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Abstract

Modern zero-shot text-to-speech (TTS) sys-001
tems, despite using extensive pre-training, of-002
ten underperform in challenging scenarios003
such as tongue twisters, repeated words, code-004
switching, and cross-lingual synthesis, leading005
to intelligibility issues. This paper proposes to006
use preference alignment to address these chal-007
lenges. Our approach leverages a newly pro-008
posed Intelligibility Preference Speech Dataset009
(INTP) and applies Direct Preference Optimiza-010
tion (DPO), along with our designed extensions,011
for diverse TTS architectures. After INTP012
alignment, in addition to intelligibility, we ob-013
serve overall improvements including natural-014
ness, similarity, and audio quality for multiple015
TTS models across diverse domains. Based on016
that, we also verify the weak-to-strong gen-017
eralization ability of INTP for more intelli-018
gible models such as CosyVoice 2 and Ints.019
Moreover, we showcase the potential for fur-020
ther improvements through iterative alignment021
based on Ints. Audio samples are available at022
https://intalign.github.io/.023

1 Introduction024

Despite leveraging large-scale pre-training (Anas-025

tassiou et al., 2024; Wang et al., 2025a; Du et al.,026

2024b), modern zero-shot TTS systems still lack027

robustness during real-world applications (Sahoo028

et al., 2024; Neekhara et al., 2024). These sys-029

tems struggle to meet even the most fundamen-030

tal requirement of speech synthesis – intelligibil-031

ity (Tan, 2023) in several scenarios, including: (1)032

the target text is hard to pronounce, such as tongue033

twisters or continuously repeated words (Neekhara034

et al., 2024; Anastassiou et al., 2024), which is035

referred to as articulatory cases in this paper, (2)036

code-switching cases, where the target text contains037

a mixture of multiple languages, and (3) cross-038

lingual cases, where the languages of the target039

text and the reference speech differ. In these do-040

mains, existing zero-shot TTS models frequently041

exhibit “hallucination” issues, such as content in- 042

sertion, omission, and mispronunciation (Neekhara 043

et al., 2024; Wang et al., 2023). 044

We attribute these intelligibility challenges pri- 045

marily to the problem of out-of-distribution (OOD). 046

For example, in cross-lingual cases, there exists a 047

huge mismatch between monolingual pre-training 048

and cross-lingual inference. While including such 049

scenarios in pre-training data would be a natural so- 050

lution, collecting high-quality data for challenging 051

cases like cross-lingual synthesis remains difficult. 052

Motivated by the above, we propose to use pref- 053

erence alignment (PA) (Ouyang et al., 2022; Bai 054

et al., 2022) to mitigate the OOD issues, and thus 055

enhance zero-shot TTS intelligibility. The poten- 056

tial of this approach lies in two aspects. First, 057

PA’s customized post-training on human expected 058

distribution can effectively mitigate the OOD is- 059

sue (Ouyang et al., 2022; Xiong et al., 2024). Sec- 060

ond, unlike TTS pre-training that requires high- 061

quality supervised data, PA needs only paired sam- 062

ples with relative preferences – notably, even syn- 063

thetic data can lead to large improvements (Dubey 064

et al., 2024; Yang et al., 2024b), thus significantly 065

simplifying data collection for challenging scenar- 066

ios like cross-lingual cases. 067

Centered on this direction, this study investigates 068

three research problems: 069

• P1: How can we construct a high-quality intel- 070

ligibility preference dataset? What prompts and 071

base models should be selected, and how can we 072

establish human-aligned preference pairs? 073

• P2: Unlike textual LLMs with predominantly 074

autoregressive (AR) design, zero-shot TTS mod- 075

els employ diverse architectures, including AR- 076

based (Borsos et al., 2023a; Anastassiou et al., 077

2024; Du et al., 2024b), Flow-Matching (FM) 078

based (Le et al., 2023; Eskimez et al., 2024; 079

Chen et al., 2024c), and Masked Generative 080

Model (MGM) based (Ju et al., 2024; Wang 081
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et al., 2025a). How can we design alignment082

algorithms for various architectures?083

• P3: How well does a constructed prefer-084

ence dataset exhibit weak-to-strong generaliza-085

tion (Burns et al., 2024), i.e., the effectiveness086

when training more powerful models?087

In this paper, we address the aforementioned088

problems with the following key contributions:089

→ P1: We establish a synthetic Intelligibility090

Preference Speech Dataset (INTP), comprising091

about 250K preference pairs (over 2K hours) of092

diverse domains. Specifically, INTP covers multi-093

ple scenarios, utilizing various TTS models for data094

creation. Besides, we employ several strategies to095

construct preference pairs, aiming to mitigate the096

risk of reward hacking for simple patterns (Skalse097

et al., 2022; Weng, 2024). Particularly, we leverage098

human knowledge and DeepSeek-V3 (DeepSeek-099

AI et al., 2024) to introduce perturbations into TTS100

systems, creating human-guided negative samples.101

In addition, when using Word Error Rate (WER) to102

determine intelligibility preferences, we not only103

consider self-comparison within a single model as104

in previous studies (Tian et al., 2024; Yao et al.,105

2025; Hussain et al., 2025), but also introduce com-106

parisons across different models to leverage their107

complementary capabilities.108

→ P2: We adopt the idea of Direct Preference109

Optimization (DPO) (Rafailov et al., 2023) to en-110

hance various zero-shot TTS architectures. We111

employ the vanilla DPO algorithm for AR-based112

TTS models, while proposing extended versions113

of it for FM-based and MGM-based models. Our114

experiments on INTP shows that these algorithms115

effectively improve the intelligibility, naturalness,116

and overall quality of multiple state-of-the-art TTS117

systems, including ARS (AR-based) (Wang et al.,118

2025a), F5-TTS (FM-based) (Chen et al., 2024c),119

and MaskGCT (MGM-based) (Wang et al., 2025a).120

→ P3: To investigate INTP’s weak-to-strong121

generalization capability (Burns et al., 2024) on122

more powerful base models, we research its align-123

ment effects on CosyVoice 2 (Du et al., 2024b)124

and Ints (Appendix D). Both models are initialized125

from textual LLMs (CosyVoice 2: from Qwen2.5,126

0.5B (Yang et al., 2024a). Ints: from Phi-3.5-mini-127

instruct, 3.8B (Abdin et al., 2024)) and achieve128

superior intelligibility performance (Table 4). Our129

experimental results verify that INTP remains ef-130

fective for these more capable models, improving131

both intelligibility and naturalness. Additionally,132

we showcase how to establish an iterative prefer- 133

ence alignment “flywheel” of data and model im- 134

provements (Bai et al., 2022; Dubey et al., 2024; 135

Xiong et al., 2024) based on Ints. 136

We will open-source all resources used in this 137

study, including: (1) the proposed INTP and DPO- 138

based alignment codebase for various TTS models, 139

(2) all the INTP-enhanced models based on Ints, 140

CosyVoice 2, ARS, F5-TTS, and MaskGCT, and 141

(3) our newly constructed zero-shot TTS evaluation 142

sets across diverse domains. 143

2 INTP: Intelligibility Preference Dataset 144

To enhance the TTS intelligibility, this study opts 145

for constructing a preference dataset to align (Tian 146

et al., 2024; Yao et al., 2025; Hussain et al., 2025) 147

rather than directly optimizing single metrics or 148

rules such as WER (Anastassiou et al., 2024; Du 149

et al., 2024b). This choice is motivated by two 150

key considerations. First, through the construc- 151

tion of a preference dataset, we can inject human 152

knowledge and feedback beyond WER, such as cre- 153

ating human-guided negative samples (Section 2.3). 154

Second, in addition to the existing approach of con- 155

structing preference pairs from multiple samples of 156

a single model (Tian et al., 2024; Yao et al., 2025; 157

Hussain et al., 2025), we can leverage comparisons 158

across different models to create preference pairs, 159

thereby utilizing the complementary capabilities of 160

various models (Figure 1b). These different strate- 161

gies help increase diversity in the dataset, mitigat- 162

ing the risk of “reward hacking” that often results 163

from the simple patterns inherent in single metrics 164

or rules (Bai et al., 2022; Skalse et al., 2022; Weng, 165

2024). 166

Formally, we aim to construct an intelligibility 167

preference dataset D = {(x, yw, yl)}, where each 168

triplet comprises a prompt x (consisting of target 169

text xtext and reference speech xspeech for zero- 170

shot TTS models), along with a pair of synthesized 171

speech samples (yw, yl). Here, yw and yl represent 172

the preferred (positive) and dispreferred (negative) 173

outputs conditioned on x, respectively. Statistics 174

of the proposed INTP are presented in Table 1. 175

2.1 Prompt Construction 176

To establish a high-quality preference dataset, we 177

aim to make the distribution of prompt x cover a 178

wide range of domains. For the target text xtext, 179

from the linguistic perspective, we design three 180

distinct categories: (1) Regular text, which repre- 181
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Regular Repeated Code-Switching Pronunciation-
perturbed

Punctuation-
perturbed #Total

ARS (Wang et al., 2025a) 8,219 8,852 8,300 7,325 8,036 40,732
F5-TTS (Chen et al., 2024c) 8,425 8,555 7,976 7,909 6,667 39,532

MaskGCT (Wang et al., 2025a) 9,055 10,263 8,289 7,604 7,686 42,897

Intra Pairs 25,699 27,670 24,565 22,838 22,389 123,161
Inter Pairs 27,008 27,676 24,651 25,045 23,970 128,350

#Total 52,707 55,346 49,216 47,883 46,359 251,511

(a) Distribution of preference pairs, where pronunciation-perturbed and punctuation-
perturbed texts are introduced to create the human-guided negative samples.

