
Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

Tanmay Gautam* 1 Youngsuk Park† 2 Hao Zhou 3 Parameswaran Raman 2 Wooseok Ha 3

Abstract
Fine-tuning language models (LMs) has demon-
strated success in a wide array of downstream
tasks. However, as LMs are scaled up, the mem-
ory requirements for backpropagation become
prohibitively high. Zeroth-order (ZO) optimiza-
tion methods can leverage memory-efficient for-
ward passes to estimate gradients. Recently,
MeZO, an adaptation of ZO-SGD, has been
shown to consistently outperform zero-shot and
in-context learning when combined with suitable
task prompts. In this work, we couple ZO meth-
ods with variance reduction techniques to enhance
stability and convergence for inference-based
LM fine-tuning. We introduce Memory-Efficient
Zeroth-Order Stochastic Variance-Reduced Gra-
dient (MeZO-SVRG) and demonstrate its efficacy
across multiple LM fine-tuning tasks, eliminating
the reliance on task-specific prompts. Evaluated
across a range of both masked and autoregressive
LMs (up to 7B parameters) on benchmark down-
stream tasks, MeZO-SVRG outperforms MeZO
with up to 20% increase in test accuracies in both
full- and partial-parameter fine-tuning settings.
MeZO-SVRG benefits from reduced computation
time, often surpassing MeZO’s peak test accuracy
with a 2× reduction in GPU-hours. MeZO-SVRG
substantially decreases the memory requirement
(by at least 2× for autoregressive models), achiev-
ing greater memory savings as both the batch size
and context lengths increase, in comparison to
first-order methods.

1. Introduction
In recent years, language models (LMs) have exhibited ex-
ceptional performance in a vast array of domains within

1University of California, Berkeley, USA 2Amazon AI Re-
search & Education, Santa Clara, USA 3Amazon AI Labs,
Santa Clara, USA. Correspondence to: Youngsuk Park† <py-
oungsu@amazon.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

natural language processing (NLP) (Solaiman et al., 2019;
OpenAI, 2023; Touvron et al., 2023).This development has
generated immense excitement within the research commu-
nity and has propelled the advancement of the aforemen-
tioned models to the forefront of deep learning research.

Fine-tuning LMs has been the dominant strategy for adapt-
ing pre-trained models to specialized downstream tasks (Gu-
rurangan et al., 2020). Fine-tuning often relies on first-order
methods, such as stochastic gradient descent (SGD) (Rob-
bins & Monro, 1951) or Adam (Kingma & Ba, 2015). How-
ever, as LMs are scaled up, backpropagation (Rumelhart
et al., 1986) becomes prohibitive in terms of memory re-
quirements. More concretely, Malladi et al. (2023) show
that fine-tuning an OPT-13B model with full-parameter or
parameter efficient fine-tuning (PEFT) using Adam requires
12× and 6× more memory than inference, respectively.
This is due to the need to cache activations during the for-
ward pass as well as gradients and optimizer states during
the backward pass. This has given rise to memory-efficient
inference-based adaptation methods, including in-context
learning (ICL) and zeroth-order (ZO) optimization.

While ZO methods have been studied for decades (Spall,
1992; Ghadimi & Lan, 2013), it is only recently that these
have been applied to fine-tune LMs (Malladi et al., 2023). In
Malladi et al. (2023), authors propose the Memory-Efficient
Zeroth-Order Optimizer (MeZO) and demonstrate its su-
perior performance against ICL with a memory footprint
equivalent to that of inference. By virtue of estimating gradi-
ents through loss computations, ZO methods are compatible
with settings where gradients are non-accessible or infeasi-
ble to compute, e.g. when considering non-differentiable
objectives or black-box access of LMs.

However, ZO methods still face challenges in large-scale
settings. According to Malladi et al. (2023), MeZO requires
a high number of iterations to achieve a good fine-tuning
performance and works only in settings where the optimiza-
tion trajectory is sufficiently well-behaved, i.e. when fine-
tuning is coupled with appropriately crafted task prompts.
As such, we revisit ZO optimization under the standard
(non-prompted) fine-tuning setting. Through empirical stud-

*Work conducted during an internship at Amazon.

1

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

0 2000 4000 6000 8000 10000 12000 14000
Step

10−6

10−5
Lo

ss
Least-Squares Convergence Comparison

FO-SGD
MeZO
MeZO-SVRG

(a)

0 5000 10000 15000 20000 25000
Step

10−2

10−1

100

Tr
ai

ni
ng

 L
os

s

MNIST Classification: Batch Size Experiment

FO-SGD, BS=64
MeZO, BS=128
MeZO, BS=64
MeZO, BS=32

(b)

0 100 200 300 400 500 600 700 800 900
Step

10−2

10−1

100

Fin
e-

tu
ni

ng
 L

os
s

Fine-tuning Roberta-large (SST-2): Batch Size Experiment

FO-SGD, BS=64
MeZO, BS=64
MeZO, BS=32
MeZO, BS=16

(c)

Figure 1. (a) Shows that MeZO (Malladi et al., 2023) is unable to attain the optimal value when solving least-squares (LS) problems unlike
our proposed MeZO-SVRG. In (b) and (c), MeZO is used for MNIST (LeCun et al., 1998) classification and fine-tuning RoBERTa-large
on SST-2 (Socher et al., 2013), respectively, with varying batch sizes. These illustrate MeZO’s instability w.r.t. smaller batch sizes.

ies, we probed further and identified that the method also
contends with i) instability for smaller batch sizes, and ii)
a notable convergence gap to first-order (FO) fine-tuning
methods in non-prompted settings (see Figures 1a, 1b, 1c).

In this work, we demonstrate that variance-reduction en-
hances the stability and convergence properties of ZO meth-
ods in the large-scale LM fine-tuning setting. Based on
our observation that ZO methods benefit from improved
stability with larger batch sizes, we propose the Memory
Efficient Zeroth-Order Stochastic Variance-Reduced Gradi-
ent (MeZO-SVRG) method: a ZO algorithm that combines
fullbatch and minibatch information to yield asymptotically
unbiased, low-variance gradient estimators. Our specific
contributions are enumerated below.

1. We perform empirical studies across a range of problem
scales to investigate the potential limitations of MeZO.
We identified its susceptibility to unstable behavior for
smaller batch sizes and convergence issues in spurious
optimization landscapes as improvement avenues.

2. We propose MeZO-SVRG: an efficient variant of the
ZO-SVRG method that leverages gradient estimators
computed with single perturbation vectors to exploit
data parallelism for speed and uses in-place operations
to achieve a minimal memory footprint.

3. We fine-tune masked and autoregressive LMs (model
scales up to 7B) on GLUE (Wang et al., 2018) and
SuperGLUE (Wang et al., 2019) tasks. MeZO-SVRG
achieves consistent performance improvements with up
to 20% increase in test accuracies over MeZO across all
models and tasks. MeZO-SVRG achieves superior per-
formance to MeZO in both full- and partial-parameter
fine-tuning, in both full (FP32) and half (BF16) preci-
sion and under standard non-prompt settings.

4. MeZO-SVRG stands out by consistently surpassing
MeZO’s test accuracy in only half as many GPU-hours.

5. We show that MeZO-SVRG significantly reduces the
required memory footprint compared to first-order
methods, i.e. by at least 2× for considered autoregres-
sive models. Furthermore, our experiments highlight
that MeZO-SVRG’s memory savings progressively im-
prove compared to SGD with larger batch sizes.

6. We establish convergence guarantees for MeZO-SVRG
when equipped with gradient estimators that are com-
puted using single perturbation vectors.

2. Background
2.1. Zeroth-Order Gradient Estimators

Consider solving the unconstrained optimization

min
θ∈Rd

f(θ) :=
1

n

n∑
i=1

fi(θ), (1)

where f : Rd → R is a non-convex objective. Note that (1)
is akin to the standard empirical risk minimization frame-
work, where each fi is the objective evaluated for one of n
training samples. For an iterative ZO algorithm, we need to
find a means to approximate the gradient. We can define the
following stochastic perturbation simultaneous approxima-
tion (SPSA) gradient estimator (Spall, 1992):

∇̂fi(θ) :=
fi(θ + µzi)− fi(θ − µzi)

2µ
zi for i ∈ [n], (2)

where ∇̂ denotes a gradient estimator, zi ∈ Rd is a random
vector sampled from a standard normal distribution, and µ >
0 is a perturbation scalar. The extension p-SPSA computes
the average of p distinct SPSA estimates. Throughout this
work, we consider the default setting of p = 1 as we didn’t
observe empirical benefits of setting p > 1. The SPSA
gradient estimate is an asymptotically unbiased estimator of
the true gradient as µ → 0 when each component in zi is
mutually independent and zero-mean (Spall, 1992).

2

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

Now suppose we have a minibatch I ⊂ [n] of size b. This
allows us to define the following:

∇̂fI(θ) :=
1

b

∑
i∈I
∇̂fi(θ), (3)

and by extension,

∇̂f(θ) := ∇̂f[n](θ). (4)

Observe that the gradient estimator in (3) requires 2b func-
tion queries and sampling b random vectors. In practice,
there are two strategies to compute estimators (3) and (4):
accumulate the minibatch estimator in-place by sequentially
computing each samplewise estimator, or parallelize the
operation by computing the samplewise estimators simulta-
neously. The trade-off between the two strategies is that the
former has a minimal memory footprint (scales with dimen-
sion of problem) but takes longer, while the latter effectively
parallelizes the operation but has to store b vectors.

Thus, we define another set of ZO gradient estimators that
accommodate data parallelism: we perturb each samplewise
SPSA estimator in the same direction z ∈ Rd. For minibatch
I ⊂ [n] of size b we can construct

∇̄fI(θ) :=
1
b

∑
i∈I [fi(θ + µz)− fi(θ − µz)]

2µ
z, (5)

and

∇̄f(θ) := ∇̄f[n](θ). (6)

From an implementation standpoint, estimators (5) and (6)
can exploit data parallelism across the batch I and benefit
from a minimal required memory footprint.

2.2. Memory-efficient ZO-SGD (MeZO)

In Malladi et al. (2023), the authors propose a memory-
efficient ZO-SGD optimizer (MeZO) to fine-tune LMs.
MeZO is a ZO-SGD algorithm that estimates gradients
based on the two-point SPSA estimator introduced in (5).

Definition 2.1. (ZO-SGD) Consider solving optimization
(1). ZO-SGD is an iterative ZO optimizer characterized
with update rule

θ(t+1) := θ(t) − η∇̄fI(θ(t)),

for learning rate η > 0, and SPSA estimator ∇̄fI(θ(t)) over
minibatch I ∈ [n].

Implementing a vanilla ZO-SGD algorithm requires twice
the memory footprint of inference due to the need to store
the perturbation vector z ∈ Rd. In Malladi et al. (2023), an
in-place implementation of the algorithm is proposed, where

the requirement of storing a full set of perturbation scalars
is mitigated by merely storing a single random seed and
regenerating the perturbation vector when required. This
brings the memory cost of MeZO down to that of inference
(see Appendix E.1 for more details on the implementation).

