πn,µn)− J(πn,f

∗) (Equation (8))
= J(πn,µn)− J(πn,f

∗) + λnΣn(πn,µn)

≤ λnΣn(πn,f
∗) + λnΣn(πn,µn) (Lemma A.1)

= 2λnΣn(πn,f
∗) + λn(Σn(πn,µn)− Σn(πn,f

∗))

≤ (λ2
n + 2λn)Σn(πn,f

∗).
Here in the last inequality, we used the fact that ∥σ(·, ·)∥ is bounded and positive, therefore, we can
treat it similar to the reward (it is in fact an intrinsic reward) and use Lemma A.1.

Proof of Theorem 5.6.

RN =

N∑
n=1

rn

≤
N∑

n=1

(λ2
n + 2λn)Σn(πn,f

∗)

≤ (λ2
N + λN )

N∑
n=1

Σn(πn,f
∗)
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= (λ2
N + 2λN )

N∑
n=1

Ef∗

[
T−1∑
t=0

∥σn(xt,π(xt))∥
]

≤ (λ2
N + 2λN )

√
NT

N∑
n=1

Ef∗

[
T−1∑
t=0

∥∥σ2
n(xt,π(xt))

∥∥]
≤ C(λ2

N + 2λN )T
√

NΓNT (Curi et al. (2020, Lemma 17))
Finally, note that from Lemma A.1 we have λN ∝ Tβn and βn ∝ √

Γn (Chowdhury & Gopalan,
2017). Therefore, RN ≤ O(T 3Γ

3/2
N

√
N)

Table 1: Maximum information gain bounds for common choice of kernels.

Kernel k(x,x′) ΓN

Linear x⊤x′ O (d log(N))

RBF e−
∥x−x′∥2

2l2 O
(
logd+1(N)

)
Matèrn 1

Γ(ν)2ν−1

(√
2ν∥x−x′∥

l

)ν

Bν

(√
2ν∥x−x′∥

l

)
O
(
N

d
2ν+d log

2ν
2ν+d (N)

)

In Table 1 we list rates of ΓN for the most common choice of kernels.

A.2 ANALYSIS FOR THE DISCOUNTED INFINITE HORIZON CASE

For the infinite horizon case, we first study the posterior variance σn in the feature space. Moreover,
let z = (x,u) and Z = X × U .
For the ease of notation we denote zk,n = (xn

k ,πn(x
n
k )). For z we define the kernel embedding

kz = k(z, ·). The covariance matrix Vt : H → H in the feature form is:

Vt = I +
1

σ2

t∑
i=1

kzi
k⊤zi

. (10)

Note that we have xt+1 = ⟨kzt
,f∗⟩H +wt. With the design matrix Mt : H → Rt

Mt = (kz1 kz2 · · · kzt) (11)
we have Vt = I + 1

σ2MtM
⊤
t and since Kt = M⊤

t Mt we have

det(Vt) = det

(
I +

1

σ2
Kt

)
(12)

Corollary A.3 (Lower bound on the posterior log determinant).
log (|Vn|) ≥ log (|Vn−1|)

+ log

1 + σ−2
T̂n∑
k=1

∥σn−1(zk,n)∥2
 (13)

In particular, we have

log

( |VN |
|V0|

)
≥

N∑
n=1

log

1 + σ−2
T̂n∑
k=1

∥σn−1(zk,n)∥2
 (14)

Proof.
log (|Vn|) = log (|Vn−1|)

+ log

∣∣∣∣∣∣I + σ−2V
−1/2
n−1

T̂n∑
k=1

kzk,n
k⊤
zk,n

V
−1/2
n−1

∣∣∣∣∣∣


≥ log (|Vn−1|)
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+ log

1 + tr

σ−2V
−1/2
n−1

T̂n∑
k=1

kzk,n
k⊤
zk,n

V
−1/2
n−1

 (see (*) below)

= log (|Vn−1|) + log

1 + σ−2
T̂n∑
k=1

∥∥kzk,n

∥∥2
V −1

n−1


= log (|Vn−1|) + log

1 + σ−2
T̂n∑
k=1

∥σn−1(zk,n)∥2


We prove (*) in the following, first let mk = σ−1V
−1/2
n−1 kzk,n

, then we have

log

∣∣∣∣∣∣I + σ−2V
−1/2
n−1

T̂n∑
k=1

kzk,n
k⊤
zk,n

V
−1/2
n−1

∣∣∣∣∣∣


= log

∣∣∣∣∣∣I +

T̂n∑
k=1

mkm
⊤
k

∣∣∣∣∣∣
 .

The matrix M =
∑T̂n

k=1 mkm
⊤
k by definition is positive semi-definite. Moreover, |I +M | =∏

i≥1(1 + αi), where αi ≥ 0 are the eigenvalues of M . Furthermore, since αi ≥ 0 and
∏

i≥1(1 +

αi) = 1 +
∑

i≥1 αi + · · · + ∏i≥1 αi, we get
∏

i≥1(1 + αi) ≥ 1 +
∑

i≥1 αi. Finally, since∑
i≥1 αi = tr (M), we get |I +M | ≥ 1 + tr (M).