Text Type Example

Regular A panda eats shoots and leaves.

Repeated A panda panda eats shoots and
leaves and leaves and leaves.

Code-Switching 熊猫吃 shoots和 leaves。

Pronunciation-
perturbed A pan duh eights shots n leafs.

Punctuation-
perturbed A panda eats, shoots, and leaves.

(b) Examples of different types for a text,
“A panda eats shoots and leaves”.

Table 1: Intelligibility Preference dataset (INTP). There are about 250K pairs (over 2K hours) in INTP, covering
various texts and speechs, multiple models, and diverse preference pairs.

sents the general cases for TTS systems, aimed at182

enhancing model intelligibility in common scenar-183

ios; (2) Repeated text, which contains repeated or184

redundant words and phrases, specifically designed185

to improve TTS performance in articulatory cases;186

and (3) Code-switching text, which incorporates187

a mixture of different languages, intended to en-188

hance TTS capabilities in multilingual scenarios.189

From the semantic perspective, we collect text con-190

tent across diverse topics and domains to enrich191

the distribution of xtext. For the reference speech192

xspeech, we aim to cover a wide range of speakers,193

speaking styles, and acoustic environments. Re-194

garding the pairing of xtext and xspeech, we further195

consider their language alignment by constructing196

both monolingual and cross-lingual combinations197

(more statistics in Appendix B.1).198

We construct these prompt data based on the199

Emilia-Large (He et al., 2024, 2025), which con-200

tains real-world speech data and textual transcrip-201

tions across diverse topics, scenarios, and speaker202

styles. We perform stratified sampling on Emilia-203

Large’s speech and text data to obtain multilingual204

prompts. We employ DeepSeek-V3 (DeepSeek-AI205

et al., 2024) to preprocess the sampled text, includ-206

ing typo correction, and use it as regular text. Based207

on these regular texts, we further utilize DeepSeek-208

V3 to transform them into different text types (as209

shown in Table 1b). Construction details are pro-210

vided in Appendix B.1.211

2.2 Model Selection212

We utilize multiple zero-shot TTS models with di-213

verse architectures for data synthesis to enhance214

INTP’s diversity and generalization. Specifically,215

we select the following three models: (1) ARS216

(AR-based): Introduced as an autoregressive base-217

line by Wang et al. (2025a). and referred to as218

“AR + SoundStorm” in the original paper (Wang219

et al., 2025a). It adopts a cascaded architec-220

ture, including the autoregressive text-to-codec and 221

the non-autoregressive codec-to-waveform (Borsos 222

et al., 2023b). (2) F5-TTS (FM-based): It fol- 223

lows E2 TTS (Eskimez et al., 2024) and uses a 224

flow-matching transformer (Le et al., 2023; Lip- 225

man et al., 2023) to convert the text to acoustic fea- 226

tures directly (Chen et al., 2024c). (3) MaskGCT 227

(MGM-based): Similar to ARS, MaskGCT em- 228

ploys a two-stage architecture. The key distinc- 229

tion lies in its use of an MGM in the text-to-codec 230

stage (Wang et al., 2025a). 231

All the three are pre-trained on Emilia (He et al., 232

2024) (about 100K hours of multilingual data) 233

and represent state-of-the-art zero-shot TTS sys- 234

tems across different architectures. We utilize 235

their officially released pre-trained models (see Ap- 236

pendix B.2 for details) to generate data for INTP. 237

2.3 Preference Pairs Construction 238

In constructing intelligibility preference pairs, we 239

design three categories of pairs (Figure 1): 240

Intra Pair These pairs are generated through 241

model self-comparison (Figure 1a), following an 242

approach similar to previous studies (Tian et al., 243

2024; Yao et al., 2025; Hussain et al., 2025). For a 244

given prompt x, we conduct multiple samplings us- 245

ing the same model. Subsequently, we calculate the 246

WER for each generation and designate the sam- 247

ples with the lowest and highest WER as yw and yl, 248

respectively. To enlarge the gap between yw and 249

yl, we employ diverse sampling hyperparameters 250

across multiple generations from the same model. 251

Additionally, we use a specific WER threshold to 252

filter out pairs with insufficient performance gaps 253

(more details in Appendix B.3.1). 254

Inter Pair These pairs are constructed by com- 255

paring outputs across different models (Figure 1b). 256

The efficacy of this approach lies in leveraging the 257

complementary strengths of various models. For 258
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(a) Intra Pair (b) Inter Pair

(c) Perturbed Pair
Figure 1: Three kinds of preference pairs in INTP.

example, by comparing intra-pairs from different259

models for the same prompt, we can identify the260

“best of the best” samples, thereby enhancing the261

overall quality of positive samples in our dataset.262

Similar to intra pair, we also employ WER to iden-263

tify intelligibility preferences for inter pairs (see264

Appendix B.3.2 for details).265

Notably, the proposed inter-pair construction266

pipeline enables comparative evaluation of intel-267

ligibility performance across different models. Us-268

ing this pipeline, we compared four state-of-the-art269

models in the field: ARS (Wang et al., 2025a), F5-270

TTS (Chen et al., 2024c), MaskGCT (Wang et al.,271

2025a), and CosyVoice 2 (Du et al., 2024b). We272

constructed 10K inter-pairs and analyzed the win273

rates of these models, as shown in Table 2. In-274

terestingly, even ARS, the model with the lowest275

win rate, achieves a 4.1% success rate against the276

strongest model, CosyVoice 2. This finding vali-277

dates our assumption regarding the complementary278

capabilities among various models.279

Perturbed Pair In addition to the aforemen-280

tioned two types of pairs which are established281

based on WER, we leverage human knowledge282

and the intelligence of DeepSeek-V3 (DeepSeek-283

AI et al., 2024) to create human-guided negative284

samples, termed perturbed pairs (Figure 1c). The285

main idea involves deliberately perturbing the in-286

put prompt, thereby inducing the model to generate287

low-quality samples (Majumder et al., 2024; Fu288

et al., 2024).289

Specifically, we design two types of perturba-290

tion for the target text in the prompt (as shown in291

Table 1b): (1) Pronunciation perturbation: we292

replace certain characters of the text with easily293

mispronounceable alternatives. For example, given294

the text “A panda eats shoots and leaves”, we can295

create the perturbed text “A pan duh eights shots n296

leafs”. (2) Punctuation perturbation: we modify297

the punctuation, such as commas, to alter pause298

ARS F5-TTS MaskGCT CosyVoice 2 Win Rate (↑)

ARS / 6.7% 7.4% 4.1% 18.3%
F5-TTS 10.4% / 8.8% 5.9% 25.1%

MaskGCT 10.4% 8.0% / 5.9% 24.3%
CosyVoice 2 11.9% 10.2% 10.3% / 32.3%

* The percentage in each cell represents the proportion of cases where the model
on the horizontal axis outperforms the model on the vertical axis.

* The Win Rate is calculated as the sum of values from columns 2 through 5.

Table 2: TTS Intelligibility Arena: We employ the inter-
pair construction from INTP to compare intelligibility
among four state-of-the-art zero-shot TTS models.

ARS F5-TTS MaskGCT CosyVoice 2

Positive Samples 73.0% 88.1% 90.9% 100.0%
Negative Samples 45.7% 15.8% 47.1% 75.0%

All 59.7% 53.7% 64.3% 90.4%

Table 3: Human-annotated reading accuracy (↑) for four
state-of-the-art zero-shot TTS models on regular texts.
We use the intra-pair pipeline of INTP to generate the
positive and negative samples.

