
Published as a conference paper at ICLR 2022

SPARSE ATTENTION WITH LEARNING-TO-HASH

Zhiqing Sun, Yiming Yang
Language Technologies Institute, Carnegie Mellon University
{zhiqings, yiming}@cs.cmu.edu

Shinjae Yoo
Brookhaven National Laboratory
sjyoo@bnl.gov

ABSTRACT

Transformer has become ubiquitous in sequence modeling tasks. As a key com-
ponent of Transformer, self-attention does not scale to long sequences due to its
quadratic time and space complexity with respect to the sequence length. To tackle
this problem, recent work developed dynamic attention sparsification techniques
based on Approximate Nearest Neighbor (ANN) methods, where similar queries
and keys are allocated to the same hash bucket with high probability. However,
the effectiveness of those ANN methods relies on the assumption that queries and
keys should lie in the same space, which is not well justified. Besides, some of
the ANN methods such as Locality-Sensitive Hashing (LSH) are randomized and
cannot fully utilize the available real data distributions. To overcome these issues,
this paper proposes a new strategy for sparse attention, namely LHA (Learning-
to-Hash Attention), which directly learns separate parameterized hash functions
for queries and keys, respectively. Another advantage of LHA is that it does not
impose extra constraints for queries and keys, which makes it applicable to the
wide range of pre-trained Transformer models. Our experiments on evaluation of
the WikiText-103 dataset for language modeling, the GLUE benchmark for natural
language understanding, and the Lang-Range-Arena benchmark for multiple tasks
(text/image classification, retrieval, etc.) show the superior performance of LHA
over other strong Transformer variants.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has been successfully applied to various tasks,
including natural language processing (Vaswani et al., 2017; Devlin et al., 2018; Dai et al., 2019;
Liu et al., 2019; Yang et al., 2019), computer vision (Carion et al., 2020; Dosovitskiy et al., 2020),
and time series forecasting (Zhou et al., 2020; Wu et al., 2021). Such a success is mainly due to the
self-attention component, which enables each token to directly interact with any other tokens in the
entire sequence. But self-attention has a quadratic time and space complexity with respect to the
sequence length and hence does not scale efficiently to long sequences as a result.

To address this inefficiency problem, one of the solutions is to approximate the full attention matrix
with a sparse one, as the softmax operation is dominated by the largest elements. Some recent efforts
focus on dynamic learning of sparse attention patterns via Approximate Nearest Neighbors (ANN)
approaches, including Locality Sensitive Hashing (LSH) (Kitaev et al., 2020; Daras et al., 2020) and
mini-batch spherical k-means (Roy et al., 2021; Wang et al., 2020a). The queries and keys are hashed
or clustered into different buckets, hoping that the queries and keys in the same bucket are similar
with a high probability. The effectiveness of those ANN approaches rely on the assumption that the
(transformed) query and key vectors should lie in the same space, which could be sub-optimal in
dealing with different sparsity patterns, as analyzed in this paper (Section 3.2). Besides, the hash
functions in LSH are randomized and data-agnostic, which cannot fully utilize the rich information in
real-world data distributions.

In this paper, we address the above limitations of existing ANN-based methods for attention sparsi-
fication. Firstly, we analyze two imbalance issues in LSH-produced sparse attention patterns, i.e.,
unbalanced hash bucket sizes and unbalanced query-key ratios. Secondly, we design a new metric
called attention utility to quantify how well the sparse patterns approximate the full attention, and
we show that ANN-derived sparse patterns are substantially inferior to their counterparts. Thirdly,
we propose a novel solution, namely Learning-to-Hash Attention (LHA), for dynamic attention

1

Published as a conference paper at ICLR 2022

sparsification with enhanced model expressiveness. LHA directly optimizes our newly defined
attention utility metric in an end-to-end manner via separate learnable hash functions for queries and
keys, respectively. As for reducing the computational complexity in the training phase, LHA uses
unbiased kernelized attention techniques (Choromanski et al., 2020; Peng et al., 2021) to efficiently
approximate the attention utilities. Similar to other sparse attention models (Kitaev et al., 2020;
Roy et al., 2021), LHA reduces the overall complexity of self-attention from O(N2) to O(N1.5)
for sequence length N . Our experiments in a wide range of tasks on the evaluation benchmarks for
language modeling, natural language understanding, and Long-Range-Arena show that LHA achieves
better performance compared to strong transformer baselines.

2 RELATED WORK

Related work can be roughly divided into three categories, i.e., location-based sparse attention,
content-based sparse attention, and dense approximation of attention, as outlined below.

Location-based sparse attention methods aim to improve the computational efficiency by using
pre-specified global or local sparsification patterns over token locations. Liu et al. (2018) proposed
to alternate coarse attention layers and local attention layers. Child et al. (2019) used a strided
sparse attention pattern in image generation. Sukhbaatar et al. (2019) imposed sparsity based on the
predicted temporal window size for each token. Other methods (Zhang et al., 2021; Beltagy et al.,
2020; Ainslie et al., 2020; Zaheer et al., 2020) used a pre-specified subset of locations in the input
as the global memory, and only allow non-local attentions from this subset to all the other tokens.
Location-based sparse attention cannot leverage more flexible content-based interactions among
arbitrary positions, as a limitation.

Content-based sparse attention allows more flexible sparse patterns than location-based ones.
Malaviya et al. (2018) used sparsemax to obtain a sparse attention matrix, while (Correia et al.,
2019) used entmax. These methods require to compute the full attention matrix before sparsification
and hence cannot reduce the quadratic computation complexity. Approximate Nearest Neighbor
(ANN) methods address this limitation by calculating the content-based sparse patterns in advance
(Roy et al., 2021; Kitaev et al., 2020; Daras et al., 2020; Wang et al., 2020a) (which will be discussed
more in Section 3.1). Those methods usually apply an ANN module as the shared hash function
to both queries and keys. Vyas et al. (2020) and Zhou et al. (2020) sparsified the attention maps
by eliminating redundant queries. Tay et al. (2020b) designed a differentiable sorting algorithm of
internal representations to enable efficient quasi-global local attention. Contemporary to our work,
SparseFinder (Treviso et al., 2021) learns sparse attention patterns that approximate entmax attention,
but its bucketing strategies are still based on ANN approaches. In contrast, LHA directly predicts a
bucketing strategy (i.e., learnable hash functions) that maximizes the attention utility.

Another line of research explored low-rank or kernelized dense approximation of attention matrices,
instead of computing the attention scores exactly for only a few pairs. Wang et al. (2020b) applied
a low-rank decomposition to the attention matrix. Xiong et al. (2021) approximated the attention
matrix with Nyström approximation. Katharopoulos et al. (2020) utilized the association property
of Key-Query-Value multiplication and reduce the quadratic complexity to linear complexity with
kernelized approximation to the softmax operation. Choromanski et al. (2020) and Peng et al. (2021)
further proposed an unbiased approximation of softmax with random Fourier features.

Our work in this paper is directly related to the second category, i.e., content-based attention
sparsification. Specially, we address the limitations of existing ANN-based methods by modeling
queries and keys in separate vector spaces and by proposing a novel approach to learn the hash
functions for attention sparsification.

