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ABSTRACT

Deepfake speech attribution remains challenging for existing solutions. Classifier-
based solutions often fail to generalize to domain-shifted samples, and
watermarking-based solutions are easily compromised by distortions like codec
compression or malicious removal attacks. To address these issues, we propose
FakeMark, a novel watermarking framework that injects artifact-correlated wa-
termarks associated with deepfake systems rather than predefined bitstring mes-
sages. This design allows a detector to attribute the source system by leverag-
ing both injected watermark and intrinsic deepfake artifacts, remaining effective
even if one of these cues is elusive or removed. Experimental results show that
FakeMark improves generalization to cross-dataset samples where classifier-based
solutions struggle and maintains high accuracy under various distortions where
conventional watermarking-based solutions fail. Speech samples are available
at https://fakemark-demo.github.io/fakemark-demo/.1

1 INTRODUCTION

Attributing deepfake speech requires identifying the source system used to generate the synthetic
samples (Müller et al., 2022; Klein et al., 2025). This is critical for mitigating risks such as copy-
right violations and malicious use of speech synthesis systems. Most solutions train deep-neural-
network-based classifiers (illustrated in the top panel of Figure 1) for system identification (Sun
et al., 2023; Wang et al., 2025). They often require to be trained in a discriminative manner with
data generated by a rich variety of speech synthesis systems to capture artifact differences. However,
such classifiers are known to be sensitive to domain shift and struggle to detect deepfakes generated
by unseen systems (Bhagtani et al., 2024; Chen et al., 2025c), as their performance is fundamentally
constrained by the variability present in the training data.

Recently, watermarking-based methods become popular as an alternative solution to the attribution
task (Cho et al., 2022; Li et al., 2025b; Yang et al., 2025). These solutions involve training a pair
of watermark generator and detector (illustrated in the middle panel of Figure 1), where the gen-
erator injects an watermark message into the carrier speech that is later extracted by the detector;
attribution is achieved by mapping the extracted message to its pre-assigned system label. Although
watermarking-based solutions have demonstrated high accuracy on various benchmarks (Liu et al.,
2024b; Roman et al., 2024), they can be easily compromised by common distortions and removal
attacks (Yang et al., 2024; Kassis & Hengartner, 2025; Yao et al., 2025). In its application to speech,
for example, generators are trained to inject watermarks that are inaudible to the human ear. Yet wa-
termark detectors often struggle under neural codec transmissions (Juvela & Wang, 2025; O’Reilly
et al., 2025; Özer et al., 2025), whose training objective is compression and high-fidelity recon-
struction of audio signals (Défossez et al., 2023; Ju et al., 2024). In deepfake related tasks such as
detection (Wu et al., 2025), classifier-based solutions remain robust under neural codecs since deep-
fake artifacts are preserved to some extent, whereas watermark detectors degrade to near-chance
performance as the injected messages are removed during compression.

Presented in this work is our attempt to address the above challenges for robust deepfake speech
attribution. Specifically, we ask the following research question: Can we enhance deepfake trace-
ability by injecting artifact-correlated watermarks? We hypothesize that correlating watermarks

1Codes and model checkpoints will be released upon acceptance.
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Figure 1: Illustrations of deepfake attribution by (a) classifier-based model, (b) watermarking-based
model, and (c) our proposed FakeMark.

with deepfake artifacts can provide improved 1) robustness towards distortions by enabling the de-
tector to perform attribution through acoustic artifacts when the watermark message is removed; and
2) generalization performance by introducing a watermark generator to assist the typically stan-
dalone classifier-based detector when seen artifact patterns are absent. To answer the question, we
propose a novel watermarking framework (illustrated in the bottom panel of Figure 1) and evaluate
its performance under diverse conditions. Our main contributions are summarized as follows:

• We introduce FakeMark, a novel watermarking framework for deepfake speech attribution.
The FakeMark generator injects watermarks that are correlated with acoustic artifacts, al-
lowing the detector to map either the artifacts or the watermarks to their source system.

• We present the first systematic evaluation of deepfake speech attribution using both
watermarking- and classifier-based models. We evaluate FakeMark against these baselines
on common datasets and under diverse distortions, showing that it improves attribution
robustness and generalization in challenging scenarios.

2 RELATED WORKS

Speech generation typically follows two paths: text-to-speech (TTS) and voice conversion (VC).
In modern TTS, an acoustic model maps the input text (or its derived linguistic features) to an in-
termediate acoustic representation that is either continuous valued hidden feature vectors or discrete
tokens. A neural vocoder is then used to synthesize the speech waveform (Tan et al., 2021). VC
follows a partially similar design: it takes an input waveform from a source speaker and renders the
same content in a target speaker’s voice. The term artifacts denotes deviations of synthesized speech
from natural speech. Common audible artifacts include (i) alignment errors between text and pre-
dicted acoustics that cause word skipping or repetition (Zen et al., 2009); (ii) insufficient modeling
of prosody (e.g., incorrect pitch accent (Łańcucki, 2021)), expressiveness (e.g., flat intonation (Liu
et al., 2021; Mahapatra et al., 2025)) , and speaker characteristics (e.g., a voice perceptually dissim-
ilar to the target speaker (Chen et al., 2025a; Pan et al., 2022)); and (iii) vocoder artifacts such as
buzziness or high-frequency noise (Bak et al., 2023; Sun et al., 2023).