patterns and prosody in the text. For example, by 299

adding commas to the text “A panda eats shoots 300

and leaves”, we obtain “A panda eats, shoots, and 301

leaves”, where the words “shoots” and “leaves” 302

transform from nouns in the original text to verbs, 303

creating a significant semantic shift. The detailed 304

process for constructing these perturbed texts is 305

provided in Appendix B.3.3. 306

2.4 Human Perception Verification 307

After constructing INTP, we further conducted sub- 308

jective evaluation to verify its alignment with hu- 309

man perception. For intelligibility alignment, we 310

design a reading accuracy listening task (see Ap- 311

pendix F.3 for details): given a text and a speech, 312

subjects perform binary classification to determine 313

whether the speech accurately reads the text with- 314

out any content insertion, omission, or mispro- 315

nunciation. Using four state-of-the-art zero-shot 316

TTS models, we generate 300 intra-pairs on INTP 317

regular texts. The results in Table 3 demonstrate 318

that INTP’s preference identification for intra pairs 319

aligns well with human judgments of intelligibil- 320

ity. Furthermore, comparing Tables 2 and 3 reveals 321

that INTP’s inter-pair comparisons of intelligibility 322

across different models also effectively align with 323

human values. 324

In addition to intelligibility, we also investigated 325

how well INTP aligns with human preferences 326

for naturalness, which is one of the most general- 327

purpose metrics for TTS (Tan, 2023). The experi- 328

mental results demonstrate that the naturalness gap 329

between positive and negative samples of INTP is 330
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substantial and perceptible to human listeners. We331

discuss this finding in details in Appendix B.4.332

3 Preference Alignment for Diverse333

Zero-Shot TTS models334

In this section, we present methods for achieving335

preference alignment across a range of TTS mod-336

els, including autoregressive based, flow-matching337

based, and masked generative model based archi-338

tectures. Building on the framework of Direct Pref-339

erence Optimization (DPO) (Rafailov et al., 2023),340

initially developed for AR-based models, we adapt341

and extend its principles to FM-based and MGM-342

based models.343

3.1 DPO for AR Models344

The main idea of reinforcement learning (RL)345

for preference alignment is to introduce a reward346

model r(x, y) to guide the model for improve-347

ment (see e.g., (Li et al., 2024)). Here y repre-348

sents the output (i.e., the generated speech in zero-349

shot TTS), and x means the input prompt (i.e., the350

reference speech and the target text in zero-shot351

TTS). A widely adopted reward model design is352

based on Bradley-Terry (BT) model, which defines353

the probability of preferred sample yw over dis-354

preferred sample yl given x as pBT(y
w ≻ yl |355

x) = σ(r(x, yw) − r(x, yl)). We can train the re-356

ward model rϕ(x, y) by minimizing the negative357

log-likelihood of observed comparisons from the358

preference dataset D:359

LR = −E(x,yw,yl)∼D [log σ (rϕ(x, yw)− rϕ(x, yl))] .

(1)360

With the given reward model, the RL optimization361

objective is to guide the model to maximize the ex-362

pected reward while minimizing the KL-divergence363

from a reference distribution:364

max
pθ

Ex,y∼pθ(y|x)[r(x, y)]− βDKL[pθ(y|x) ∥ pref(y|x)],

(2)365

where the hyperparameter β controls the strength366

of the regularization. As highlighted in Rafailov367

et al. (2023), the optimization problem in Equa-368

tion 2 admits a closed form solution. This implies369

a direct relationship between the reward function370

and the policy. Substituting the reward expression371

into Equation 1 leads the DPO loss:372

LDPO = −ED

[
log σ

(
β
(
log pθ(yw|x)

pref(yw|x) − log pθ(yl|x)
pref(yl|x)

))]
.

(3)373

DPO enables direct preference alignment for AR-374

based TTS models, eliminating the need for explicit375

reward modeling or RL optimization. In the follow- 376

ing subsections, we will introduce its extensions 377

for FM-based and MGM-based TTS models. 378

3.2 DPO for Flow-Matching Models 379

The vanilla DPO algorithm is tailored for AR mod- 380

els, while Wallace et al. (2024) extends it to diffu- 381

sion models. In this subsection, we introduce the 382

DPO algorithm for flow-matching models, specifi- 383

cally demonstrating its application to optimal trans- 384

port flow-matching (OT-FM), a common approach 385

in FM-based TTS models (Le et al., 2023; Eskimez 386

et al., 2024; Chen et al., 2024c). Given the con- 387

tinuous representation y of a speech sample and 388

its corresponding condition x, OT-FM constructs 389

a linear interpolation path between Gaussian noise 390

y0 ∼ N (0, I) and the target data y1 = y. Specifi- 391

cally, the interpolation follows yt = (1−t)y0+t y1, 392

where t ∈ [0, 1], which naturally induces a velocity 393

field vθ(yt, t, x) that captures the constant direc- 394

tional derivative dyt
dt = y1 − y0. OT-FM aims to 395

learn the velocity field to match the true derivative. 396

The corresponding loss function is defined as 397

LOT-FM = Ey0,y1,x,t∥ vθ(yt, t, x)− (y1 − y0) ∥22, (4) 398

where t is the time step that is sampled from the 399

uniform distribution U(0, 1). 400

Inspired by Wallace et al. (2024), we rewrite 401

the RL objective for flow-matching models. Let 402

pθ(y1|yt, t, x) denote our policy that predicts the 403

target sample y1 given the noised observation yt at 404

time t and condition x. We initialize from a refer- 405

ence flow-matching policy pref. The RL objective 406

can be written as: 407

max
pθ

Ey1∼pθ(y1|x),t,x[r(y1, x)]

− βDKL[pθ(y1|yt, t, x)∥pref(y1|yt, t, x)].
(5) 408

Following a similar derivation process as in DPO 409

(we provide more details in Appendix C.2), we can 410

obtain the loss function for flow-matching DPO: 411

LDPO-FM = −E
(yw

1 ,yl
1,x)∼D,t

log σ

(
β

(
log

pθ(y
w
1 |yw

t , t, x)

pref(yw
1 |yw

t , t, x)
− log

pθ(y
l
1|y

l
t, t, x)

pref(yl
1|yl

t, t, x)

))
,

(6) 412

where yw1 and yl1 represent the preferred and dis- 413

preferred samples from the preference dataset, re- 414

spectively, while ywt and ylt are the interpolations 415

at time t between yw1 and yl1 and the randomly sam- 416

pled yw0 and yl0. The loss can be transformed into 417

the velocity space: 418
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Model Regular cases Articulatory cases Code-switching cases Cross-lingual cases Avg

WER SIM N-CMOS WER SIM N-CMOS WER SIM N-CMOS WER SIM N-CMOS WER SIM N-CMOS

ARS 3.96 0.717 - 20.03 0.693 - 54.15 0.693 - 19.76 0.630 - 24.47 0.683 -
w/ INTP 2.32 0.727 0.47 ±0.22 12.83 0.713 0.64 ±0.31 36.91 0.698 0.63 ±0.34 9.57 0.632 0.82 ±0.28 15.41 0.692 0.64 ±0.12

F5-TTS 3.44 0.670 - 16.84 0.635 - 33.99 0.609 - 16.86 0.546 - 17.78 0.615 -
w/ INTP 2.38 0.652 0.38 ±0.26 12.97 0.628 0.30 ±0.23 15.98 0.576 0.67 ±0.36 7.13 0.509 0.47 ±0.30 9.62 0.591 0.44 ±0.12

MaskGCT 2.34 0.738 - 12.43 0.714 - 29.06 0.696 - 12.34 0.629 - 14.04 0.694 -
w/ INTP 2.23 0.737 0.23 ±0.20 9.13 0.722 0.57 ±0.36 19.70 0.704 0.19 ±0.16 7.87 0.633 0.29 ±0.18 9.73 0.699 0.32 ±0.15

CosyVoice 2 2.09 0.709 - 8.12 0.696 - 33.36 0.672 - 8.78 0.600 - 13.09 0.669 -
w/ INTP 1.65 0.709 0.24 ±0.25 6.87 0.696 0.20 ±0.16 28.31 0.671 0.63 ±0.30 5.39 0.603 0.28 ±0.31 10.56 0.670 0.33 ±0.12

Ints 3.14 0.688 - 12.08 0.666 - 22.88 0.646 - 9.78 0.572 - 11.97 0.643 -
w/ INTP 2.36 0.686 0.20 ±0.36 9.38 0.664 0.11 ±0.22 13.80 0.642 0.20 ±0.38 6.28 0.571 0.18 ±0.23 7.96 0.641 0.17 ±0.15

Table 4: Improvements of DPO with INTP for different models (AR-based: ARS (Wang et al., 2025a),
CosyVoice 2 (Du et al., 2024a), and Ints (Appendix D). FM-based: F5-TTS (Chen et al., 2024c). MGM-based:
MaskGCT (Wang et al., 2025a)) on diverse domains.

LDPO-FM = −E
(yw

1 ,yl
1,x)∼D,t

log σ
(
− β( ∥∥vθ(yw

t , t, x) − (y
w
1 − y
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(7)419

This proposed algorithm can be applied to a wide420

range of FM-based and diffusion-based TTS mod-421

els (Le et al., 2023; Eskimez et al., 2024; Shen422

et al., 2024). In this study, we use it to optimize423

F5-TTS (Chen et al., 2024c) as a representative.424

3.3 DPO for Masked Generative Models425

Masked generative model (MGM) is a type of426

Non-AR generative model, which is also widely427

adopted in speech generation, as seen in models428

such as NaturalSpeech 3 (Ju et al., 2024), and429

MaskGCT (Wang et al., 2025a). MGM aims to430

recover a discrete sequence y = [z1, z2, . . . , zn]431

from its partially masked version yt = y ⊙ mt,432

where mt ∈ {0, 1}n is a binary mask sampled433

via a schedule γ(t) ∈ (0, 1]. MGM is trained to434

predict masked tokens from unmasked tokens and435

condition x, modeled as pθ(y0 | yt, x), optimiz-436

ing the sum of the marginal cross-entropy for each437

unmasked token:438

Lmask = −Ey,x,t,mt

n∑
i=1

mt,i · log pθ(zi | yt, x). (8)439

Using a similar derivation as in Section 3.2, we ex-440

tend DPO for MGM. Let pref(y0 | yt, x) represent441

the reference policy. The DPO loss for MGM is442

given by:443

LDPO-MGM = −E
(yw,yl,x)∼D,t

log σ

(
β

(
log

pθ(y
w
0 |yw

t , x)

pref(yw
0 |yw

t , x)
− log

pθ(y
l
0|y

l
t, x)

pref(yl
0|yl

t, x)

))
.