3 RE-EXAMINATION OF CONTENT-BASED SPARSE PATTERNS

3.1 PRELIMINARY

The self-attention mechanism (Vaswani et al., 2017) can be formulated as the weighted sum of the
value vectors V ∈ RN×dh where the weights are calculated using query vectors Q ∈ RN×dh and

2

Published as a conference paper at ICLR 2022

key vectors K ∈ RN×dh as:

Attention(Q,K, V) = A · V = softmax

(
QKT

√
dh

)
· V, (1)

where A denotes the matrix of normalized attention weights, dh is the dimension of hidden represen-
tations, and N is the sequence length. self-attention has a quadratic time and space complexity with
respect to the sequence length and hence does not scale efficiently to long sequences.

Content-based sparse attention methods usually apply randomized hash functions or a clustering
algorithm to queries {Qi} and keys {Kj}, and hope that similar queries and keys are hashed or
clustered into the same bucket. The queries can thus only attend to the keys if both are in the same
bucket. Formally, a content-based sparse attention strategy with B hash buckets is defined as:

Sparse-Attention(Qi,K, V) =
∑

j:hQ(Qi)=hK(Kj)

ĀijVj , (2)

where hK , hQ : Rdh 7→ [B] are the hash functions for keys and queries, and Āij ∝ Aij is the
re-normalized attention weights such that ∀i,

∑
j:hQ(Qi)=hK(Kj)

Āij = 1. In general (Kitaev et al.,
2020; Roy et al., 2021), calculating the hash function and performing local attention for each query
have the time complexity of O(B) and O(N/B), respectively. Thus, the overall complexity1 of
self-attention can be reduced fromO(N2) toO(N ·B+N2/B) ≈ O(N1.5) whenB ≈ N/B ≈

√
N .

Since the hash functions are not differentiable, Approximate Nearest Neighbor (ANN) methods
are used to derive an effective content-based hash function. Reformer (Kitaev et al., 2020) applies
Locality Sensitive Hashing (LSH) to the tied queries and keys, where several hyper-planes are
randomly generated to divide tokens into different buckets. SMYRF (Daras et al., 2020) improves
Reformer by introducing asymmetric transformation to queries and keys, i.e.,

F (Qi) =
[
Qi; 0;

√
M2

Q +M2
K − ||Qi||22

]
, G(Kj) =

[
Kj ;

√
M2

Q +M2
K − ||Kj ||22; 0

]
, (3)

where MQ = maxQi
||Qi||2 and MK = maxKj

||Kj ||2, such that ||F (Qi)−G(Kj)||22 = const−
Qi · Kj . Routing Transformer (Roy et al., 2021) and Cluster-former (Wang et al., 2020a) use
mini-batch spherical k-means to partition tokens into different clusters.

3.2 BUCKET IMBALANCE ISSUES

Previous content-based sparse attention models take it for granted that the ANN-derived sparse pattern
can effectively approximate the full attention. However, it is only verified via empirical evaluation on
the down-stream tasks yet, which cannot reflect the true attention map approximation ability. Notice
that there are two necessary conditions for sparse attention to work effectively and efficiently:

1. The number of queries and the number of keys in each bucket should be reasonably balanced, as
queries should attend to enough keys to get a good approximation of the full-attention;

2. The bucket sizes should be nearly equal in order to effectively reduce the overall complexity.

We first analyze how badly the two conditions would be violated by LSH2, a typical ANN method.
We apply LSH to 10 attention heads in the 3rd layer of a Transformer3 pre-trained on language
modeling and obtain the results shown in Figure 1 (up). We can see that the imbalance issue not only
exists in the query-key ratios, but also in the bucket sizes. To go a step further, we apply LSH to all
16× 10 = 160 attention heads in the pre-trained Transformer and find that around 61.3% buckets
have the query-key imbalance problem, where the query-key ratios are either greater than 2:1 or
smaller than 1:2. Around 35.9% buckets have the bucket size imbalance problem, where the bucket

1Notice that we only consider the setting of single-round hashing in our paper, but our analysis and the
proposed LHA method can be generalized to the multi-round hashing setting.

2We use the same LSH technique as in (Kitaev et al., 2020), except that we do not impose extra constraints to
queries and keys. This is because we would like to develop a plug-and-play replacement for dense attention
layers without imposing extra constraints for queries and keys.

3The detailed experimental setting can be found in the appendix.

3

Published as a conference paper at ICLR 2022

Figure 1: We show the unbalanced bucket sizes and unbalanced query-key ratios with statistics of 10
attention heads in the 3rd layer of a pre-trained Transformer. For each head, we assign the queries
and keys of first 1024 tokens in the WikiText-103 validation data into 4 LSH buckets. The buckets
are sorted for each attention head according to total bucket sizes (i.e., #query + #key).

sizes are twice greater than half smaller than the expected bucket size of 512. Clearly, neither of the
two aforementioned conditions are well satisfied in this LSH-sparsified Transformer model.

There can be several possible reasons that cause the imbalance problem: 1) the Euclidean distance
metric in ANN methods does not monotonically decrease with the dot-product metric used in attention
mechanism; 2) the queries and keys are from different distribution and not normalized, and thus
restricts the effectiveness of ANN methods. To investigate the root cause, we apply the SMYRF
asymmetric transformation (Equation 3) to queries and keys, which creates a monotonic relation
between Euclidean distances and dot-products. The new analysis results are shown in Figure 1 (down).
We can see that the asymmetric transformation would only exacerbate the imbalance problem, with
respect to both query-key ratios and bucket sizes. Therefore, we can conclude that the root cause of
the imbalance problem is the mismatch between the query and key distributions, that could be further
magnified by the asymmetric transformation.

3.3 PROPOSED METRIC: ATTENTION UTILITY

The above analysis shows the imbalance problem in ANN-derived hashing strategies. To further
quantify the approximation quality of sparse attention patterns, we utilize the concept of Attention
Biclustering from (Daras et al., 2020), which considers a practical case (Kitaev et al., 2020; Roy et al.,
2021) where all clusters strictly contain the same number of queries and keys:

∀b ∈ [B], |{Qi | hQ(Qi) = b}| = |{Kj | hK(Kj) = b}| = N

B
. (4)

We denote with C the set of all possible assignments in B balanced non-overlapping clusters:
C = {C1, C2, . . . , CT }, where T is the number of possible assignments. We can then define the
attention utility AU of each assignment Ct as:

AU(Ct) =
∑

i,j:(Qi,Kj)∈Ct

Aij , where Ct = {(Qi,Kj)|hCt

Q (Qi) = hCt

K (Kj)}. (5)

The attention utility represents the aggregation of the sparse attention weights in an assignment. As
we should keep as much sparse attention weights as possible to better approximate a full attention
map, attention utility quantifies how well a sparse attention approximates the full one. In fact, we can
show that it is computationally intractable to find the optimal attention utility:
Theorem 1. Finding the assignment that achieves the optimal attention utility, i.e.,

arg max
Ct∈C

AU(Ct) =
∑

(Qi,Kj)∈Ct

Aij (6)

is NP-hard.