2.3. ZO-SVRG

The Zeroth-Order Stochastic Variance Reduced Gradient
(ZO-SVRG) (Liu et al., 2018) method periodically combines
a fullbatch gradient estimator with the minibatch estimator
to mitigate the stochasticity of the latter. This variance
reduction helps achieve a faster convergence rate compared
to ZO-SGD (Liu et al., 2018). While the full algorithm is
presented in Appendix C, the update rule is:

θ(t+1) ← θ(t) − η[∇̂fIt
(θ(t))− ∇̂fIt

(θ̄) + ∇̂f(θ̄)] (7)

where η > 0 is the learning rate, It is a minibatch sampled
at iteration t, θ(t) is the parameter state at iteration t, and
θ̄ is the last parameter state at which the fullbatch gradient
estimator was computed. Throughout this work, we let
q ∈ N denote the regularity of fullbatch SPSA computations,
i.e. every q steps the fullbatch SPSA estimator is computed.

3. Our proposed method: MeZO-SVRG
In this section, we describe the proposed MeZO-SVRG
method. We first motivate our method by discussing the
observed limitations of MeZO and outline practical imple-
mentation concerns when using ZO-SVRG (Liu et al., 2018)
to mitigate these. We then introduce MeZO-SVRG as a
variant of ZO-SVRG that minimizes memory usage with
in-place operations and accommodates data parallelism in
its gradient estimators.

3.1. MeZO Limitations

In Malladi et al. (2023), authors mention that MeZO requires
a suitable task prompt to perform well; under this setting the
optimization trajectory is more well-behaved. This suggests
that the applicability of MeZO is restricted to settings where
the optimization landscape is sufficiently well-behaved and
cannot be extended to more complex tasks such as pre-
training. Moreover, the careful design of prompts for real-
world fine-tuning tasks also demands additional effort and
may not always be practical. This motivates developing a
method that delivers robust performance independently of
any reliance on input prompts.

While MeZO has demonstrated promise in fine-tuning set-
tings, our empirical findings suggest that it still faces the
following challenges: i) it is susceptible to instability when
using smaller batch sizes, and ii) a considerable performance
gap with respect to first-order (FO) fine-tuning exists in the
non-prompted setting. We illustrate these issues in Figures

3

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

1a, 1b and 1c. The details of the experiments are provided
in Appendix B. These observations motivate using variance-
reduction techniques that leverage larger batch information
to improve stability and convergence of ZO methods in the
large-scale problem settings.

3.2. ZO-SVRG Implementation Concerns

Memory Footprint. Recalling θ ∈ Rd, the ZO-SVRG
method has a minimum memory requirement of storing d
values. A naive implementation of ZO-SVRG presented
in Algorithm 2 (see Appendix C) would require an addi-
tional 2d of memory space for storing the fullbatch gradient
estimator and parameter state θ̄ used in (7). Moreover, com-
puting and storing ∇̂fIt(θ

(t)) and ∇̂fIt(θ̄) also accrues
an additional d values of memory each. Thus, a naive im-
plementation of Algorithm 2 would require a minimum
memory budget equivalent to 5× the memory budget of
inference, which is prohibitive for sufficiently large d.

Iteration Speed Concerns. The original ZO-SVRG method
is proposed with the inefficient gradient estimators intro-
duced in (3) and (4). In both, SPSA estimators are computed
for individual samples and averaged over the batch. Con-
sider computing (3) with batch size b. If we want to fully
parallelize operations, we require computing and storing b
many ∇̂fi(u) estimators. However, this increases the mem-
ory footprint. To save on memory usage, in-place operations
can be used. However, this has the effect of drastically re-
ducing the computation speed as we need to sequentially
compute each of the b estimators in (3).

3.3. MeZO-SVRG

We propose MeZO-SVRG: a variant of ZO-SVRG that im-
proves iteration speed by using estimators (5), (6) and re-
duces the memory footprint with in-place operations. The
method is summarized in Algorithm 1.

Efficient Gradient Estimation. We utilize the efficient
gradient estimators introduced in (5) and (6) that perturb
the entire batch in a single direction. These estimators ac-
commodate data parallelism offered by modern ML frame-
works. Furthermore, we can utilize the “resampling trick”
introduced in Malladi et al. (2023) to reduce the memory
footprint when computing each of (5) and (6); each estima-
tor requires a memory footprint equivalent to the problem
dimension d (see Appendix E.1 for the memory-efficient
SPSA computation procedure). Thus, using estimators (5)
and (6), eliminates the memory/speed trade-off plaguing the
ZO-SVRG implementation and get the best of both worlds.

In-place Operations for Memory Efficiency. MeZO-
SVRG leverages in-place operations to minimize memory
allocation for new variable definitions. Memory space is
required for the current state of the d parameters, a copy of

Algorithm 1 Memory-Efficient ZO-SVRG (MeZO-SVRG)
Input: Total iterations T , learning rates η1, η2 > 0, minibatch
size b, parameters θ0, iterations between full-batch gradient
q ∈ N
begin method
for t = 0, . . . , T do

if t mod q = 0 then
1. g← ∇̄f(θ(t))

2. θ̄ ← θ(t)

3. update: θ(t+1) ← θ(t) − η1g #in-place
else

4. Choose mini-batch It of size b
5. θ(t) ← θ(t) − η2∇̄fIt(θ

(t)) #in-place
6. θ(t) ← θ(t) + η2∇̄fIt(θ̄) #in-place
7. update: θ(t+1) ← θ(t) − η2g #in-place

end if
end for
end

the parameter state after each fullbatch SPSA computation
as well as the fullbatch SPSA estimator itself. This requires
a minimum memory requirement of storing 3d values. The
minibatch updates can then be computed in-place in Lines 5,
6, and 7; thus, MeZO-SVRG achieves a reduced minimum
memory footprint to 3× that of inference. Note that this sim-
plistic memory analysis does not account for any constant
implementation overhead or intermediate activation storage
during a forward pass of a network. Thus, in practice the
memory usage ratio between MeZO and MeZO-SVRG is
smaller (see Table 3).
Remark 3.1. As MeZO-SVRG queries the loss function
with an inference pass through a network, it minimizes
the storage of activations and intermediate variables. The
memory footprint of MeZO-SVRG thus mainly stems from
retaining copies of the fullbatch gradient estimator and pa-
rameters. Therefore, this method scales well with increasing
batch sizes. Table 3 shows that for increasing batch sizes
of up to 64, MeZO-SVRG yields more than 70% mem-
ory savings compared to first-order SGD (FO-SGD) on the
RoBERTa-large (Liu et al., 2019) model. Similarly, MeZO-
SVRG improves significantly on memory usage compared
to FO-SGD for large context lengths and a fixed batch size
(consistently 2× smaller footprint, see Figure 3).

Remark 3.2. By storing θ̄ in Line 2 (Algorithm 1), we can
keep recomputing the fullbatch estimator on demand with-
out storing g. This would lower the memory footprint of
MeZO-SVRG to 2× that of inference. However, as com-
puting the fullbatch estimator can slow down the iteration
speed, throughout this work we store it.

Remark 3.3. In practice, fine-tuning datasets can be large
enough that computing fullbatch SPSA estimators is infea-
sible (more than 105 training examples). MeZO-SVRG can
be adapted so that the fullbatch estimator is approximated
with a large batch estimator (e.g. 512 or 1024 samples).

4

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

1075 × 106 6 × 106 7 × 106 8 × 106 9 × 106

Queries

0.0

0.2

0.4

0.6

0.8

1.0

Fin
e-

tu
ni

ng
 L

os
s

Fine-tuning RoBERTa-large on SST-2: Query Plot
MeZO
MeZO-SVRG
FO-SGD

(a)

1055 × 104 6 × 104 7 × 104 8 × 104 9 × 104

Time (s)

40

50

60

70

80

90

100

110

120

Te
st

 A
cc

ur
ac

y
(%

)

Fine-tuning RoBERTa-large on SST-2: Time Plot
MeZO
MeZO-SVRG
FO-SGD

(b)

Figure 2. Performance of MeZO-SVRG, MeZO and FO-SGD when fine-tuning RoBERTa-large on the SST-2 (Socher et al., 2013) dataset.
The dashed line serves as a reference to the training loss/test accuracy achieved by FO-SGD. (a) MeZO-SVRG is able to significantly
reduce the convergence gap to FO-SGD compared to MeZO. (b) MeZO-SVRG attains a considerably better test accuracy than MeZO.

Additional Learning Rate. In Algorithm 1, we also include
two independent learning rates η1 and η2 for the fullbatch
and minibatch updates as shown in Lines 3 and Lines 5-7,
respectively, of Algorithm 1. This design choice is based on
our empirical observation that fullbatch updates are more
accommodating of larger learning rates than minibatch steps.
In our experiments we find that setting η1 > η2 improves
convergence speed (see Appendices F.1, G.1, H.1).

Storage Efficiency of MeZO-SVRG. Parameter-efficient
fine-tuning (PEFT) reduces the size of fine-tuned model
checkpoints by optimizing only a small subset of parameters,
e.g. LoRA (Hu et al., 2022) and prefix-tuning (Li & Liang,
2021). Both MeZO and MeZO-SVRG have the benefit
of being able to recover an entire fine-tuning trajectory by
storing a single seed and the difference of loss scalars in
(5) at each step. The stored seed can regenerate step-wise
seeds to recover the perturbation vectors z used for each
SPSA computation. Together with the stored difference in
loss values, we can recover the exact gradient estimators
used in the fine-tuning process without needing to perform
any forward passes. This allows recovering any model
checkpoint along the fine-tuning trajectory. As we store
only the initial random seed and a sequence of difference of
loss scalars, we can achieve significant storage efficiency.

Compatibility with Non-differentiable Objectives and
PEFT. As MeZO-SVRG uses only forward passes and a
difference of loss values to estimate the gradient, it is appli-
cable to settings where gradients are inaccessible or infea-
sible to compute, e.g. when considering non-differentiable
objectives such as ranking in RLHF (Ouyang et al., 2022)
or access to model gradients is restricted. Similar to MeZO,
MeZO-SVRG also remains compatible with PEFT (e.g.
LoRA (Hu et al., 2022), prefix-tuning (Li & Liang, 2021)).

4. Experiments
In this section, we evaluate MeZO-SVRG on a variety of
fine-tuning tasks by comparing the performance against
MeZO (Malladi et al., 2023) and memory usage against first-
order stochastic gradient descent (FO-SGD) (Robbins &
Monro, 1951) and first-order Adam (FO-Adam) (Kingma &
Ba, 2015). We demonstrate empirically that MeZO-SVRG
performs well in the absence of input prompts: it is able to
significantly reduce the performance gap to FO methods and
consistently surpasses MeZO’s performance on a variety of
fine-tuning tasks with significantly lower computation time.
Furthermore, MeZO-SVRG necessitates a considerably
smaller memory footprint compared to FO-SGD and FO-
Adam. The code for the experiments is available at https:
//github.com/amazon-science/mezo_svrg.