Corollary A.4 (Upper bound on the posterior log determinant).
log (|Vn|) ≤ log (|Vn−1|)

+

T̂n∑
k=1

dx∑
j=1

log
(
1 + σ−2σ2

n−1,j(zk,n)
)

Proof.
log (|Vn|) = log (|Vn−1|) + log (|I +M |)
≤ log (|Vn−1|) + log (|diag (I +M)|) (Hadamard’s inequality for PSD matrices)

= log (|Vn−1|) +
T̂n∑
k=1

dx∑
j=1

log
(
1 + σ−2σ2

n−1,j(zk,n)
)

Corollary A.3 will be useful for the discounted horizon case, whereas Corollary A.4 will be applied
for the nonepisodic setting.
Next, we show that OMBRL also performs optimism in the discounted horizon case.

Lemma A.5. Let Assumption 5.1, and Assumption 5.3 hold. Consider the following definitions

Jγ(π,f
∗) = E

[ ∞∑
t=0

γtr(xt,π(xt))

]
s.t., xt+1 = f∗(xt,π(xt)) +wt, x0 = x(0),

Jγ(π,µn) = E

[ ∞∑
t=0

γtr(x′
t,π(x

′
t))

]
s.t., x′

t+1 = µn(x
′
t,π(x

′
t)) +wt, x′

0 = x(0),

Σγ
n(π,f

∗) = E

[ ∞∑
t=0

γt ∥σn(xt,π(xt))∥
]

s.t., xt+1 = f∗(xt,π(xt)) +wt, x0 = x(0),
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Σγ
n(π,µn) = E

[ ∞∑
t=0

γt ∥σn(x
′
t,π(x

′
t))∥

]
s.t., x′

t+1 = µn(x
′
t,π(x

′
t)) +wt, x′

0 = x(0),

λn = Cmax
γ

1− γ

(1 +
√
dx)βn−1(δ)

σ
,

where Cmax = max{Rmax, σmax}. Then we have for all n ≥ 0, π ∈ Π with probability at least
1− δ

|Jγ(π,f∗)− Jγ(π,µn)| ≤ λnΣ
γ
n(π,µn)

|Jγ(π,f∗)− Jγ(π,µn)| ≤ λnΣ
γ
n(π,f

∗)

Proof. We give the proof for |Jγ(π,f∗)−Jγ(π,µn)| ≤ λn(Lr,µn)Σ
γ
n(π,µn). The same argument

holds for the second inequality. We can extend the result from Sukhija et al. (2024a, Corollary 2.,) to
the discounted case and get

Jγ(π,µn)− Jγ(π,f
∗)

= Eµn

[ ∞∑
t=0

γt+1(Jγ(π,f
∗,x′

t+1)− Jγ(π,f
∗, x̂t+1))

]
,

with x̂t+1 = f∗(s′t,π(x
′
t)) +wt,

and x′
t+1 = µn(s

′
t,π(x

′
t)) +wt.

Let βn
1+

√
dx

σ C(x) = J2
γ (π,f

∗,x). Note that C(x) ≤ λn for all c ∈ X . Therefore, we have
|Jγ(π,µn)− Jγ(π,f

∗)|

=

∣∣∣∣∣E
[ ∞∑
t=0

γt+1(Jγ(π,f
∗,x′

t+1)− Jγ(π,f
∗, x̂t+1))

]∣∣∣∣∣
≤

∞∑
t=0

γt+1E
[∣∣Ewt

[
Jγ(π,f

∗,x′
t+1)− Jγ(π,f

∗, x̂t+1)
]∣∣]

≤
∞∑
t=0

γE
[√

max
{
Ewt [C(x′

t+1)],Ewt [C(x̂t+1)]
}

× γt min

{∥f∗(x′
t,π(x

′
t))− µn(x

′
t,π(x

′
t))∥

σ
, 1

}]
(Kakade et al., 2020, Lemma C.2.)

≤ λn

∞∑
t=0

E
[
γt ∥σn−1(x

′
t,π(x

′
t))∥

]
((Sukhija et al., 2024c, Corollary 3))

Proof of Theorem 5.7. We start with bounding
N∑

n=1

∞∑
t=0

Ew1:t−1

[
γt ∥σn−1(x

′
t,π(x

′
t))∥

2
]

(15)

To achieve this, we use a sampling strategy where we increase the horizon of rollouts with each
episode n. In the discounted setting, this allows us to collect data at the tails of our rollouts, i.e.,
make observations with longer rollouts and thus approximate the true discounted value function
asymptotically. Moreover, we set T (n) = − log(n)

log(γ) (note that γ < 1 and therefore T (n) is positive).
N∑

n=1

∞∑
t=0

Ew1:t−1

[
γt ∥σn−1(x

′
t,π(x

′
t))∥

2
]

=

N∑
n=1

T (n)−1∑
t=0

Ew1:t−1

[
γt ∥σn−1(x

′
t,π(x

′
t))∥

2
]
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+

N∑
n=1

∞∑
t=T (n)

Ew1:t−1

[
γt ∥σn−1(x

′
t,π(x

′
t))∥

2
]