This theorem is a corollary of the NP-hardness of Attention Biclustering in (Daras et al., 2020), and it
motivates us to develop a learning-based approach to optimize the attention utility. Notice that similar

4

Published as a conference paper at ICLR 2022

Figure 2: We show the attention utility evaluation of four different sparse attention patterns. For L2H
and LSHs, we assign the queries and keys of first 1024 tokens in the WikiText-103 validation data
into 4 hash buckets. The causal mask is not used when calculating the attention weights.

to other sparse attention models (Kitaev et al., 2020; Roy et al., 2021), the proposed attention utility
metric currently does not take causal masks into consideration. Developing a new metric that can
take arbitrary attention masks into account is left for future work.

To measure the attention utility of ANN-derived sparse attention patterns, we follow (Kitaev et al.,
2020; Daras et al., 2020) and adaptively set hash boundaries to create balanced clusters. The analyzed
models include LSH, LSH with asymmetric transformation (i.e., SMYRF), and our proposed Learning-
to-Hash (L2H) method which will be introduced in the next section. We also calculate the empirical
upper bound by aggregating the attention from each query to its top keys w.r.t dot-products. We
present a box-plot of averaged attention utilities for all 16 Transformer layer in Figure 2. We can see
that the LSH methods obtain significantly less attention utilities than the upper bound or L2H. As a
conclusion, the ANN-derived sparse patterns are arguably sub-optimal when used as hash functions
for sparse attention. We believe this also partially explains why most of these approaches need to
impose extra constraints (e.g. queries and keys are tied or normalized). In the next section, we
propose an alternative choice of the hash functions to tackle this problem.

4 LEARNING-TO-HASH ATTENTION (LHA)

We propose a novel Learning-to-Hash Attention model in this section. The key idea is to learn
separate parameterized hash functions for queries and keys, respectively, thus the sparse pattern in
LHA can be no longer limited to distance-based hash functions such as LSH or online k-means and
adapt to the mismatch of query and key distributions. Besides, we empirically find that LHA can be
used as a plug-and-play replacement for dense attention layers, which makes LHA applicable to the
wide range of pre-trained Transformer models.

4.1 LEARNING-TO-HASH FOR SPARSE ATTENTION

We first remind the readers of our definitions of the sparse attention:

Sparse-Attention(Qi,K, V) =
∑

j:hQ(Qi)=hK(Kj)

ĀijVj (7)

where hK , hQ : Rdh 7→ [B] are the hash functions for keys and queries, and Āij ∝ Aij is the re-
normalized attention weights such that ∀i,

∑
j:hQ(Qi)=hK(Kj)

Āij = 1. Inspired by the Learning-to-
Hash methods (Wang et al., 2017), we implement the learnable hash functions hK , hQ : Rdh 7→ [B]
by defining parameterized functions HQ, HK : Rdh 7→ RB , such that:

hQ(Qi) = arg max
b∈{1,...,B}

[HQ(Qi)]b , hK(Kj) = arg max
b∈{1,...,B}

[HK(Kj)]b , (8)

where HQ and HK can be any parameterized functions such as MLPs.

Notice that our formulation is a generalization of the non-learnable sparse attention mechanisms
in several previous content-based sparse attention models. To reproduce the symmetric LSH-based
sparse attention scheme in Reformer (Kitaev et al., 2020) or the mini-batch k-means scheme in
Routing Transformer (Roy et al., 2021), we can set:

HQ(x) = HK(x) = x[R;−R] or HQ(x) = HK(x) = xµ (9)

5

Published as a conference paper at ICLR 2022

where R ∈ Rdh×B
2 is a random matrix, [·; ·] denotes the concatenation of two vectors, and µ ∈

Rdh×B are the exponentially moving averaged cluster centroids shared by keys and queries. The
asymmetric transformation in SMYRF (Daras et al., 2020) can also be reproduced by:

HQ(x) = 1

(⌊
F (x) · a + b

r

⌋)
, HK(x) = 1

(⌊
G(x) · a + b

r

⌋)
(10)

where a is a random vector, b is a random scalar, r is a scalar parameter, 1(·) : [B] 7→ {0, 1}B is the
one-hot operation, and F (·) and G(·) are defined as in Equation 3.

4.2 OPTIMIZATION OBJECTIVE FOR LEARNING-TO-HASH

Previous ANN-derived sparse attention models construct their hash functions by either randomization
or k-mean clustering. In contrast, our hash functions are fully learnable. However, as we use the
arg max operation to get the hashing buckets, the parameterized projections in our hash functions
cannot be trained in an end-to-end manner. To resolve this issue, we guide the training of our learnable
hash functions directly by our proposed attention utility (See Equation 5). Notice that the attention
utility of each query Qi can be written as

∑
j:hQ(Qi)=hK(Kj)

Aij . We first calculate the possible
attention utilities ψ(i) that query Qi can obtain when allocated to all B hash buckets:

ψ(i) =

 ∑
j:hK(Kj)=0

Aij , · · · ,
∑

j:hK(Kj)=B−1

Aij

 (11)

Ideally, our hash function would allocate Qi to the bucket that maximize the attention utility, such
that Qi can attend to the most salient keys:

hQ(Qi) = arg max
b∈[Nb]

ψ
(i)
b = arg max

b∈[B]

∑
hK(Kj)=b

Aij (12)

To achieve this goal, since ψ(i) is naturally a normalized categorical distribution, we can simply
convert HQ(Qi) into a distribution and use the KL divergence between the predicted distribution
softmax(HQ(Qi)) and the desired distribution ψ(i) as the optimization objective:

LQi
= KL(ψ(i)‖softmax(HQ(Qi))) (13)

On the other hand, the possible attention utilities ψ′(j) that a key Ki obtains when allocated to all B
buckets can be written as:

ψ′(j) =

 ∑
i:hQ(Qi)=0

Aij , · · · ,
∑

i:hQ(Qj)=B−1

Aij

 (14)

While ψ′(j) is no longer a normalized distribution, we can normalize it and similarly define the
optimization objective LKj

also as a KL divergence.

During the training stage, our final optimization objective is a convex combination of the task-specific
objective and the learning-to-hash objectives (i.e., {LQi

} and {LKj
}) for all queries and keys. Figure

3 in the appendix illustrates the joint training diagram of LHA.

4.3 APPROXIMATE ATTENTION UTILITIES

The remaining problem is how to efficiently computeψ(i) andψ′(j). A naive way requires calculating
the dot products between all query-key pairs withO(N2) complexity. Inspired by the recent advances
in kernelized attention (Katharopoulos et al., 2020; Choromanski et al., 2020; Peng et al., 2021), we
use random Fourier features (Rahimi et al., 2007; Choromanski et al., 2020) to approximate ψ(i) in
an unbiased manner. Let us define φ : Rdh 7→ R2D as the Positive Randomized Features (PRFs)
(Choromanski et al., 2020) such that

E[φ(x) · φ(y)] = exp

(
xTy√
dh

)
(15)

6

Published as a conference paper at ICLR 2022

We can approximate ψ(i) with the following formula:

ψ
(i)
b =

∑
j:hK(Kj)=b

Aij ∝
∑

j:hK(Kj)=b

exp

(
Qi ·Kj√

dh

)
∝ E

φ(Qi) ·
∑

j:hK(Kj)=b

φ(Kj)

