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Abstract001

Large language models have shown remark-002
able performance across a wide range of lan-003
guage tasks, owing to their exceptional capa-004
bilities in context modeling. The most com-005
monly used method of context modeling is full006
self-attention, as seen in standard decoder-only007
Transformers. Although powerful, this method008
can be inefficient for long sequences and may009
overlook inherent input structures. To address010
these problems, an alternative approach is par-011
allel context encoding, which splits the context012
into sub-pieces and encodes them parallelly.013
Because parallel patterns are not encountered014
during training, naively applying parallel en-015
coding leads to performance degradation. How-016
ever, the underlying reasons and potential mit-017
igations are unclear. In this work, we provide018
a detailed analysis of this issue and identify019
that unusually high attention entropy can be a020
key factor. Furthermore, we adopt two straight-021
forward methods to reduce attention entropy022
by incorporating attention sinks and selective023
mechanisms. Experiments on various tasks re-024
veal that these methods effectively lower irreg-025
ular attention entropy and narrow performance026
gaps. We hope this study can illuminate ways027
to enhance context modeling mechanisms.028

1 Introduction029

Large language models (LLMs) have demonstrated030

exceptional capabilities across various language031

tasks (Achiam et al., 2023; Dubey et al., 2024).032

A key factor contributing to this success is their033

remarkable ability of context modeling. This ca-034

pability forms the basics of instruction following035

(Ouyang et al., 2022; Bai et al., 2022) and in-036

context learning (ICL; Brown et al., 2020; Dong037

et al., 2024), enabling LLMs to comprehend con-038

texts effectively. Consequently, LLMs can solve039

tasks directly when provided with appropriate040

prompts (Liu et al., 2023).041

To model contexts, most LLMs adopt a similar042
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Figure 1: An overview. The upper part illustrates the
full attention and parallel context encoding schemes
(superscripts denote position encoding), while the lower
part shows parallel encoding leads to irregularly high
attention entropy for the query tokens. We explore two
methods to reduce entropy: “Sink” means adding shared
attention sinks, and “SEL” means selective attention.

architectural design: an auto-regressive decoder- 043

only Transformer with full self-attention (Vaswani 044

et al., 2017; Radford et al., 2019). This architecture 045

does not assume contextual independence, allowing 046

each token to attend to all previous tokens. While 047

powerful and flexible, this design is not without 048

concerns. First, full attention requires computa- 049

tional complexity that scales quadratically with the 050

input sequence length. This poses challenges for 051

long sequence processing and necessitates more ef- 052

ficient alternatives (Tay et al., 2022). Additionally, 053

in many applications, contexts or prompts exhibit 054

natural parallel structures, consisting of indepen- 055

dent sub-pieces, such as documents in retrieval- 056

augmented generation (RAG; Lewis et al., 2020) 057

and demonstrations in ICL. It is intuitive to lever- 058

age these structures more effectively. 059
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To enhance the efficiency of context encoding060

