Challenges in Region-Specific Image Captioning: A Deep Learning Approach

Anonymous ACL submission

Abstract

Region-specific image captioning is the task of generating a caption from an image such that the caption is about the specific region in that image. This paper describes the challenges involved in region-specific image captioning and provides several methods to utilize the region-specific features to enhance the quality of the captions in addition to utilizing the features from the whole image. Our experiments on real-world data sets demonstrate that generating region-specific captions is challenging even after utilizing the information specific to the region. We analyze the variables impacting the quality of the captions which include the bounding box size and the region-specific feature extractor.

1 Introduction

Image Captioning is the process of automatically describing an image with one or more natural language sentences (Hrga and Ivašić-Kos, 2019; Bernardi et al., 2016). It is a fundamental task related to a generic or specific image; and with the advent of deep neural networks, this area has made significant progress (Karpathy and Fei-Fei, 2015). The image captioning technology helps to create an applications such as: i) automation and acceleration of the close captioning process for digital content production; ii) analysis of images and automatically generated rich and detailed attributes for online catalogs; and iii) supportive applications for the visually impaired people (Makav and Kılıç, 2019; Wang et al., 2020).

The neural encoder-decoder model has been found to be effective in image caption generation—where the encoder encodes the input image into a compact representation and the decoder transforms this representation into natural language describing the image (Pedersoli et al., 2017). Quite often, a specific region (containing one or more objects) is central to the image, and thus, is required to be described through the captioning process rather than focusing the entire image for the same. Although the existing models perform well at describing the whole image; their performance towards describing a part of the image or generating captions for a given specific region is relatively poor. If a region is cropped from the image and then subjected to the process of caption generation, it may result in poor captions as a single object (small region) may not be able to generate significant features towards the caption generation process. Also, if the selected region happens to be very small, it may require explicit resizing or padding prior to encoding its features. This process may as well result in poor quality features. The major challenge lies in the fact the generating meaningful captions for the part of

English Text: the snow is white. Hindi Text: बफर्सफेद है
Malayalam Text: സ്ഫീദാണ്
Gloss: Snow is white
an image (such as red bounding box in Fig 1) requires capturing the context of the whole image. For example, in Fig 1, it is difficult to predict “snow” for the region without considering the context from the whole image. The major motivation of our work is to address the issue of generating captions for a given region selecting relevant features from the whole image.

In this work, we propose a novel approach for generating region-specific captions through the fusion of features of the given region and features computed over the entire image. We demonstrate that a concatenation of weighted combination of these two sets of image features is a simple and effective mechanism to generate region-specific captions for an image. The attention-based LSTM is used to obtain the captions from fused features. The proposed approach was tested in multilingual (English, Hindi, and Malayalam) scenarios. Additionally, our analysis shows that the proposed approach is robust to the size or dimensions of the specific region of interest.

The major contribution of our work includes:

- Highlight the issues involved in region-specific image captioning and the existing evaluation metrics.
- Propose a novel approach to build encoder-decoder model for captioning using the image-level and region-specific features.
- Discuss the benefits and possible NLP applications using the proposed approach.

2 Related Work

In (Li et al., 2017), Li et al. proposed global-local attention (GLA) framework by integrating local representation at object-level with global representation at image-level through an attention mechanism. The proposed approach performed state-of-the-art performance on the MS-COCO dataset based on automatic evaluation metrics. A geometric attention-based model for image captioning which incorporates information about the spatial relationships between input detected objects through geometric attention has been proposed in (Herdade et al., 2019). A dense captioning model proposed by Johnson et al. (2016) to describe the regions of an image that is close to our work but our dataset has a single region with its caption is available. Nakayama et al. (Nakayama et al., 2020) proposed an English-to-Japanese multimodal corpus F30kEnt-JP with many-to-many phrase-to-region linking aiming to promote multilingual image captioning and multimodal machine translation.