 (16)

for each bucket b ∈ [B]. Since hK(Kj) does not change for the queries, we can simply pre-compute∑
j:hK(Kj)=b φ(Kj) once to save computation, which reduces the complexity of computing {ψ(i)}

for all queries from O(N2) to O(N · B) ≈ O(N1.5). The attention utilities for keys ψ′(j) can be
efficiently approximated in a similar way4:

ψ
′(i)
b =

∑
i:hQ(Qi)=b

Aij ∝∼ E

 ∑
j:hQ(Qi)=b

φ(Qi)

φ(Qi) ·
∑N

j=1 φ(Kj)

 · φ(Kj)

 (17)

4.4 IMPLEMENTATION DETAILS

Practical content-based sparse attention models require that each hash bucket has the same size,
which is crucial in terms of computational efficiency on modern hardwares.Therefore, we follow Roy
et al. (2021) and sort the tokens with regard to normalized hash scores, i.e., softmax(HQ(Qi)) and
softmax(HK(Ki)), in each bucket. The hash bucket membership is then determined by the top-k
threshold, where k = N

B is the bucket size. Since such a bucketing strategy no longer guarantees the
validation of attention bi-clustering, as each query or each key can be assigned to zero or more than
one clusters, we further empirically enlarge the hash bucket sizes by

√
2× to increase the recall of

queries and keys. A pseudo-code implementation for LHA can be found in the appendix.

In causally masked attentions, the queries cannot attend to keys behind, as is usually the case in
language modeling. When we use separate hash functions {hQ(Qi)} and {hK(Kj}) for queries and
keys, respectively, it is possible that for some query Qi, there exists no such key Kj in the same
bucket that j ≤ i. This would cause serious numerical instability in our implementation. To tackle
this problem, inspired by Kitaev et al. (2020) and Roy et al. (2021), we tie the key hashes with query
hashes in the case of causal attentions by constructing a joint hash function:

hK(Ki) = hQ(Qi) = arg max
b∈[Nb]

[HQ(Qi)b +HK(Ki)b] (18)

We find that this strategy empirically works better than using other tricks to fix this “no-attention-
target” problem. Our solution is different from Routing Transformer (Roy et al., 2021) or Reformer
(Kitaev et al., 2020), which impose an extra constraint that queries and keys are tied.

5 EXPERIMENTS

In this section, we conduct experiments to verify the effectiveness of our approach on several
benchmark datasets covering language modeling, natural language understanding, and Long-Range-
Arena. Due to the space limitations, the detailed hyper-parameter settings are presented in the
appendix.

5.1 LANGUAGE MODELING

Wikitext-103 (Merity et al., 2016) is a large-scale dataset for testing long term dependencies in
word-level language models. It contains 103M training tokens from 28K articles, with an average
length of 3.6K tokens per article, which allows testing the ability of long-term dependency modeling.
We use this dataset as a probe dataset to perform various ablations to tease apart the effect of various
hyper-parameter choices on the model performance.

We follow the base setting of the state-of-the-art Transformer-XL (Dai et al., 2019) model, which
contains 16 Transformer layers with 10 heads per layer. For local attentions, we use the relative
positional encoding (Dai et al., 2019), while for non-local attentions (i.e., LSH or LHA), we use the

4Please refer to (Choromanski et al., 2020) for how PRFs stabilize attention renormalization.

7

Published as a conference paper at ICLR 2022

Table 1: Ablation studies on the WikiText-103 validation data in the base setting. Lower perplexity
(PPL) is better. All the models have a total of 16 attention layers and 10 heads. Non-Local (NL, i.e.,
LSH or LHA) layers when present are always added at the top of the model. Attention size denotes
either local window size or hash bucket size. † denotes that the results are taken from Transformer-XL
(Dai et al., 2019).

label NL Heads NL Layers Hash Func. Att. Size #Param Valid PPL Test PPL

Local Transformer
- 0 0 - 768 151M 22.89 -
- 0 0 - 384 151M 23.82 -
- 0 0 - 640 151M 23.09† 24.0†

LSH Transformer

- 10 16 Rand. Linear 384 153M 24.64 -
- 5 16 Rand. Linear 384 153M 23.51 -
- 10 8 Rand. Linear 384 153M 23.76 -
- 5 8 Rand. Linear 384 153M 23.53 -

LHA Transformer

(a) 10 16 Rand. 384 153M 26.05 -
(b) 10 16 Linear 384 153M 24.22 -
(c) 10 16 MLP 384 153M 24.00 -
(d) 5 16 MLP 384 153M 22.79 23.2
(e) 10 8 MLP 384 153M 23.00 -
(f) 5 8 MLP 384 153M 22.84 -

Table 2: Performance of methods per task on the GLUE benchmark, where C and # denote the
number of queries/keys per cluster and hashing rounds, respectively. † denotes that the results are
taken from their original papers.

C CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B AVG
RoBERTa-base - - 60.9 87.6 88.7 92.7 91.6 68.5 94.5 90.0 84.3
SMYRF† 2 16 58.9 82.3 85.7 89.5 89.3 64.5 93.1 87.8 81.4
SMYRF† 2 32 58.8 85.0 87.7 91.1 89.7 68.6 93.2 89.7 83.0
FCA† - - 59.8 79.4 43.6 74.6 89.4 49.8 94.4 78.9 71.2
i-FCA† - - 60.1 88.0 87.3 93.0 91.5 70.4 94.7 90.0 84.4

LSH 1 11 61.5 86.3 88.7 91.1 90.2 68.0 93.3 88.5 83.5
LSH 1 22 61.5 86.8 89.7 91.9 90.8 68.4 93.9 88.7 84.0
LSH 1 45 61.8 87.5 88.7 92.7 91.2 68.1 94.0 89.4 84.2
LHA 1 11 61.2 85.7 89.1 91.3 90.5 68.0 93.7 89.0 83.6
LHA 1 22 62.0 86.8 88.0 92.4 91.1 68.6 94.8 89.6 84.2
LHA 1 45 62.3 87.7 89.1 92.8 91.4 68.5 94.6 89.5 84.5

per-layer sinusoidal absolute positional encoding (Vaswani et al., 2017). The LSH Transformer is
implemented in our code base by simply replacing the learnable hash functions by random projections.
A sequence length of 1536 is used in both training and evaluation stages for our models. In ablation
study, we vary 1) the type of non-local attention heads, 2) the type of learnable hash function
in LHA (i.e., linear or two-layer MLP), 3) the number of non-local attention heads, and 4) the
number of non-local attention layers. We also consider a baseline where the hash functions generate
content-independent random numbers. The experimental results are presented in Table 1.

From the table, we can see that a smaller attention size (384 compared to 768 in local Transformer)
would decrease the model performance by 0.9, while adding LSH or LHA heads can improve the
performance by 0.3 and 1.0, respectively. Surprisingly, we find that local Transformer is a very strong
baseline for language modeling that outperforms a pure LHA Transformer. We can also see that a
two-layer MLP works better than a linear function as the learnable hash functions in LHA. The best
performance is achieved when we set half of the heads to local attention and the other half to non-local
LHA for each layer. Finally, we can see that LHA consistently underperforms the untrainable LSH
counterparts under four different settings. For the test set evaluation, we use the best setting from
the ablation study. We can see that the proposed LHA model outperforms Transformer-XL, which
further validate that LHA can help modeling long-term dependency for language modeling tasks.