Setup. We evaluate on both full (FP32) and half (BF16)
precision. We detail the experiment results for the BF16
setting in Appendix J.We mainly consider a prompt-free
fine-tuning setting (more challenging loss landscape) but in-
clude prompted results for RoBERTa-large (Liu et al., 2019)
in Appendix G. All experiments are run on a single GPU;
specifically, we consider Nvidia A100 40GB or H100 80GB
GPUs. We evaluate the algorithms under two fine-tuning
strategies: full- and partial-parameter fine-tuning. In the
latter we fine-tune the last layers of the chosen models. We
define a query as one forward pass for a single sample. For
a fair comparison between MeZO and MeZO-SVRG, we en-
sured that the total number of queries used by both remains
the same; thus, as MeZO-SVRG accrues more queries per
step due to the fullbatch gradient estimates, MeZO was run
for more steps. Further details of the experiment setup and
implementation are provided in Appendices D and E.

Dataset. We fine-tune on tasks from the NLP GLUE and
SuperGLUE benchmarks: Multi-Genre Natural Language
Inference Corpus (MNLI), Stanford Question Answering
Dataset (QNLI), Stanford Sentiment Treebank (SST-2),

5

https://github.com/amazon-science/mezo_svrg
https://github.com/amazon-science/mezo_svrg

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

DistilBert Full-Precision (FP32) RoBERTa-large Full-Precision (FP32)

Method MNLI QNLI SST-2 CoLA MNLI QNLI SST-2 CoLA

MeZO (Full FT) 36 (1.09) 50 (0.69) 52 (0.68) 63 (0.64) 43 (0.94) 59 (0.58) 56 (0.69) 68 (0.51)
MeZO-SVRG (Full FT) 46 (0.08) 68 (0.23) 72 (0.02) 68 (0.28) 49 (0.81) 80 (0.28) 84 (0.13) 79 (0.06)
FO-SGD (Full FT) 59 (0.01) 78 (0.04) 88 (0.01) 70 (0.02) 85 (0.03) 89 (0.01) 96 (0.11) 85 (0.01)

MeZO (Partial FT) 35 (1.09) 52 (0.69) 51 (0.70) 60 (0.64) 42 (1.07) 50 (0.69) 54 (0.68) 65 (0.59)
MeZO-SVRG (Partial FT) 47 (0.28) 65 (0.29) 74 (0.10) 67 (0.36) 43 (0.82) 67 (0.46) 72 (0.59) 79 (0.35)
FO-SGD (Partial FT) 48 (0.26) 59 (0.42) 85 (0.05) 66 (0.45) 52 (0.99) 72 (0.60) 89 (0.58) 84 (0.41)

Table 1. Experiments on DistilBert and RoBERTa-large. We show the test accuracies and fine-tuning losses (in parentheses) of MeZO-
SVRG and MeZO for both full/partial-parameter FT. We also provide results for FO-SGD as an upper-bound benchmark on performance.
MeZO-SVRG consistently outperforms MeZO and significantly closes the gap to FO-SGD.

GPT2 Full-Precision (FP32) OPT-2.7B Full-Precision (FP32) OPT-6.7B Half-Precision (BF16)

Method MNLI SST-2 CoLA MNLI SST-2 CoLA SST-2 BoolQ

MeZO 41 (0.65) 59 (0.32) 61 (0.35) 42 (1.09) 61 (0.65) 62 (0.58) 74 (0.53) 65 (0.63)
MeZO-SVRG 53 (0.41) 65 (0.20) 69 (0.25) 52 (0.81) 65 (0.55) 67 (0.53) 77 (0.52) 69 (0.57)
FO-SGD 69 (0.59) 72 (0.23) 78 (0.38) 78 (0.33) 98 (0.02) 94 (0.17) 91 (0.10) 84 (0.29)

Table 2. Experiments on AR models. We show the test accuracies and fine-tuning losses (in parentheses) of MeZO-SVRG and MeZO
for full-parameter FT. For reference we also provide results for FO-SGD as an upper-bound benchmark on performance. MeZO-SVRG
consistently outperforms MeZO and approaches FO-SGD performance.

Corpus of Linguistic Acceptability (CoLA), and BoolQ
(Williams et al., 2018; Wang et al., 2018; Socher et al.,
2013; Warstadt et al., 2018; Wang et al., 2019). Similar to
Malladi et al. (2023), for each task, our experiments are
conducted in a many-shot fine-tuning setting: 512 training
examples, 256 validation examples and 256 test samples are
randomly sampled from the dataset.

Language Models. We considered Distilbert (Sanh et al.,
2020) and RoBERTa-large as our masked LMs. Details on
the hyperparameter configuration used for these experiments
are provided in Appendix F, G and J. We extend our evalua-
tion to fine-tuning larger autoregressive (AR) models. We
consider the GPT2 (Radford et al., 2019), OPT-2.7B, and
OPT-6.7B (Zhang et al., 2022) models. The hyperparameter
configurations used for these experiments are detailed in
Appendix H and J.

4.1. LM Fine-tuning Performance

MeZO-SVRG significantly outperforms MeZO in both
the fine-tuning loss convergence and test accuracy. On
all models and tasks, MeZO-SVRG improves on the test
accuracy over MeZO: we see an improvement of up to 20%
in Tables 1, 2 and Figure 2b. MeZO-SVRG also consistently
achieves an improved fine-tuning loss compared to MeZO.
This is particularly evident in Figure 2a. Additional results
are presented in Appendices F, G and H.

MeZO-SVRG works well on both full and partial fine-
tuning. The improvement over MeZO is consistent across

both fine-tuning modes. In partial fine-tuning, MeZO-
SVRG often achieves comparable performance to FO-SGD
(within 5%) on several tasks (see Table 1).

MeZO-SVRG closes the gap to FO-SGD in training con-
vergence and matches the test accuracy. Tables 1 and 2
demonstrate how MeZO-SVRG closes the performance gap
with FO-SGD compared to MeZO.

MeZO-SVRG’s superior performance to MeZO extends
to the low (half) precision (BF16) setting. We summarize
the half-precision results in Appendix J.

4.2. Memory Usage Profiling

1.6B 2.7B 6.7B
Parameters

0

20

40

60

80

100

120

140

GP
U

M
em

or
y

(G
B)

Memory Usage
MeZO
MeZO-SVRG
FO-SGD

Figure 3. Shows the minimum memory usage on autoregressive
models (batch size = 1, use max context length of model). MeZO-
SVRG yields a 2× smaller memory footprint over FO-SGD.

MeZO-SVRG can fit larger models on the same hard-

6

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

Memory Usage in GB for RoBERTa-large
Largest OPT/GPT that can fit Fixed context length (cl=128) Fixed batch size (bs=64)

Method A100 (40GB) H100 (80GB) bs = 16 bs = 32 bs = 64 cl = 256 cl = 512

MeZO 6.7B 13B 2.07 (69%) 2.21 (79%) 2.51 (88%) 3.35 5.97
MeZO-SVRG 2.7B 6.7B 4.36 (35%) 4.51 (58%) 4.72 (76%) 5.13 8.02
FO-SGD 1.6B 2.7B 6.74 10.67 18.55 OOM OOM
FO-Adam 350M 1.3B 10.44 14.33 22.41 OOM OOM

Table 3. Shows the largest AR models that can fit on single 40, 80GB GPUs. We also measure the memory usage under different batch
sizes (bs) and context lengths (cl) when fine-tuning RoBERTa-large. Percentages indicate the memory savings with respect to FO-SGD.

GPT2 OPT-2.7B

Method MNLI QNLI SST-2 CoLA MNLI QNLI SST-2 CoLA

MeZO 0.4 5.5 19.4 2.8 2.6 5.3 48 55
MeZO-SVRG 0.3 1.9 5.6 2.2 1.1 2.7 25 1.4

Table 4. Required GPU-hrs to achieve equivalent performance levels for MeZO-SVRG and MeZO.

ware than FO-SGD. We measure the minimum memory
requirement to fine-tune (full-parameter) the considered
autoregressive models using the different methods. We fine-
tune GPT2, OPT-2.7B and OPT-6.7B on MNLI by setting
the input sequence length to the maximum context length
of the LM and report the peak GPU memory consumption
for batch size = 1. Table 3 shows that MeZO-SVRG con-
sistently yields a significantly improved memory footprint
compared to FO-SGD (approximately 2× across consid-
ered autoregressive models). More details on how memory
profiling was done is summarized in Appendix I.1.

MeZO-SVRG’s memory savings progressively improve
over FO-SGD and FO-Adam with increasing batch size
and context lengths. For this experiment, we consider
the masked model RoBERTa-large. Again we fine-tune
on the MNLI dataset using a single Nvidia A100 40GB
GPU and set the input sequence length to a constant size
of 128. We measure the peak GPU memory consumption
for the different methods for varying batch sizes {16, 32,
64}. Figure 3 shows that for a fixed model (RoBERTa-large)
and context length (128), MeZO-SVRG exhibits memory
savings of up to 76% w.r.t FO-SGD. We also vary the context
lengths {256, 512} of the input for a fixed batch size (64).
Again we observe significant benefits for MeZO-SVRG over
FO-SGD: the latter is subject to out-of-memory errors when
running this setting with 40GB GPUs.

4.3. Computation Time

We compare the speed of MeZO-SVRG and MeZO by
measuring the total GPU-hours required to achieve a cer-
tain performance threshold. For a fair comparison, we set
the threshold to a level attained by both methods, namely,
MeZO’s peak test accuracy. Table 4 shows that for GPT2

and OPT-2.7B, MeZO-SVRG consistently achieves superior
test accuracy with less than half the GPU-hours.

4.4. Understanding MeZO-SVRG

To better understand how the perturbation scale µ and reg-
ularity of full-batch update steps determined by q impact
the MeZO-SVRG performance, we perform ablation studies
in Appendix E with DistilBert on the MNLI dataset. For
large fine-tuning datasets, estimating the full-batch gradi-
ent can be impractical. Therefore, we included an ablation
study to examine the impact on MeZO-SVRG performance
when substituting the full-batch gradient estimator with a
large-batch estimator. Results in Table 10 suggest that large-
batch estimators pose an effective alternative to full-batch
estimators.

5. Convergence Theory
In this section, we provide a convergence analysis of MeZO-
SVRG. We start by showing that our estimator is unbiased
w.r.t. a minibatch set I. We assume I is drawn either
uniformly random with or without replacement.

Lemma 5.1.

EI∇̄fI(θ) = ∇̄f(θ) (8)

We denote uI = ∇̄fI(θ) − ∇̄fI(θ′) − EI [∇̄fI(θ) −
∇̄fI(θ′)] and uI = ui for I = {i}. This ui is a key
component from the idea of control covariates (Tucker et al.,
2017) in reducing variance.