Deepfake attribution. Depending on the specific architectures used, it has been reported that differ-
ent acoustic models (Bhagtani et al., 2024; Chen et al., 2025b) and vocoders (Sun et al., 2023; Deng
et al., 2024) leave distinctive artifacts that can be leveraged for deepfake attribution. Solutions to
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Figure 2: Training pipeline of FakeMark.

the task naturally involve collecting samples from various TTS and VC systems (Müller et al., 2024;
Chen et al., 2025c). These samples are then used to train multiclass classifiers to predict the acoustic
models or vocoders used for their generation (Klein et al., 2024). However, such supervised training
scheme can sometimes cause classifiers to exploit undesired differences in the training data, leading
to poor generalization performance on unseen samples. This includes samples generated by seen
systems but trained with different languages (Marek et al., 2024) or speakers (Klein et al., 2025),
or samples with subtle artifacts like unnatural silences (Chen et al., 2025b) or even generated by
the same system with different weights (Stan et al., 2025). Alternative strategies to achieve gener-
alization include estimating model confidence on unseen samples (Klein et al., 2025) or measuring
sample similarities in latent space, akin to verification tasks (Negroni et al., 2025).

Speech watermarking models are designed to inject and extract bitstring messages within a speech
signal (Li et al., 2025b; Liu et al., 2024b). Depending on the information carried in the message,
these models are versatile for various tasks. For example, a watermark can encode a compressed ver-
sion of the original signal for self-recovery (Quiñonez-Carbajal et al., 2024), or it can be assigned
to different users for attribution and copyright protection (Roman et al., 2024; Liu et al., 2024a).
In deepfake-related applications, different bitstrings can be assigned to real and fake samples for
detection (Wu et al., 2025; Roman et al., 2024) or to counter malicious deepfake manipulations (Li
et al., 2025a; He et al., 2025). Beyond bitstring messages, the presence of a watermark itself can
represent a zero-bit message indicating whether a sample is real or fake (Juvela & Wang, 2024; Ro-
man et al., 2025). Previous studies have reported that watermarking-based models are vulnerable to
distortions such as neural codecs, malicious forgery, or removal attacks (Yang et al., 2024; Liu et al.,
2024b). Common strategies to enhance robustness include using codec-based data augmentation
during training (Juvela & Wang, 2025) and injecting watermarks into deep latent representations of
the speech signal (Ji et al., 2025b).

3 FAKEMARK

We describe FakeMark pipelines for watermark generation and detection in Sec. 3.1. Objectives
used to train the system modules are detailed in Sec. 3.2.

3.1 PIPELINE

As illustrated in Figure 2, FakeMark takes two inputs during watermark generation: the speech
signal s ∈ RT and the watermark message w ∈ {1, . . . , C}, where T is the number of waveform
sampling points and C is the total number of deepfake systems. It outputs a watermarked signal

3
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sw ∈ RT that carry the watermark message and has the same dimensionality as the input signal.
During watermark detection, FakeMark takes sw and predicts a watermark message w′.

The generation process involves four stages:

1. Given the input watermark message w, the message processor returns the corresponding
embedding vector ew ∈ RH to the generator, where H is the latent dimension.

2. Given the input signal s, the generator down-samples it and extracts a compact latent rep-

resentation Hs ∈ R⌊Tα ⌋×H , where α is the downsampling factor.
3. Given the input watermark embedding ew, the generator repeats it along the time axis

to form Ew ∈ R⌊Tα ⌋×H , then applies voice-activity detection (VAD) to obtain a binary

mask m ∈ {0, 1}⌊
T
α ⌋ indicating speech-active frames, and computes the watermark latent

Hw = m⊙Ew, where Hw ∈ R⌊Tα ⌋×H .
4. The generator up-samples Hs+Hw and outputs the watermark signal δw ∈ RT . The final

watermarked signal is obtained as sw = s+ δw, where sw ∈ RT .

Following the generation pipeline, we explore two generator architectures:

• FakeMarkA: follows an encoder-decoder architecture that processes speech waveforms, as
used in AudioSeal (Roman et al., 2024);

• FakeMarkT : follows an encoder architecture that processes spectrogram features, as used
in Timbre (Liu et al., 2024a). In this setting, Hs is the linear-scale spectrogram obtained
via Short-Time Fourier Transform (STFT). Final waveforms are obtained via inverse STFT.

The detection process involves two stages:

1. During training, given the input watermarked signal sw, the detector applies a series of
transformations to obtain a distorted version input s′w. This strategy ensures robustness of
the watermark injection and detection. Full list of the used transformations and their set-
tings are provided in Appendix A.2. These transformations are disabled during inference.

2. The detector extracts sequence-level feature from the input waveform and predicts the class
probabilities p ∈ [0, 1]C over C watermark types; the extracted watermark is obtained as
w′ = argmaxi∈{1,...,C} pi.

We use a common detector architecture that consists of a pre-trained SSL front-end (Pratap et al.,
2024) and a fully connected back-end classifier. Detailed architectures are provided in the Ap-
pendix A.3.

3.2 TRAINING OBJECTIVES

All FakeMark modules are optimized with three classes of objectives: 1) attribution loss, to ensure
the ability of distinguishing different types of artifacts; 2) detection loss, to maximize the successful
injection and detection of watermarks; and 3) perceptual loss, to minimize the perceptual distortion
between original and watermarked signals. They are detailed below.