5.2 NATURAL LANGUAGE UNDERSTANDING

To show the ability of our model to approximate arbitrarily complicated attention distributions, we
evaluate our proposed method on the approximation of RoBERTa model (Liu et al., 2019) on the

8

Published as a conference paper at ICLR 2022

Table 3: Accuracy on LO, IMDb, AAN, and Image in Long Range Arena benchmark. Best and second
best model per task is shown in boldface and underlined. Throughput is evaluated on IMDb and
relative to the vanilla transformer’s. * and † denote being statistically significantly better (p < 0.05
in one-tail proportion test) than vanilla Transformer and the second best model. ‡ denotes that the
throughput comparison are run on a single NVIDIA Tesla V100 32GB GPU, while previous results
(Tay et al., 2020c) are reported on 4× 4 TPU V3 chips. ♥, ♦, and ♠ denotes low-rank/kernelized
attention, content-based sparse attention, and location-based sparse attention, respectively.

Accuracy (↑) Throughput (↑)
Model LO IMDb AAN Image Avg. 1K 2K 3K 4K

Vaswani et al. (2017) - Transformer 36.4 64.3 57.5 42.4 50.2 1.0 1.0 1.0 1.0

Wang et al. (2020b) - Linformer♥ 35.7 53.9 52.3 38.6 45.1 1.2 1.9 3.7 5.5
Kitaev et al. (2020) - Reformer♦ 37.3 56.1 53.4 38.1 46.2 0.5 0.4 0.7 0.8
Child et al. (2019) - Sparse Trans.♠ 17.1 63.6 59.6 44.2 46.1 - - - -
Tay et al. (2020b) - Sinkhorn Trans.♦ 33.7 61.2 53.8 41.2 47.5 1.1 1.6 2.9 3.8
Tay et al. (2020a) - Synthesizer♠ 37.0 61.7 54.7 41.6 48.8 1.1 1.2 2.9 1.4
Zaheer et al. (2020) - BigBird♠ 36.0 64.0 59.3 40.8 50.0 0.9 0.8 1.2 1.1
Katharopoulos et al. (2020) - Linear Trans.♥ 16.1 65.9 53.1 42.3 44.4 1.1 1.9 3.7 5.6
Choromanski et al. (2020) - Performer♥ 18.0 65.4 53.8 42.8 45.0 1.2 1.9 3.8 5.7
Peng et al. (2021) - RFA♥ 36.8 66.0 56.1 - - 1.1 1.7 3.4 5.3

Ours - LHA♦ 37.9 66.8∗† 62.8∗† 45.2∗ 53.1 1.0‡ 1.1‡ 1.3‡ 1.5‡

GLUE (General Language Understanding Evaluation) dataset (Wang et al., 2018). Following the
common practice, the maximum sequence length is set to 128. To show the effectiveness of LHA,
we choose two competitive baselines in literature: SMYRF (Daras et al., 2020) and Fast Clustered
Attention (FCA) (Vyas et al., 2020). We also produce an LSH-based sparse attention baseline. We
use a pure LHA model similar to variant (c) in Section 5.1.

We summarize the performance per task in Table 2. We report accuracy for all tasks except STS-B,
where we report Pearson correlation. From the table, we can see that LHA performs as good as full
attention for all the GLUE tasks, and that LHA outperforms all other methods in the average GLUE
score, and has a smaller computational costs in its sparse attention part.

5.3 LONG-RANGE-ARENA BENCHMARK

Long-Range-Arena (LRA) benchmark (Tay et al., 2020c) is a recently proposed benchmark focused
on evaluating model quality under long-context scenarios for Transformer variants. We follow the
apples-to-apples setting5 of LRA benchmark and compare our method against other efficient attention
variants. We use an LHA/local hybrid variant similar to variant (d) in Section 5.1.

We consider the tasks of ListOps (Nangia & Bowman, 2018) (LO), byte-level IMDb reviews text
classification (Maas et al., 2011) (IMDb), byte-level document retrieval on ACL Anthology Network
(AAN) (Radev et al., 2013), and CIFAR10 (Krizhevsky et al., 2009) image classification on sequences
of pixels (Image). The results are shown in Table 3 and the brief descriptions of the compared
baselines can be found in Section 2. From the table, we can see that LHA achieves consistent
improvements over previous efficient attention models.

6 CONCLUSION & FUTURE WORK

In this paper, we address the limitations of ANN-based sparse attention methods and propose the
Learning-to-Hash Attention (LHA) as our new solution. Specifically, LHA leverages separate
learnable hash functions for queries and keys, respectively, and utilizes kernelized techniques for
efficient approximation of attention utilities. The experiments on language modeling, natural language
understanding, text classification, and image classification demonstrated the effectiveness of LHA.
For future work, we would like to validate the effectiveness of LHA model on much larger language
modeling datasets, such as PG-19 (Rae et al., 2019).

5www.github.com/google-research/long-range-arena#apples-to-apples-setting

9

www.github.com/google-research/long-range-arena#apples-to-apples-setting

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENT

This research used Perlmutter supercomputer of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231 using NERSC award NERSC
DDR-ERCAP0022110.

ETHICS STATEMENT

This work proposed a more effective sparsification pattern for the attention mechanisms. We believe
our proposed model as well as the code to be released can most benefit the field of language processing,
with the potential to benefit other fields involving long sequence modeling. However, it is know
that Transformers are also vulnerable to the adversarial attacks (Michel et al., 2019). Since one of
the advantage of our model is to re-use a pre-trained Transformer model, the effective adversarial
perturbations on the pre-trained model could also be effective in our model.

REPRODUCIBILITY STATEMENT

• We provide a GitHub repository6 for our source code. The hyper-parameters are described in details
in the appendix. We also provide a pseudo-code implementaion of our model in the appendix.

• All the datasets used in the experiments and the corresponding pre-processing scripts can be
found online, including language modeling7, GLUE benchmark8, Long-Range-Arena benchmark9,
and time series forecasting10. The pre-trained model we used (i.e., RoBERTa) is also publically
available11.

REFERENCES

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham,
Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. Etc: Encoding long and structured
inputs in transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 268–284, 2020.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and Skye Wanderman-Milne. Jax: composable transformations of python+ numpy programs.
Version 0.1, 55, 2018.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer
Vision, pp. 213–229. Springer, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations,
2020.

6https://github.com/Edward-Sun/Learning-to-Hash-Attention
7https://github.com/kimiyoung/transformer-xl
8https://www.tensorflow.org/datasets/catalog/glue
9https://github.com/google-research/long-range-arena

10https://github.com/zhouhaoyi/Informer2020
11https://huggingface.co/roberta-base

10

https://github.com/Edward-Sun/Learning-to-Hash-Attention
https://github.com/kimiyoung/transformer-xl
https://www.tensorflow.org/datasets/catalog/glue
https://github.com/google-research/long-range-arena
https://github.com/zhouhaoyi/Informer2020
https://huggingface.co/roberta-base

Published as a conference paper at ICLR 2022

Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
2174–2184, 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf: Efficient attention
using asymmetric clustering. arXiv preprint arXiv:2010.05315, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for jax. Version 0.3, 3,
2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International Conference on Machine
Learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198,
2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Chaitanya Malaviya, Pedro Ferreira, and André FT Martins. Sparse and constrained attention for
neural machine translation. arXiv preprint arXiv:1805.08241, 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Paul Michel, Xian Li, Graham Neubig, and Juan Miguel Pino. On evaluation of adversarial perturba-
tions for sequence-to-sequence models. arXiv preprint arXiv:1903.06620, 2019.