and leverage the input structures, a natural strat-061

egy is to divide the context into sub-pieces, en-062

code each one in parallel, and then concatenate063

them for final use. Figure 1 illustrates the differ-064

ences between full attention encoding and parallel065

context encoding. Compared to full encoding, the066

parallel approach can reduce the computational067

complexity since each sub-piece does not interact068

with others during the context encoding phase, and069

the parallel input structures are directly utilized070

for context splitting. However, mainstream LMs071

typically rely on full attention and haven’t been072

trained with parallel contexts, posing the question073

of whether parallel context encoding is compatible074

with full-attention-based pre-trained LMs. While075

specialized fine-tuning can ensure compatibility,076

it can also be computationally costly (Yen et al.,077

2024a; Sun et al., 2024; Lu et al., 2024). Recent078

studies have explored settings that do not require079

additional fine-tuning but these are limited to spe-080

cific scenarios, such as restricted numbers of con-081

text windows (Ratner et al., 2023) or specific tasks082

like ICL (Hao et al., 2022) or RAG (Merth et al.,083

2024). In contrast, through detailed evaluations084

over various tasks, we provide more comprehen-085

sive analyses of this question, showing the connec-086

tions between irregular attention entropy and the087

final performance.088

We conduct experiments on a variety of language089

tasks, including language modeling (LM), ICL,090

RAG and synthetic tasks. Through fair and direct091

comparisons between full-attention and parallel en-092

coding schemes, we demonstrate that naively apply-093

ing parallel encoding results in significant perfor-094

mance declines. By analyzing the attention patterns095

of both schemes, we find that parallel encoding096

leads to higher attention entropy on the final query097

tokens (Figure 1 shows a typical example). Fur-098

thermore, we discover strong correlations between099

attention entropy and model performance, suggest-100

ing that attention entropy can be an indicator of101

irregular performance. To address this, we adopt102

two straightforward methods to reduce attention103

entropy: attention sinks (Xiao et al., 2024), which104

adds a shared prefix to the context that each sub-105

piece can attend to, and selective attention, which106

incorporates a hard selection mechanism into the107

attention operation. Experimental results show that108

both methods can reduce the irregular attention en-109

tropy and mitigate the performance gaps, verifying110

our hypothesis. Additionally, we provide a detailed111

analysis of how different selective attention choices 112

affect performance across various tasks. We hope 113

that our analysis could offer insights into exploring 114

alternative context-modeling mechanisms beyond 115

the full attention scheme. 116

2 Experimental Settings 117

2.1 Parallel Context Encoding 118

In a vanilla Transformer-based LM, to encode a 119

context sequence of N tokens (assuming the use 120

of a decoder-only model with causal masks), each 121

token needs to attend to all preceding tokens in 122

the context. Consequently, we need to calculate 123

the attention scores for 1
2 ·N(N + 1) token pairs. 124

With parallel context encoding, we split the context 125

into P sub-pieces.1 In this scheme, each piece is 126

encoded separately, and tokens within one piece do 127

not attend to tokens in other pieces. Assuming that 128

we evenly split the context for simplicity, the token- 129

pair calculation requirement is P · 12 ·
N
P (NP +1) = 130

1
2P ·N(N + P ), which is approximately 1

P of the 131

computations needed in full attention. Therefore, 132

the more pieces the context is split into, the more 133

computational savings can be achieved. 134

The parallel scheme is intuitive in many applica- 135

tions, such as RAG and ICL. This is because each 136

piece, such as a document in RAG or a demon- 137

stration in ICL, is self-contained and does not re- 138

quire additional information in its encoding phase. 139

The main phase where we need to check full con- 140

texts and aggregate information across pieces is the 141

query-encoding phase. At this stage, we can let the 142

querying tokens attend to the all preceding tokens 143

to gather information. 144

While there can be minor variations, the basic 145

methodology for parallel context encoding remains 146

largely the same in previous research. Following 147

Ratner et al. (2023), we provide a brief introduc- 148

tion of the two main modifications to full attention: 149

position encoding and attention masking. 150

For position encoding, each piece is parallel to 151

each other and uses its own position counting mech- 152

anism. If the pieces have different lengths, we take 153

the maximum length as the target context length 154

and evenly distribute the position encoding of the 155

tokens within each piece accordingly.2 For ex- 156

1We refer to the number of sub-pieces as parallel degree,
which is one of the main variables examined in this study.

2We explore models that utilize RoPE (Su et al., 2024),
which allows for the assignment of real-valued position IDs.
There can be other options for position encoding, including us-
ing the harmonic mean as the target length (Merth et al., 2024)
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LM (PPL↓) ICL (Acc↑) RAG (SubEM↑) Synthetic (SubEM↑)

4K 8K 16K 4K 8K 16K 4K 8K 16K 4K 8K 16K

Full 5.54 5.35 5.19 55.20 66.00 72.20 61.25 60.25 60.25 99.88 99.50 97.25

P=2 5.83 5.66 5.47 50.80 63.60 70.20 61.50 59.50 57.50 93.81 94.81 95.25
P=4 6.29 6.16 6.04 36.40 57.20 67.80 59.25 50.75 52.50 79.19 81.56 82.44
P=8 6.91 6.92 6.96 29.20 44.40 60.20 53.50 48.75 44.50 25.94 41.00 41.44
P=16 7.69 7.97 8.54 21.00 34.00 46.40 49.00 41.75 40.00 3.38 2.19 2.00
P=32 8.54 9.24 10.87 10.80 17.40 33.60 45.00 39.25 35.25 0.31 0.00 0.00
P=64 9.35 10.46 13.18 5.00 10.80 19.80 45.00 33.00 26.75 0.00 0.00 0.00

Table 1: Comparisons between full-attention and naive parallel encoding with LLAMA-3.1-8B (results are macro-
averaged over all sub-tasks). Here, “P” indicates the parallel degree (the number of context sub-pieces). For each
task, we also vary the total sequence lengths (considering 4K, 8K and 16K).