(9)444

Here, ywt and ylt are masked versions of yw0 and yl0.445

Note that pθ(y0|yt, x) corresponds to the sum of446

the log-probabilities of the unmasked tokens in the447

context of MGM. We provide more details about 448

the derivation in Appendix C.3. In this study, we 449

select MaskGCT (Wang et al., 2025a) as a repre- 450

sentative to apply this proposed algorithm for its 451

text-to-codec stage. 452

4 Experiments 453

Evaluation Data We evaluate zero-shot TTS sys- 454

tems across diverse domains in both English and 455

Chinese languages. Based on SeedTTS’s evalua- 456

tion samples (Anastassiou et al., 2024) (which are 457

widely used and also serve as the evaluation set for 458

the pre-trained models of ARS (Wang et al., 2025a), 459

F5-TTS (Chen et al., 2024c), MaskGCT (Wang 460

et al., 2025a), and CosyVoice 2 (Du et al., 2024b) 461

in this study), we construct evaluation sets across 462

four distinct domains: (1) Regular cases: We use 463

SeedTTS test-en (1,000 samples) and SeedTTS 464

test-zh datasets (2,000 samples). (2) Articula- 465

tory cases: These involve tongue twisters and re- 466

peated texts. For Chinese, we use SeedTTS test- 467

hard, while for English, we use reference speech 468

prompts of SeedTTS test-en, and employ Deepseek- 469

V3 (DeepSeek-AI et al., 2024) to construct the ar- 470

ticulatory texts like SeedTTS test-hard. There are 471

800 samples in total. (3) Code-switching cases: 472

These target texts are a mixture of English and Chi- 473

nese. Based on SeedTTS test-en and test-zh, we 474

keep their reference speech prompts unchanged, 475

and adopt Deepseek-V3 to transform their texts 476

into code-switching style. There are 1,000 samples 477

in total. (4) Cross-lingual cases: We construct two 478

types of cross-lingual samples: zh2en (500 sam- 479

ples) and en2zh (500 samples). The zh2en means 480

Chinese reference speech (from SeedTTS test-zh) 481

with English target text (from SeedTTS test-en). 482

Similarly for en2zh. The detailed distribution of 483
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(a) Comparison of reading accuracy.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Ints

CosyVoice2

MaskGCT

F5-TTS

ARS

10.53% 68.42% 21.05%

3.70% 70.37% 25.93%

4.00% 72.00% 24.00%

23.81% 66.67% 9.52%

3.57% 50.00% 46.43%

Lose Tie Win

(b) Win/Lose/Tie of speaker similarity after INTP alignment.

Figure 2: Subjective evaluation of intelligibility and speaker similarity for models before and after INTP alignment.

these sets is presented in Table 9, Appendix F.1.484

Evaluation Metrics For objective metrics, we485

evaluate the intelligibility (WER, ↓), speaker sim-486

ilarity (SIM, ↑), and overall speech quality (UT-487

MOS (Saeki et al., 2022), ↑). Specifically, for488

WER, we employ Whisper-large-v3 (Radford489

et al., 2023) for English, and Paraformer-zh (Gao490

et al., 2022, 2023) for Chinese and code-switching491

texts. For SIM, we compute the cosine similarity492

between the WavLM TDNN (Chen et al., 2022)493

speaker embeddings of generated samples and the494

reference speeches. For subjective metrics, we em-495

ploy Comparative Mean Opinion Score (rated from496

-2 to 2) to evaluate naturalness (N-CMOS, ↑), use497

reading accuracy (Section 2.4) to evaluate intelli-498

gibility, and use A/B Testing to compare speaker499

similarity between the generated samples before500

and after intelligibility alignment. Detailed descrip-501

tions of all the metrics are provided in Appendix F.502

4.1 Effect of DPO with INTP503

To verify the effectiveness of DPO with INTP for504

existing TTS models, we conduct alignment ex-505

periments with multiple models. In addition to506

ARS, F5-TTS, and MaskGCT, which were used in507

constructing the INTP dataset, we also introduce508

two more powerful models in terms of intelligi-509

bility: CosyVoice 2 (Du et al., 2024b) and Ints510

(Appendix D), to validate INTP’s weak-to-strong511

generalization capability. The experimental results512

are presented in Table 4, including results on the ob-513

jective WER, SIM, and the subjective naturalness514

CMOS.515

We observe three key findings from Table 4: (1)516

Across different evaluation cases, while almost all517

models demonstrate strong intelligibility perfor-518

mance in regular cases (WER < 4.0), they strug-519

gle significantly with articulatory, code-switching,520

and cross-lingual cases. We show some halluci-521

nated outputs for these domains on our demo web-522

site. (2) Comparing across models, the proposed523

Ints achieves the best average intelligibility per- 524

formance across all cases (WER of 11.97), high- 525

lighting the strength of using a textual LLM as the 526

initialization of large-scale TTS model (Du et al., 527

2024b). (3) Through DPO with INTP, all models, 528

including the more intelligible CosyVoice 2 and 529

Ints that are out of the INTP distribution, show 530

improvements in both intelligibility (WER) and 531

naturalness (N-CMOS), and display comparable 532

performance for speaker similarity (SIM). 533

Furthermore, we randomly sample 300 samples 534

for subjective evaluation, including assessments 535

of reading accuracy and A/B testing of speaker 536

similarity before and after INTP alignment (see 537

Appendix F.3 for details). The results in Figure 2 538

demonstrate that INTP alignment enhances all five 539

models in terms of both intelligibility (higher read- 540

ing accuracy in Figure 2a) and speaker similarity 541

(more Tie/Win percentages in Figure 2b). 542

4.2 Effect of Different Data within INTP 543

To investigate the impact of different distributions 544

within INTP, we conduct ablation studies from mul- 545

tiple perspectives. In Table 5, we present three 546

groups of experiments on ARS: the effect of data 547

across different text types, across different models, 548

and the effect of different negative samples. Ad- 549

ditional results, including the effect of data across 550

different languages are provided in Appendix G. 551

We observe three key findings from Table 5: (1) 552

Group 1 demonstrates that different scenarios re- 553

quire customized post-training data. For instance, 554

repeated data proves particularly effective for artic- 555

ulatory cases, while pronunciation-perturbed data 556

significantly improves pronunciation accuracy and 557

WER in cross-lingual cases (see our demo website 558

for details). Moreover, utilizing data from multiple 559

scenarios (i.e., the complete INTP) yields the best 560

overall improvements. (2) Group 2 reveals that 561

model improvement can be achieved through align- 562

ment using synthetic data, regardless of whether 563
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Model Regular cases Articulatory cases Code-switching cases Cross-lingual cases Avg

WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS

Group 1: Effect of Data across Different Text Types

ARS (Wang et al., 2025a) 3.96 0.717 3.145 20.03 0.693 2.915 54.15 0.693 3.045 19.76 0.630 3.120 24.47 0.683 3.056

w/ Regular 2.45 0.727 3.200 17.41 0.706 3.000 37.52 0.701 3.110 9.66 0.638 3.200 16.76 0.693 3.128
w/ Repeated 2.33 0.725 3.225 12.88 0.711 3.050 39.74 0.701 3.150 10.96 0.636 3.235 16.48 0.693 3.165

w/ Code-switching 2.32 0.729 3.220 17.67 0.704 3.050 34.20 0.695 3.140 8.69 0.633 3.215 15.72 0.690 3.156
w/ Pronunciation-perturbed 2.21 0.720 3.250 17.76 0.693 3.075 35.99 0.687 3.185 8.24 0.617 3.285 16.05 0.679 3.199

w/ Punctuation-perturbed 2.46 0.722 3.240 17.35 0.699 3.020 42.73 0.694 3.160 10.94 0.624 3.255 18.37 0.684 3.169

w/ INTP 2.32 0.727 3.210 12.83 0.713 3.035 36.91 0.698 3.145 9.57 0.632 3.250 15.41 0.692 3.160