≤
N∑

n=1

T (n)−1∑
t=0

Ew1:t−1

[
γt ∥σn−1(x

′
t,π(x

′
t))∥

2
]

+

N∑
n=1

γT (n) σ
2
max

1− γ

=

N∑
n=1

T (n)−1∑
t=0

Ew1:t−1

[
γt ∥σn−1(x

′
t,π(x

′
t))∥

2
]

+

N∑
n=1

n−1 σ
2
max

1− γ

=

N∑
n=1

T (n)−1∑
t=0

Ew1:t−1

[
γt ∥σn−1(x

′
t,π(x

′
t))∥

2
]

+
Cσ2

max

1− γ
log(N)

Next, we bound the term

sn =

T (n)−1∑
t=0

γtσ−2 ∥σn−1(x
′
t,π(x

′
t))∥

2
.

Note that, sn ∈
[
0,

σ−2dxσ
2
max

1−γ

)
. Let smax =

σ−2dxσ
2
max

1−γ , we have sn ≤ smax

log(1+smax)
log(1 +

sn) (Srinivas et al., 2012). Define Cγ = smax

log(1+smax)
. We have,

sn ≤ Cγ log

1 + σ−2

T (n)−1∑
t=0

γt ∥σn−1(x
′
t,π(x

′
t))∥

2


≤ Cγ log

1 + σ−2

T (n)−1∑
t=0

∥σn−1(x
′
t,π(x

′
t))∥

2


Finally, we have

N∑
n=1

sn

≤ Cγ

N∑
n=1

log

1 + σ−2

T (n)−1∑
t=0

∥σn−1(x
′
t,π(x

′
t))∥

2


≤ CγΓ∑N

n=1 T (n) (Corollary A.3)

≤ CγΓN log(N)

RN =

N∑
n=1

rn

≤
N∑

n=1

(λ2
n + 2λn)Σ

γ
n(πn,f

∗)

≤ (λ2
N + 2λN )

N∑
n=1

Σγ
n(πn,f

∗)
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= (λ2
N + 2λN )

√
N

√√√√ N∑
n=1

(Σγ
n(πn,f∗))2

≤ (2λN + λ2
N )

√
N

×

√√√√ N∑
n=1

E

[( ∞∑
t=0

γt ∥σn(xt,π(xt))∥2
])2

≤ (2λN + λ2
N )

√
N

×

√√√√ N∑
n=1

E

[( ∞∑
t=0

γt

)( ∞∑
t=0

γt ∥σ2
n(xt,π(xt))∥2

])

= (2λN + λ2
N )

√
N

1− γ

×

√√√√ N∑
n=1

E

[ ∞∑
t=0

γt ∥σ2
n(xt,π(xt))∥2

]

≤ (2λN + λ2
N )

√
CγNΓN log(N)

1− γ
+

Cσ2
maxN log(N)

(1− γ)2

Since λN ∝ βN/1 − γ, we get
RN ≤ O

(
Γ

3/2
N log(N)

√
N
)

A.3 ANALYSIS FOR THE NON-EPISODIC RL CASE

In this section, we prove Theorem 5.8. First, we restate the bounded energy assumption from Sukhija
et al. (2024b).
Definition A.6 (K∞-functions). The function ξ : R≥0 → R≥0 is of class K∞, if it is continuous,
strictly increasing, ξ(0) = 0 and ξ(s) → ∞ for s → ∞.
Assumption A.7 (Policies with bounded energy). We assume there exists κ, ξ ∈ K∞, positive
constants K,Cu, Cl with Cu > Cl, and γ ∈ (0, 1) such that for each π ∈ Π we have,

Bounded energy: There exists a Lyapunov function V π : X → [0,∞) for which ∀x,x′ ∈ X ,
|V π(x)− V π(x′)| ≤ κ(∥x− x′∥) (uniform continuity)

Clξ(∥x∥) ≤ V π(x) ≤ Cuξ(∥x∥) (positive definiteness)
Ex+|x,π[V

π(x+)] ≤ γV π(x) +K (drift condition)
where x+ = f∗(x,π(x)) +w.

Bounded norm of reward:

sup
x∈X

r(x,π(x))

1 + V π(x)
< ∞

Boundedness of the noise with respect to κ:
Ew [κ(∥w∥)] < ∞, Ew

[
κ2(∥w∥)

]
< ∞

Sukhija et al. (2024b) argue that this assumption is often satisfied in practice. We refer the reader to
Sukhija et al. (2024b) for further details. Next, we make an assumption on the underlying system f∗.
Assumption A.8 (Continous closed-loop dynamics, and Gaussian noise.). The dynamics model
f∗ and all π ∈ Π are continuous, and process noise is i.i.d. Gaussian with variance σ2, i.e.,
wt

i.i.d∼ N (0, σ2I).