ample, assume we have three context pieces with157

lengths of L1, L2, and L3. With full attention,158

we need to arrange them sequentially and assign159

positions ranging from 0 to L1 + L2 + L3 to all160

the tokens. With parallel encoding, we no longer161

need a specific order among different pieces; each162

piece independently counts its own tokens’ posi-163

tions starting from 0 to the target length.164

For attention masking, we design special atten-165

tion masks in accordance with the parallel encod-166

ing scheme. Each token within a context piece is167

restricted to attend only to the preceding tokens168

within this piece but not to other pieces. However,169

the final query tokens can attend to all preceding170

tokens across all context pieces to aggregate infor-171

mation. This approach results in inherently sparse172

attention calculations, for which sparse attention173

tools, such as FlexAttention3 and block-sparse at-174

tention in FlashAttention (Dao et al., 2022), can be175

used to enhance efficiency.176

2.2 Setups177

Task. We experiment with a variety of language178

tasks to evaluate the influence of parallel context179

encoding, including LM, ICL, RAG and synthetic180

recall tasks. For LM, we use the PG19 (Rae181

et al., 2020) and Proof-Pile (Azerbayev et al., 2023)182

datasets for evaluation. For the remaining tasks,183

we take the corresponding datasets from the HEL-184

MET benchmark (Yen et al., 2024b) and follow its185

processing protocols. Specifically, these include186

TREC-coarse and TREC-fine (Li and Roth, 2002),187

BANKING77 (Casanueva et al., 2020), CLINC150188

(Larson et al., 2019) and NLU (Liu et al., 2019) for189

ICL; Natural Question (Kwiatkowski et al., 2019),190

or retaining natural integer counting (Ratner et al., 2023). Our
choice is based on its overall good performance in preliminary
experiments with our settings.

3https://pytorch.org/blog/flexattention/

TriviaQA (Joshi et al., 2017), HotpotQA (Yang 191

et al., 2018) and PopQA (Mallen et al., 2023) for 192

RAG; and three typical needle-in-a-haystack tasks 193

(Kamradt, 2023) from RULER (Hsieh et al., 2024) 194

as well as a JSON retrieval task (Liu et al., 2024a) 195

for synthetic recall. 196

Evaluation. For all tasks, we assume that an in- 197

put instance consists of a context and a query. The 198

context can be further split into sub-pieces, for 199

which we can apply parallel encoding, and the 200

query can always attend to all previous contexts. 201

For non-LM tasks, this scheme is natural: each 202

instance already contains a query and a context 203

consisting of a collection of items (documents in 204

RAG, demonstrations in ICL, and haystack items 205

in synthetic recall). Note that for parallel encoding, 206

we can group multiple items into one sub-piece 207

when we want a parallel degree (i.e., the number 208

of parallel sub-pieces) that is smaller than the num- 209

ber of available items. For LM, we simulate this 210

scheme by designating the final 1K tokens in a text 211

segment as the query. The preceding tokens are 212

considered as the context and are evenly divided 213

into sub-pieces for parallel encoding. To evaluate 214

the performance, we measure the perplexity (PPL) 215

of the query tokens for LM. For other tasks, we fol- 216

low HELMET and measure substring exact match 217

for RAG and synthetic recall, and accuracy for ICL 218

by comparing the model’s generated output (with 219

greedy decoding) to the gold answers. 220

Model. We use LLAMA-3.1-8B as the primary 221

model in our main experiments. Results from 222

other models, including the INSTRUCT version, 223

MISTRAL-7B-V0.3 and QWEN2-7B, exhibit simi- 224

lar overall trends and are detailed in Appendix A. 225

These models share a similar architecture design 226

with RoPE-based positional encoding, which is 227

3

https://pytorch.org/blog/flexattention/
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Figure 2: The scales of attention logits (averaged absolute values) and key states (L2 norm) with different methods.
The irregularities of these scales may explain why attention entropy is higher with parallel context encoding.
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Figure 3: An illustration of the correlations between
model performance and attention entropy (with the LM
task and LLAMA-3.1-8B).