Group 2: Effect of Data across Different Models

ARS (Wang et al., 2025a) 3.96 0.717 3.145 20.03 0.693 2.915 54.15 0.693 3.045 19.76 0.630 3.120 24.47 0.683 3.056

w/ ARS pairs 2.56 0.717 3.200 13.05 0.705 3.015 40.91 0.691 3.125 11.07 0.622 3.225 16.90 0.684 3.141
w/ MaskGCT pairs 2.37 0.724 3.210 16.85 0.700 3.010 37.41 0.692 3.105 8.83 0.625 3.200 16.37 0.685 3.131

w/ F5-TTS pairs 2.46 0.721 3.210 14.99 0.705 3.035 38.77 0.690 3.115 10.01 0.621 3.225 16.56 0.684 3.146

w/ Intra pairs 2.33 0.721 3.200 15.29 0.705 3.015 37.99 0.687 3.115 9.36 0.624 3.200 16.24 0.684 3.133
w/ Inter pairs 2.25 0.726 3.180 15.42 0.703 2.965 38.69 0.697 3.065 10.61 0.631 3.170 16.74 0.689 3.095

w/ INTP 2.32 0.727 3.210 12.83 0.713 3.035 36.91 0.698 3.145 9.57 0.632 3.250 15.41 0.692 3.160

Group 3: Effect of Different Negative Samples

ARS (Wang et al., 2025a) 3.96 0.717 3.145 20.03 0.693 2.915 54.15 0.693 3.045 19.76 0.630 3.120 24.47 0.683 3.056

w/ Regular (SFT)∗ 3.28 0.716 3.165 20.03 0.685 2.935 48.73 0.691 3.065 17.25 0.630 3.165 22.32 0.680 3.083
w/ Regular∗ 2.45 0.727 3.200 17.41 0.706 3.000 37.52 0.701 3.110 9.66 0.638 3.200 16.76 0.693 3.128

w/ Pronunciation-perturbed∗ 2.21 0.720 3.250 17.76 0.693 3.075 35.99 0.687 3.185 8.24 0.617 3.285 16.05 0.679 3.199
w/ Punctuation-perturbed∗ 2.46 0.722 3.240 17.35 0.699 3.020 42.73 0.694 3.160 10.94 0.624 3.255 18.37 0.684 3.169

* The positive samples in these four experiments are identical. w/ Regular (SFT) refers to supervised fine-tuning using positive samples only, excluding negative samples. w/
Regular employs WER-based negative samples, while the other two utilize our proposed human-guided negative samples.

Table 5: Effect of different data within INTP for ARS.

Model Preference Data Regular cases Articulatory cases Code-switching cases Cross-lingual cases Avg

WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS

Ints - 3.14 0.688 3.175 12.08 0.666 3.025 22.88 0.646 3.045 9.78 0.572 3.150 11.97 0.643 3.099
Ints v1 INTP 2.36 0.686 3.205 9.38 0.664 3.060 13.80 0.642 3.125 6.28 0.571 3.230 7.96 0.641 3.155
Ints v2 Ints v1 generated 2.21 0.686 3.210 8.48 0.660 3.085 12.33 0.643 3.140 5.40 0.567 3.250 7.10 0.639 3.171

Table 6: Iterative Preference Alignment for Ints.

it’s generated by the model itself or other models.564

Besides, the intra-pairs and inter-pairs are comple-565

mentary for model improvements. (3) Group 3566

shows that using only positive samples from INTP567

for supervised fine-tuning (SFT) can already im-568

prove quality. Building upon this, incorporating569

negative samples for preference learning leads to570

even more substantial gains.571

4.3 Iterative Intelligibility Alignment572

Furthermore, we explore how to establish an itera-573

tive preference alignment, i.e., data and model fly-574

wheel (Bai et al., 2022; Dubey et al., 2024; Xiong575

et al., 2024). We investigate two rounds of align-576

ment based on Ints, where Ints v1 (INTP-aligned577

model) is used to generate new preference data for578

training Ints v2, following a similar cadence of data579

collection as (Bai et al., 2022). To prepare Ints v1580

generated preference data, we sample a challeng-581

ing prompt subset from INTP and adopt the same582

pipeline as INTP to construct preference pairs (see583

Appendix D.2 for details). The results of this it-584

erative alignment are shown in Table 6. We can585

observe that compared to Ints v1, Ints v2 yields ad-586

ditional improvements across all scenarios, which587

demonstrates that effectiveness of iterative align- 588

ment. However, we observe that the magnitude of 589

improvement in the second round is notably smaller 590

than the first round. We suspect this indicates that 591

the upper bound of iterative alignment is largely 592

determined by the base model’s inherent capabil- 593

ities, suggesting future research should focus on 594

base models with higher potential. 595

5 Conclusion 596

In this work, we focus on the intelligibility issues of 597

modern zero-shot TTS systems across diverse do- 598

mains, especially in hard-to-pronounce texts, code- 599

switching, and cross-lingual synthesis. We propose 600

to address these challenges using preference align- 601

ment with our newly constructed INTP dataset, 602

which contains diverse preference pairs determined 603

through model self-comparison, cross-model com- 604

parison, and human guidance. We employ DPO 605

and design special extensions to significantly im- 606

prove various TTS architectures, while demonstrat- 607

ing INTP’s weak-to-strong generalization capabil- 608

ity and establishing an iterative preference align- 609

ment flywheel with more powerful base models. 610
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Limitations611

While our approach demonstrates significant im-612

provements in zero-shot TTS intelligibility across613

diverse domains, several limitations remain. Al-614

though INTP covers multiple challenging scenar-615

ios, it may not fully capture all edge cases, such616

as specialized jargon or rare language pairs. Fu-617

ture work could expand to more low-resource lan-618

guages and niche domains. Besides, constructing619

INTP and conduct alignment experiments on large620

models like Ints require substantial computational621

resources, potentially limiting accessibility.622

Potential Risks623

The proposed method introduces several risks that624

warrant consideration. Enhanced TTS systems625

could be exploited to generate deceptive content626

(e.g., deepfake audio), posing ethical challenges.627

Robust safeguards and watermarking mechanisms628

are critical for deployment. While INTP uses pub-629

lic datasets, real-world applications may risk in-630

corporating sensitive or copyrighted speech data,631

requiring strict governance protocols.632
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A Related Work1116