An important quantity in the average reward setting is the bias

B(π,x0) = lim
T→∞

Eπ

[
T−1∑
t=0

r(xt,ut)− Javg(π)

]
. (16)
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The Bellman equation for the average reward setting is given by

B(π,x) + Javg(π) = r(x,π(x)) + Ex+
[B(π,x+)|x,π] (17)

Sukhija et al. (2024b) show that under Assumption A.7 and Assumption A.8 the average reward
solution and the bias (c.f., Equation (3)) are bounded. Moreover, they show that with Assumption 5.3
the average reward and bias are bounded for all dynamics f ∈ Mn ∩M0.

Lemma A.9. Let Assumption 5.3, Assumption A.7, and Assumption 5.3 hold. Consider the following
definitions

Javg(π,f
∗) = lim

T→∞
1

T
E

[
T−1∑
t=0

r(xt,π(xt))

]
s.t., xt+1 = f∗(xt,π(xt)) +wt, x0 = x(0),

Javg(π,f) = lim
T→∞

1

T
E

[
T−1∑
t=0

r(x′
t,π(x

′
t))

]
s.t., x′

t+1 = f(x′
t,π(x

′
t)) +wt, x′

0 = x(0),

Σn(π,f
∗) = lim

T→∞
1

T − 1
E

[
T−1∑
t=0

∥σn(xt,π(xt))∥
]

s.t., xt+1 = f∗(xt,π(xt)) +wt, x0 = x(0),

Σn(π,f) = lim
T→∞

1

T
E

[
T−1∑
t=0

∥σn(x
′
t,π(x

′
t))∥

]
s.t., x′

t+1 = f(x′
t,π(x

′
t)) +wt, x′

0 = x(0),

λn = D4(x0, γ,K)βn−1(δ),
and D4(x0, γ,K) is defined as in Sukhija et al. (2024b, Theorem 3.1), is independent of n and
increases with ∥x0∥ ,K and γ−1 (see Sukhija et al. (2024b) for the exact dependence). Then we have
for all n ≥ 0, π ∈ Π, f ∈ Mn ∩M0 with probability at least 1− δ

|Javg(π,f
∗)− Javg(π,f)| ≤ λnΣn(π,f)

|Javg(π,f
∗)− Javg(π,f)| ≤ λnΣn(π,f

∗)

Proof.
|Javg(π,f)− Javg(π,f

∗)|

=

∣∣∣∣∣ limT→∞
1

T
Ef

[
T−1∑
t=0

r(x′
t,π(x

′
t))− Javg(π,f

∗)

]∣∣∣∣∣
=

∣∣∣∣∣ limT→∞
1

T
Ef

[
T−1∑
t=0

B(x′
t,π(x

′
t))−B(x̂

′

t+1,π(x̂
′

t+1))

]∣∣∣∣∣
≤ λnΣn(π,f) (1)

In the second last equality, we used the Bellman equation for the average reward setting (Equa-
tion (17)), where x̂

′

t+1 is the next state under the true dynamics f∗.
For the last inequality, Sukhija et al. (2024b) bound the bias term with λn in Section A.3, on pages
23− 24.
We can use the same derivation to show that |Javg(π,f)− Javg(π,f

∗)| ≤ λnΣn(π,f
∗).

OMBRL in the non-episodic setting operates similarly to NEORL (Sukhija et al., 2024b). In
particular, we update our model and policy every Tn step, where Tn is defined as:

Tn = max

(
T̂n,

⌈log (Cu/Cl)⌉
log (1/γ)

)
, (18)

T̂n = argmax
T≥1

T + 1 (19)
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s.t.
T∑

k=1

dx∑
j=1

log
(
1 + σ−2σ2

n−1,j(zk,n)
)
≤ log(2). (20)

Effectively, we update our model and policy only once we have accumulated more than one bit of
information, i.e.,

∑T
k=1

∑dx

j=1 log
(
1 + σ−2σ2

n−1,j(zk,n)
)
> log(2). With the updated model and

model set Mn, we select any dynamics in fn ∈ Mn ∩M0 and pick the policy with
πn = argmax

π∈Π
Javg(π,fn) + λnΣn(π,fn). (21)

Note that (Sukhija et al., 2024b) require maximizing over the dynamics in Mn ∩M0, whereas we do
not. Moreover, while this optimization is generally intractable, for OMBRL, we can obtain f using
the quadratic program described in Equation (22). However, in practice, we just pick the mean model
µn ∈ Mn. This practical modification is also made in Sukhija et al. (2024b) where they optimize
over dynamics in Mn instead of Mn ∩M0.

Theorem A.10 (Formal Theorem statement for informal Theorem 5.8). Define RN =∑N
n=1 E[Javg(π

∗) − r(xn,πn(xn)]. Let Assumption 5.3, Assumption A.7, and Assumption A.8
hold. Then we have for all N ≥ 0 with probability at least 1− δ

RN ≤ O
(
Γ

3/2
N

√
N
)

Proof. Let EN denote the number of episodes after N interactions in the environment.