Lemma 5.2.
∑n

i=1 ui = 0 and EI [uiuj] = 0 where i, j ∈
I and i ̸= j.

Assumptions. A1: Functions {fi} are L-smooth, i.e.,

7

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

∥∇fi(θ) − ∇fi(θ′)∥ ≤ L∥θ − θ′∥22. A2: The variance
of stochastic gradients is bounded as 1

n

∑n
i=1 ∥fi(θ) −

f(θ′)∥22 ≤ σ2.

With the two Lemmas and assumptions, the following holds.

Theorem 5.3. Assume A1 and A2 holds. Let learning rates
η = η1 = η2. Then, MeZO-SVRG satisfies

E[∥∇f(θ(T))∥22] ≤
f(θ(0))− f∗

T γ̄
+

Lµ2

T γ̄
+

c

qγ̄
(9)

where γ̄ and c are functions of learning rate η, dimension d,
minibatch size b and L, σ. Moreover, by setting

µ =
1√
dT

, η =
ρ

L
, q = ⌈ d

31ρ
⌉,

where ρ is a universal constant, MeZO-SVRG satisfies

E[∥∇f(θ(T))∥22] = O

(
d

T
+

1(b < n)

b

)
. (10)

Theorem 5.3 demonstrates a linear convergence, inverse
proportional to iteration T and q. The second term in Eq. (9)
expresses the effect of µ, the magnitude of perturbation,
which is small in practice. In Eq. (10), q is proportional to
the problem dimension d, which can balance overall com-
putational cost. It also reveals the effect of batch size b,
indicating larger batch sizes are preferred in terms of itera-
tion counts, which coincide with our empirical observation.

Remark 5.4. The derivation of Theorem 5.3 heavily relies
on mathematical machinery and flows of original SVRG
(Johnson & Zhang, 2013) and ZO-SVRG (Liu et al., 2018).
However, note the gradient estimators in MeZO-SVRG
and ZO-SVRG are different, e.g. different scaling, a sin-
gle perturbation vector z vs multiple perturbation vectors
{zi} against RandGradEst (Liu et al., 2018). This re-
quires careful examination often with different derivation
like Lemma 5.1, 5.2, while making sure random vector z
is conditioned consistently over sequence of derivations in
(Liu et al., 2018). A proof sketch clarifying main distinct
steps is provided in Appendix A.

6. Related work
Zeroth-Order Optimization. Zeroth-order (ZO) methods
solve optimization problems without using gradient informa-
tion. This class of methods typically estimates the gradient
from function queries. Convergence theory has been de-
veloped for ZO stochastic gradient descent (ZO-SGD) in
both convex (Jamieson et al., 2012; Raginsky & Rakhlin,
2011; Duchi et al., 2013) and non-convex settings (Liu et al.,
2018; Ji et al., 2019; Park et al., 2020). However, these
bounds generally depend on the number of parameters d. In

Malladi et al. (2023), authors demonstrate via fine-tuning
experiments that after pre-training and the inclusion of task
prompts, the loss landscape is well-behaved enough and
can be traversed by ZO-SGD. Zhang et al. (2024) bench-
marks the performance of ZO methods in the context of LM
fine-tuning. However, despite various advances on variance-
reduced techniques (Johnson & Zhang, 2013; Defazio et al.,
2014; Park & Ryu, 2020; Lu et al., 2021) within the FO
class, to the best of our knowledge, we are the first to ex-
plore the direction of variance-reduced ZO optimization for
fine-tuning LMs.

Memory-efficient Backpropagation Strategies. LLMs
are typically fine-tuned by using FO methods such as SGD
(Robbins & Monro, 1951) and Adam (Kingma & Ba, 2015).
Several methods have been proposed to handle the memory
overheads of backpropagation, for e.g. sparsifying gradients
(Sun et al., 2017; Wei et al., 2017) and quantizing gradients
to lower bit precisions (Dettmers et al., 2022b;a). Other
techniques to save activation memory during forward and
backward pass include Gradient checkpointing (Chen et al.,
2016) and Flash Attention (Dao et al., 2022).

Gradient-free Adaptation of LLMs. The pre-training
stage gives LLMs the ability to generalize to tasks for which
it has not been explicitly trained. This form of adaptation
requires instruction prompts and is referred to as in-context
learning (ICL). While ICL enables quick adaptation of the
model to specific tasks, drawbacks of this approach include
that current models are constrained to limited context win-
dow and are sensitive to both the choice of input prompts
and demonstrations (Malladi et al., 2023). Moreover, it has
been empirically demonstrated that ICL on large models
performs worse than full fine-tuning on medium-scale mod-
els (Brown et al., 2020). Another paradigm of adapting
LLMs without using gradients is by using evolutionary al-
gorithms Sun et al. (2022b;a), however the effectiveness of
these methods has not been verified beyond smaller LMs.

7. Conclusion
This work introduces MeZO-SVRG: a variance-reduced ZO
method that addresses the challenge of fine-tuning LMs
under memory constraints. MeZO-SVRG is a variant of
ZO-SVRG that exploits in-place operations for memory-
frugality and efficient gradient estimators that accommodate
data parallelism for significant improvement in the iteration
speed. The method combines fullbatch and minibatch in-
formation to yield low variance gradient estimators. We
demonstrate empirically that MeZO-SVRG outperforms
MeZO consistently on a variety of LM fine-tuning tasks,
even in a challenging non-prompted setting, and requires
significantly less GPU-hours to achieve this performance.
Furthermore, we show that across model types and fine-
tuning tasks, MeZO-SVRG is able to considerably close

8

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

the performance gap to first-order methods while benefiting
from a 2× reduction in memory utilization, which progres-
sively improves with larger batch sizes and context lengths.

We are excited to further explore the potential of MeZO-
SVRG. In particular, we aim to examine MeZO-SVRG’s per-
formance when coupled with PEFT (LoRA, prefix-tuning)
and settings where gradient-information is unavailable, e.g.
prompt-tuning black-box models that are accessible only
through an API. Finally, our work paves the way for explor-
ing a broader spectrum of variance reduction techniques for
ZO methods in the context of LM fine-tuning.

Impact Statement
One of the main challenges associated with adapting foun-
dation models to specialized domains is the prohibitive
computational burden during the fine-tuning phase. The
high computational cost restricts the widespread use of
larger models in resource-constrained settings. This de-
ters a wider consumer-base from reaping the benefits of
large models and, in turn, limits the democratization of the
technology. Moreover, such constraints can be detrimental
to the research community as the large-scale computational
resources required for model adaptation are available to only
a small fraction of researchers and users. This challenge
can be overcome by investigating optimization methods
that leverage the memory frugality of inference passes to
develop effective fine-tuning strategies.

References
Brown, T., Mann, B., Ryder, N., and Subbiah, M. Language

models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep
nets with sublinear memory cost, 2016.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. FlashAt-
tention: Fast and memory-efficient exact attention with
IO-awareness. In Advances in Neural Information Pro-
cessing Systems, 2022.

Defazio, A., Bach, F., and Lacoste-Julien, S. Saga: A
fast incremental gradient method with support for non-
strongly convex composite objectives. Advances in neural
information processing systems, 27, 2014.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.

GPT3.int8(): 8-bit matrix multiplication for transformers
at scale. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022a. URL https://openreview.net/
forum?id=dXiGWqBoxaD.

Dettmers, T., Lewis, M., Shleifer, S., and Zettlemoyer, L.
8-bit optimizers via block-wise quantization, 2022b.

Duchi, J., Jordan, M., Wainwright, M., and Wibisono, A.
Optimal rates for zero-order convex optimization: The
power of two function evaluations. IEEE Transactions
on Information Theory, 61, 12 2013. doi: 10.1109/TIT.
2015.2409256.

Ghadimi, S. and Lan, G. Stochastic first- and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013. doi:
10.1137/120880811. URL https://doi.org/10.
1137/120880811.

Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K.,
Beltagy, I., Downey, D., and Smith, N. A. Don’t stop
pretraining: Adapt language models to domains and tasks.
In Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 8342–8360, On-
line, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.740. URL https:
//aclanthology.org/2020.acl-main.740.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=nZeVKeeFYf9.

Jamieson, K. G., Nowak, R., and Recht, B. Query
complexity of derivative-free optimization. In
Pereira, F., Burges, C., Bottou, L., and Weinberger,
K. (eds.), Advances in Neural Information Process-
ing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.
cc/paper_files/paper/2012/file/
e6d8545daa42d5ced125a4bf747b3688-Paper.
pdf.

Ji, K., Wang, Z., Zhou, Y., and Liang, Y. Improved zeroth-
order variance reduced algorithms and analysis for non-
convex optimization. CoRR, abs/1910.12166, 2019. URL
http://arxiv.org/abs/1910.12166.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. Advances in
neural information processing systems, 26, 2013.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2015.

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://doi.org/10.1137/120880811
https://doi.org/10.1137/120880811
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/2020.acl-main.740
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.neurips.cc/paper_files/paper/2012/file/e6d8545daa42d5ced125a4bf747b3688-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/e6d8545daa42d5ced125a4bf747b3688-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/e6d8545daa42d5ced125a4bf747b3688-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/e6d8545daa42d5ced125a4bf747b3688-Paper.pdf
http://arxiv.org/abs/1910.12166

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pp. 4582–4597, Online, August 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
acl-long.353. URL https://aclanthology.org/
2021.acl-long.353.

Liu, S., Kailkhura, B., Chen, P.-Y., Ting, P., Chang, S., and
Amini, L. Zeroth-order stochastic variance reduction
for nonconvex optimization. In Proceedings of the 32nd
International Conference on Neural Information Process-
ing Systems, NIPS’18, pp. 3731–3741, Red Hook, NY,
USA, 2018. Curran Associates Inc.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019. URL http://arxiv.org/
abs/1907.11692.

Lu, Y., Park, Y., Chen, L., Wang, Y., De Sa, C., and Foster,
D. Variance reduced training with stratified sampling
for forecasting models. In International Conference on
Machine Learning, pp. 7145–7155. PMLR, 2021.

Malladi, S., Gao, T., Nichani, E., Damian, A., Lee,
J. D., Chen, D., and Arora, S. Fine-tuning
large language models with just forward passes.
https://arxiv.org/abs/2305.17333, 2023.

OpenAI. Gpt-4 technical report, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens,
M., Askell, A., Welinder, P., Christiano, P. F., Leike, J.,
and Lowe, R. Training language models to follow instruc-
tions with human feedback. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 27730–27744. Curran Associates, Inc., 2022.

Park, Y. and Ryu, E. K. Linear convergence of cyclic saga.
Optimization Letters, 14(6):1583–1598, 2020.