adaptable and facilitates modifications for parallel228

encoding. Our experiments utilize the pre-trained229

models as they are, without any fine-tuning. How-230

ever, modifications to the internal attention layers231

are necessary, which is why we cannot evaluate232

closed-source LLMs.233

3 Attention Entropy as an Indicator of234

Irregularities235

Naively applying parallel encoding leads to236

poorer performance. Table 1 presents the main237

results of directly applying parallel context encod-238

ing to different tasks. Across all tasks, the direct239

application leads to worse results, and the perfor-240

mance degradation becomes more pronounced as241

the parallel degree increases. Notably, we can ob-242

serve a dramatic decline for synthetic recall tasks:243

from nearly perfect accuracy with full attention to244

nearly complete failure when the context is split245

into tens of sub-pieces. This outcome is some-246

what expected, as LLMs are trained with full atten-247

tion and are thus unaccustomed to parallel contexts.248

This suggests that there could be some irregulari-249

ties in the internal states of LLMs that are likely 250

causing this failure. 251

Attention entropy can be an indicator of irregu- 252

larities. Inspired by recent studies in LLM length 253

extrapolation (Han et al., 2024), we examine and 254

compare the attention values of different context 255

encoding schemes. In length extrapolation, it is in- 256

tuitive that longer sequences result in higher atten- 257

tion entropy values. Interestingly, we also observe 258

irregularly high attention entropy for the query to- 259

kens when attending to parallel contexts. The lower 260

part of Figure 1 shows a typical example: it shows 261

the averaged attention entropy values for the PG19 262

LM task (4K) with LLAMA-3.1-8B4 and a parallel 263

degree of four. It demonstrates that when attend- 264

ing to parallel contexts, the attention entropy is 265

much higher than that with vanilla full attention. 266

Higher entropy usually denotes a higher level of un- 267

certainty and confusion, which might explain why 268

LLMs struggle to accurately retrieve information 269

from the parallelly encoded contexts. Figure 3 il- 270

lustrates the relationship between attention entropy 271

and model performance, revealing strong correla- 272

tions (PEARSONR≈0.95) between them. 273

Irregularly high entropy can be attributed to 274

irregularities in hidden state scales. We further 275

investigate5 the causes of irregularly high attention 276

entropy. Firstly, we examine the scales of attention 277

logits – the input to the attention softmax opera- 278

tion. As shown in the left sub-figure of Figure 2, 279

we again find irregularities: the averaged absolute 280

values of attention logits are smaller with paral- 281

lel encoding. To examine what causes the irregu- 282

4Results are averaged over all layers and heads. Results
with other models and tasks show similar patterns.

5For this analysis, we again average over all the layers
and heads. Note that, for these scales, we observe larger
variations among different heads than those in the entropy
analysis. Nevertheless, we think that the averaged results can
still meaningfully provide an overall explanation.
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Figure 4: Illustrations of our methods to reduce atten-
tion entropy: adding shared attention sinks (Sink) and
adopting selective attention (SEL).