RN = E

[
EN∑
n=1

Tn−1∑
k=0

Javg(π
∗)− r(xn

k ,πn(x
n
k ))

]

≤ E

[
EN∑
n=1

Tn−1∑
k=0

Javg(π
∗,fn) + λnΣn(π

∗,fn)− r(zn
k )

]
(Lemma A.9)

≤ E

[
EN∑
n=1

Tn−1∑
k=0

Javg(πn,fn) + λnΣn(πn,fn)− r(zn
k )

]
(Equation (21))

≤ E

[
EN∑
n=1

Tn−1∑
k=0

Javg(πn,fn)− r(zn
k )

]

+ λNE

[
EN∑
n=1

Tn−1∑
k=0

Σn(πn,fn)

]

≤ O
(
ΓN

√
N
)
+ E

[
λN

EN∑
n=1

Tn−1∑
k=0

Σn(πn,f)

]
(Theorem 3.1 Sukhija et al. (2024b))

Next, we focus on E
[
λN

∑EN

n=1

∑Tn−1
k=0 Σn(πn,f)

]
E

[
EN∑
n=1

Tn−1∑
k=0

Σn(πn,f)

]

= E

[
EN∑
n=1

Tn−1∑
k=0

∥σn(xt,π(xt))∥
]

+ E

[
EN∑
n=1

Tn−1∑
k=0

Σn(πn,f)− ∥σn(xt,π(xt))∥
]

≤ C
√
ΓNN + E

[
EN∑
n=1

Tn−1∑
k=0

Σn(πn,f)− ∥σn(xt,π(xt))∥
]

(Lemma A.1 Sukhija et al. (2024b))

≤
√
NΓN +O

(
ΓN

√
N
)

(Sukhija et al. (2024b, Theorem 3.1) with reward σn)
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Therefore

E

[
λT

EN∑
n=1

Tn−1∑
k=0

Σn(πn,f)

]
≤ O

(
λNΓN

√
N
)

≤ O
(
Γ

3/2
N

√
N
)

In conclusion,
RN ≤ O

(
Γ

3/2
N

√
N
)

A.4 ANALYSIS FOR PURE INTRINSIC EXPLORATION

In the following, we derive a sample complexity bound for a pure intrinsic exploration algorithm.
Thereby showing convergence for methods such Buisson-Fenet et al. (2020).
Theorem A.11. Let Assumption 5.1 and Assumption 5.3 hold. Consider OMBRL with extrinsic
reward r = 0, i.e.,

πn = argmax
π∈Π

Eπ

[
T−1∑
t=0

∥σn(x
′
t,ut)∥

]
,

x′
t+1 = µn(x

′
t,ut) +wt.

Then we have ∀N > 0, with probability at least 1− δ

max
π∈Π

Ef∗

[
T−1∑
t=0

∥σn(xt,π(xt))∥
]
≤ O

(√
Γ3
N

N

)
.

Proof. Let Σ∗
N = maxπ ΣN (π,f∗) and π∗

N the corresponding policy.

Σ∗
N ≤ 1

N

N∑
n=1

Σ∗
n (monotoncity of the variance)

≤ 1

N

N∑
n=1

(1 + λn)Σn(π
∗
n,µn) (Lemma A.1)

≤ 1

N

N∑
n=1

(1 + λn)Σn(πn,µn) (πn is the maximizer for mean dynamics µn)

≤
N∑

n=1

(1 + λn)
2Σn(πn,f

∗) (Lemma A.1)

≤ (1 + λN )2
1

N

N∑
n=1

Σn(πn,f
∗)

≤ (1 + λN )2
1√
N

N∑
n=1

Σ2
n(πn,f

∗)

≤ O
(√

Γ3
N

N

)

Effectively, Theorem A.11 shows that pure intrinsic exploration reduces our model epistemic uncer-

tainty with a rate of
√

Γ3
N

N . To the best of our knowledge, we are the first to show this. Moreover,
Sukhija et al. (2024c) derive a similar bound but their algorithm performs optimistic exploration from
Equation (7) in addition to maximizing the intrinsic rewards. Our result shows that the optimistic
exploration is not necessary for this setting.

A.5 ANALYSIS FOR THE FINITE HORIZON SETTING WITH SUB-GAUSSIA NOISE

In the following, we analyse the regret for the setting where the process noise w is σ-sub Gaussian.

24



Published at the 7th Robot Learning Workshop at ICRL 2025

Assumption A.12. The dynamics model f∗, reward r, and all π ∈ Π are Lf , Lr and Lπ Lipschitz,
respectively. Furthermore, we assume that process noise is i.i.d. σ-sub Gaussian.

We make the same assumptions as other works (Curi et al., 2020; Sussex et al., 2023) that study this
setting. Moreover, Lipschitz continuity is a common assumption for nonlinear dynamics (Khalil,
2015) and is satisfied for many real-world systems.
Curi et al. (2020) provide a regret bound that depends exponentially on the horizon T , i.e., RN ∈
O
(√

ΓT
NN

)
. They obtain an exponential dependence because when planning optimistically, i.e.,

solving Equation (7), they consider all plausible dynamics, including those that are not Lipschitz
continuous for all n. Solving Equation (7) for only continuous dynamics is intractable. However, for
OMBRL, as we do not maximize over the set of dynamics we can overcome this limitation.
Moreover, since f∗ has bounded RKHS norm, i.e., ∥f∗∥k ≤ B ( Assumption 5.3). From Srinivas
et al. (2012); Chowdhury & Gopalan (2017) follows that with probability 1− δ we have for every n:

∥f∗ − µn∥kn
≤ βn.