Attribution loss differentiates FakeMark from conventional watermarking approaches. It is com-
puted as the cross-entropy between the ground-truth deepfake system label and the detector’s pre-
dicted class probabilities over an unwatermarked clean signal. This objective is similar to training
classifier-based attribution models (Klein et al., 2024; Sun et al., 2023), where the goal is to capture
distinct characteristics of deepfakes generated by different systems. The back-propagated attribution
loss encourages the detector to distinguish various types of deepfake artifacts and implicitly guides
the watermark embeddings from the message processor to correlate with these artifacts. As a re-
sult, each watermark embedding encodes the artifact patterns learned from all samples of a specific
deepfake system in the training set.

Watermark detection loss ensures that the generator injects watermark messages that can be re-
liably recognized by the detector. Similar to the training of conventional watermarking models, a
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random watermark message is sampled and processed to obtain a watermark embedding, which is
then used for watermarked signal generation. The detector predicts class probabilities from this wa-
termarked signal, and the watermark detection loss is computed as the cross-entropy between the
ground-truth watermark message and the predicted distribution.

By jointly training FakeMark with both attribution and watermark detection losses, the message
processor learns to align watermark embeddings with the deepfake artifacts they represent, and the
generator-detector pair learns to robustly inject and detect these watermarks. During inference, with
the watermark message always chosen to match the ground-truth deepfake system, FakeMark can
attribute the source system using both acoustic artifacts and the watermarks. This ensures effective
attribution even if one of these cues is compromised.

Perceptual losses promote the imperceptibility of watermarks and the naturalness of watermarked
signals. This is achieved by refining the watermarked signal with HiFi-GAN–style losses (Kong
et al., 2020), which include a Mel-spectrogram reconstruction loss to enforce the spectral similarity
and adversarial discriminator losses to improve speech fidelity.

Additionally, we follow Roman et al. (2024) to refine the watermark signals generated by both
generator architectures. We apply l1 loss and loudness on the watermark signal to decrease its
intensity and ensure its robustness towards distortions. We further use a frequency magnitude loss to
align the averaged spectral envelope of the watermark signal with that of the clean signal, promoting
perceptual similarity and ensuring the watermarks remain less audible.

4 EXPERIMENTS AND RESULTS

We perform in-domain evaluation with seen artifacts and cross-dataset evaluation with unseen arti-
facts. FakeMark is compared against recent baselines on both clean and distorted signals. In addition
to attribution accuracy, we also assess the speech quality of watermarked signals.

4.1 EXPERIMENTAL SETUP

Datasets. We use the MLAAD v5 dataset (Müller et al., 2024) for training and evaluation. Follow-
ing the source tracing challenge protocol (Müller, 2024), our training set comprises 24 TTS systems
covering eight languages. To mitigate the influence of undesirable artifacts related to language or
speaker (Klein et al., 2024), we group systems with identical architectures into a single class. The
resulting training set contains 12 classes, 9 of which appear in the evaluation set. For cross-dataset
evaluation, we collected samples generated by five of these systems from ASVspoof5 (Wang et al.,
2024) and TIMIT-TTS (Salvi et al., 2023) datasets. Both evaluation sets were randomly sampled
with an equal number of files per class. All evaluated system architectures are seen during training;
evaluations on unseen architectures are beyond the scope of this work. Dataset details are provided
in Appendix A.4.

Baseline systems. We compare our FakeMark with recent and remarkable watermarking mod-
els: AudioSeal (Roman et al., 2024) and Timbre (Liu et al., 2024a), and a ResNet34-based classi-
fier (Klein et al., 2025) that takes STFT spectrograms as input. Additionally, we train an SSL-based
classifier with the same architecture as FakeMark detector (denoted MMS-300M) to isolate the
impact of the watermarking scheme. All baselines were trained with the same training set and aug-
mentation strategy as FakeMark. Watermark message length for AudioSeal and Timbre is set to 4
(equivalent to 24 unique bitstrings)-the minimum capacity required to cover 12 classes. Full model
configurations and implementation details are in Appendix A.5.

Evaluation metrics. Objective evaluation for both attribution and audio quality are performed to
evaluate FakeMark and baselines:

• For attribution performance, we report accuracy result. Predicted class for AudioSeal and
Timbre is the class whose assigned 4-bit message has the shortest Hamming distance to the
detector output (Roman et al., 2024; Liu et al., 2025). For FakeMark and classifier-based
models, predicted class is the class with the highest detector probability.

• For audio quality assignment of watermarked signals, we use four different metrics: Scale
Invariant Signal to Noise Ratio (SI-SNR) for evaluating noise-level of watermarks; PESQ
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to evaluate speech quality for telecom-like scenarios (Rix et al., 2001); ViSQOL for assess-
ing perceptual quality for network-based scenarios (Hines et al., 2012); Production Quality
(PQ) to estimate the clarity and fidelity of watermarked signals (Tjandra et al., 2025). Un-
like the previous three metrics, PQ does not require clean reference signals.