Zero-Shot Text to Speech Given a target text1117

and a reference speech as input, zero-shot TTS1118

systems aim to synthesize the target text while1119

mimicking the reference style. Modern zero-shot1120

TTS systems include AR approaches (Wang et al.,1121

2023; Peng et al., 2024; Anastassiou et al., 2024;1122

Guo et al., 2024; Du et al., 2024a,b; Zhang et al.,1123

2025) that model discrete speech tokens (Zeghidour1124

et al., 2021; Défossez et al., 2023), and Non-AR1125

approaches that either model continuous represen-1126

tations using diffusion (Shen et al., 2024) or flow1127

matching (Le et al., 2023; Eskimez et al., 2024;1128

Chen et al., 2024c), or model discrete tokens using1129

masked generative models (Borsos et al., 2023b;1130

Ju et al., 2024; Wang et al., 2025a,b). While these1131

systems, trained on large-scale datasets (He et al.,1132

2024; Kahn et al., 2020; He et al., 2025), show1133

excellent intelligibility in regular cases (Anastas-1134

siou et al., 2024; Panayotov et al., 2015; Du et al.,1135

2024b), they still struggle with intelligibility in1136

real-world scenarios.1137

Alignment for Speech Generation Alignment1138

via post-training has demonstrated its effectiveness1139

in the generation of text (Ouyang et al., 2022; Bai1140

et al., 2022), vision (Xu et al., 2023; Fu et al., 2024),1141

speech (Zhang et al., 2024; Anastassiou et al., 2024;1142

Du et al., 2024b), music (Cideron et al., 2024),1143

and sound effects (Majumder et al., 2024; Liao1144

et al., 2024). In speech generation, existing works1145

have employed preference alignment to enhance1146

multiple aspects of speech, including intelligibil-1147

ity (Anastassiou et al., 2024; Du et al., 2024b; Tian1148

et al., 2024), speaker similarity (Anastassiou et al.,1149

2024; Du et al., 2024b; Tian et al., 2024), emotion1150

controllability (Anastassiou et al., 2024; Gao et al.,1151

2024), and overall quality (Zhang et al., 2024; Chen1152

et al., 2024a; Hu et al., 2024; Chen et al., 2024b;1153

Yao et al., 2025; Hussain et al., 2025). For in-1154

telligibility, previous studies choose WER as the1155

optimization objective, either directly employing1156

it as a reward model (Anastassiou et al., 2024; Du1157

et al., 2024b) or centering around it to construct1158

preference pairs (Tian et al., 2024; Yao et al., 2025;1159

Hussain et al., 2025).1160

However, the existing research exhibits two main1161

limitations. First, in constructing intelligibility1162

preference dataset, current works rely solely on1163

a single model to generate data (Tian et al., 2024;1164

Yao et al., 2025; Hussain et al., 2025), neglecting1165

comparisons across different models. Additionally,1166

beyond the objective WER, the potential of lever- 1167

aging human knowledge or feedback to construct 1168

preference pairs remains unexplored. Second, most 1169

existing work has focused primarily on optimiz- 1170

ing AR-based (Zhang et al., 2024; Anastassiou 1171

et al., 2024; Du et al., 2024b; Tian et al., 2024) or 1172

diffusion-based (Chen et al., 2024b) TTS models, 1173

leaving open the question of how to design effec- 1174

tive alignment algorithms for other architectural 1175

paradigms, such as FM-based and MGM-based 1176

TTS models. 1177

B Construction Details of INTP 1178

B.1 Prompt Construction 1179

We construct English and Chinese prompt data, 1180

both based on the Emilia-Large dataset (He et al., 1181

2024, 2025), which contains diverse real-world 1182

speech data across various topics, recording scenar- 1183

ios, and speaking styles. 1184

Reference Speech We perform stratified sam- 1185

pling on Emilia-Large’s speech data based on its 1186

metadata such as topics and tags to cover diverse 1187

acoustic conditions. Considering the memory con- 1188

straints of existing zero-shot TTS models during 1189

inference, we only select samples with durations 1190

not exceeding 12 seconds. 1191

Target Text Similarly to reference speech, we 1192

perform stratified sampling based on Emilia- 1193

Large’s metadata to cover diverse semantic topics. 1194

We select speech samples with durations between 5 1195

and 22 seconds, and use their corresponding textual 1196

transcriptions as the target text data source. 1197

We utilize DeepSeek V3 (DeepSeek-AI et al., 1198

2025) to preprocess the sampled textual transcrip- 1199

tions, such as typo correction and punctuation mark 1200

normalization, and use the processed text as regu- 1201

lar text in INTP. Specifically, we use the following 1202

instruction for DeepSeek V3 to conduct text pre- 1203

processing: 1204

System Prompt:
I obtained a text from an audio file based on some ASR
models. Please help me clean it up (e.g., correct typos,
add proper punctuation marks, and make the sentences
semantically coherent). Note: (1) You can modify, add,
or replace words that better fit the context to ensure
semantic coherence. (2) Please only return the cleaned-
up result without any explanation.

User Prompt (Example):
a panda eats shoes and leaves

System Output (Example):
A panda eats shoots and leaves.

1205
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Furthermore, we employ DeepSeek V3 to trans-1206

form the regular text into different types. To gener-1207

ate Chinese-English-mixed code-switching texts:1208

System Prompt:
请你把这句话，转换成一个中文、英文混合的 code-
switching版本。注意：你只需要返回给我转换后的
结果，不需要任何解释。

User Prompt (Example):
A panda eats shoots and leaves.

System Output (Example):
熊猫吃 shoots和 leaves。

1209

To generate punctuation-perturbed texts:1210

System Prompt:
假设你是一个 Text To Speech (TTS) 领域的专家，
现在，让我们对一个 TTS系统进行攻击。具体地：
我输入一个文本，请你修改这条文本里面的若干词
语，从而使 TTS系统更容易出错。例如：你可以修
改为把某些字修改为容易读错的形近字、把多音字
做替换，等等，但你不要增加和删除原有的文本。
注意：你只需要返回给我转换后的结果，不需要任
何解释。

例子1:
【我的输入】我今天很高兴
【你的输出】窝锦添狠搞醒

例子2:
【我的输入】目前，爱心人士正在种作寄养的小猫
已经五个月大了。而本人的种作寄养申请单需要进
一步审核。为了避免小猫多次转手，治疗者们对小
猫的种作寄养提出了严格要求：申请人需年满二十
三岁。
【你的输出】幕前，爱信人士正在重作寄扬的削猫
已经伍个月大了。而本人的重作寄扬神情但需要进
一步审核。为了闭面削猫多次转售，治理者们对削
猫的重作寄扬提出了阉割要求：申情人需年慢贰拾
叁岁。

例子3:
【我的输入】And the idea of standing all by himself in
a crowded market, to be pushed and hired by some big,
strange farmer, was very disagreeable. Why not sing that
high note and grow potatoes?
【你的输出】And the eye dear of standing awl bye
himself in a crowd dead market, two bee pushed and
high red buy sum big, strange far mer, was vary dis
agreeable. Y knot sing that hi note and grow poe eight
toes?

User Prompt (Example):
A panda eats shoots and leaves.

System Output (Example):
A pan duh eights shots n leafs.

1211

To generate repeated text and punctuation-1212

perturbed text, we leverage DeepSeek V3 to cre-1213

ate executable Python scripts that implement rule-1214

based word repetition and random punctuation1215

modification. These scripts will be included in1216

our future open-source repository. 1217

Combination between Speech and Text Based 1218

on the language of reference speech and target 1219

text data, we design four balanced combination 1220

categories: monolingual combinations (en2en and 1221

zh2zh) and cross-lingual combinations (zh2en and 1222

en2zh), where zh2en denotes Chinese reference 1223

speech with English target text, and similarly for 1224

others. For each text type shown in Table 1a (Reg- 1225

ular, Repeated, Code-Switching, Pronunciation- 1226

perturbed, and Punctuation-perturbed), we con- 1227

struct 12K prompts. 1228

B.2 Model Selection 1229

• ARS (Wang et al., 2025a): We use the original 1230

checkpoint (pre-trained on Emilia) provided by 1231

the authors. 1232

• F5-TTS (Chen et al., 2024c): We use the offi- 1233

cially released checkpoint1 for INTP data gener- 1234

ation. 1235

• MaskGCT (Wang et al., 2025a): We use the of- 1236

ficially released checkpoint2 for INTP data gen- 1237

eration. 1238

In addition to these three models used for INTP 1239

construction, we also investigate INTP’s effective- 1240

ness on CosyVoice 2 and Ints. For CosyVoice 2, 1241

we conduct alignment experiments using its offi- 1242

cially released checkpoint3 as the base model. De- 1243

tails of the pre-trained models of Ints are provided 1244

in Appendix D. 1245

B.3 Preference Pairs Construction 1246

B.3.1 Intra Pair 1247

For each model and prompt, we perform five sam- 1248

plings and construct intra pairs based on their WER 1249

comparisons. To maximize the performance gap 1250

between positive and negative samples, we employ 1251

two strategies. First, we use diverse hyperparame- 1252

ters during the five generations to increase sample 1253

diversity, selecting the generation with the lowest 1254

WER as positive samples and the highest WER 1255

as negative samples. Second, we apply a thresh- 1256

old to filter out pairs where the WER gap between 1257

positive and negative samples is less than 6.0. 1258

Specifically, for ARS’s five samplings, we set top 1259

k to 20 and top p to 1.0, while using different tem- 1260

peratures of 0.4, 0.6, 0.8, 1.0, and 1.2. For F5-TTS 1261

1https://huggingface.co/SWivid/F5-TTS
2https://huggingface.co/amphion/MaskGCT
3https://github.com/FunAudioLLM/CosyVoice
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A+2 A+1 Tie B+1 B+2

10.9% 29.0% 15.0% 32.4% 12.6%
* For each pair, we present the two samples to human

raters in random order, labeled as A and B. A+2
indicates that sample A’s naturalness is significantly
better than B, while A+1 indicates that sample A is
moderately better than B, similar for B+2 and B+1.
Tie indicates no perceptible difference.

Table 7: Human naturalness preference for 1,000 pairs
from INTP regular text domain.

Naturalness
Winner

Naturalness
Tie

Naturalness
Loser

INTP winner 72% 15% 13%

Table 8: Agreement between INTP preference and hu-
man naturalness preference.

and MaskGCT, we use the generated speech target1262

duration as the sampling hyperparameter. Denot-1263

ing the “ground truth” duration4 as d, we employ1264

five different duration parameters: 0.8d, 0.9d, 1.0d,1265

1.1d, and 1.2d.1266

B.3.2 Inter Pair1267

We construct inter pairs based on the intra pairs1268

established in Appendix B.3.1. For a given prompt,1269

we denote model A’s intra pair as (ywA, y
l
A) and1270

model B’s intra pair as (ywB, y
l
B). We construct1271

inter pairs through three types of comparisons: be-1272

tween ywA and ywB , between ywA and ylB , and between1273

ylA and ywB . Note that we exclude comparisons be-1274

tween ylA and ylB to ensure high quality of positive1275

samples. We apply the same WER threshold as1276

in Appendix B.3.1 to filter out pairs with small1277

performance gaps.1278

B.3.3 Perturbed Pair1279

The instructions used to prompt DeepSeek V3 for1280

obtaining pronunciation-perturbed and punctuation-1281

perturbed texts are shown in Appendix B.1. Specif-1282

ically, we only use data from INTP’s regular text1283

domain to construct perturbed pairs.1284

B.4 Human Verification1285

In Section 2.4, we evaluated INTP’s alignment with1286

human intelligibility perception. In this section, we1287

investigate the alignment between INTP and hu-1288

man naturalness preferences. Specifically, we de-1289

4Since we use Emilia-Large’s transcription data as target
text in our prompt construction process (Appendix B.1), we
refer to the original speech duration corresponding to this
transcription as the “ground truth” duration.