Nikita Nangia and Samuel R Bowman. Listops: A diagnostic dataset for latent tree learning. arXiv
preprint arXiv:1804.06028, 2018.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

11

Published as a conference paper at ICLR 2022

Dragomir R Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-Jbara. The acl
anthology network corpus. Language Resources and Evaluation, 47(4):919–944, 2013.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Ali Rahimi, Benjamin Recht, et al. Random features for large-scale kernel machines. In NIPS,
volume 3, pp. 5. Citeseer, 2007.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53–68, 2021.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. arXiv preprint arXiv:1905.07799, 2019.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention in transformer models. arXiv preprint arXiv:2005.00743, 2020a.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
International Conference on Machine Learning, pp. 9438–9447. PMLR, 2020b.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020c.

Marcos Treviso, António Góis, Patrick Fernandes, Erick Fonseca, and André FT Martins. Predicting
attention sparsity in transformers. arXiv preprint arXiv:2109.12188, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Apoorv Vyas, Angelos Katharopoulos, and François Fleuret. Fast transformers with clustered
attention. Advances in Neural Information Processing Systems, 33, 2020.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. A survey on learning to hash. IEEE
transactions on pattern analysis and machine intelligence, 40(4):769–790, 2017.

Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun Chen, Yuwei Fang, Siqi Sun, Yu Cheng, and
Jingjing Liu. Cluster-former: Clustering-based sparse transformer for long-range dependency
encoding. arXiv preprint arXiv:2009.06097, 2020a.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020b.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, Anthony Moi,
Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, 2020.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. arXiv preprint arXiv:2106.13008, 2021.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nystr\" omformer: A nystr\" om-based algorithm for approximating self-attention.
arXiv preprint arXiv:2102.03902, 2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

12

Published as a conference paper at ICLR 2022

Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux utility for resource man-
agement. In Workshop on job scheduling strategies for parallel processing, pp. 44–60. Springer,
2003.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer
sequences. arXiv preprint arXiv:2007.14062, 2020.

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan, and Weizhu Chen.
Poolingformer: Long document modeling with pooling attention. arXiv preprint arXiv:2105.04371,
2021.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. arXiv preprint
arXiv:2012.07436, 2020.

13

Published as a conference paper at ICLR 2022

Queries Keys Learnable Hash
Functions

Generate attention weights

Generate sparse patterns

Optimized towards
down-stream tasks

Optimized towards
attention utilities

Figure 3: The joint training diagram of LHA, where queries and keys generate attention weights to
train the learnable hash functions, while the hash functions generate the sparse attention patterns, on
which queries and keys are trained towards down-stream tasks.

A EXPERIMENTAL SETTINGS

A.1 RE-EXAMINATION OF CONTENT-BASED SPARSE ATTENTION

For analysis, we pre-trained a 16-layer and 10-head Transformer on the WikiText-103 language
modeling benchmark (Merity et al., 2016). A per-layer sinusoidal absolute positional encoding
(Vaswani et al., 2017) is injected to the queries and keys before self-attention.

For Figure 1, we analyzed the queries and keys for the first 1024 tokens in the WikiText-103 validation
data, and set the number of LSH buckets B = 4. We apply LSH to all the 10 attention heads in the
3rd Transformer layer. For Figure 2, we follow the same experimental setting.

A.2 LEARNING-TO-HASH

During the training stage, our final optimization objective L is a convex combination of the task-
specific objective Ltask (e.g., cross-entropy loss in language modeling) and learning-to-hash objec-
tives for all keys and queries, i.e., {LQi

} and {LKj
} (See equation 13).

L = (1− λ)Ltask +
λ

N · L ·H

N∑
i=1

L∑
h=1

H∑
h=1

(LL,H
Qi

+ LL,H
Kj

) (19)

where λ, N , L, H denote the loss coefficient, the sequence length, the number of attention layers,
and the number of attention heads per layer, respectively. Empirically, we set Λ = 0.05 and found it
work well across different tasks.

A.3 LANGUAGE MODELING

We use the base setting of Transformer-XL (Dai et al., 2019) in our experiments, which consists of
16 Transformer layers. For each layer, the hidden size is set to 410, and the number of attention heads
is set to 10. The dimension of feed-forward layer is set to 2100. All codes are implemented based on
Flax (Heek et al., 2020) in JAX (Bradbury et al., 2018). The dropout ratio is set to 0.2. The batch
size is set to 32. We use AdamW (Loshchilov & Hutter, 2017) as the optimizer, and set (β1, β2) to
(0.9, 0.999). The peak learning rate is set to 3.5e-4. The model is trained for 20k steps with a 2k-step
warm-up stage with a cosine learning rate decay (Loshchilov & Hutter, 2016).

A.4 NATURAL LANGUAGE UNDERSTANDING

We use the base setting of RoBERTa (Liu et al., 2019) in our experiments, which consists of 12
Transformer layers. For each layer, the hidden size is set to 768, and the number of attention heads is
set to 12. The dimension of feed-forward layer is set to 3072. The RoBERTa pre-trained checkpoint is
taken from the Transformers (Wolf et al., 2020) library. We use AdamW (Loshchilov & Hutter, 2017)
as the optimizer, and set (β1, β2) to (0.9, 0.98). To fine-tune the pre-trained models, we search the
optimization hyper-parameters in a search space including different batch sizes (16/32/48), learning
rates ((1-5) * 1e-5), and the number of epochs (3-5). A 10% warm-up schedule and linear learning
rate decay (Devlin et al., 2018) is applied.

14

Published as a conference paper at ICLR 2022

Table 4: Univariate long sequence time series forecasting results on two datasets (lower is better).
†denotes that the results are taken from (Zhou et al., 2020).

Models Ours - LHA Informer† LogTrans† Reformer† DeepAR† Prophet†
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h 1

24 0.060 0.191 0.098 0.247 0.103 0.259 0.222 0.389 0.107 0.280 0.115 0.275
48 0.088 0.236 0.158 0.319 0.161 0.322 0.284 0.445 0.162 0.327 0.168 0.330

168 0.158 0.328 0.183 0.346 0.187 0.355 1.522 1.191 0.239 0.422 1.224 0.763
336 0.219 0.399 0.222 0.387 0.230 0.398 1.860 1.124 0.445 0.552 1.549 1.820
720 0.265 0.437 0.269 0.435 0.273 0.463 2.112 1.436 0.658 0.707 2.735 3.253

E
T

T
m

1

24 0.016 0.102 0.030 0.137 0.065 0.202 0.095 0.228 0.091 0.243 0.120 0.290
48 0.021 0.112 0.069 0.203 0.078 0.220 0.249 0.390 0.219 0.362 0.133 0.305
96 0.054 0.180 0.194 0.372 0.199 0.386 0.920 0.767 0.364 0.496 0.194 0.396

288 0.121 0.277 0.401 0.554 0.411 0.572 1.108 1.245 0.948 0.795 0.452 0.574
672 0.403 0.572 0.512 0.644 0.598 0.702 1.793 1.528 2.437 1.352 2.747 1.174

A.5 LONG-RANGE-ARENA BENCHMARK

We follow the apples-to apples setting12 of LRA benchmark and compare our method against other
efficient attention variants. Specifically, we use a 4-layer Transformer with 256 hidden size and 1024
feed-forward layer size for the IMDb text classification task(Maas et al., 2011), a 4-layer Transformer
with 256 hidden size and 1024 feed-forward layer size for the ListOps task(Radev et al., 2013), a
4-layer Transformer with 128 hidden size and 512 feed-forward layer size for the document retrieval
task(Nangia & Bowman, 2018), and a 4-layer Transformer with 128 hidden size and 64 feed-forward
layer size for the CIFAR10 image classification task(Krizhevsky et al., 2009). The models are trained
for 20k steps with a 2k-step warm-up stage with a cosine learning rate decay (Loshchilov & Hutter,
2016).