Park, Y., Rossi, R., Wen, Z., Wu, G., and Zhao, H. Struc-
tured policy iteration for linear quadratic regulator. In
International Conference on Machine Learning, pp. 7521–
7531. PMLR, 2020.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Raginsky, M. and Rakhlin, A. Information-based com-
plexity, feedback and dynamics in convex programming.
IEEE Transactions on Information Theory, 57(10):7036–
7056, 2011. doi: 10.1109/TIT.2011.2154375.

Robbins, H. and Monro, S. A Stochastic Approxima-
tion Method. The Annals of Mathematical Statis-
tics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/
1177729586. URL https://doi.org/10.1214/
aoms/1177729586.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. Nature,
1986.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter, 2020.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Yarowsky, D., Baldwin, T., Korhonen, A., Livescu, K.,
and Bethard, S. (eds.), Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pp. 1631–1642, Seattle, Washington, USA, October
2013. Association for Computational Linguistics. URL
https://aclanthology.org/D13-1170.

Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-
Voss, A., Wu, J., Radford, A., Krueger, G., Kim, J. W.,
Kreps, S., McCain, M., Newhouse, A., Blazakis, J.,
McGuffie, K., and Wang, J. Release strategies and the
social impacts of language models, 2019.

Spall, J. Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE
Transactions on Automatic Control, 37(3):332–341, 1992.
doi: 10.1109/9.119632.

Sun, T., He, Z., Qian, H., Zhou, Y., Huang, X., and Qiu,
X. Bbtv2: Towards a gradient-free future with large
language models. In Proceedings of EMNLP, 2022a.

Sun, T., Shao, Y., Qian, H., Huang, X., and Qiu, X. Black-
box tuning for language-model-as-a-service. In Proceed-
ings of ICML, 2022b.

Sun, X., Ren, X., Ma, S., and Wang, H. meProp: Sparsi-
fied back propagation for accelerated deep learning with
reduced overfitting. In Precup, D. and Teh, Y. W. (eds.),
Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 3299–3308. PMLR, 06–11 Aug

10

https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://aclanthology.org/D13-1170

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

2017. URL https://proceedings.mlr.press/
v70/sun17c.html.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023.

Tucker, G., Mnih, A., Maddison, C. J., Lawson, J., and Sohl-
Dickstein, J. Rebar: Low-variance, unbiased gradient
estimates for discrete latent variable models. Advances
in Neural Information Processing Systems, 30, 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. GLUE: A multi-task benchmark and analysis
platform for natural language understanding. In Linzen,
T., Chrupała, G., and Alishahi, A. (eds.), Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pp. 353–
355, Brussels, Belgium, November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-5446.
URL https://aclanthology.org/W18-5446.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. R. Su-
perGLUE: a stickier benchmark for general-purpose lan-
guage understanding systems. Curran Associates Inc.,
Red Hook, NY, USA, 2019.

Warstadt, A., Singh, A., and Bowman, S. R. Neu-
ral network acceptability judgments. arXiv preprint
arXiv:1805.12471, 2018.

Wei, B., Sun, X., Ren, X., and Xu, J. Minimal ef-
fort back propagation for convolutional neural networks.
ArXiv, abs/1709.05804, 2017. URL https://api.
semanticscholar.org/CorpusID:38548539.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 1112–1122, 2018.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. Opt: Open pre-trained transformer language models,
2022.

Zhang, Y., Li, P., Hong, J., Li, J., Zhang, Y., Zheng, W.,
Chen, P.-Y., Lee, J. D., Yin, W., Hong, M., Wang, Z., Liu,
S., and Chen, T. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark, 2024.

11

https://proceedings.mlr.press/v70/sun17c.html
https://proceedings.mlr.press/v70/sun17c.html
https://aclanthology.org/W18-5446
https://api.semanticscholar.org/CorpusID:38548539
https://api.semanticscholar.org/CorpusID:38548539

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

A. Proof of Theorem
Throughout the proof, we drop bold notations θ, z,u→ θ, z, u for notational simplicity.

Lemma A.1.

EI∇̄fI(θ) = ∇̄f(θ) (11)

Proof.

EI∇̄fI(θ) =
1

b
EI

∑
i∈I

fi(θ + µz)− fi(θ − µz)

2µ
z

=
1

b

b

n

n∑
i=1

fi(θ + µz)− fi(θ − µz)

2µ
z

= ∇̄f(θ)

The first and third equality comes from the definition of ∇̄fI , ∇̄f and the second equality holds due to re-ordering under
the assumption a minibatch set is sampled uniformly random or random with permutation.

We denote uI = ∇̄fI(θ)− ∇̄fI(θ′)− EI [∇̄fI(θ)− ∇̄fI(θ′)] and uI = ui for I = {i}.
Lemma A.2.

∑n
i=1 ui = 0 and EI [uiuj] = 0 where i, j ∈ I and i ̸= j.

Proof. By definition,
∑n

i=1 ∇̄fi(θ) = n∇̄f(θ). It is immediate to see
∑n

i=1 EI [∇̄fI(θ)] = n∇̄f(θ), similar to Lemma A.1.
Therefore

∑n
i=1 ui = 0 holds. Conditioned on other randomness, e.g. perturbation z, EI [uiuj] = 0 as i, j are independent.

Assumptions. A1: Functions {fi} are L-smooth, i.e. ∥∇fi(θ)−∇fi(θ′)∥ ≤ L∥θ − θ′∥22. A2: The variance of stochastic
gradients is bounded as 1

n

∑n
i=1 ∥fi(θ)− f(θ′)∥22 ≤ σ2.

Equipped with two Lemmas, the following holds

Theorem A.3. Assume A1 and A2 holds. Let learning rate η = η1 = η2. Then, MeZO-SVRG satisfies

E[∥∇f(θ(T))∥22] ≤
f(θ(0))− f∗

T γ̄
+

Lµ2

T γ̄
+

c

qγ̄
(12)

where γ̄ and c are the functions of stepsize η, dimension d, mini-batch size b and L, σ. Moreover, by setting

µ =
1√
dT

, η =
ρ

L
, q = ⌈ d

31ρ
⌉

where ρ is a universal constant, MeZO-SVRG satisfies

E[∥∇f(θ(T))∥22] = O

(
d

T
+

1(b < n)

b

)
. (13)

Proof. We rely on the proof provided by Liu et al. (2018). Note that we need to make sure that certain important steps and
Lemmas still hold under MeZO-SVRG’s gradient estimators. We start by using d∇̄f as our gradient estimate, through which
Lemma 1 and 2 (in in (Liu et al., 2018)) hold by matching the scale of gradient to RandGradEst in (Liu et al., 2018).
Lemma A.1 is used for Eq. (36) (Proposition 1 of Liu et al. (2018)). Lemma A.2 is used for Lemma 4, 5 in (Liu et al., 2018).
Eq. (40) (Proposition 1 of (Liu et al., 2018)) holds because of a different conditional expectation, i.e., E = EzEI|z = EzEI ,
rather than E = E{zi}EI|{zi} = E{zi}EI where z and {zi} are random perturbations. The rest of proof follows through
algebraic inequalities based on Lemmas 1,2, 4,5, and function assumptions, to derive convergence analysis. Finally we scale
down learning rate η by d to adopt the gradient estimate of our definition.

12

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

B. Exploring the Limits of MeZO Empirically
B.1. MNIST classification and RoBERTa-large fine-tuning

We ran experiments to better understand shortcomings in MeZO (Malladi et al., 2023). Two settings were considered:
performing MNIST (LeCun et al., 1998) classification with a two-layer MLP (25K parameters) and fine-tuning RoBERTa-
large (350M parameters) on the SST-2 (Socher et al., 2013) dataset. In the former, we used a two-layer feedforward network
with 32 and 16 hidden units respectively. In the latter, we performed full-parameter fine-tuning. In Malladi et al. (2023),
authors also remark that a simple instruction prompt is needed for the algorithm to succeed in fine-tuning tasks, i.e. it
requires a sufficiently well-behaved optimization trajectory. While this, in itself, can be noted as a drawback, we adopted
their proposed prompts in the experiment (Malladi et al., 2023). The training and fine-tuning runs are illustrated in Figures
1b and 1c. The hyperparameters selected for the runs are summarized in Tables 5 and 6. We paid particular attention to
the effect of varying batch size on the algorithm performance. We also varied the perturbation scale µ used in the SPSA
estimates (5). No improvement was found in reducing µ from the default setting used in MeZO (µ = 1e− 3) and thus we
present results only for that configuration (Malladi et al., 2023). The largest learning rate values used in the grid search
were selected for the MeZO runs. As an upper bound reference on performance, we also include the training curves for the
FO-SGD algorithm. From both Figures 1b and 1c, it is clear the MeZO has to contend with instability incurred at smaller
batch sizes.

Table 5. The hyperparameter grid optimized over in the initial the small-scale MNIST (LeCun et al., 1998) classification experiments.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64, 128}×
Learning rate {1e− 3, 1e− 4}×
µ {1e− 3, 1e− 4, 1e− 5}

FO-SGD Batch size {64}×
Learning rate {1e− 3}

Table 6. The hyperparameter grid optimized over in the initial RoBERTa-large (Liu et al., 2019) fine-tuning experiments.

Algorithm Hyperparameters Values

MeZO Batch size {16, 32, 64}×
Learning rate {1e− 5, 1e− 6}×
µ {1e− 3, 1e− 4, 1e− 5}

FO-SGD Batch size {64}×
Learning rate {1e− 5}

B.2. Solving Least Squares

To make the aforementioned observations even more apparent, we examined the performance of MeZO on a simple linear
least-squares (LS) problem. Specifically we solve

min
w∈Rd

∥Xw − y∥22, (14)

where X ∈ Rn×d is a randomly generated matrix, w ∈ Rd is fixed a priori, and y ∈ Rn = Xw + noise is the target labels.
In our experiment, we focus on the 100-dimensional problem, i.e. with d = 100 and n = 1000. For comparison, we also
report the performances of our proposed MeZO-SVRG and FO-SGD. The hyperparameter configurations used are presented
in Table 7. Figure 1a makes it clear that MeZO is unable to attain the optimal value and yields a performance gap w.r.t.
MeZO-SVRG and FO-SGD.

13

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

Table 7. The hyperparameters used for the Least Squares (LS) convergence experiment.

Algorithm Hyperparameters Values

MeZO Batch size {32}×
Learning rate {1e− 3}×
µ {1e− 3}

MeZO-SVRG Batch size {32}×
Learning rate (η1) {1e− 3}×
Learning rate (η2) {1e− 4}×
µ {1e− 3}×
q {2}

FO-SGD Batch size {32}×
Learning rate {1e− 3}

C. Zeroth-Order Stochastic Variance-Reduced Gradient
For the sake of completeness, we present the ZO-SVRG algorithm proposed in (Liu et al., 2018). This algorithm was
proposed without a focus on memory efficiency, in contrast to our MeZO-SVRG, which offers significant memory-saving
advantages, particularly in the context of fine-tuning large-scale LMs.