For OMBRL, instead of planning with the mean, which in general might not be Lipschitz continuous
for all n, we select a function fn that not only approximates the f∗ function well, i.e., ∥f∗ − fn∥kn

≤
βn, but also its RKHS norm does not grow with n. To do that we propose to solve the following
quadratic optimization problem:

fn = argmin
f∈span(k(x1,·),...,k(xn,·))

∥f − µn∥kn
(22)

s.t. ∥f∥k ≤ B
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0

1
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Optimizing for dynamics with bounded RKHS norm
f ∗ fn µn Observations

Figure 6: Solution to Equation (22) for different values for B. Effectively, for larger values for B,
µn and fn coincide.

Theorem A.13. The optimization problem Equation (22) is feasible and we have ∥fn − µn∥kn
≤ βn.

Proof. Consider the noise-free case, i.e., w = 0, and let µ̄n posterior mean for this setting. For the
function µ̄n holds that ∥f∗ − µ̄n∥kn

≤ βn (Corollary 3.11 of Kanagawa et al. (2018)) and ∥µ̄n∥k ≤
B (Theorem 3.5 of Kanagawa et al. (2018)). Since ∥µ̄n − µn∥kn

≤ ∥µ̄n − f∗∥kn
+∥f∗ − µn∥kn

≤
2βn. By representer theorem, it also holds that µ̄n ∈ span(k(z1, ·), . . . , k(zn, ·)).

Let αn = (K + σ2I)−1y ∈ Rn and reparametrize f(x) =
∑n

i=1 αik(xi,x). We have ∥f∥2k =
α⊤Kα. We also have:

∥f − µn∥2kn
= (α−αn)

⊤K

(
I +

1

σ2
K

)
(α−αn)

Hence the optimization problem Equation (22) is equivalent to:

min
α∈Rn

(α−αn)
⊤K

(
I +

1

σ2
K

)
(α−αn)

s.t. α⊤Kα ≤ B2

This is a quadratic program that can be solved using any QP solver. The program finds the closest
function to the posterior mean µn that is Lipschitz continuous (see Figure 6). In particular, note that
since ∥fn∥k ≤ B, fn has a Lipschitz constant LB which is independent of n (Berkenkamp, 2019).
From hereon, let L∗ = max{Lf , LB}.
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For the sub-Gaussian case, OMBRL follows the same strategy as Equation (8) but instead of using
the mean dynamics µn, we plan with the dynamics fn that are obtained from solving Equation (22).

πn=argmax
π∈Π

Eπ

[
T−1∑
t=0

r(x′
t,ut)+λn∥σn(x

′
t,ut)∥

]
(23)

x′
t+1=fn(x

′
t,ut) +wt,

Lemma A.14. Let Assumption A.12 and Assumption 5.3 hold. Consider the following definitions

J(π,f∗) = E

[
T−1∑
t=0

r(xt,π(xt))

]
s.t., xt+1 = f∗(xt,π(xt)) +wt, x0 = x(0),

J(π,fn) = E

[
T−1∑
t=0

r(x′
t,π(x

′
t))

]
s.t., x′

t+1 = fn(x
′
t,π(x

′
t)) +wt, x′

0 = x(0),

Σn(π,f
∗) = E

[
T−1∑
t=0

∥σn(xt,π(xt))∥
]

s.t., xt+1 = f∗(xt,π(xt)) +wt, x0 = x(0),

Σn(π,fn) = E

[
T−1∑
t=0

∥σn(x
′
t,π(x

′
t))∥

]
s.t., x′

t+1 = fn(x
′
t,π(x

′
t)) +wt, x′

0 = x(0),

λn = (1 + dx)Lr(1 + Lπ)L̄
T−1
∗ Tβn.

Then we have for all n ≥ 0, π ∈ Π with probability at least 1− δ
|J(π,f∗)− J(π,fn)| ≤ λnΣn(π,fn)

|J(π,f∗)− J(π,fn)| ≤ λnΣn(π,f
∗)

Proof.
|J(π,f∗)− J(π,fn)|

= E

[
T−1∑
t=0

r(xt,π(xt))− r(x′
t,π(x

′
t))

]

≤ Lr(1 + Lπ)E

[
T−1∑
t=0

∥xt − x′
t∥
]

Next we analyze ∥xt − x′
t∥ for any t. Without loss of generality, assume L∗ ≥ 1 and define

L̄∗ = L∗(1 + Lπ).
We show that ∥∥xt+1 − x′

t+1

∥∥
≤ (1 +

√
dx)βn

(
t∑

k=0

L̄t−k
∗ ∥σn(x

′
k,π(x

′
k))∥

)
.