A.6 TIME SERIES FORECASTING

We follow the experimental setup of Informer (Zhou et al., 2020). Specifically, the input length of
recurrent component is chosen from {24, 48, 96, 168, 336, 720} for the ETTh1, and chosen from
{24, 48, 96, 192, 288, 672} for the ETTm dataset. The layer of encoder is chosen from {6, 4, 3, 2}
and the layer of decoder is set as 2. The head number of multi-head attention is chosen from {8, 16},
and the dimension of multi-head attention’s output is set as 512.

A.7 COMPUTING INFRASTRUCTURE

All the model training are conducted on a machine with 4 NVIDIA Ampere A100 40GB GPUs and
64 AMD EPYC 7713 64-Core Processor in a Slurm (Yoo et al., 2003) system. The evaluation of the
inference throughput is performed on a stand-alone machine with 1 NVIDIA Tesla V100 32GB GPU.

B ADDITIONAL EXPERIMENTS ON TIME SERIES FORECASTING

We also evaluate our model on time series forecasting tasks. We use the ETT (Electricity Transformer
Temperature) dataset (Zhou et al., 2020), which contains 2-year data from two separated counties in
China. ETTh1 is a dataset for 1-hour-level, while ETTm1 is a dataset for 15-minute-level. Each data
point consists of the target value “oil temperature” and 6 power load features. The train/val/test is
12/4/4 months. The Mean Squared Error (MSE) metric and Mean Average Error (MAE) metric are
used as the evaluation metrics. We use an LHA/local hybrid variant similar to variant (d) in Section
5.1.

In univariate forecasting setting, all the seven features are used as input and “oil temperature” is
the prediction target. The univariate evaluation results can be found in Table 4. We can see that
LHA significantly improve the performance of state-of-the-art for most settings, while slightly
underperforms Informer (Zhou et al., 2020) in two settings of ETTh1 dataset. This verifies the
effectiveness of LHA on time series data.

12www.github.com/google-research/long-range-arena#apples-to-apples-setting

15

www.github.com/google-research/long-range-arena#apples-to-apples-setting

Published as a conference paper at ICLR 2022

Table 5: Multivariate long sequence time series forecasting results on two datasets (lower is better).
†denotes that the results are taken from (Zhou et al., 2020).

Models Ours - LHA Informer† LogTrans† Reformer† LSTnet†
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h 1

24 0.475 0.469 0.577 0.549 0.686 0.604 0.991 0.754 1.293 0.901
48 0.569 0.544 0.685 0.625 0.766 0.757 1.313 0.906 1.456 0.960
168 0.883 0.706 0.931 0.752 1.002 0.846 1.824 1.138 1.997 1.214
336 0.970 0.793 1.128 0.873 1.362 0.952 2.117 1.280 2.655 1.369
720 1.021 0.805 1.215 0.896 1.397 1.291 2.415 1.520 2.143 1.380

E
T

T
m

1

24 0.056 0.191 0.323 0.369 0.419 0.412 0.724 0.607 1.968 1.170
48 0.088 0.236 0.494 0.503 0.507 0.583 1.098 0.777 1.999 1.215
96 0.158 0.328 0.678 0.614 0.768 0.792 1.433 0.945 2.762 1.542
288 0.219 0.399 1.056 0.786 1.462 1.320 1.820 1.094 1.257 2.076
672 0.265 0.437 1.192 0.926 1.669 1.461 2.187 1.232 1.917 2.941

In multivariate forecasting setting, all the seven features are the prediction targets. The multivariate
evaluation results can be found in Table 5. We can see that LHA significantly improve the performance
of state-of-the-art for all settings, which further demonstrates the effectiveness of the proposed LHA
method.

C PROOF

We follow the notations in (Daras et al., 2020). Let CB the set of all possible assignments in B
balanced non-overlapping clusters. A specific assignment is denoted by CBt and there are T possible
such assignments:

CL = {CB1 , CB
2 , ...CBT }. (20)

CBt = {c1, c2, ..., cB} :

{
ci = {Qi

1, ..., Q
i
N
B

,Ki
1, ...,K

i
N
B

} ci ⊆ Q ∪K, ∀i ∈ {1, ..., L}
cx ∩ cy = ∅ ∀cx, cy ∈ CBt

(21)
We have the following lemma, which is referred as the max-mass problem:
Lemma 1. (Daras et al., 2020) The optimization problem:

max
CBt ∈CB

∑
(Qi,Kj)∈CBt

Qi ·Kj (22)

is NP-hard.

The main idea of the proof is to show that solving polynomially the above problem would mean that
we could also solve in polynomial time the 3-DM, which is known to be NP-complete. Please refer
to (Daras et al., 2020) for the detailed constructive proofs. Next, we show how to use this lemma to
prove Theorem 1.

Proof of Theorem 1. Let {Qi} and {Kj} denote the query and key sets that we consider for comput-
ing the attention utility. We can first construct the new query set Q′ and key set K′ such that

Q′i ·K ′j =
eQi·Kj

√
dh

, where Q′i ∈ Q′,K ′j ∈ K′

This can be achieved by applying SVD to the matrix of
(

eQi·Kj√
dh

)
ij

. Next, we construct another query

set Q′′, such that

Q′′i =
Q′i∑n

j=1Q
′
i ·K ′j

The problem of finding the optimal attention utility, i.e.,

arg max
Ct∈C

AU(Ct) =
∑

(Qi,Kj)∈Ct

Aij

16

Published as a conference paper at ICLR 2022

is thus equivalent to the problem in Lemma 1, with Q′′ and K′ as the query and key sets, which is
proven to be NP-hard.

D ALGORITHM

We present a detailed pseudo-code implementation for LHA in Algorithm 1.