Algorithm 2 ZO-SVRG (Liu et al., 2018)
Input: Total iterations T , learning rate η > 0, minibatch size b, parameters θ0, iterations between fullbatch estimators q ∈ N
begin method
for t = 0, . . . , T do

if t mod q = 0 then
1. g← ∇̂f(θ(t))

2. θ̄ ← θ(t)

end if
3. Choose mini-batch It of size b
4. ĝ← ∇̂fIt(θ

(t))

5. ḡ← ∇̂fIt(θ̄)
6. Compute gradient blending: vt ← ĝ− ḡ + g
7. update: θ(t+1) ← θ(t) − ηv(t)

end for
end

14

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

D. Experiment Setup
D.1. Datasets

For experiments on LMs, we considered fine-tuning on classification datasets. Specifically, we focused on the following
datasets from the General Language Understanding Evaluation (GLUE) (Wang et al., 2018) benchmark: Multi-Genre
Natural Language Inference (MNLI) (Williams et al., 2018), Question Natural Language Inference (QNLI) (Wang et al.,
2018) for sentence pair classification, Stanford Sentiment Treebank (SST-2) (Socher et al., 2013) for sentiment analysis,
and Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2018). To incorporate a more challenging task, we also
evaluated on the BoolQ dataset from the SuperGLUE (Wang et al., 2019) benchmark.

The datasets are imported from the Huggingface datasets library. We randomly sampled 512 examples for training, 256
for validation and 256 for testing.

D.2. Model

In our implementation, we used models from the Huggingface transformers package. As we consid-
ered classification datasets, we instantiated models from the AutoModelsForSequenceClassification
and OPTModelsForSequenceClassification classes. These libraries add a classification head on
top of the considered pre-trained model. For the prompted experiment setting, we instantiate from the
RobertaModelForPromptFinetuning custom class implemented in the MeZO repository (Malladi et al., 2023).

Tables 8 and 9 summarize the models that where considered in our experiments. For the masked models both full- and
partial parameter fine-tuning was performed.

Model Total Trainable Parameters (×106) Partial FT Layers Partial FT Nr. of Parameters (×106)

DistilBert (distilbert-base-cased) 66
[
transformer.layer.5

classifier

]
8

RoBERTa-large (roberta-large) 355

roberta.encoder.layer.20
roberta.encoder.layer.21
roberta.encoder.layer.22
roberta.encoder.layer.23

classifier

 38

Table 8. An overview of the masked LMs used in the experiments. Both full- and partial-parameter fine-tuning (FT) was considered for
these LLMs.

Model Total Trainable Parameters (×106)

GPT2 (gpt2-xl) 1557

OPT-2.7B (facebook/opt-2.7B) 2651

OPT-6.7B (facebook/opt-6.7B) 6658

Table 9. An overview of the autoregressive LMs used in the experiments.

15

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

E. MeZO-SVRG Implementation and Ablations
E.1. Memory-efficient SPSA

In our implementation we adopt the memory-efficient strategy of computing the SPSA estimator as proposed in Malladi
et al. (2023). Rather than sampling and storing the entire perturbation vector z ∈ Rd, we sample a random seed and use it
to regenerate the random vector when required. This allows in-place perturbations of the optimization parameters which
minimizes the memory footprint. The memory-efficient perturbation routine is shown in 3. The parameters are perturbed
in groups rather than individually, i.e. in Algorithm 3, each θi denotes a parameter group (e.g. an entire weight matrix).
The scaling factor s ∈ {1,−2} is used to perturb the parameters in a forward and backward direction as required in central
difference approximations.

Algorithm 3 Memory-Efficient Parameter Perturbation

Design choices: Scaling factor s ∈ {1,−2}, perturbation size µ
Input: Parameters θ, random seed r
Return: Updated parameters θ

begin method
1. Set random seed r
for θi ∈ θ do

2. zi ∼ N (0, 1)
3. θi ← θi + s ∗ zi ∗ µ

end for
end

In this work, experiments were conducted with single SPSA estimators which require exactly 2 forward passes. In p-SPSA,
p estimators are computed and averaged. A total of 2p forward passes are required to compute a p-SPSA estimator. We used
the default setting of p = 1 suggested in Malladi et al. (2023) for both MeZO and MeZO-SVRG implementations.

E.2. Role of the Perturbation Parameter

We investigated the role of the perturbation parameter µ in MeZO-SVRG. Recall that µ defines the forward and backward
perturbation scale when computing SPSA estimators (5) and (6). We know from Spall (1992) that the SPSA estimator is
asymptotically unbiased as µ→ 0. We wanted to see the practical effects of different µ settings for MeZO-SVRG. Thus we
carried out an ablation study where the perturbation parameter was varied. We fine-tune DistilBert (Sanh et al., 2020) on the
MNLI (Williams et al., 2018) dataset. The experiment settings are summarized in Figure 4b.

Figure 4a shows how the different values of µ affected the fine-tuning process of the MeZO-SVRG algorithm. We observe
that for a sufficiently small values of µ (i.e. smaller than 1e− 1) we see no noticeable difference in performance, while
larger µ result in diverging behaviour. Similar findings were also empirically corroborated in Malladi et al. (2023). Thus,
throughout our work we used the default value of µ = 1e− 3.

E.3. Role of q

The parameter q plays a significant role in the performance of MeZO-SVRG (Algorithm 1). Concretely, q determines the
frequency of fullbatch update steps in the algorithm: smaller q increases the regularity of fullbatch updates. We perform
an ablation to better understand the extent to which fullbatch updates help or hinder the MeZO-SVRG performance. We
consider the task of fine-tuning the DistilBert (Sanh et al., 2020) model on the MNLI (Williams et al., 2018) dataset. The
experiment setup is summarized in Figure 5b.

Figure 5a shows the training curves of MeZO-SVRG for different settings of q over 3500 steps. Increasing the frequency of
fullbatch update steps enhances the convergence rate. However, our findings also indicate that a combination of fullbatch
and minibatch updates (with q ≥ 2) contributes to a more stable algorithm performance compared to exclusively using
fullbatch updates (when q = 1).

16

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

25 50 75 100 125 150 175 200
Step

100

101

Tr
ai

ni
ng

 L
os

s

Effects of Varying Perturbation Scale
μ= 0.001
μ= 0.01
μ= 0.1
μ= 1.0
μ= 0.5
μ= 0.0001

(a)

Algorithm Hyperparameters Values

MeZO-SVRG Batch size {64}×
Learning rate (η1) {1e − 4}×
Learning rate (η2) {1e − 6}×
µ {1, 0.5, 1e − 1, 1e − 2, 1e − 3, 1e − 4}×
q {2}×
Total Steps {200}

(b)

Figure 4. a) Shows the effects of varying the perturbation scale on the performance of MeZO-SVRG. b) Shows the hyperparameter settings
used in this experiment.

0 500 1000 1500 2000 2500 3000 3500
Step

100

1.02 × 100

1.04 × 100

1.06 × 100

1.08 × 100

1.1 × 100

Tr
ai

ni
ng

 L
os

s

Effects of Varying q

q= 5
q= 2
q= 1
q= 10

(a)

Algorithm Hyperparameters Values

MeZO-SVRG Batch size {64}×
Learning rate (η1) {1e − 4}×
Learning rate (η2) {1e − 6}×
µ {1e − 3}×
q {1, 2, 5, 10}×
Total Steps {3500}

(b)

Figure 5. a) Shows the effects of varying q on the convergence performance MeZO-SVRG. b) Shows the hyperparameter settings used in
this experiment.

E.4. Improved Robustness to Batch Size

In Figures 1a, 1b and 1c we emphasize one of the practical drawbacks of MeZO with respect to instability with small
batch sizes. We saw this behavior even in the more benign prompted setting. In Figure 6, we compare the behavior of
MeZO-SVRG and MeZO when fine-tuning RoBERTa-large (Liu et al., 2019) on the SST-2 dataset in the prompt-free
setting. The plot showcases MeZO-SVRG’s advantage as a low-variance method with improved robustness to different
batch sizes. In particular, MeZO’s tendencies of diverging with smaller batch sizes are mitigated by MeZO-SVRG. Note
that this improvement already becomes apparent over the first 100 iterations of fine-tuning.

E.5. Approximating Fullbatch Estimators with Large Batches

For sufficiently large training datasets, estimating the fullbatch gradient estimator is prohibitive and time-consuming. Thus
we carry out an ablation study to see the effects on the MeZO-SVRG performance when approximating the fullbatch gradient
estimator with a large-batch estimator. Specifically, we carry out partial-parameter fine-tuning of DistilBert on a training set
of 512 samples for 8000 steps. We choose a mini-batch size of 64 which is consistent across experiment runs. This ablation
study is carried out in the half-precision (BF16) setting. We approximate the fullbatch (512 samples) with large batch sizes
of 256 and 128. The fine-tuning performances are summarized in Table 10. The obtained results are comparable, suggesting
that the large batch-based gradient estimation offers a viable approximation of the fullbatch gradient estimator.

17

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

0 20 40 60 80 100
Step

100

101

Fin
e-

tu
ni

ng
 L

os
s

Fine-tuning Roberta-large (SST-2): Batch Size Experiment
MeZO, BS=64
MeZO, BS=32
MeZO, BS=16
MeZO-SVRG, BS=64
MeZO-SVRG, BS=32
MeZO-SVRG, BS=16

Figure 6. Shows improved robustness to smaller batch sizes for MeZO-SVRG compared to MeZO when fine-tuning RoBERTa-large on
the SST-2 dataset.

Table 10. Performance of partial-parameter fine-tuning of DistilBert with half-precision when approximating the fullbatch with large
batch sizes. Partial FT refers to partial-parameter fine-tuning (see Appendix D for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

SST-2 (Full FT) MeZO-SVRG (fullbatch= 512) 0.4393 70 2560
MeZO-SVRG (Large batch= 256) 0.4946 71 1536
MeZO-SVRG (Large batch= 128) 0.5502 69 1024

E.6. Learning Rate Scheduling

In our implementation, we couple the MeZO-SVRG method with a basic learning rate annealing schedule. This schedule is
shown in Algorithm 4. This scheduling scheme operates on feedback from training loss values. We compute the average
loss values in consecutive epochs. If an increasing trend of average losses is observed, the learning rates are annealed with a
factor of α. Specifically, if the ratio of leading and trailing average losses is above threshold κ, we anneal the learning rates.
In our experiments we set κ = 1.05 and annealing factor α = 5.

Algorithm 4 Learning Rate Scheduling for MeZO-SVRG
Input: Learning rates η1, η2, annealing factor α, losses L, annealing threshold κ, total number of batches in an epoch w
begin method
1. m1 ← mean(L[−w, :])
2. m2 ← mean(L[−2w,−w])
if m1

m2
> κ then

3. η1 ← η1
α

, η2 ← η2
α

end if
end

18

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

F. Fine-tuning DistilBert
F.1. Hyperparameter Selection

Table 11 shows the hyperparameter grid optimized over in the DistilBert (Sanh et al., 2020) experiment. The hyperparameter
search was done by running the different algorithms for 1K steps on the MNLI (Williams et al., 2018) dataset and selecting
the best configuration. The chosen configuration was then used for a longer fine-tuning runs for all considered tasks, i.e.
200K steps for MeZO and 50K steps for MeZO-SVRG.