Region-specific Image Captioning Although much work has been done in image caption generation few researchers tried to generate a caption for a given specific region as input. For region-specific Hindi caption generation using the Hindi Visual Genome (HVG) dataset (Parida et al., 2019), (Meetei et al., 2019) used VGG16 for feature extraction and fed to RNN model with beam search. Their model obtained a very low BLEU score result of 2.59 on the evaluation test and 0 on the challenge test. The HVG dataset has a single reference caption available for a specific region for evaluation and the challenge test harder (consisting of many ambiguous words in English selected using a semi-automatic approach) compared to the evaluation test set due to which many researchers obtained very low BLEU (Papineni et al., 2002) score on this dataset on automatic evaluation metric though comparatively well based on human evaluation (Laskar et al., 2019; Meetei et al., 2019; Parida et al., 2020; Laskar et al., 2020; Nakazawa et al., 2019, 2020; Kaur and Josan, 2020). The HVG dataset serves in the Workshop on Asian Translation (WAT)\(^3\) for the Multimodal image captioning task (Hindi) since 2019. The task includes the generation of “Hindi” captions for the given image, a region, and its captions in Hindi as shown in the Figure 1. The evaluation scores by the WAT participants on the HVG dataset for the “Hindi caption” task are summarized in the table Table 1.

3 Proposed Method

The task of captioning a complete image has recently been studied by several researchers (Yang and Okazaki, 2020; Yang et al., 2017; Lindh et al., 2018; Stanňute and Šešok, 2019;
Miyazaki and Shimizu, 2016; Wu et al., 2017). However, generating a caption for a specific region in the image is non-trivial. Most of the proposed architectures for the generation of caption for complete images consist of two modules: an image-based feature extractor, and a language-based model that transforms image features (or embeddings) into a sequence of natural words. A naive method of obtaining captions for a specific region in an image is to train an existing image caption network by providing only the cropped region as input. This method, however, does not consider the context or semantic relationship of a specific region with its surroundings (or the entire image). The caption is likely to be more meaningful when the context is well-captured and also incorporated in the generation of captions. Therefore, the features of the entire image essentially play an important role in shaping up the captions of its specific region. With these objectives, we propose the caption generation architecture that consists of a feature fusion module in addition to the image-based encoder and two variants of LSTM-based decoder. The overall architecture is provided in Fig. 2a. The details of each block are described below.

Image Encoder: Several recent methods of image caption generation have advocated the use of deep CNNs as feature extractors for images (Xu et al., 2015). A typical deep CNN consists of several layers or blocks of convolution (conv) and pooling layers, followed by one or more fully connected layers. The outputs of final (or pre-final) conv layers represent complex features from images learned hierarchically. These features are learned over local small regions (also known as receptive fields), and the overall receptive field expands as the features move to higher conv layers. The expansion is primarily due to pooling and conv (through kernel and stride values) operations—both of which preserve the relative spatial relations. Therefore, we can nominally correlate the subset of features at the final conv layer with the spatial region in the input image. Here, the term subset is used with reference to spatial dimensions of the output of the corresponding conv layer; whereas the channel (or depth) dimension remains unaltered. We use this simple idea to obtain the features of a region through the ROI Pooling mechanism. Let $\mathbf{F} \in \mathbb{R}^{MNC}$ be the features of the final conv layer of a pre-trained image CNN where C represents the number of channels or maps, and M, N are the spatial dimensions of each feature map. For a given input image dimensions, we compute the scaling factors in x and y dimensions from the knowledge of (M, N), and thus, also compute the corresponding coordinates of the region bounding box in \mathbf{F}, say (m, n). This procedure helps extract a subset of image features, $\mathbf{F}_s \in \mathbb{R}^{mnC}$ that predominantly consists of features from the region of interest. The subset \mathbf{F}_s is obtained through the region of interest (RoI) pooling (Girshick, 2015). It should be noted that the dimensions of the input image, as well as the bounding box, are not constant; and therefore, the spatial dimensions of \mathbf{F}_s also vary for every image. To bring consistency in region features, we apply spatial pooling with specific stride (≥ 1) values. However, we do not modify the channel dimensions of \mathbf{F}_s. The final features, thus obtained, are linearized to form a single column vector. We denote the region-subset features as S_{feat}. The features of the complete image are nothing but \mathbf{F}. We apply spatial pooling on this feature set to reduce their dimensionality, and obtain the linearized vector of full-image features denoted as I_{feat} in the subsequent discussions.