lar logit scales, we further inspect the key states283

– the inputs to the MATMUL operation that pro-284

duces the attention logits. As illustrated in the right285

sub-figure of Figure 2, the norm of the key states286

generally increases along the sequence dimension.287

With parallel context encoding, where the context288

pieces are encoded individually, the key states have289

smaller norms than those in full attention. Espe-290

cially, the initial tokens in each piece, which are291

known as sink tokens (Xiao et al., 2024), have dra-292

matically smaller norms (Gu et al., 2024). While293

it would be interesting to further investigate the294

cause of the irregular hidden state patterns, we find295

that this involve complex interactions with various296

Transformer layers, such as LayerNorm and MLP;297

a complete explanation of this phenomenon would298

require a deeper understanding of the underlying299

working mechanisms of Transformers, which we300

leave to future exploration.301

4 Reducing Entropy with Attention Sinks302

and Selective Attention303

4.1 Methods304

Our prior analysis indicates a strong correlation305

between model performance and attention entropy.306

However, correlation does not imply causation. To307

investigate whether the irregular attention entropy308

is a key factor of performance degradation, we309

adopt two straightforward methods to adjust the310

attention entropy, attention sinks and selective at-311

tention, as depicted in Figure 4.312

4.1.1 Attention Sinks313

Recent studies on attention sinks have demon-314

strated that initial tokens significantly influence315

the internal dynamics of Transformers (Xiao et al.,316

2024; Han et al., 2024; Gu et al., 2024). As shown317

in Figure 2, we also observe that the sinking to-318

kens exhibit abnormal hidden state scales, poten- 319

tially leading to irregular attention entropy. When 320

naively applying parallel context encoding, each 321

sub-piece contains its own sinks, which are sub- 322

sequently attended to by later query tokens. The 323

model has never encountered such multi-sink pat- 324

terns in LM training and thus produces irregular 325

hidden states. To mitigate this problem, we prepend 326

a shared prefix to all the context sub-pieces to elim- 327

inate attention sinks inside each sub-piece. Inter- 328

estingly, preliminary experiments indicate that the 329

specific content of the shared prefix is not crucial; 330

even adding tokens of linebreaks can be effective, 331

indicating that their main functionality is to absorb 332

unneeded attention values. Without loss of general- 333

ity, we manually write simple instructions6 as the 334

shared prefixes. 335

The impact of incorporating shared attention 336

sinks can be examined by analyzing LM’s internal 337

states. As shown in Figure 2, attention sinks can 338

avoid the extremely irregular tokens in each sub- 339

piece (the original sink tokens) and lead to higher 340

attention logit values, which lead to lower attention 341

entropy as depicted in Figure 1. As discussed in 342

the following subsection, this can indeed enhance 343

performance, suggesting that shared attention sinks 344

can help the model to be more familiar with the 345

hidden state patterns of parallel context encoding. 346

4.1.2 Selective Attention 347

An alternative method to reduce attention entropy 348

is to directly sharpen the attention distribution 349

through hard selection. Specifically, we group the 350

context tokens according to the splitting of the par- 351

allel sub-pieces. A sub-piece score is then calculate 352

for each group, followed by a top-K selection pro- 353

cess for each attention operation. For instance, in 354

the scenario of four context pieces as depicted in 355

Figure 4, we select the top-2 scored sub-pieces 356

and exclude the remaining two from the attention 357

calculation. As shown in Figure 1, this selective 358

mechanism can directly reduce entropy. 359

The overall procedure is outlined in Algorithm 1. 360

It can be easily understood by examining the shapes 361

of the intermediate tensors. 362

• Input. The input attention probability tensor pin 363

has the shape of [Nlayer, Nhead, Lquery, Lkey]. 364

• Grouping. We first compute the group score 365

6For LM, we use “Given the following partial context,
predict the next sequence of words:”; for other tasks, we
use “Given the following contexts, answer the final question
accordingly:”.
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Algorithm 1 Selective Attention.
Input: Original attention probability tensor pin.
Output: Modified attention probability tensor pout.

1: sgroup ← group_key(pin) ▷ Obtain grouped scores
2: isel ← top_k(sgroup) ▷ Group selection
3: m ← expand_mask(isel) ▷ Expand SEL mask
4: pm ← pin ·m ▷ Apply mask
5: pout ← pm/pm.sum(−1) ▷ Re-normalization
6: return pout

for each sub-piece along the “Key” dimension:366

each group has a piece of attention probabilities,367

which are reduced into one group score. We use368

the sum of the top-5 values7 as the reduction func-369

tion, which is found to be better than using sum370

or average. Assuming there are P sub-pieces, the371

final group score sgroup will have the shape of372

[Nlayer, Nhead, Lquery, P ].373

• Selection. The selection is performed along the374

group dimension, where only the top-K8 scored375

groups are selected as valid. We obtain the se-376

lected group indexes isel, which has the shape of377

[Nlayer, Nhead, Lquery,K].378

• Masking. The selected indexes are expanded379

to obtain the selection mask over the original380

tokens. Tokens within parallel contexts that do381

not belong to any selected groups will be masked382

out. This mask m has the same shape as pin.383

• Output. Finally, the mask m is applied to the384

input probability tensor, and the final output at-385

tention probability tensor is obtained after a final386

re-normalization step to ensure that each row387

sums up to one.388

Between the grouping and selection step, an op-389

tional reduction operation can be performed to390

aggregate information among tokens, heads or391

even layers. For example, if aggregating over392

the query-token dimension, sgroup is reduced from393

[Nlayer, Nhead, Lquery, P ] to [Nlayer, Nhead, 1, P ].394

This reduction is useful in scenarios where the395

most relevant information comes from the same396

sub-piece for all tokens in the current query. If397

aggregating over heads, it can help to identify the398

most salient information-seeking head, such as the399

retrieval head (Wu et al., 2024). A more aggressive400

reduction can be performed across the first three401

dimensions, reducing the group score to [1, 1, 1, P ],402

7Preliminary experiments indicate that the results are not
very sensitive to the number of top values used in this step.

8We choose K=2 as the default value since earlier results
(see Table 1) demonstrate that using two parallel contexts does
not significantly impact the outcomes.