Table 11. The hyperparameter grid optimized over for the DistilBert (Sanh et al., 2020) experiments. In the case of MeZO-SVRG we use
the learning rate schedule proposed in Algorithm 4. The bold values indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64}×
Learning rate {1e−4, 1e−5,1e−6}×
µ {1e−3}×
Total Steps {200K}

MeZO-SVRG Batch size {32,64}×
Learning rate (η1) {1e−3, 1e−4}×
Learning rate (η2) {1e−5,1e−6}×
µ {1e−3}×
q {2, 5, 10}×
Total Steps {50K}

FO-SGD Batch size {32,64}×
Learning rate {1e−2,1e−3, 1e−4}×
Total Steps {1K}

F.2. Convergence Performance

We fine-tune Distilbert (Sanh et al., 2020) on the SST-2 (Socher et al., 2013) dataset. In Figure 7a, we show the improved
convergence performance of MeZO-SVRG over MeZO. MeZO-SVRG is able to significantly reduce the convergence gap
compared to the FO-SGD baseline. Figure 7b shows the evolution of the test accuracy over time. Observe that MeZO-SVRG
achieves a significant improvement over MeZO in test performance. Moreover, MeZO-SVRG surpasses the peak test
accuracy achieved by MeZO in over an order of magnitude less time.

105 106 107

Queries

0.0

0.2

0.4

0.6

0.8

1.0

Fin
e-

tu
ni

ng
 L

os
s

Fine-tuning DistilBert on SST-2: Query Plot
MeZO
MeZO-SVRG
FO-SGD

(a)

102 103 104

Time (s)

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y
(%

)

Fine-tuning DistilBert on SST-2: Time Plot
MeZO
MeZO-SVRG
FO-SGD

(b)

Figure 7. Performance of MeZO-SVRG and MeZO when fine-tuning Distilbert (Sanh et al., 2020) on the SST-2 (Socher et al., 2013)
dataset. The dashed line serves as a reference to the training loss/test accuracy achieved by FO-SGD. (a) MeZO-SVRG is able to
significantly reduce the convergence gap to FO-SGD compared to MeZO. (b) MeZO-SVRG surpasses the peak test performance of MeZO
in an order of magnitude less time.

19

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

F.3. Additional Results

Table 12. Experiments on DistilBERT (with 512 fine-tuning examples). FO refers to first-order methods. Full FT refers to full-parameter
fine-tuning and Partial FT refers to partial-parameter fine-tuning (see Appendix D for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 1.0908 36 25600
MeZO-SVRG 0.0757 46 25600
FO-SGD 0.0101 59 64

MNLI (Partial FT) MeZO 1.0925 35 25600
MeZO-SVRG 0.2775 47 25600
FO-SGD 0.2617 48 64

QNLI (Full FT) MeZO 0.6914 50 25600
MeZO-SVRG 0.2335 68 25600
FO-SGD 0.0372 78 64

QNLI (Partial FT) MeZO 0.6929 52 25600
MeZO-SVRG 0.2925 65 25600
FO-SGD 0.4176 59 64

SST-2 (Full FT) MeZO 0.6822 52 25600
MeZO-SVRG 0.0203 72 25600
FO-SGD 0.0121 88 64

SST-2 (Partial FT) MeZO 0.6990 51 25600
MeZO-SVRG 0.1034 74 25600
FO-SGD 0.0507 85 64

CoLA (Full FT) MeZO 0.6408 62 25600
MeZO-SVRG 0.2807 68 25600
FO-SGD 0.0159 70 64

CoLA (Partial FT) MeZO 0.6422 60 25600
MeZO-SVRG 0.3617 67 25600
FO-SGD 0.44719 66 64

20

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

G. Fine-tuning RoBERTa-large
G.1. Hyperparameter selection

Table 13 presents the hyperparameters searched over in our RoBERTa-large (Liu et al., 2019) experiment. The hyperparameter
search was done by fine-tuning the model on the MNLI (Williams et al., 2018) dataset for 1K steps and selecting the best
configuration. This selected configuration was subsequently applied to extended fine-tuning sessions across all considered
tasks. For our final results, MeZO-SVRG was run for 24K steps and MeZO was run for 96K steps.

Table 13. The hyperparameter grid optimized over for the RoBERTa-large (Liu et al., 2019) experiments. In the case of ZO-SVRG we use
the learning rate schedule proposed in Algorithm 4. The bold values indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {32,64}×
Learning rate {1e−4, 1e−5,1e−6}×
µ {1e−3}×
Total Steps {96K}

MeZO-SVRG Batch size {32,64}×
Learning rate (η1) {1e−4, 5e−5,1e−5}×
Learning rate (η2) {1e−5,1e−6}×
µ {1e−3}×
q {2, 5, 10}×
Total Steps {24K}

FO-SGD Batch size {32,64}×
Learning rate {1e−3,1e−4, 1e−5}×
Total Steps {1K}

G.2. Additional Results

21

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

Table 14. Experiments on RoBERTa-large (with 512 fine-tuning examples). Here partial refers to fine-tuning the last layers of the model
(see Appendix D for details). FO refers to first-order methods. Full FT refers to full-parameter fine-tuning and Partial FT refers to
partial-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 0.9447 43 12288
MeZO-SVRG 0.8125 49 12288
FO-SGD 0.0292 85 64

MNLI (Partial FT) MeZO 1.0729 42 12288
MeZO-SVRG 0.8176 43 12288
FO-SGD 0.9859 52 64

QNLI (Full FT) MeZO 0.5845 59 12288
MeZO-SVRG 0.2750 80 12288
FO-SGD 0.01426 89 64

QNLI (Partial FT) MeZO 0.6885 50 12288
MeZO-SVRG 0.4557 67 12288
FO-SGD 0.5974 72 64

SST-2 (Full FT) MeZO 0.69155 56 12288
MeZO-SVRG 0.1336 84 12288
FO-SGD 0.1086 96 64

SST-2 (Partial FT) MeZO 0.6837 54 12288
MeZO-SVRG 0.5896 72 12288
FO-SGD 0.5786 89 64

CoLA (Full FT) MeZO 0.5062 68 12288
MeZO-SVRG 0.0644 79 12288
FO-SGD 0.0099 85 64

CoLA (Partial FT) MeZO 0.5868 65 12288
MeZO-SVRG 0.3538 79 12288
FO-SGD 0.4075 84 64

Table 15. Experiments on RoBERTa-large (with 512 fine-tuning examples) in the prompted setting. Here partial refers to fine-tuning the
last layers of the model (see Appendix D for details). FO refers to first-order methods. Full FT refers to full-parameter fine-tuning and
Partial FT refers to partial-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI with Prompt (Full FT) MeZO 0.0076 73 12288
MeZO-SVRG 0.0058 75 12288
FO-SGD 0.0036 96 64

MNLI with Prompt (Partial FT) MeZO 0.4614 65 12288
MeZO-SVRG 0.3177 65 12288
FO-SGD 0.3676 81 64

SST-2 With Prompt (Full FT) MeZO 0.2959 93 12288
MeZO-SVRG 0.3063 92 12288
FO-SGD 0.1578 93 64

SST-2 with Prompt (Partial FT) MeZO 0.3280 89 12288
MeZO-SVRG 0.3393 89 12288
FO-SGD 0.2981 90 64

22

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

H. Additional Results for fine-tuning Autoregressive Models
H.1. Hyperparameter Selection

Table 16 presents the hyperparameter grid searched over for the experiments on autoregressive models. The hyperparameter
search was conducted by fine-tuning the models on the MNLI (Williams et al., 2018) dataset for 100 steps and selecting the
best configuration. This selected configuration was used in extended fine-tuning sessions across all considered tasks. For our
final results, MeZO-SVRG was run for 8K steps and MeZO was run for 32K steps.

Table 16. The hyperparameter grid optimized over for the GPT2 (Radford et al., 2019) and OPT-2.7B (Zhang et al., 2022) experiments. In
the case of MeZO-SVRG we use the learning rate schedule proposed in Algorithm 4. The bold values indicate the configuration used to
generate the final results for both models.

Algorithm Hyperparameters Values

MeZO Batch size {32,64}×
Learning rate {1e−6,5e−6, 1e−7}×
µ {1e−3}×
Total Steps {32K}

MeZO-SVRG Batch size {32,64}×
Learning rate (η1) {1e−4,5e−5, 1e−5}×
Learning rate (η2) {1e−6}×
µ {1e−3}×
q {2, 5, 10}×
Total Steps {8K}

FO-SGD Batch size {8,16}×
Learning rate {1e−4, 1e−5}×
Total Steps {500}

H.2. Convergence Performance

We fine-tune GPT2 (Radford et al., 2019) and OPT-2.7B (Zhang et al., 2022) on the QNLI (Wang et al., 2018) dataset.
In Figures 8a and 9a, we show the improved convergence performance of MeZO-SVRG over MeZO. For both models,
MeZO-SVRG is able to significantly reduce the convergence gap compared to the FO-SGD baseline. Figures 8b and 9b
show the evolution of the test accuracy over time. As with the experiments on masked models, MeZO-SVRG achieves a
significant improvement over MeZO in test performance.

105 106

Queries

0.0

0.2

0.4

0.6

0.8

Fin
e-

tu
ni

ng
 L

os
s

Fine-tuning GPT2-XL on QNLI: Query Plot
MeZO
MeZO-SVRG
FO-SGD

(a)

103 104 105

Time (s)

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y
(%

)

Fine-tuning GPT2-XL on QNLI: Time Plot
MeZO
MeZO-SVRG
FO-SGD

(b)

Figure 8. Convergence performance of MeZO-SVRG, MeZO and FO-SGD when fine-tuning GPT2 (Radford et al., 2019) on the QNLI
(Wang et al., 2018) dataset. The dashed line serves as a reference to the training loss achieved by FO-SGD. MeZO-SVRG is able to
surpass the fine-tuning loss obtained by FO-SGD. It also improves on the test accuracy attained by MeZO.

23

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

103 104 105 106

Queries

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Fin

e-
tu

ni
ng

 L
os

s

Fine-tuning OPT-2.7B on QNLI: Query Plot
MeZO
MeZO-SVRG
FO-SGD

(a)

104 105

Time (s)

40

50

60

70

80

90

100

110

Te
st

 A
cc

ur
ac

y
(%

)

Fine-tuning OPT-2.7B on QNLI: Time Plot
MeZO
MeZO-SVRG
FO-SGD

(b)

Figure 9. Performance of MeZO-SVRG, MeZO and FO-SGD when fine-tuning OPT-2.7B (Zhang et al., 2022) on the QNLI (Wang et al.,
2018) dataset. The dashed line serves as a reference to the training loss/test accuracy achieved by FO-SGD. MeZO-SVRG is able to
reduce the convergence gap to FO-SGD compared to MeZO and improve on the test accuracy.