Consider t = 1
∥x1 − x′

1∥ = ∥f∗(x′
0,π(x

′
0))− fn(x

′
0,π(x

′
0))∥

≤ (1 +
√
dx)βn ∥σn(x

′
0,π(x

′
0))∥

Consider any t > 1, ∥∥xt+1 − x′
t+1

∥∥
= ∥f∗(xt,π(xt))− fn(x

′
t,π(x

′
t))∥

≤ ∥f∗(x′
t,π(x

′
t))− fn(x

′
t,π(x

′
t))∥

+ ∥f∗(xt,π(xt))− f∗(x′
t,π(x

′
t))∥
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≤ (1 +
√
dx)βn ∥σn(x

′
t,π(x

′
t))∥+ L̄∗ ∥xt − x′

t∥
≤ (1 +

√
dx)βn (∥σn(x

′
t,π(x

′
t))∥)

+ (1 +
√
dx)βn

(
L̄∗

(
t−1∑
k=0

L̄t−1−k
∗ ∥σn(x

′
k,π(x

′
k))∥

))

= (1 +
√
dx)βn

(
t∑

k=0

L̄t−k
∗ ∥σn(x

′
k,π(x

′
k))∥

)
In particular, since L̄∗ ≥ 1, we have

∥∥xt+1 − x′
t+1

∥∥ ≤ (1+
√
dx)βnL̄

t
∗
(∑t−1

k=0 ∥σn(x
′
k,π(x

′
k))∥

)
.

In summary, we have
|J(π,f∗)− J(π,µn)|

= E

[
T−1∑
t=0

r(xt,π(xt))− r(x′
t,π(x

′
t))

]

≤ Lr(1 + Lπ)E

[
T−1∑
t=0

∥xt − x′
t∥
]

≤ Lr(1 + Lπ)(1 +
√
dx)

× E

[
T−1∑
t=0

βnL̄
t−1
∗

(
t−1∑
k=0

∥σn(x
′
k,π(x

′
k))∥

)]
≤ (1 + dx)Lr(1 + Lπ)L̄

T−1
∗ TβnΣn(π,µn)

= λnΣn(π,µn).

The main difference between our analysis and the analysis from Curi et al. (2020) is that for us
λn ∝ βn if we plan with fn.

Lemma A.15. Let Assumption A.12 and Assumption 5.3 hold and consider the simple regret at
episode n, rn = J(π∗,f∗)− J(πn,f

∗). The following holds for all n > 0 with probability at least
1− δ

rn ≤ (2λn + λ2
n)Σn(πn,f

∗)

Proof.
rn = J(π∗,f∗)− J(πn,f

∗)

≤ J(π∗,fn) + λnΣn(π
∗,fn)− J(πn,f

∗) (Lemma A.14)
≤ J(πn,fn) + λnΣn(πn,fn)− J(πn,f

∗) (Equation (23))
= J(πn,fn)− J(πn,f

∗) + λnΣn(πn,fn)

≤ λnΣn(πn,f
∗) + λnΣn(πn,fn) (Lemma A.14)

= 2λnΣn(πn,f
∗) + λn(Σn(πn,fn)− Σn(πn,f

∗))

≤ (λ2
n + 2λn)Σn(πn,f

∗).

Theorem A.16 (Finite horizon setting sub-Gaussian case). Let Assumption A.12 and Assumption 5.3
hold. Then we have ∀N > 0 with probability at least 1− δ

RN ≤ O
(
Γ

3/2
N

√
N
)
.

Proof. The proof is the same as for Theorem 5.6, since in Lemma A.15 we show that also for the
sub-Gaussian case, OMBRL has the same regret dependence w.r.t. λn and Σn(πn,f

∗).

27



Published at the 7th Robot Learning Workshop at ICRL 2025

B ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments.
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Figure 7: Comparison between MBPO-OPTIMSTIC and MAXINFOSAC and SAC. We observe that
MBPO-OPTIMSTIC, being an MBRL algorithm, performs the best in terms of sample efficiency.
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Figure 8: Learning curves for the visual control tasks from DMC and Atari using DREAMER as the
base algorithm. DREAMER-OPTIMISTIC either performs on-par or better than DREAMER in all our
experiments. Particularly, in the Venture task from the Atari benchmark, where DREAMER fails to
obtain any rewards.

Experiments with MBPO In Figure 7 we compare MBPO-OPTIMISTIC with off-policy RL
algorithms MAXINFOSAC (Sukhija et al., 2024a) and SAC (Haarnoja et al., 2018). From the figure,
we conclude that MBPO-OPTIMISTIC performs the best in terms of sample-efficiency, particularly
for the challenging/high-dimensional humanoid tasks. Moreover, between SAC and MAXINFOSAC,
the latter achieves much better performance. We believe this is due to its intrinsic exploration reward.
Experiments with DREAMER In Figure 8 we compare DREAMER-OPTIMISTIC with DREAMER
on additional environments. Overall, we observe that DREAMER-OPTIMISTIC performs either on
par or better than DREAMER. However, for certain environments such as Reacher Hard or Finger
Turn Hard, DREAMER is more sample-efficient. We believe this is because in these settings smaller
values for λn would suffice for exploration. However, we use a constant value for λn across all
environments and automatically update it using the approach proposed in Sukhija et al. (2024a).
Investigating alternative strategies for λn, would generally benefit OMBRL methods. We think this
is a promising direction for future work.
In Figure 9 and Figure 10 we compare DREAMER-OPTIMISTIC with DREAMER on proprioceptive
tasks. In most environments, DREAMER-OPTIMISTIC performs on par. It performs better in the
Finger Spin environment. However, when action costs are introduced (Figure 10), in line with our
results in Section 6, DREAMER fails to obtain any meaningful rewards.
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Figure 9: Experiments with DREAMER-OPTIMISTIC and DREAMER for proprioceptive tasks.
DREAMER-OPTIMISTIC performs on par with DREAMER, obtaining slightly better performance on
the Finger Spin task.
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Figure 10: Experiments with DREAMER-OPTIMISTIC and DREAMER for proprioceptive tasks with
action costs. DREAMER completely fails to solve the task, whereas DREAMER-OPTIMISTIC does
not.