Distortions and attacks. To evaluate system robustness against distortions and watermark removal
attacks, we apply a set of transformations previously shown to have a noticeable impact on either
watermark extraction (O’Reilly et al., 2025; Yao et al., 2025; Yang et al., 2024) or deepfake detec-
tion (Wu et al., 2025) in the literature. They are applied to the watermarked signals for FakeMark,
AudioSeal, and Timbre, and directly to the input signals for ResNet34 and MMS-300M, include:

• Signal processing-based transforms: Pitch shift, playback speed change, and additive noise
from MUSAN (Snyder et al., 2015);

• Neural Codec-based waveform compression and regeneration: SpeechTokenizer (Zhang
et al., 2024a), FACodec (Ju et al., 2024; Zhang et al., 2024b), and WavToenizer (Ji et al.,
2025a);

• Neural Vocoder-based waveform regeneration: HiFi-GAN (Kong et al., 2020), Vocos (Siuz-
dak, 2024), and BigVGAN (Lee et al., 2023).

• Black-box watermark removal attacks: Overwriting (Yao et al., 2025), where publicly-
available, pre-trained Timbre and AudioSeal models are run sequentially to overwrite ex-
isting watermarks; and Averaging (Yang et al., 2024), where an average watermark is com-
puted using a pre-trained AudioSeal model and then subtracted from the watermarked sig-
nals.

Details of distortions and attacks can be found in Appendix A.6.

4.2 RESULTS

We report deepfake attribution performance in this section, including in-domain evaluation results in
Sec. 4.2.1 and cross-dataset evaluation results in Sec. 4.2.2. Speech quality evaluation and additional
analysis are reported in Sec. 4.2.2 and Sec. 4.2.4.

4.2.1 EVALUATION WITH SEEN ARTIFACTS

Table 1 presents attribution accuracy for FakeMark and baselines on the MLAAD v5 test set. Rows
represent accuracies under different distortions. Cells are color-coded in grayscale by row: darker
shades indicating lower accuracy and lighter shades indicating higher accuracy. We summarize
observations related to our research question below.

Table 1: Attribution accuracy results on seen artifacts across distortions and attacks.

Distortion
System Proposed Method Watermarking Baselines Classifier Baselines

FakeMarkA FakeMarkT AudioSeal Timbre MMS-300M ResNet34

None 1.00 1.00 1.00 1.00 1.00 0.97

Signal Processing

Pitch 0.82 1.00 0.80 0.96 0.27 0.88
Speed 1.00 1.00 0.85 0.97 1.00 0.92
Noise 0.63 0.71 0.72 0.60 0.80 0.50

Codec
SpeechTokenizer 0.85 0.99 0.10 0.94 0.92 0.88
FACodec 0.91 0.99 0.17 0.82 0.92 0.79
WavTokenizer 0.33 0.34 0.09 0.19 0.39 0.71

Vocoder
HiFi-GAN 0.91 1.00 0.09 1.00 0.94 0.92
Vocos 0.98 1.00 0.12 1.00 0.98 0.97
BigVGAN 0.99 1.00 0.28 1.00 1.00 0.97

Removal Attack Overwriting 0.99 0.95 0.68 0.55 0.95 0.75
Averaging 0.98 0.99 0.79 1.00 1.00 0.96

FakeMark is robust to strong watermark removal distortions. When no distortion is applied,
all models achieve near-perfect accuracy (above 0.97). Across most distortions—except back-
ground noise and WavTokenizer—both FakeMark variants maintain high attribution accuracy (above
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0.80). In contrast, AudioSeal accuracy drops dramatically under codec (0.09–0.17) and vocoder
(0.09–0.28) reconstructions, which is expected given that these distortions are known strong water-
mark removers (O’Reilly et al., 2025; Juvela & Wang, 2025). Although FakeMarkA shares the same
generator architecture as AudioSeal, its detector can still leverage deepfake artifacts for attribution,
yielding performance that is similar to that of the MMS-300M classifier.

Our baseline Timbre model demonstrates unexpectedly robust performance across distortions pre-
viously reported as vulnerabilities (O’Reilly et al., 2025; Özer et al., 2025). This is likely due
to retraining with additional augmentations, including a codec method named EnCodec (Défossez
et al., 2023).

FakeMark is robust to watermark removal attacks. Though Timbre performance was enhanced
with additional augmentations, both watermarking baselines remain vulnerable to removal attacks:
Timbre drops from 1.00 to 0.55 under overwriting, and AudioSeal drops to 0.79 under averaging.
Both FakeMark variants are less affected, with the lowest accuracy being 0.95—substantially more
robust than the other watermarking baselines.

Additional discussion: models process spectrogram features are generally more robust. Ta-
ble 1 shows that attribution is easily solved under clean conditions. Even with distortions, most
models—except AudioSeal—maintain reliable performance in many scenarios. We also notice that
models process spectrogram features are more robust to distortions compared to their counterparts.
Watermarking models such as FakeMarkT and Timbre achieve perfect accuracies (1.0) under neural
vocoders. The ResNet34 is the only solution that does not reach perfect performance under clean
conditions (0.97); however, its lowest accuracy (0.50 under Noise) remains noticeably higher than
the MMS-300M’s lowest results (0.27 under Pitch shift and 0.39 under WavTokenizer).

Almost all tested models appear sensitive to signal processing–based distortions but relatively more
robust to other types of distortions. This is expected, as signal processing transforms directly mod-
ify the speech signal and thus alter artifact patterns. By contrast, reconstruction-based distortions
primarily regenerate the waveform together with artifacts and, in some cases, watermarks. In the
next section, we show that attribution becomes more difficult when the artifact patterns are unseen,
particularly for the two classifier-based baselines.