Fusion Module: To generate efficient and meaningful captions for a region of the image,
we need to consider the features of the region S_{feat} along with the features of the entire image I_{feat}. The combining of feature vectors is crucial in generating descriptions for the region. The region-level features capture details of the region (objects) to be described; whereas image-level features provide an overall context. Therefore, a concatenated form of both feature vectors is an obvious yet effective choice for the input (f) to the decoder. A simple concatenation assigns equal weightage to both features, S_{feat} and I_{feat}; which may not necessarily result in captions focused on the intended region. In this work, we investigate an idea of the concatenation of weighted features from region and image for region-specific caption generation. The fused feature, f, can be represented as:

$$f = [\alpha S_{\text{feat}}; (1 - \alpha) I_{\text{feat}}]$$

(1)

where α represents the weightage parameter in $[0.50, 1]$. Although α can theoretically be as low as zero (which indicates discarding the region-level features), we consider only the range where S_{feat} receives equal or higher weightage than I_{feat} resulting in higher importance to the region over its surroundings for the present task. When α is set to 0.50, both feature vectors receive equal weightage, which is akin to representation, before feeding them to the decoder. For $\alpha = 0.66$, the region-level features are weighted twice as high as the entire image-level features. At another extreme with α equal to one, the captions are generated using only region-level features, and the image-level features are discarded.

The weighing of a feature vector simply scales the magnitude of the corresponding vector without altering its orientation. Unlike the fusion mechanisms based on weighted addition, we do not modify the complex information captured by the features (except for scale); however, its relative importance with respect to the other set of features is adjusted for better caption generation. The fused feature f with the dimensionality of the sum of both feature vectors are then fed to the LSTM-based decoder.

LSTM Decoder: In the proposed approach, the encoder module is not trainable, it only extracts the image features however the LSTM decoder is trainable. We used LSTM decoder using the image features for caption generation using greedy search approach (Soh). We used the cross-entropy loss during decoding (Yu et al., 2019).

Attention-LSTM Decoder For the task of region-based caption generation, the region to focus on is known a priori. Therefore, the requirement for deciding which parts to focus on most (which is what an attention module generally does in a decoder) is apparently not critical. However, it would be useful to learn which components (subregion or whole image) to focus on and based on this generate the next token conditioned on the previous token and the set of subregion and the image features. Thus, we employ an attention-based decoder that generates each token by first decid-
ing which component to focus on using an attention module (Bahdanau et al., 2014). The attention module takes as input the two image feature vectors, \(S_{\text{feat}} \) and \(I_{\text{feat}} \), and the last hidden state \(h_t \) of the LSTM and computes the context vector \(c_t \) which is then concatenated to the input of the LSTM in the previous time step \(w_{t-1} \) to generate \(w_t \). This leads to the modified decoder architecture as shown in Fig. 2b whereas the encoder and fusion module from original architecture (Fig 2a) remain unchanged. The process of attention-based decoding is outlined below. Let \(W_1, W_2, V \) and \(W \) be trainable weight matrices. First, the hidden state \(h_t \) is used to obtain \(s_t \) and \(i_t \) for the subregion and the image respectively.

\[
\begin{align*}
 s_t &= \tanh (W_1 S_{\text{feat}} + W_2 h_t) \\
 i_t &= \tanh (W_1 I_{\text{feat}} + W_2 h_t)
\end{align*}
\]

The attention scores \(a_s \) and \(a_i \) are then obtained by applying softmax,

\[
[a_s, a_i]_t = \text{softmax}([V s_t, V i_t]),
\]

where \(V \) maps \(s_t \) and \(i_t \) to a single dimension. The context vector is then obtained by summation after scaling with attention scores:

\[
 c_t = a_s S_{\text{feat}} + a_i I_{\text{feat}}.
\]

Finally, the logits are obtained by concatenating \(c_t \) and \(w_{t-1} \) and projecting onto a space with dimension equal to the vocabulary size: \(w_t = W [c_t; w_{t-1}] \).

4 Experiment and Results

This section discusses our experimental settings and obtained results.

4.1 Datasets

Our experiments are based on the HVG and MVG multimodal datasets.

HVG: For every sample image, the HVG dataset provides a region (as a rectangular bounding box) and its bi-lingual (English and Hindi) segments (captions). The training set contains nearly 29K segments. Further 1K and 1.6K segments are provided in development and test sets, respectively. Additionally, a challenge test set of 1400 segments given which was created by searching for (particularly) ambiguous English words based on the embedding similarity and manually selecting those where the image helps to resolve the ambiguity (Parida et al., 2019).

MVG: The MVG dataset is an extension of the HVG dataset for supporting Malayalam, which belongs to the Dravidian language family (Kumar et al., 2017). The dataset size, images are the same as HVG. While HVG contains bilingual (English and Hindi) segments, MVG contains bilingual (English and Malayalam) segments.