C EXPERIMENT DETAILS

In this section, we provide additional details for our experiments.
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C.1 MBPO-OPTIMISTIC

For MBPO-OPTIMISTIC, we train an ensemble of forward dynamics models4. We use the disagree-
ment between the ensembles to quantify model epistemic uncertainty, similar to Pathak et al. (2019);
Curi et al. (2020); Sukhija et al. (2024c). For selecting λn, we use the auto-tuning approach from
Sukhija et al. (2024a), where the intrinsic reward weight is optimized by minimizing the following
loss with stochastic gradient descent

L(λ) = E
x∼D1:n,u∼πn,ū∼π̄n

log(λ)(σn(x,u)− σn(x, ū)). (24)

Here π̄n is a target policy, which is updated using polyak updates of πn. This objective increases λ
when the policy is under exploring compared to the target policy. Sukhija et al. (2024a) show that
this strategy works across several model-free off-policy RL algorithms.
Besides using the model to quantify disagreement, we generate additional data by adding the
transitions predicted by our learned model. In particular, for every policy update, we sample a batch
of transitions from the data buffer (x,u,x′) ∼ D1:n, and add (x,u, x̂′), transitions predicted by our
mean model µn, to the batch. This allows us to combine true rollouts with model generated rollouts,
as proposed in Janner et al. (2019). Since we can generate additional data through our learned model,
we can efficiently increase our update-to-data ratio (UTD). For all our experiments with MBPO, with
use an UTD of 55.
We use the same hyperparameters as Sukhija et al. (2024a) for all our state-based experiments.

C.2 DREAMER-OPTIMISTIC

We use DREAMERV3 As the base model. For quantifying the model epistemic uncertainty, we use
the same approach as Sekar et al. (2020); Mendonca et al. (2021) and learn an ensemble of MLPs to
model the latent dynamics6. The ensemble is only used for quantifying the model uncertainty/intrinsic
reward. For the policy optimization, we use the DREAMER backbone, where the agent optimizes the
policy using imagined rollouts. For selecting λ, we also use the objective in Equation (24). We found
adding a regularize term α ∗ |λ| to the objective worked better with DREAMER. We initialize λ with
2 and pick α = 0.001. For the rest, we use the same hyperparemters as DREAMER7.

C.3 SIMFSVGD-OPTIMISTIC
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Figure 11: Tolerance reward function for different values of the margin. For larger margins, the agent
receives rewards even if its further away from the target.

We use the same experiment setup, simulation prior, and hyperparameters as Rothfuss et al. (2024)8.
The reward function in Rothfuss et al. (2024) is based on the tolerance reward from Tassa et al. (2018).
The tolerance function, gives higher rewards when the agent is close to a desired state, i.e., in case of
the RC car the target position. The “closesness” is quantified using a margin parameter for the reward

4For all tasks we use a (256, 256) neural network architecture with 5 ensembles, except for the humanoid
and quadruped tasks where we use (512, 512).

5We did not tune the UTD and chose 5 to trade-off between computational cost and sample efficiency.
6For all tasks we use a (512, 512) neural network architecture with 5 ensembles.
7We use the 12 million size model and the official DREAMERV3 implementation (https://github.

com/danijar/dreamerv3/tree/main).
8official implementation: https://github.com/lasgroup/simulation_transfer
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function. In Figure 11 we plot the reward for different margin parameters. As we decrease the margin,
the reward becomes sparser. Rothfuss et al. (2024) use a margin of 20. In our simulation experiments,
we show that SIMFSVGD performs worse than SIMFSVGD-OPTIMISTIC for smaller margins. For
our hardware experiment, we use a margin of 5, for which SIMFSVGD fails to learn. For λn we
found that a linearly decaying schedule worked the best. Therefore, we linearly interpolated from
λ0 = 0.5 and λ10 = 0. After the tenth episode, the agent greedily maximized the extrinsic reward.

C.4 GP EXPERIMENTS

For our GP experiments, we use the RBF kernel. The kernel parameters are updated online using
maximum likelihood estimation (Rasmussen & Williams, 2005). For all the experiments, we use
λn = 10 and for planning the iCEM optimizer (Pinneri et al., 2021). We use the same hyperparameters
as Sukhija et al. (2024b)9.

9official implementation: https://github.com/lasgroup/opax
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