which is exactly the same as a retrieval procedure. 403

Notice that if we choose the layer dimension for 404

aggregation, we need to forward the model twice 405

since attention scores at later layers are not avail- 406

able when calculating previous layers; for other di- 407

mensions, the selective attention modification can 408

be applied immediately after each attention score is 409

calculated. We again use the sum of top-5 values as 410

the reduction function to identify the most salient 411

attention scores. 412

We do not apply aggregation for the LM task 413

since it often requires diverse information from 414

their contexts; for other tasks where there are clear 415

queries and information sources, we reduce on the 416

head and query dimensions by default, which is 417

found to perform well overall. We provide further 418

analyses on the specifications of selection attention 419

for different tasks in §4.3.1. 420

4.2 Main Results 421

Figure 5 illustrates the effectiveness of the entropy 422

reduction methods (with LLAMA-3.1-8B and 8K 423

lengths). The overall trends are consistent across 424

different tasks. First, both shared sink tokens and 425

selective attention can reduce attention entropy and 426

enhance performance compared to the naive paral- 427

lel scheme, especially with higher parallel degrees. 428

Additionally, these two methods impact attention 429

entropy differently: with sinks, the entropy is lower 430

than the naive scheme, but still grows larger than 431

that of full attention (P=1); with selective attention, 432

the entropy decreases and can sometimes become 433

even lower than that of full attention. Lastly, the 434

benefits of these methods vary depending on the 435

task. Selective attention is more helpful for RAG 436

and synthetic recall tasks, which is intuitive be- 437

cause of the retrieval nature of these tasks. On the 438

other hand, attention sinks seem to be more ben- 439

eficial for ICL tasks, since these tasks may need 440

information from more demonstration examples 441

than our default selective top-K value (K=2). Com- 442

bining both techniques offers a balanced approach 443

and yields overall effective performance. 444

4.3 Analyses 445

4.3.1 Variations on Selection Attention 446

We provide detailed ablation studies on various 447

choices in the selection attention procedure. Since 448

there are no clear query tokens in the LM task, our 449

analysis primarily focuses on the other three tasks. 450

We consider a typical scenario as the case study: 451
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Figure 5: Results of entropy reduction methods (with LLAMA-3.1-8B and 8K lengths). The x-axis denotes the
parallel degree P . The upper figures illustrate the model’s performance: PPL for LM (the lower the better) and
Accuracy or SubEM for other tasks. The lower figures denote the averaged attention entropy over the query tokens.
Additional results for more models and settings are presented in Appendix A.

using LLAMA-3.1-8B and 8K lengths, and adopt-452

ing a difficult parallel degree of P=64. Firstly, we453

start with our default setting of aggregating over454

the Head and Token dimensions (denoted as “HT”),455

and vary the K value in sub-piece top-K selection456

process. The results indicate that the optimal set-457

ting varies by task: synthetic recall tasks benefit458

from a small K value, since they require precise459

information from a few pieces, while ICL and RAG460

perform better with slightly larger K values, since461

additional context information can be helpful. Next,462

we examine different ways of information aggrega-463

tion (with TopK=5 for ICL and RAG, and TopK=2464

for synthetic tasks). Once again, different tasks ex-465

hibit distinct patterns: aggregating over all layers,466

as in a retrieval setting, yields the best results for467

RAG, layer-wise selection is more effective for syn-468

thetic tasks, and query-level selection is not crucial469

for ICL. While a universal and consistent method470

that performs well across all tasks would be ideal,471

achieving this may be difficult and costly. One ad-472

vantage of our method is its flexibility, allowing473

dynamic adjustment of configurations to suit the474

specific nature of each task.475

4.3.2 Effects of Value-only Parallel Encoding476

In our experiments, we mainly examine the atten-477

tion patterns and methods to reduce attention en-478

tropy. In parallel context encoding, the value states479

ICL RAG Synthetic

TopK=1 26.00 45.75 21.56
TopK=2 33.00 48.50 24.88
TopK=5 36.00 48.75 14.69
TopK=10 28.60 44.50 5.25

No Aggr. 35.40 42.75 17.62
Aggr.=T 36.20 45.00 21.00
Aggr.=HT 36.00 48.75 24.88
Aggr.=LHT 22.40 49.50 17.31

Table 2: Ablation studies on selection attention (with
LLAMA-3.1-8B, 8K lengths and P=64). “TopK” de-
notes how many sub-pieces to select for each attention,
“Aggr.” means the dimensions on which we apply aggre-
gation (Layer, Head or Token).

are also influenced. To investigate the impact of 480

value states, we consider an oracle setting9 where 481

we replace the key states with those from full atten- 482

tion encoding; in this way, we have a mixed setting 483

of value-only parallel encoding. Figure 6 illustrates 484

the results. Except for LM, using oracle key states 485

does not always perform better than our methods, 486

indicating that value states also play an important 487

role in contextual encoding. 488

5 Related Work 489

Parallel Context Modeling. Recent research has 490

explored parallel context encoding for various tasks. 491

9We’ve also tried only replacing value states, which leads
to significantly worse and meaningless results.

7



1 2 4 8 16 32 64

6

7

8

9

10

LM-Performance

1 2 4 8 16 32 64
10

20

30

40

50

60

ICL-Performance

1 2 4 8 16 32 64

35

40

45

50

55

60
RAG-Performance

1 2 4 8 16 32 64
0

20

40

60

80

100
Synthetic-Performance

Full Parallel Oracle-K P+Both

Figure 6: Performance with the oracle setting of value-
only parallel encoding.