Algorithm 1 Single-layer Single-head Learning-to-Hash Attention (LHA)
1: Queries, Keys and Values: Q,K, V ∈ RN×dh

2: Query/Key Hash Functions: HQ, HK

3: Attention Utility Loss Weight: λ
4: if causal mask then
5: Qscore ← softmax(HQ(Q) +HK(K)) . B ×N × dh
6: Kscore ← Qscore

7: else
8: Qscore ← softmax(HQ(Q)) . B ×N × dh
9: Kscore ← softmax(HK(K)) . B ×N × dh

10: W ← N/B . bucket size
11: Qidx ← top-{

√
2W}(Qscore) . B ×N log(N)

12: Kidx ← top-{
√

2W}(Kscore) . B ×N log(N)
13: Q′ ← gather(Q,Qidx) . B ×W × dh
14: K ′ ← gather(K,Kidx) . B ×W × dh
15: V ′ ← gather(V,Kidx) . B ×W × dh
16: A← Q′(K ′)T . B ×W ×W × dh
17: if causal mask then
18: A← mask(A) . B ×W ×W
19: A← softmax(A). . B ×W ×W
20: V ′ ← A · V ′ . B ×W ×W × dh
21: X ← merge(Kidx, V

′) . B ×W × dh
22: ψ = AUQ(Q,K) . B ×N , Equation 16
23: ψ′ = AUK(Q,K) . B ×N , Equation 17
24: LAU = λ ·KL(ψ‖Qscore) + λ ·KL(ψ′‖Kscore)
25: return X,LAU

E A COMPLETE DERIVATION OF THE LHA OBJECTIVE

Let Q,K, V ∈ RN×dh denote the query, key, and value vectors of the attention mechanism, where
N is the sequence length and dh is the hidden size. Let φ : Rdh 7→ R2D be Positive Randomized
Features (PRFs) (Choromanski et al., 2020) such that:

E[φ(x) · φ(y)] = exp

(
xTy√
dh

)

We can approximate the aggregated attention utility (Eq. 5) by:

ψ
(i)
b =

∑
j:hK(Kj)=b

Aij ∝
∑

j:hK(Kj)=b

exp

(
Qi ·Kj√

dh

)
∝ E

φ(Qi) ·
∑

j:hK(Kj)=b

φ(Kj)

17

Published as a conference paper at ICLR 2022

Figure 4: The training dynamics of the KL divergence and negative entropy in LHA for queries and keys.

ψ
′(i)
b =

∑
i:hQ(Qi)=b

Aij =

∑
j:hQ(Qi)=b exp

(
Qi·Kj√

dh

)
∑N

j=1 exp
(

Qi·Kj√
dh

)
∝

E
[
φ(Qi) ·

∑
j:hK(Kj)=b φ(Kj)

]
E
[
φ(Qi) ·

∑N
j=1 φ(Kj)

]
∝∼ E

[
φ(Qi) ·

∑
j:hK(Kj)=b φ(Kj)

φ(Qi) ·
∑N

j=1 φ(Kj)

]

∝ E

 ∑
j:hQ(Qi)=b

φ(Qi)

φ(Qi) ·
∑N

j=1 φ(Kj)

 · φ(Kj)

where ∝∼ denotes that the attention approximation converges under the positive random feature
condition (Katharopoulos et al., 2020). Next, the Learning-to-Hash objectives for each query and
each key can be defined as:

LQi
= KL(ψ(i)‖softmax(HQ(Qi))) (23)

LKi
= KL(ψ′(i)‖softmax(HK(Ki))) (24)

The final optimization objective L is a convex combination of the task-specific objective Ltask (e.g.,
cross-entropy loss in language modeling) and learning-to-hash objectives for all keys and queries in
each attention head for each layer:

L = (1− λ)Ltask +
λ

N · L ·H

N∑
i=1

L∑
h=1

H∑
h=1

(LL,H
Qi

+ LL,H
Kj

) (25)

18

Published as a conference paper at ICLR 2022

Figure 5: The training and inference latency of LHA and softmax attention. The latency is measured on a single
NVIDIA Tesla A100 GPU with a batch size of 1.

Figure 6: We show the histogram of hash bucket statistics for all 16 × 10 = 160 attention heads in the a
pre-trained 16-layer Transformer. For each head, we assign the queries and keys of first 1024 tokens in the
WikiText-103 validation data into 4 LSH buckets. (left) The histogram of the bucket sizes for all 160× 4 = 640
buckets. (right) The histogram of the query-key ratios for all 160 × 4 = 640 buckets. The dashed red lines
denote the optimal case where each hash bucket has the same size and same number of queries and keys.

F TRAINING DYNAMICS

We plot the training dynamics of the KL divergence (i.e., LQ and LK) and the negative entropy of
the bucket-wise attention utilities (i.e., negative entropy of ψ for queries and ψ′ for keys) in Figure 4.
KL divergence is the optimization objective of LHA, while negative entropy measures the diversity
of bucket-wise attention utility. The model we use is a pure LHA model with 16 layers and 10 LHA
heads, trained on WikiText-103 for 6000 steps. Each LHA head has 8 hash buckets. From the plots,
we can see that the values of negative entropy consistently increase during training for both queries
and keys, while the values of KL divergence first increase (due to the increase of the diversity of
bucket-wise attention utility), and then decrease (due to learning-to-hash optimization).

G ADDITIONAL ANALYSIS ON TRAINING & INFERENCE EFFICIENCY

To further analyze the efficiency of the proposed LHA compared to softmax attention, we measure
the latency of LHA and softmax attention for both training and inference stage, varying by sequence
length. Notice that in the inference stage, the LHA model needs not to calculate the learning-to-hash
losses (i.e., the KL divergence terms). We study a single-layer attention, which has 10 attention heads
and the hidden size of 410. Figure 5 illustrates the latency in both training and inference stage for

19

Published as a conference paper at ICLR 2022

softmax attention and LHA with different attention size. We can see that LHA can achieve more
significant speedup when facing longer sequences.

H ADDITIONAL ANALYSIS ON THE BUCKET IMBALANCE ISSUES

To further analyze how the bucket imbalance issues are alleviated by the proposed LHA, we plot the
histograms of bucket sizes and query-key ratios for all 16× 10 = 160 attention heads in a pre-trained
Transformer. The results are shown in Figure 6. We can see that learning-to-hash attention (l2h) has
more buckets close to the optimal bucket size (i.e., 512) and has more balanced query-key ratios for
hash buckets.

Notice that to compare the statistics of the bucket size and query-key ratios between LSH and LHA,
we fine-tune learnable hash functions for the same pre-trained Transformer. Notice that in this
experiment, we directly use the highest-ranked bucket as the hash bucket for each query and key,
instead of using a token sorting strategy (Roy et al. 2021) to maintain the same bucket sizes. When
calculating the query-key ratios, we do not count the buckets which have no queries or keys.

20

	Introduction
	Related Work
	Re-examination of Content-based Sparse Patterns
	Preliminary
	Bucket Imbalance Issues
	Proposed Metric: Attention Utility

	Learning-to-Hash Attention (LHA)
	Learning-to-Hash for Sparse Attention
	Optimization Objective for Learning-to-Hash
	Approximate Attention Utilities
	Implementation Details

	Experiments
	Language Modeling
	Natural Language Understanding
	Long-Range-Arena Benchmark

	Conclusion & Future Work
	Experimental Settings
	Re-examination of Content-based Sparse Attention
	Learning-to-Hash
	Language Modeling
	Natural Language Understanding
	Long-Range-Arena Benchmark
	Time Series Forecasting
	Computing Infrastructure

	Additional Experiments on Time Series Forecasting
	Proof
	Algorithm
	A Complete Derivation of the LHA Objective
	Training Dynamics
	Additional Analysis on Training & Inference Efficiency
	Additional Analysis on the Bucket Imbalance Issues