4.2.2 EVALUATION WITH UNSEEN ARTIFACTS

Table 2 present cross-dataset evaluation of attribution accuracy of FakeMark and baseline models.
Results are presented in a similar format as Table 1. We summarize observations related to our
research question below.

Table 2: Attribution accuracy results on unseen artifacts across distortions and attacks.

Distortion
System Proposed Method Watermarking Baselines Classifier Baselines

FakeMarkA FakeMarkT AudioSeal Timbre MMS-300M ResNet34

None 1.00 1.00 1.00 1.00 0.07 0.12

Signal Processing

Pitch 0.80 1.00 0.72 0.96 0.00 0.10
Speed 0.99 1.00 0.78 0.98 0.06 0.11
Noise 0.58 0.63 0.65 0.62 0.03 0.05

Codec
SpeechTokenizer 0.58 0.88 0.07 0.90 0.07 0.10
FACodec 0.87 0.88 0.08 0.85 0.08 0.05
WavTokenizer 0.06 0.11 0.03 0.21 0.07 0.07

Vocoder
HiFi-GAN 0.88 0.98 0.08 1.00 0.07 0.11
Vocos 0.98 1.00 0.09 1.00 0.03 0.11
BigVGAN 1.00 1.00 0.19 1.00 0.06 0.11

Removal Attack Overwriting 0.97 0.77 0.70 0.54 0.03 0.05
Averaging 0.99 1.00 0.73 1.00 0.06 0.10

FakeMark performs robustly under domain shift. Under clean conditions, both FakeMark vari-
ants and the watermarking baselines achieve perfect accuracy (1.0), this is consistent with their
in-domain results in Table 1. The two classifier-based models perform poorly (0.07 for MMS and
0.12 for ResNet34), likely due to their limited generalization to unseen artifact patterns—even those
produced by TTS architectures seen during training. The two classifiers give similar performance
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under distortions and attacks, not because their robustness improves in these conditions, but rather
because their clean-condition accuracy is already very low.

As in Table 2, the performance of FakeMark and watermarking baselines degrades when input sig-
nals are distorted, but the trends remain similar to those in Table 1, with a slight drop in overall
accuracy. Given that MMS-300M fails on this domain-shifted data (highest accuracy 0.12), the
robustness of FakeMark detector (above 0.80 under most distortions) can be attributed primarily
to the watermarks injected by its generator. Unlike classifier-based models, FakeMark detector is
influenced more by distortions applied to the carrier signal than by the carrier itself.

Watermarks injected by FakeMark are robust to removal attacks. From the last two rows of
Table 1, we may tentatively hypothesize that FakeMark’s robustness against watermark removal at-
tacks was due to the persistence of artifacts. However, results from Table 2 show, when such artifacts
are absent in cross-dataset evaluation, both FakeMark variants remain the most robust among wa-
termarking models (lowest accuracy 0.77 under Overwriting, compared to 0.70 for AudioSeal and
0.54 for Timbre). Hence, this robustness is likely to stem from the injection and detection of wa-
termark message, which is designed to correlate with acoustic artifacts. In contrast, removal attacks
primarily focus on removing or overwriting fixed patterns in the carrier signal (Yang et al., 2024).

Additional discussion on watermarking in deepfake attribution. Both FakeMark variants and
Timbre outperform the two classifiers in nearly all test cases across in-domain (Table 1) and cross-
dataset (Table 2) evaluations. Beyond the robustness provided by the system design and training
strategies, it is important to note that these solutions are designed for different application scenarios.
Classifier-based solutions are passive and require no prior knowledge of the input signal, whereas
watermarking-based solutions are proactive and require a message to be injected into the detector
input in advance. In the following sections, we further assess the impact of the injected messages on
speech quality (Sec. 4.2.3) and detector performance (Sec. 4.2.4).

4.2.3 EVALUATION ON SPEECH QUALITY AND INTELLIGIBILITY

We evaluate the quality and intelligibility of watermarked signals. Results are presented in Table 3.
Our observations are summarized below.

Table 3: Comparison of speech quality and intelligibility on watermarked speech signals generated
by FakeMark and watermarking-based baselines.

System SI-SNR ↑ PESQ ↑ ViSQOL ↑ PQ ↑

Baselines AudioSeal 36.49 4.55 4.98 6.78
Timbre 21.79 2.97 4.20 5.67

Proposed FakeMarkA 35.34 3.79 4.81 6.62
FakeMarkT 14.97 2.83 4.41 6.18

FakeMarkA achieves second in speech quality. The FakeMarkA performs second only to Au-
dioSeal. Its relatively high SI-SNR (35.34 dB) suggests that the injected watermark has low energy
compared to the clean carrier. For other speech quality and fidelity metrics, AudioSeal is the only
system achieving a PESQ score above 4 (4.55), while FakeMarkA is slightly lower in ViSQOL (4.98
vs. 4.81) and PQ (6.78 vs. 6.62).

Trade-off between robustness and speech quality. We observe that watermarks injected through
spectrogram features (Timbre and FakeMarkT ) introduce more distortions to the carrier speech than
the approaches that directly process waveforms (AudioSeal and FakeMarkA). Their worse speech
quality contrasts with our observations on attribution performance in Sec. 4.2.1, and suggests a trade-
off between attribution robustness against distortions and speech quality. The consistent near-perfect
performance of Timbre and FakeMarkT is achieved through stronger, more perceptually noticeable
watermarks that can survive multiple distortions (shown in Figures 4 and 6 in Appendix A.7). In
contrast, AudioSeal’s less perceptible watermark introduces minimal distortion to the carrier but
is the most vulnerable among the evaluated models. Our proposed FakeMarkA provides strong
watermark injection while maintaining relatively high speech quality.
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4.2.4 IMPACT OF WATERMARKS ON ATTRIBUTION

In this section, we examine the extent to which injected watermarks improve deepfake traceability.
We compare the FakeMark detector’s performance on non-watermarked, clean signals and randomly
watermarked signals with the results from Table 1, where watermarks are chosen to always match
the ground-truth system label. Results are presented in Table 4.