sign a naturalness preference annotation task (Ap- 1290

pendix F.3). We randomly sample 1,000 pairs from 1291

INTP’s regular text domain for human annotation, 1292

with results shown in Table 7 and 8. The results 1293

reveal two key findings: First, 85% of INTP pairs 1294

exhibit distinguishable naturalness preferences (Tie 1295

rate of 15% in Table 7). Additionally, INTP’s pref- 1296

erence determination shows strong agreement with 1297

human naturalness preferences (72% agreement 1298

rate between INTP winners and naturalness win- 1299

ners in Table 8). These results suggest that INTP 1300

can also serve as a foundation dataset for natural- 1301

ness preference alignment in future research. 1302

C Details of the Derivation 1303

C.1 DPO for AR Models 1304

Starting from Equation 2, Rafailov et al. (2023) 1305

demonstrate that the optimization problem admits 1306

a closed-form solution. Specifically, the optimal 1307

policy p∗θ(y|x) that maximizes the RL objective is 1308

given by: 1309

p∗θ(y|x) =
1

Z(x)
pref(y|x) exp

(
1

β
r(x, y)

)
, (10) 1310

where Z(x) is the partition function ensuring nor- 1311

malization. This establishes a direct relationship 1312

between the reward function and the policy: 1313

r(x, y) = β log
p∗θ(y|x)
pref(y|x)

+ β logZ(x). (11) 1314

Substituting this reward expression (Equation 11) 1315

into the reward modeling loss function (Equation 1) 1316

leads the DPO loss (Equation 3), which we repre- 1317

sent here as: 1318

LDPO = −ED

[
log σ

(
β
(
log pθ(yw|x)

pref(yw|x) − log pθ(yl|x)
pref(yl|x)

))]
. 1319

C.2 DPO for Flow-Matching Models 1320

Starting from Equation 5, which we represent here 1321

as: 1322

max
pθ

Ey1∼pθ(y1|x),t,x[r(y1, x)]

− βDKL[pθ(y1|yt, t, x)∥pref(y1|yt, t, x)].
1323

Similar to the derivation in DPO (Rafailov et al., 1324

2023) and Wallace et al. (2024), we obtain the 1325

closed-form solution for the optimal policy as: 1326

p
∗
θ(y1|yt, t, x) =

1

Z(yt, t, x)
pref(y1|yt, t, x) exp

(
1

β
r(y1, x)

)
,

(12) 1327
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where Z(yt, t, x) is the partition function ensuring1328

normalization. We can then express the reward1329

model r(y1, x) as:1330

r(y1, x) = β log
p∗θ(y1|yt, t, x)
pref(y1|yt, t, x)

+ β logZ(yt, t, x).

(13)1331

Similarly, substituting this reward expression1332

(Equation 13) into the reward modeling loss func-1333

tion (Equation 1) leads to the DPO loss for OT-FM1334

(Equation 6), which we represent here:1335

LDPO-FM = −E
(yw

1 ,yl
1,x)∼D,t

log σ

(
β

(
log

pθ(y
w
1 |yw

t , t, x)

pref(yw
1 |yw

t , t, x)
− log

pθ(y
l
1|y

l
t, t, x)

pref(yl
1|yl

t, t, x)

))
.

1336

Reviewing the training objective of OT-FM (Equa-1337

tion 4), we find that it is equivalent to fitting a1338

Gaussian likelihood. In other words, the induced1339

likelihood can be interpreted as:1340

pθ(y1 | yt, t, x) ∝ exp

(
− 1

β
∥vθ(yt, t, x)− (y1 − y0)∥22

)
,1341

similarly, for the reference policy, we have:1342

pref(y1 | yt, t, x) ∝ exp

(
− 1

β
∥vref(yt, t, x)− (y1 − y0)∥22

)
.1343

Here, β serves as an inverse temperature (or noise1344

variance), and the normalization constants cancel1345

out when taking the ratio. By taking the logarithm1346

of the ratio between the learned policy and the1347

reference policy, we obtain:1348

log
pθ(y1 | yt, t, x)
pref(y1 | yt, t, x)

=− 1

β

(
∥vθ(yt, t, x)− (y1 − y0)∥22

− ∥vref(yt, t, x)− (y1 − y0)∥22
)
.

1349

Multiplying both sides by β results in:1350

β log
pθ(y1 | yt, t, x)
pref(y1 | yt, t, x)

=−
(
∥vθ(yt, t, x)− (y1 − y0)∥22

− ∥vref(yt, t, x)− (y1 − y0)∥22
)
.

1351

By substituting the log-ratio formulation into Equa-1352

tion 6, we can transform the DPO loss for OT-FM1353

into a form related to the velocity, as shown in1354

Equation 7, which is represented as:1355

LDPO-FM = −E
(yw

1 ,yl
1,x)∼D,t

log σ
(
− β( ∥∥vθ(yw

t , t, x) − (y
w
1 − y

w
0 )
∥∥2
2
−
∥∥vref(y

w
t , t, x) − (y

w
1 − y

w
0 )
∥∥2
2

)
−
( ∥∥∥vθ(yl

t, t, x) − (y
l
1 − y

l
0)
∥∥∥2
2
−
∥∥∥vref(y

l
t, t, x) − (y

l
1 − y

l
0)
∥∥∥2
2

))
.

1356

C.3 DPO for Masked Generative Models 1357

Similar to flow-matching, let pθ(y0 | yt, x) denote 1358

the policy to be optimized, and pref(y0 | yt, x) the 1359

reference policy. We can rewrite the RL objective 1360

for MGM as follows: 1361

max
pθ

Ey0∼pθ(y0|x),t,x [r(y0, x)]

− βDKL [pθ(y0|yt, x) ∥ pref(y0|yt, x)] .
(14) 1362

We can also derive the closed-form solution for the 1363

optimal policy: 1364

p∗θ(y0|yt, x) =
1

Z(yt, x)
pref(y0|yt, x) exp

(
1

β
r(y0, x)

)
,

(15) 1365

and express the reward model as follows: 1366

r(y0, x) = β log
p∗θ(y0|yt, x)
pref(y0|yt, x)

+ β logZ(yt, x), (16) 1367

where Z(yt, x) is the partition function ensuring 1368

normalization. Also, substituting this reward ex- 1369

pression (Equation 16) into the reward modeling 1370

loss function (Equation 1) leads to the DPO loss 1371

for MGM: 1372

LDPO-MGM = −E
(yw,yl,x)∼D,t

log σ

(
β

(
log

pθ(y
w
0 |yw

t , x)

pref(yw
0 |yw

t , x)
− log

pθ(y
l
0|y

l
t, x)

pref(yl
0|yl

t, x)

))
.

(17) 1373

Here, ywt and ylt are masked versions of yw0 and 1374

yl0 generated via the mask schedule γ(t). Note 1375

that pθ(y0|yt, x) corresponds to the sum of the log- 1376

probabilities of the unmasked tokens in the context 1377

of MGM. 1378

D Ints: Intelligibility-enhanced Speech 1379

Language Model 1380

Ints is an intelligibility-enhanced speech language 1381

model. It follows a two-stage generation paradigm 1382

like (Anastassiou et al., 2024; Du et al., 2024a; 1383

Wang et al., 2025a): in the first stage, it uses an AR 1384

model to generate discrete speech tokens, while in 1385

the second stage, it employs a flow matching model 1386

to generate mel-spectrograms from speech tokens. 1387

We use the first-layer tokens from DualCodec (Sub- 1388

mission, 2025) as the modeling target for the first 1389

stage of Ints, due to its efficient compression rep- 1390

resentation (12.5Hz tokens for 24kHz speech) and 1391

rich semantic information. Particularly, the first- 1392

stage AR model is directly initialized from a large 1393

language model while extending the vocabulary 1394

to include speech tokens. The codebook size of 1395

speech tokens is 16,384. Specifically, in this work, 1396
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we use the 3.8B Phi-3.5-mini-instruct5 (Ab-1397

din et al., 2024), motivated by scaling up model1398

size and leveraging the rich textual semantic knowl-1399

edge.1400

D.1 TTS Instruction Design1401

We format the input as a text-to-speech instruc-1402

tion concatenated with speech tokens. The input1403

sequence is represented as:1404

[I,T , < |startofspeech| >,S, < |endofspeech| >]1405

where I is the instruction prefix (e.g., “Please speak1406

the following text out loud”), and T and S de-1407

note the text and speech token sequences, respec-1408

tively. The special tokens < |startofspeech| > and1409

< |endofspeech| > mark the boundaries of the1410

speech token sequence.1411

During the inference stage for zero-shot TTS,1412

the input sequence is represented as:1413 [
I,T prompt,T target, < |startofspeech| >,Sprompt

]
1414

to generate the target speech tokens Starget. Here,1415

T prompt, T target, Sprompt are placeholders for the1416

prompt text, target text, and prompt speech tokens,1417

respectively.1418

D.2 Training data1419

We pre-train Ints on Emilia (He et al., 2024), which1420

consists of about 100K hours of multilingual data.1421

Following this, we use INTP alignment to obtain1422

Ints v1. Ints v1 is then used to generate new prefer-1423

ence data, which are employed to train Ints v2 for1424

iterative alignment. We select prompts from the re-1425

peated and code-switching samples of INTP, which1426

can be considered a more challenging subset of1427

prompts. For each prompt, we use the same INTP1428

intra-pair pipeline in Appendix B.3.1 to construct1429

preference pairs.1430

E Training Details1431

All of our experiments are conducted on 8 NVIDIA1432

H100 80GB-GPUs. Unless stated otherwise, we1433

use the AdamW optimizer with β1 = 0.9, β2 =1434

0.999 and train for one epoch. For each model,1435

we provide more detailed information about the1436

experiments:1437

• ARS: We use a learning rate of 5e − 6 with a1438

warmup of 4, 000 steps and an inverse square1439

root learning scheduler. For DPO, we use the1440

hyperparameter β = 0.1.1441

5https://huggingface.co/microsoft/Phi-3.5-mini-instruct

Languages #Total

Regular en zh
3,000

1,000 2,000

Articulatory en zh
800

400 400

Code-switching en2mixed zh2mixed
1,000

500 500

Cross-lingual zh2en en2zh
1,000

500 500

Table 9: Statistics of the proposed evaluation sets in
four scenarios (en: English, zh: Chinese, mixed: mix-
ture of English and Chinese, zh2en: Chinese reference
speech with English target text. Similarly for en2mixed,
zh2mixed, and en2zh).