4.2 Pretrained Models

To extract the image features we have considered two commonly used CNN architectures that have proved to be highly successful at general image classification:

ResNet: One of the extremely successful CNN architectures proposed to solve the issue of diminishing gradient where the idea is to skip the connection and pass the residual to the next layer so that the model can continue to train. ResNet exists in several variants based on the number of deep layers (He et al., 2016). We have considered a 50-layer model, also known as ResNet-50, as a feature extractor. Additionally, we have extracted features as the output of the third (L3) and fourth (L4) blocks of the ResNet-50 for our experiments.

VGG: Being one of the top-ranked architectures for image classification. The architecture derives its name from the Visual Geometry Group (at Oxford University) who proposed this idea. Similar to ResNet, the VGG architecture is also available in multiple variants; we have chosen the 19-layer model referred to as VGG-19 (Simonyan and Zisserman, 2014).

4.3 Training

The image and subregion features are concatenated after scaling based on the weightage parameter \(\alpha \). The dimensionality of subregion and the image level features vectors is 2048 for ResNet L4 and VGG models, while for the ResNet L3 features, the subregion feature vector size is 1024. We set \(\alpha \) to 0.0 for the baseline experiment, where only the image level features have non-zero values. When \(\alpha \) is 1.0, only the subregion features have non-zero values. We set \(\alpha \) to 0.5 and 0.66 to fuse subregion features and image features when both have

4https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3533
Table 2: Captions generated using the proposed model from the ResNet L3 image features. These are some positive results using attention based model.

Table 3: Captions generated using the proposed model from the ResNet L3 image features. These are some negative results using attention based model.

Table 4: Values of model hyperparameters.

non-zero values. The concatenated features are projected to space with the same dimensionality as the token embedding dimension, which we set to 128, using a linear layer. This serves as input to both the LSTM decoder and the Attention-LSTM decoder which generate tokens autoregressively.

We have tokenized training captions on the word level and built the vocabulary, which is fixed for all the experiments for a given language. We experimented with NLTK tokenizer (English), Moses tokenizer\(^5\) and the corresponding detokenizer (English), and the Indic NLP tokenizer (Kunchikuttan, 2020) and the corresponding detokenizer (Hindi and Malayalam) and found that any choice of the tokenizer and detokenizer leads to very similar results.

We have implemented the experiments using PyTorch, with the choice of hyperparameters as provided in Table 4. The decoder was trained using Adam optimizer (Kingma and Ba, 2014). For each training experiment, we computed the adopted early stopping criterion based on the BLEU scores on the development set. The model with the best BLEU score (dev set) was chosen to report the scores. That captions are generated token-by-token using greedy decoding till the end-of-sentence token is generated or the maximum sequence length is reached, which we set to 20.

The results for the test and challenge sets are shown in Tables 5, 6 and 7 for generating English, Hindi, and Malayalam captions respectively. As per the automatic evaluation metric (BLEU), the attention-based LSTM decoder overall performs better as compared to the LSTM-based decoder. Based on the evaluation score, image feature extraction using ResNet performs better in comparison to VG-GNet, and evaluation test set performance is better as compared to challenge test set for

\(^5\)https://github.com/alvations/sacremoses
Table 5: English caption generation results in terms of BLEU scores.

<table>
<thead>
<tr>
<th>Method</th>
<th>ResNet L3 image features</th>
<th>ResNet L4 image features</th>
<th>VGGNet image features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EVTest</td>
<td>CHTest</td>
<td>EVTest</td>
</tr>
<tr>
<td>LSTM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I ($\alpha = 0.0$)</td>
<td>2.5</td>
<td>0.4</td>
<td>3.0</td>
</tr>
<tr>
<td>S ($\alpha = 1.0$)</td>
<td>1.0</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>$I + S$ ($\alpha = 0.5$)</td>
<td>3.3</td>
<td>0.6</td>
<td>2.4</td>
</tr>
<tr>
<td>$I + S$ ($\alpha = 0.66$)</td>
<td>2.2</td>
<td>0.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Attention-LSTM</td>
<td>2.4</td>
<td>1.0</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Table 6: Hindi caption generation results in terms of BLEU scores.

<table>
<thead>
<tr>
<th>Method</th>
<th>ResNet L3 image features</th>
<th>ResNet L4 image features</th>
<th>VGGNet image features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EVTest</td>
<td>CHTest</td>
<td>EVTest</td>
</tr>
<tr>
<td>LSTM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I ($\alpha = 0.0$)</td>
<td>1.9</td>
<td>0.6</td>
<td>1.8</td>
</tr>
<tr>
<td>S ($\alpha = 1.0$)</td>
<td>1.5</td>
<td>0.3</td>
<td>1.3</td>
</tr>
<tr>
<td>$I + S$ ($\alpha = 0.5$)</td>
<td>2.0</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>$I + S$ ($\alpha = 0.66$)</td>
<td>1.9</td>
<td>0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Attention-LSTM</td>
<td>1.5</td>
<td>0.9</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Figure 3: Distribution of caption level bigram precisions for caption generation.