Ratner et al. (2023) present parallel context win-492

dow to extend LLMs for handling longer contexts,493

which is beneficial for ICL and RAG tasks. Sim-494

ilarly, Hao et al. (2022) scale ICL to accommo-495

date thousands of demonstrations with a similar496

approach. Yen et al. (2024a) train an additional con-497

text encoder and cross-attention layers to achieve498

enhanced context encoding, albeit at a higher com-499

putational cost. Furthermore, parallel encoding500

has been applied to RAG (Merth et al., 2024; Sun501

et al., 2024; Lu et al., 2024), where the retrieved502

documents are naturally parallel to each other. Be-503

yond encoding, the decoding process can be also504

made parallel, as explored in non-autoregressive505

generation (Stern et al., 2018; Ghazvininejad et al.,506

2019) and more efficient LLM prompting tech-507

niques (Ning et al., 2024).508

Efficient Attention. In addition to parallel con-509

text encoding, there has been considerable work on510

the topics of efficient attention (Tay et al., 2022).511

Adopting sparse attention patterns is a typical ap-512

proach that selects certain tokens in the attention513

mechanism with either fixed (Child et al., 2019;514

Beltagy et al., 2020) or learned (Kitaev et al., 2020;515

Roy et al., 2021; Gupta et al., 2021) patterns. Par-516

allel context encoding can be viewed as a special517

form of sparse attention, which enhances block518

sparsity. Another line of work focuses on efficient519

approximation of full attention using linear atten-520

tion techniques (Katharopoulos et al., 2020; Choro-521

manski et al., 2021; Peng et al., 2021). Recently,522

with the advent of LLMs, there has been a renewed523

interest in efficient attention mechanisms for Trans-524

former models to reduce computational and mem-525

ory costs. Prompt or KV-cache compression tech- 526

niques have been widely investigated, and the ap- 527

proaches mainly include training special compress- 528

ing tokens (Mu et al., 2023; Chevalier et al., 2023; 529

Ge et al., 2024b; Qin et al., 2024; Mohtashami and 530

Jaggi, 2024) or dynamically selecting tokens at in- 531

ference time (Zhang et al., 2023; Liu et al., 2024b; 532

Ge et al., 2024a; Li et al., 2024). Our attention se- 533

lection approach shares similar spirits to the latter 534

strategies, though we perform the selection over 535

context blocks. 536

Attention Analysis. Since the introduction of 537

self-attention in Transformers, analyzing the roles 538

the attention mechanism plays has been a popular 539

topic (Clark et al., 2019; Jain and Wallace, 2019; 540

Serrano and Smith, 2019; Wiegreffe and Pinter, 541

2019; Bibal et al., 2022). The most relevant work 542

to this study includes findings on attention sinks 543

and specialized attention heads. Attention sinks 544

refer to the initial tokens that attract most of the at- 545

tention weights in many heads, and they have been 546

utilized to extend LLMs to longer context lengths 547

(Xiao et al., 2024; Han et al., 2024; Gu et al., 2024). 548

These works also inspire our analyses on attention 549

entropy and hidden state norms. Additionally, it 550

has also been shown that there can be specialized 551

attention heads that perform special functions, such 552

as syntactic heads for encoding syntactical relations 553

(Clark et al., 2019), retrieval heads for collecting 554

information from long contexts (Wu et al., 2024), 555

and induction heads that may constitute the mech- 556

anism for ICL (Olsson et al., 2022). Our reduc- 557

tion operations in selective attention are also based 558

on the hypothesis that there is a small portion of 559

information-seeking heads that can collect the most 560

salient features from the contexts. 561

6 Conclusion 562

In this work, we present a detailed analysis of 563

parallel context encoding for full-attention-based 564

LMs without any fine-tuning. We demonstrate that 565

naively applying parallel encoding leads to notice- 566

ably worse performance, particularly as the parallel 567

degree increases. Through our analyses, we dis- 568

cover a strong correlation between irregularly high 569

attention entropy and performance degradation. We 570

adopt two approaches to reduce the entropy, which 571

can help mitigate the performance gaps. We hope 572

that our analyses and results can shed light on a 573

deeper understanding and improvement of attention 574

mechanisms. 575
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Limitations576

This work has several limitations. First, we pri-577

marily use the pre-trained LM as it is without ap-578

plying any fine-tuning. Clearly, fine-tuning could579

mitigate the irregularities in parallel encoding and580

enhance performance. However, it will bring ex-581

tra computational costs, and selecting appropriate582

fine-tuning datasets would require careful consid-583

eration to maintain the model’s general capabil-584

ities. Second, we mainly focus on performance585

analyses in this work, while leaving efficient im-586

plementation and related analyses to future work,587

which would require kernel-level implementations588

to achieve speed improvements. Finally, we have589

not found a universal and consistent method to590

fully address the performance gaps between full591

attention and parallel context encoding schemes.592

Further investigation and the incorporation with593

lightweight fine-tuning may help to close these594

gaps.595

Ethics Statement596

This research primarily concentrates on analyses597

of language models. Consequently, we have not598

implemented any extra aggressive filtering tech-599

niques on the text data beyond the preprocessing600

done by the original dataset sources. We have also601

employed open-source language models in their602

existing form, without further addressing aspects603

such as enhancing safety and debiasing. As a re-604

sult, the text data and models we used may contain605

issues related to offensiveness, toxicity, fairness, or606

bias that we have not identified, as these concerns607

are not the main focus of our study. Apart from608

these considerations, we do not foresee any addi-609

tional ethical concerns or risks associated with our610

work.611
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Matthew Henderson, and Ivan Vulić. 2020. Efficient 645
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A Additional Results 960