Table 4: Attribution accuracy results of FakeMark detector under different watermarking conditions.

Test set MLAAD v5 ASVspoof + TIMIT-TTS

Generator Distortion
Condition No watermark Random Matching No watermark Random Matching

FakeMarkA None 1.00 1.00 1.00 0.06 1.00 1.00
Others averaged 0.73 0.80 0.86 0.03 0.77 0.79

FakeMarkT None 0.99 1.00 1.00 0.05 1.00 1.00
Others averaged 0.78 0.85 0.91 0.04 0.86 0.84

The injected watermarks improve deepfake traceability. Similar to the classifier baselines in
clean conditions, the standalone FakeMark detector achieves near-perfect accuracy (above 0.99) on
the MLAAD v5 test set, but drops to 0.73 (FakeMarkA) and 0.78 (FakeMarkT ) under distortions.
Adding watermarks improves attribution accuracy for both variants and test conditions, regardless
of whether the watermark is randomly assigned or matches the ground-truth label.

Although attribution achieves perfect accuracy with clean signals for both watermark injection con-
ditions, injecting watermarks that match the ground-truth label outperforms randomly as-
signed labels under distortions. For in-domain MLAAD v5 samples, FakeMarkA improves from
0.80 to 0.86, and FakeMarkT from 0.85 to 0.91. For cross-dataset samples, improvements are small
or even absent (FakeMarkT from 0.86 to 0.84), which is expected given that the FakeMark detector
primarily depends on the watermark messages when artifact patterns are unseen.

5 CONCLUSION

Motivated by the limitations of both classifier- and watermarking-based solutions for deepfake
speech attribution, we proposed a novel watermarking framework FakeMark to enhance deepfake
traceability. The core novelty of FakeMark is the injection of artifact-correlated watermarks, which
allows the detector to leverage both watermark message and deepfake artifacts for attribution. Our
results confirm that such design provides improved generalization and robustness across various
seen and unseen datasets and under distortions.

Limitations of this work include considering only fully seen architectures during training and eval-
uation, which constrains the applicability of watermarking-based attribution when scaling to a large
number of unseen deepfake systems. We also observe a trade-off between robustness and speech
quality–stronger watermarks introduce more distortions to speech signal. Addressing this trade-off
could be an important direction for future work.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used only to polish the final version of the manuscript. The
authors confirm that their original intention and meaning were not altered during this process.

A.2 LIST OF AUGMENTATIONS DURING TRAINING

Below is the list of transformations used as augmentation strategies during all system training in
our experiments. They are reproduced from the AudioSeal (Roman et al., 2024) pipeline. During
training, each transformation is selected at random with equal probability and the chosen transform
is applied to the current mini-batch. They include:

1. EnCodec: Inputs are resamples to 24kHz, compressed and reconstructed with En-
Codec (Défossez et al., 2023) with nq = 16, and resampled back to 16kHz.

2. Speed: Playback speed of input signal is changed randomly between 0.9 and 1.1.
3. Resample: Inputs are resampled to 32kHz and resampled back to 16kHz.
4. Echo: A delay and less loud copy of the original is added to the input signal. Delay time is

randomly sampled between 0.1 and 0.5 seconds, volume of the copied signal is randomly
chosen between 0.1 and 0.5.

5. White noise: Gaussian noise with standard deviation fixed at 0.001 is added to the input
signals.

6. Pink noise: Pink noise with standard deviation fixed at 0.01 is added to the input signals.
7. Lowpass filtering: A lowpass filter is applied to the input signal with a cutoff frequency at

5kHz.
8. Highpass filtering: A highpass filter is applied to the input signal with a cutoff frequency at

500Hz.
9. Bandpass filtering: A bandpass filter is applied to the input signal with a lower cutoff

frequency of 300Hz and an upper cutoff frequency of 8kHz.
10. Smoothing: Inputs are smoothed using a moving average filter with a variable window size

between 2 and 10.
11. Boost: Amplitude of input signal is multiplied by 1.2.
12. Duck: Amplitude of input signal is multiplied by 0.8.
13. AAC: Input signal is encoded in AAC format at 128kbps bitrate.
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14. MP3: Input signal is encoded in MP3 format at 128kbps bitrate.

15. Identity: Returns the unprocessed input signal.

A.3 FAKEMARK MODULE ARCHITECTURES

FakeMarkA We adopt the original AudioSeal generator architecture. The encoder uses a 1D
convolution (32 channels, kernel size 7) followed by four convolutional blocks, each containing
a residual unit (two kernel-3 convolutions with skip connection, doubling channels during down-
sampling) and a down-sampling convolution (stride S, kernel K = 2S; S = 2, 4, 5, 8). It concludes
with a two-layer LSTM and a final 1D convolution (128 channels, kernel 7) using ELU activations.
The decoder mirrors the encoder with transposed convolutions and reversed strides. The latent
dimension H is 128.