• F5-TTS: We use a learning rate of 8e− 6 with 1442

a warmup of 4, 000 steps and an inverse square 1443

root learning scheduler. For DPO, we use the 1444

hyperparameter β = 1, 000. 1445

• MaskGCT: We use a learning rate of 5e−6 with 1446

a warmup of 4, 000 steps and an inverse square 1447

root learning scheduler. For DPO, we use the 1448

hyperparameter β = 10. 1449

• CosyVoice 2: We use a learning rate of 5e − 6 1450

with a warmup of 4, 000 steps and an inverse 1451

square root learning scheduler. For DPO, we use 1452

the hyperparameter β = 0.1. 1453

• Ints: We use a learning rate of 5e − 6 with a 1454

warmup of 4, 000 steps and an inverse square 1455

root learning scheduler. For DPO, we use the 1456

hyperparameter β = 0.1. We use flash atten- 1457

tion (Dao et al., 2022) and bfloat16 for training. 1458

F Evaluation Details 1459

F.1 Evaluation Data 1460

Our evaluation sets are based on SeedTTS test- 1461

en and SeedTTS test-zh datasets6. The SeedTTS 1462

test-en set includes 1,000 samples from the Com- 1463

mon Voice dataset (Ardila et al., 2019), while the 1464

SeedTTS test-zh set comprises 2,000 samples from 1465

the DiDiSpeech dataset (Guo et al., 2021). We also 1466

provide the detailed distribution of our proposed 1467

sets in Table 9. 1468

F.2 Objective Evaluation Metrics 1469

For objective metrics, we evaluate the intelligibil- 1470

ity (WER), speaker similarity (SIM), and overall 1471

speech quality (UTMOS (Saeki et al., 2022)): 1472

6https://github.com/BytedanceSpeech/seed-tts-eval
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On English Evaluation Samples

Model Regular (en) Articulatory (en) Code-switching (en2mixed) Cross-lingual (zh2en) Avg

WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS

ARS (Wang et al., 2025a) 3.55 0.682 3.560 15.98 0.675 3.400 48.59 0.629 3.190 15.22 0.697 3.150 20.84 0.671 3.325

w/ en2en 1.96 0.697 3.690 13.42 0.685 3.570 35.18 0.641 3.270 8.19 0.692 3.300 14.19 0.679 3.458
w/ zh2zh 2.76 0.692 3.660 13.90 0.687 3.550 36.65 0.644 3.260 8.92 0.694 3.320 15.06 0.679 3.448

w/ en2zh, zh2en 2.32 0.694 3.700 11.78 0.684 3.580 35.17 0.645 3.290 7.00 0.700 3.330 14.07 0.681 3.475
w/ all 2.35 0.695 3.680 13.76 0.686 3.560 33.53 0.642 3.240 7.38 0.704 3.310 14.26 0.682 3.448

On Chinese Evaluation Samples

Model Regular (zh) Articulatory (zh) Code-switching (zh2mixed) Cross-lingual (en2zh) Avg

WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS WER SIM UTMOS

ARS (Wang et al., 2025a) 4.37 0.752 2.730 24.07 0.711 2.430 59.71 0.756 2.900 24.30 0.563 3.090 28.61 0.696 2.788

w/ en2en 2.68 0.761 2.760 21.68 0.727 2.530 48.84 0.757 2.990 12.48 0.566 3.140 21.42 0.703 2.855
w/ zh2zh 2.41 0.760 2.740 19.51 0.727 2.490 47.99 0.755 3.010 12.73 0.565 3.110 20.16 0.702 2.838

w/ en2zh, zh2en 2.49 0.762 2.740 22.92 0.715 2.490 41.00 0.757 3.000 11.76 0.573 3.160 19.54 0.702 2.848
w/ all 2.62 0.759 2.720 21.06 0.725 2.440 41.50 0.760 2.980 11.95 0.572 3.090 19.78 0.704 2.808

Table 10: Effect of different languages within INTP for ARS. In these experiments, we use only the Regular part of
INTP for training.

• WER: We employ1473

Whisper-large-v37(Radford et al., 2023)1474

for English texts, and Paraformer-zh8(Gao1475

et al., 2022, 2023) for Chinese and code-1476

switching texts.1477

• SIM: We compute the cosine similarity between1478

the WavLM TDNN9(Chen et al., 2022) speaker1479

embeddings of generated samples and the prompt1480

samples.1481

• UTMOS: We use the pretrained UTMOS strong1482

learner following the official implementation10.1483

F.3 Subjective Evaluation1484

We consider four different settings: regular, artic-1485

ulatory, code-switching, and cross-lingual. Each1486

setting is evaluated in two languages, resulting in1487

10 samples per language. This setup yields a total1488

of 80 pairs. These 80 pairs are evaluated across1489

5 different systems (ARS, F5-TTS, MaskGCT,1490

CosyVoice 2, and Ints), leading to a total of 4001491

pairs. We engage 20 participants in the evaluation1492

process, ensuring that each sample is assessed at1493

least three times.1494

We conduct subjective evaluations from three1495

perspectives: intelligibility (reading accuracy), nat-1496

uralness (N-CMOS), and speaker similarity (A/B1497

Testing). We have developed an automated subjec-1498

tive evaluation interface, as shown in Figure 3 and1499

Figure 4. For each item to be evaluated, users will1500

see three components: the System Interface, the1501

Questionnaire, and the Evaluation Criteria.1502

7https://huggingface.co/openai/whisper-large-v3
8https://huggingface.co/funasr/paraformer-zh
9https://github.com/microsoft/UniSpeech/tree/main/

downstreams/speaker_verification
10https://github.com/sarulab-speech/UTMOS22

Figure 3: User interface for intelligibility and natural-
ness evaluation.

Intelligibility (Reading Accuracy): 1503

• System Interface: Users listen to the speech 1504

audio and compare it to the provided target text 1505

to assess whether the speech matches the text. 1506

• Questionnaire: Users are asked, “Is any reading 1507

error? (insertion, omission, or mispronuncia- 1508

tion)” 1509

• Evaluation Criteria: The evaluation is binary: 1510

“No Error” (the speech matches the text) or “Has 1511

Error” (the speech does not match the text). 1512

Naturalness (N-CMOS): 1513

• System Interface: Users listen to two speech 1514

samples, A and B, to compare their naturalness. 1515

• Questionnaire: Users are asked, “Which speech 1516

sounds more natural?” 1517

• Evaluation Criteria: Options include A +2 1518

(Sample A is much more natural), A +1 (Sample 1519

A is slightly more natural), Tie (Both are equally 1520

natural), B +1 (Sample B is slightly more natu- 1521

ral), and B +2 (Sample B is much more natural). 1522
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Figure 4: User interface for speaker similarity evalua-
tion.

Speaker Similarity (A/B Testing):1523

• System Interface: Users listen to two speech1524

samples, A and B, to evaluate their similarity to1525

the speech of the reference speaker.1526

• Questionnaire: Users are asked, “Which speech1527

sounds more like the reference speaker’s style?”1528

• Evaluation Criteria: Options include A +21529

(Sample A is much more similar), A +1 (Sample1530

A is slightly more similar), Tie (Both are equally1531

similar), B +1 (Sample B is slightly more simi-1532

lar), and B +2 (Sample B is much more similar).1533

G Effect of Data across Different1534

Languages within INTP1535

We present the effect of different languages within1536

INTP in Table 10. The results reveal three key find-1537

ings: (1) Data from all languages can contribute1538

to improvements across diverse domains for ARS.1539

(2) Interestingly, using only English post-training1540

data (w/ en2en) could also improve performance on1541

Chinese evaluation samples, and vice versa, demon-1542

strating that the proposed alignment algorithm en-1543

hances the model’s foundation capability in intel-1544

ligibility. (3) Furthermore, we again observe the1545

effectiveness of preference alignment’s customized1546

feature: when aiming to improve performance on1547

cross-lingual cases, directly constructing data from1548

the cross-lingual distribution yields the most signif-1549

icant gains.1550
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