5 Analysis and Discussion

Though image caption generation considers the full image and its associated captions for building a model and generating captions for any input images, this work focused on building a model to generate captions for a given specific region. We used the automatic evaluation metric BLEU for a comparison purpose with other researchers’ reported scores for the “Hindi image captioning task” using the HVG dataset as shown in Table 1. For the challenge test set, our proposed model obtained a better result (see Table 6).

Impact of attention decoder The overall evaluation results using BLEU scores for the LSTM decoder vs the Attention-LSTM decoder are very similar as shown in Tables 5, 6 and 7. To analyze this further we evaluate generated captions by calculating the bigram precision score at caption level. The fraction of captions for different bigram precision scores is shown in Fig 3 where we compare the English test set captions generated using the LSTM decoder with $\alpha = 0.5$ and the Attention-LSTM decoder, both using ResNet L3 image features. The comparison shows that captions generated using the Attention-LSTM model are more precise as its curve lies below the LSTM curve for lower precision values. For higher precision values, the trend reverses where the Attention-LSTM curve lies above, suggesting that more captions have high precision scores in comparison to LSTM. In addition to generating better captions, the attention-based decoding also enables us to examine the component (subregion or whole image) that the model focuses on while generating tokens. The sample captions and the attention scores are shown in Table 8. The captions generated without attention in different settings ($\alpha = 0.0, 0.5, 1.0$) are also shown for comparison.

Impact of bounding box size The size of the bounding box is an important factor that varies across images.6 To measure the impact of the bounding box size on caption generation, we computed sentence level BLEU scores on the English test set for different sizes shown

6For more than half of the test samples, the bounding box size is less than 10% of the image size.
<table>
<thead>
<tr>
<th>Method</th>
<th>ResNet L3 image features</th>
<th>ResNet L4 image features</th>
<th>VGGNet image features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EVTest</td>
<td>CHTest</td>
<td>EVTest</td>
</tr>
<tr>
<td>LSTM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (α = 0.0)</td>
<td>0.4</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>S (α = 1.0)</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>I + S (α = 0.5)</td>
<td>1.0</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>I + S (α = 0.66)</td>
<td>1.1</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Attention-LSTM</td>
<td>2.5</td>
<td>1.1</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Table 7: Malayalam caption generation results in terms of BLEU scores.

Ref: बफर्स फेड है
Caption(I): एक आदमी एक शरीर पर है
Gloss: a man on a snowboard

Caption(S): a on a.
Caption(I+S): एक आदमी एक पहाड़ी के नीचे स्कीइंग कर रहा है
Gloss: a man skiing below the mountain

Caption(I+S): बफर्स स्कीयर
Gloss: skier in the snow

Table 8: Sample captions (English and Hindi) generated for the challenge test set using our model in different settings (I: Image only (α = 0), S: Subregion only (α = 1.0), and I+S: Image + Subregion (α = 0.66)). The outputs are taken from the models based on the best performance (BLEU score).

Figure 4: Box plot of sentence level BLEU scores across different subregion sizes.

6 Conclusions

In this work, we highlighted the challenges involved in generating meaningful caption for a defined region of an image. Our proposed approach can generate meaningful captions by fusing features of whole and region-specific images. The proposed approach can be useful for building NLP applications such as i) image labeling in different commercial/non-commercial applications (E-Commerce product labeling) including multilingual scenarios, ii) application for visually impaired persons.

Although the proposed model generates meaningful and better captions in low BLEU scores for the HVG, and MVG datasets. As per our analysis, these are due to:

- Both HVG and MVG dataset contain a single gold caption for evaluation.
- The automatic evaluation metric BLEU is not suitable for image captioning task as in multilingual scenario the image can be described in various ways and deep learning-based model can able to produce much better caption than the reference (Cui et al., 2018). Some researchers proposing new metrics for automatic evaluation of image captions such as “SPICE”, (Anderson et al., 2016) “TIGEr” (Jiang et al., 2020) and claims its closely matching with human evaluation.

The future work includes exploring the combination of different image and object feature sets, and subjective evaluation and linguistic analysis of captions generated in Hindi and Malayalam.

References