FakeMarkT We adopt the Timbre encoder architecture but with larger size and hidden dimension
(128). A 1024-point Short-Time Fourier Transform (STFT) with 256 hop length is applied to ob-
tain the magnitude spectrogram and phase of the input signal. The magnitude is fed to the 5-layer
Carrier Encoder to obtain the encoded carrier feature, which is then concatenated with the origi-
nal magnitude and the repeated watermark embedding Ew. This combined feature is passed to the
5-layer Watermark Embedder to generate the magnitude spectrogram of watermark signal. The wa-
termarked magnitude spectrogram is obtained by adding watermark magnitude with original clean
magnitude. This is different to the original Timber implementation where the Watermark Embedder
directly outputs the watermarked magnitude. The watermarked signal is reconstructed via inverse
STFT using the original phase and watermarked magnitude. The same original phase is also used
for generating watermark waveform with watermark magnitude. The latent dimension H is 513.

Detector We use an identical detector architecture for both FakeMark generators. The detector
contains a pre-trained wav2vec model (namely the MMS-300M) as front-end. It extract a 1024-
dimensional sequence-level representations from the input signal. These representations are then
passed through a global average pooling layer to aggregate temporal information, followed by a
fully connected layer that produced the output probabilities of 12 classes.

A.4 DATASETS DETAILS

Both the MLAAD v5 dataset and source tracing challenge protocol can be downloaded
from https://deepfake-total.com/sourcetracing.

The ASVspoof5 dataset can be downloaded from https://huggingface.co/datasets/
jungjee/asvspoof5.

The TIMIT-TTS dataset can be downloaded from https://zenodo.org/records/
6560159.

A.5 TRAINING AND IMPLEMENTATION DETAILS

AudioSeal We use the official AudioSeal implementation from https://github.com/
facebookresearch/audioseal.

Timbre We use the official Timbre implementation from https://github.com/
TimbreWatermarking/TimbreWatermarking.

FakeMark For FakeMark training, the learning rate was linearly increased to 1 × 10−4 over the
first 2,000 mini-batches, and then linearly decayed to 0 at the 50,000th mini-batch, where training
stops. All input signals were resampled to 16 kHz if necessary. The waveform amplitude of training
samples was randomly adjusted according to the Active Speech Level (ASL) based on ITU-T P.56.
Training data were dynamically sampled by grouping files of similar durations and zero-padding
them to form mini-batches, with a maximum batch duration of 40 seconds. Files longer than 10 sec-
onds were randomly trimmed to durations between 6 and 10 seconds during training.
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Table 5: Summary of TTS models, Class ID, watermark bits, and number of samples in train,
validation, and test sets of MLAAD v5 dataset.

TTS Model Class ID Watermark Bits Train Validation Test
Mars5 0 (0,1,0,0) 275 23 300
MeloTTS 1 (0,0,1,0) 274 22 300
Metavoice-1B 2 (1,1,1,0) 267 29 300
facebook-mms-tts-deu 3 (1,1,0,0) 265 31 300
tts models-en-ljspeech-fast pitch 4 (1,0,1,1) 277 23 0
tts models-it-mai female-glow-tts 5 (1,0,1,0) 277 18 0
griffin lim 6 (0,1,1,1) 1359 125 300
suno-bark 7 (0,0,0,1) 137 16 79
suno-bark-small 7 (0,0,0,1) 126 19 221
tts models-en-ljspeech-tacotron2-DCA 8 (1,1,1,1) 272 25 49
tts models-fr-mai-tacotron2-DDC 8 (1,1,1,1) 264 34 65
tts models-de-thorsten-tacotron2-DDC 8 (1,1,1,1) 261 36 64
tts models-en-ljspeech-tacotron2-DDC 8 (1,1,1,1) 142 11 32
tts models-en-ljspeech-tacotron2-DDC ph 8 (1,1,1,1) 135 11 90
tts models-en-ljspeech-speedy-speech 9 (1,0,0,0) 268 28 0
tts models-it-mai male-vits 10 (0,0,1,1) 272 26 44
tts models-fr-css10-vits 10 (0,0,1,1) 270 27 62
tts models-it-mai female-vits 10 (0,0,1,1) 269 29 60
tts models-lt-cv-vits 10 (0,0,1,1) 264 34 53
tts models-de-css10-vits-neon 10 (0,0,1,1) 264 35 60
tts models-en-ljspeech-vits–neon 10 (0,0,1,1) 261 37 21
tts models-multilingual-multi-dataset-xtts v2 11 (1,1,0,1) 1898 185 154
tts models-multilingual-multi-dataset-xtts v1.1 11 (1,1,0,1) 1623 157 128
vixTTS 11 (1,1,0,1) 280 19 18

Table 6: TTS models, source dataset, Class IDs, watermark bits, and sample counts for cross-dataset
evaluation.

TTS Model Source Dataset Class ID Watermark Bits Number of Samples
A01-GlowTTS ASVspoof5 5 (1,0,1,0) 160
A07-FastPitch ASVspoof5 4 (1,0,1,1) 160
fastpitch TIMIT-TTS 4 (1,0,1,1) 160
glowtts TIMIT-TTS 5 (1,0,1,0) 160
A11-Tacotron2 ASVspoof5 8 (1,1,1,1) 160
A29-XTTS ASVspoof5 11 (1,1,0,1) 160
A08-VITS ASVspoof5 10 (0,0,1,1) 137
vits TIMIT-TTS 10 (0,0,1,1) 23

Validation was performed every 500 mini-batches, and the best model was selected based on the
lowest sum of attribution loss and watermark detection loss. Test samples were neither amplitude-
adjusted nor trimmed.