In the appendix, we provide several additional results: 961

• Table 3 and 4 show the main results of parallel context encoding using MISTRAL-7B-V0.3 and 962

QWEN2-7B, whose patterns are similar to LLAMA-3.1-8B as shown in Table 1. 963

• Figure 7 presents the correlations between model performance and attention entropy for other tasks, 964

and the patterns are similar to those in the LM task as shown in Figure 3. 965

• Figure 8, 9, 10 and 11 illustrate more results of entropy reduction methods in different settings. The 966

overall trends are similar to those in Figure 5. 967

LM (PPL↓) ICL (Acc↑) RAG (SubEM↑) Synthetic (SubEM↑)

4K 8K 16K 4K 8K 16K 4K 8K 16K 4K 8K 16K

Full 5.00 4.85 4.73 48.00 55.20 68.60 56.75 55.25 56.50 98.31 97.44 89.62

P=2 5.17 5.04 4.92 33.40 50.20 63.00 55.75 53.00 51.25 89.50 87.19 85.50
P=4 5.43 5.33 5.26 19.20 38.20 57.00 50.50 47.25 44.50 64.69 71.19 65.69
P=8 5.88 5.84 5.83 11.00 23.00 44.20 44.00 40.75 39.00 16.06 16.31 18.31
P=16 6.70 6.97 7.35 6.80 10.60 22.00 37.75 34.00 30.00 1.31 0.75 0.56
P=32 8.55 10.09 11.96 6.00 6.60 8.00 34.00 20.75 14.25 0.38 0.06 0.12
P=64 11.45 15.24 20.65 3.60 4.20 6.40 34.00 8.50 2.25 0.00 0.00 0.00

Table 3: Comparisons between full-attention and naive parallel encoding with MISTRAL-7B-V0.3. Notations are
the same as those in Table 1.

LM (PPL↓) ICL (Acc↑) RAG (SubEM↑) Synthetic (SubEM↑)

4K 8K 16K 4K 8K 16K 4K 8K 16K 4K 8K 16K

Full 7.33 7.27 7.01 29.60 42.80 53.20 63.50 66.00 60.75 68.44 60.69 67.50

P=2 7.53 7.50 7.25 34.20 35.20 51.20 62.00 57.50 57.00 67.88 41.06 37.06
P=4 8.15 7.72 7.71 23.20 34.60 44.40 58.25 54.25 51.00 25.38 45.00 13.88
P=8 8.51 8.97 8.13 17.80 28.20 45.60 53.00 48.25 48.50 4.12 3.56 14.06
P=16 9.23 9.62 10.56 12.20 17.40 31.00 46.25 39.75 38.75 0.31 0.50 1.25
P=32 10.40 10.92 11.96 6.40 10.20 21.40 42.75 38.00 33.25 0.00 0.00 0.00
P=64 12.12 13.09 14.67 4.00 5.60 11.40 42.75 29.75 25.50 0.00 0.00 0.00

Table 4: Comparisons between full-attention and naive parallel encoding with QWEN2-7B. Notations are the same
as those in Table 1.
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Figure 7: An illustration of the correlations between model performance and attention entropy on more tasks (with
LLAMA-3.1-8B). Notations are similar to those in Figure 3.
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Figure 8: The influence of the entropy reduction methods (with MISTRAL-7B-V0.3 and 8K lengths). Notations are
the same as those in Table 5.
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Figure 9: The influence of the entropy reduction methods (with QWEN2-7B and 8K lengths). Notations are the
same as those in Table 5. Note that the “Sink” method seems to be less effective for Qwen, probably because it is
less influenced by sink tokens, as evidenced by the less entropy reduction brought by “Sink”.
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Figure 10: The influence of the entropy reduction methods (with LLAMA-3.1-8B-INSTRUCT and 8K lengths).
Notations are the same as those in Table 5.
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Figure 11: The influence of the entropy reduction methods using serialized position encoding (with LLAMA-3.1-8B
and 8K lengths). Notations are the same as those in Table 5.
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