H.3. Additional Results

Tables 17 and 18 present extended results on the fine-tuning tasks for GPT2 (Radford et al., 2019) and OPT-2.7B (Zhang
et al., 2022).

Table 17. Experiments on GPT2 (with 512 fine-tuning examples). FO refers to first-order methods. This table summarizes results for
full-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 0.6526 41 4096
MeZO-SVRG 0.4116 53 4096
FO-SGD 0.5924 69 8

QNLI (Full FT) MeZO 0.3351 58 4096
MeZO-SVRG 0.2372 63 4096
FO-SGD 0.2799 72 8

SST-2 (Full FT) MeZO 0.3240 59 4096
MeZO-SVRG 0.2024 65 4096
FO-SGD 0.2343 72 8

CoLA (Full FT) MeZO 0.3544 68 4096
MeZO-SVRG 0.2455 69 4096
FO-SGD 0.3855 78 8

24

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

Table 18. Experiments on OPT-2.7B (with 512 fine-tuning examples). FO refers to first-order methods. This table summarizes results for
full-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 1.0875 42 4096
MeZO-SVRG 0.8159 52 4096
FO-SGD 0.3305 78 8

QNLI (Full FT) MeZO 0.7026 53 4096
MeZO-SVRG 0.4634 60 4096
FO-SGD 0.1222 91 8

SST-2 (Full FT) MeZO 0.6530 61 4096
MeZO-SVRG 0.5501 65 4096
FO-SGD 0.0167 98 8

CoLA (Full FT) MeZO 0.5823 62 4096
MeZO-SVRG 0.5335 67 4096
FO-SGD 0.1724 94 8

I. Memory Usage and Computation Time
I.1. Memory Profiling

We performed memory profiling experiments without any advanced memory-saving options such as lowering bit precision
(Dettmers et al., 2022b) or gradient check-pointing (Chen et al., 2016). We used full (f32) floating-point precision.

In the first experiment, we measured the memory requirement needed to run the different methods on full-parameter
fine-tuning tasks. The MNLI (Williams et al., 2018) dataset was used to fine-tune autoregressive models GPT2 (Radford
et al., 2019), OPT-2.7B, OPT-6.7B (Zhang et al., 2022). We set the input sequence length to the maximum context length
for each model, i.e. 1024 for GPT2 and 2048 for the OPT models. The batch size was set to 1. Figure 3 shows the peak
memory consumption in GB as reported by the nvidia-smi command. The peak memory consumption was obtained
after executing the methods for at least 100 steps. Table 3 presents the largest GPT/OPT model that can be fit for each
method under the aforementioned settings on single Nvidia A100 40GB and H100 80GB GPUs.

In the second experiment, we measured how the memory usage for the different methods scales with increasing batch
size. We fine-tuned RoBERTa-large (Liu et al., 2019) on the MNLI (Williams et al., 2018) dataset. The input sequence
length was set to a constant 128 and we varied the batch size {16, 32, 64}. The memory consumption was again measured
using the nvidia-smi command and measurements were taken after running the methods for at least 100 steps. Table 3
summarizes the results.

We finally also measured how the memory usage varies for the considered algorithms when using a fixed batch size (64) and
changing the context length of the input. We used a similar setting to the second experiment: fine-tuning RoBERTa-large
(Liu et al., 2019) on the MNLI (Williams et al., 2018) dataset. The input context length was varied {128, 256, 512} and the
memory consumption was measured using the nvidia-smi command. Table 3 reports the results.

We replicated all experiments in the half-precision (BF16) setting; the results are given in Table 25.

I.2. Computation Time

We compared the speed of MeZO-SVRG and MeZO (Malladi et al., 2023) by measuring the time taken by each method to
achieve the test performance attained by MeZO. These measurements are based on fine-tuning GPT2 (Radford et al., 2019)
and OPT-2.7B (Zhang et al., 2022) on all considered datasets. Table 4 summarizes the results.

25

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

J. Half-Precision Experiments
In the section, we run preliminary experiments to evaluate the considered fine-tuning algorithms on the half-precision (BF16)
setting.

J.1. Half-Precision Experiments on DistilBert

The hyperparameter grid that was optimized over for the DistilBert experiments in the half-precision setting is presented in
Table 19. As each iteration under the half-precision setting is faster than under the full-precision setting, we run experiments
for longer. Specifically, we run MeZO-SVRG for 80K steps, MeZO for 400K steps and FO-SGD for 2K steps. The results
are summarized in Table 20.

Table 19. The hyperparameter grid optimized over for the half-precision DistilBert (Sanh et al., 2020) experiments. In the case of
MeZO-SVRG we use the learning rate schedule proposed in Algorithm 4. The bold values indicate the configuration used to generate the
final results.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64}×
Learning rate {1e−4,1e−5, 1e−6}×
µ {1e−2}×
Total Steps {400K}

MeZO-SVRG Batch size {32,64}×
Learning rate (η1) {1e−3, 1e−4}×
Learning rate (η2) {1e−5, 1e−6}×
µ {1e−2}×
q {2, 5}×
Total Steps {80K}

FO-SGD Batch size {32,64}×
Learning rate {1e−2, 1e−3, 1e−4}×
Total Steps {2K}

Table 20. Half-precision experiments on DistilBERT (with 512 fine-tuning examples). FO refers to first-order methods. Partial FT refers
to partial-parameter fine-tuning (see Appendix D for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Partial FT) MeZO 1.0892 43 51200
MeZO-SVRG 0.8746 45 51200
FO-SGD 0.3508 51 128

QNLI (Partial FT) MeZO 0.6904 60 51200
MeZO-SVRG 0.5416 64 51200
FO-SGD 0.2998 66 128

SST-2 (Partial FT) MeZO 0.6889 61 51200
MeZO-SVRG 0.3887 79 51200
FO-SGD 0.0555 82 128

CoLA (Partial FT) MeZO 0.6420 66 51200
MeZO-SVRG 0.6170 71 51200
FO-SGD 0.4218 70 128

J.2. Half-Precision Experiments on RoBERTa-large

The hyperparameter grid that was optimized over for the DistilBert experiments in the half-precision setting is presented in
Table 21. As each iteration under the half-precision setting is faster than under the full-precision setting, we run experiments
for longer. Specifically, we run MeZO-SVRG for 40K steps, MeZO for 200K steps and FO-SGD for 1K steps. The results
are summarized in Table 22.

26

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

Table 21. The hyperparameter grid optimized over for the half-precision RoBERTa-large (Liu et al., 2019) experiments. In the case of
MeZO-SVRG we use the learning rate schedule proposed in Algorithm 4. The bold values indicate the configuration used to generate the
final results.

Algorithm Hyperparameters Values

MeZO Batch size {64}×
Learning rate {1e−4,1e−5, 1e−6}×
µ {1e−3}×
Total Steps {200K}

MeZO-SVRG Batch size {64}×
Learning rate (η1) {1e−4, 1e−5}×
Learning rate (η2) {1e−5, 1e−6}×
µ {1e−3}×
q {2, 5}×
Total Steps {40K}

FO-SGD Batch size {64}×
Learning rate {1e−2, 1e−3, 1e−4}×
Total Steps {1K}

Table 22. Half-precision experiments on RoBERTa-large (with 512 fine-tuning examples). FO refers to first-order methods. Partial FT
refers to partial-parameter fine-tuning (see Appendix D for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Partial FT) MeZO 1.0898 42 25600
MeZO-SVRG 1.0695 43 25600
FO-SGD 0.1820 55 64

QNLI (Partial FT) MeZO 0.6835 62 25600
MeZO-SVRG 0.6070 68 25600
FO-SGD 0.3112 67 64

SST-2 (Partial FT) MeZO 0.6630 66 25600
MeZO-SVRG 0.5278 77 25600
FO-SGD 0.1356 93 64

CoLA (Partial FT) MeZO 0.6308 66 25600
MeZO-SVRG 0.5781 69 25600
FO-SGD 0.1537 88 64

J.3. Half-Precision Experiments on OPT-6.7B

The hyperparameter grid optimized for the OPT-6.7B experiments in the half-precision setting is detailed in Table 23. We
conducted the MeZO-SVRG experiments for 8k steps, MeZO for 24k steps, and FO-SGD for 1k steps. The outcomes of
these experiments are summarized in Table 24. We include the BoolQ dataset from the SuperGLUE (Wang et al., 2019)
benchmark to evaluate a more challenging fine-tuning task.

27

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

Table 23. The hyperparameter grid optimized over for the half-precision OPT-6.7B (Zhang et al., 2022) experiments. In the case of
MeZO-SVRG we use the learning rate schedule proposed in Algorithm 4. The bold values indicate the configuration used to generate the
final results.

Algorithm Hyperparameters Values

MeZO Batch size {128}×
Learning rate {1e−5,1e−6}×
µ {1e−3}×
Total Steps {24K}

MeZO-SVRG Batch size {128}×
Learning rate (η1) {1e−4, 1e−5}×
Learning rate (η2) {1e−5,1e−6}×
µ {1e−3}×
q {2, 5}×
Total Steps {8K}

FO-SGD Batch size {64}×
Learning rate {1e−3,1e−4}×
Total Steps {1K}

Table 24. Half-precision experiments on OPT-6.7B (with 512 fine-tuning examples). FO refers to first-order methods. Full FT refers to
full-parameter fine-tuning (see Appendix D for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

SST-2 (Full FT) MeZO 0.5318 74 6144
MeZO-SVRG 0.5278 77 6144
FO-SGD 0.103 91 128

BoolQ (Full FT) MeZO 0.6259 65 6144
MeZO-SVRG 0.5703 69 6144
FO-SGD 0.2872 84 128

J.4. Memory Profiling with Half-Precision

28

Variance-Reduced Zeroth-Order Methods for Fine-Tuning Language Models

Memory Usage in GB for RoBERTa-large
Largest OPT/GPT that can fit Fixed context length (cl=128) Fixed batch size (bs=64)

Method A100 (40GB) bs = 16 bs = 32 bs = 64 cl = 256 cl = 512

MeZO 13B 1.03 1.13 1.25 1.39 2.66
MeZO-SVRG 6.7B 2.10 (39%) 2.11 (66%) 2.12 (79%) 2.27 (90%) 3.66
FO-SGD 2.7B 3.42 5.81 9.83 21.87 OOM
FO-Adam 1.3B 5.85 8.07 12.16 24.29 OOM

Table 25. Memory profiling with half-precision. Shows the largest AR models that can fit on single 40 GPUs. We also measure the
memory usage under different batch sizes (bs) and context lengths (cl) when fine-tuning RoBERTa-large. Percentages indicate the memory
savings with respect to FO-SGD.

29