The balancing weights for training were set as follows: attribution loss, 10.0; watermark detec-
tion loss, 10.0; HiFi-GAN losses, 1.0 (with L1 spectrogram loss weight 1.0 and feature matching
loss weight 1.0); AudioSeal perceptual losses, 0.1 for L1 loss, 10.0 for loudness loss, and 1.0 for
frequency magnitude loss.

AudioSeal was trained on 6 NVIDIA A100 GPUs. The left training were performed on a single
NVIDIA H100 GPU.

MMS-300M Classifier We adopt the same architecture as the FakeMark detector and use the same
codebase and training procedure, except that the maximum learning rate is set to 1 × 10−5 and the
batch size is fixed at 16. Training stops after 30,000 mini-batches. Best model selection is based on
the classification accuracy on validation set.
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ResNet34 Classifier We use a standard ResNet34 architecture with a temporal statistics pool-
ing layer (TSPL) to extract a 128-dimensional embedding from the input signal, followed by a
fully connected layer for prediction. The input is a randomly selected 4-second segment of the
original signal, padded if shorter. Following Klein et al. (2025), we use 80-dimensional log lin-
ear filter-bank (LFB) features of the speech signal, computed with a 400-sample window, 160-
sample hop, and a 400-point FFT. We further compute delta (∆) and double-delta (∆∆) features,
and apply cepstral mean and variance normalization (CMVN), yielding a final feature dimension
of 240. The model is trained using the Large Margin Cosine Loss with default settings from
the implementation in https://github.com/YirongMao/softmax_variants/blob/
master/model_utils.py#L103. All hyperparameters are identical to those used for MMS-
300M training, except that the maximum learning rate is set to 1× 10−4.

A.6 LIST OF DISTORTIONS DURING EVALUATION

The settings of distortion and watermark removal attacks are:

1. Pitch shift: Pitch is randomly shifted between -1 and 1 semitones.
2. Playback speed: Original speed is adjust to a number randomly sampled between 0.95 and

1.05.
3. Noise: Random noise from MUSAN noise recordings is applied at 0dB SNR.
4. BigVGAN: Using code and pre-trained weight from https://github.com/

NVIDIA/BigVGAN. Input signals are resampled to 24kHz, passed to BigVGAN vocoder,
and resampled back to 16kHz.

5. HiFi-GAN: Using the pre-trained weights from https://huggingface.co/
speechbrain/tts-hifigan-libritts-16kHz.

6. Vocos: Using code and pre-trained weight (vocos-mel-24khz) from https://github.
com/gemelo-ai/vocos/tree/main. Input signals are resampled to 24kHz, passed
to Vocos, and resampled back to 16kHz.

7. SpeechTokenizer: Using code and pre-trained weight (speechtokenizer hubert avg) from
https://github.com/ZhangXInFD/SpeechTokenizer.

8. FACodec: Using code and pre-trained weight from https://huggingface.co/
amphion/naturalspeech3_facodec.

9. WavTokenizer: Using code and pre-trained weight (WavTokenizer-small-600-24k-4096)
from https://huggingface.co/amphion/naturalspeech3_facodec. In-
put signals are resampled to 24kHz, passed to WavTokenizer, and resampled back to 16kHz.

10. Overwriting: Input signals are sequentially passed through pre-trained Timbre and Au-
dioSeal models three times to obtain the watermarked signal.

11. Averaging: Data samples from the zh-CN subset of the Common Voice dataset are pro-
cessed using the pre-trained AudioSeal model. The resulting watermark signals for each
sample are summed and averaged, and this averaged watermark is then subtracted from
the input signal. We did not apply the Averaging attack with pre-trained Timbre model be-
cause its generator directly outputs the watermarked signal rather than estimating a separate
watermark.

A.7 VISUALIZATIONS OF SPEECH SIGNALS
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Figure 3: Visualization of AudioSeal watermarking on MLAAD-en-tts models-en-ljspeech-
tacotron2-DDC-northandsouth 27 f000104.

Figure 4: Visualization of Timbre watermarking on MLAAD-en-tts models-en-ljspeech-tacotron2-
DDC-northandsouth 27 f000104.
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Figure 5: Visualization of FakeMarkA watermarking on MLAAD-en-tts models-en-ljspeech-
tacotron2-DDC-northandsouth 27 f000104.

Figure 6: Visualization of FakeMarkT watermarking on MLAAD-en-tts models-en-ljspeech-
tacotron2-DDC-northandsouth 27 f000104.
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Figure 7: Visualization of AudioSeal watermarking on MLAAD-lt-tts models-lt-cv-vits-
emerald city of oz 03 f000037.

Figure 8: Visualization of Timbre watermarking on MLAAD-lt-tts models-lt-cv-vits-
emerald city of oz 03 f000037.
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Figure 9: Visualization of FakeMarkA watermarking on MLAAD-lt-tts models-lt-cv-vits-
emerald city of oz 03 f000037.

Figure 10: Visualization of FakeMarkT watermarking on MLAAD-lt-tts models-lt-cv-vits-
emerald city of oz 03 f000037.
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