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ABSTRACT

While Large Language Models (LLMs) have demonstrated impressive capabili-
ties, their output quality remains inconsistent across various application scenarios,
making it difficult to identify trustworthy responses, especially in complex tasks
requiring multi-step reasoning. In this paper, we propose a Token-level Uncertainty
estimation framework for Reasoning (TokUR) that enables LLMs to self-assess
and self-improve their responses in mathematical reasoning. Specifically, we in-
troduce low-rank random weight perturbation during LLM decoding to generate
predictive distributions for token-level uncertainty estimation, and we aggregate
these uncertainty quantities to capture the semantic uncertainty of generated re-
sponses. Experiments on mathematical reasoning datasets of varying difficulty
demonstrate that TokUR exhibits a strong correlation with answer correctness and
model robustness, and the uncertainty signals produced by TokUR can be leveraged
to enhance the model’s reasoning performance at test time. These results highlight
the effectiveness of TokUR as a principled and scalable approach for improving
the reliability and interpretability of LLMs in challenging reasoning tasks.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in various reasoning
tasks (Wei et al., 2022a; Wang et al., 2022; Chung et al., 2024; Guo et al., 2025), yet they often
struggle to reliably assess the quality of their own responses (Xiong et al., 2023; Tian et al., 2023;
Kapoor et al., 2024; Liu et al., 2024; Zhang & Zhang, 2025; Da et al., 2025; Liu et al., 2025). This
limitation becomes particularly evident in complex reasoning scenarios where models may generate
seemingly convincing but incorrect solutions without indicating uncertainty.

Beyond the dominant body of uncertainty estimation methods that largely focus on short-form
question answering (Zhang et al., 2023; Yadkori et al., 2024) and classification tasks (Yang et al.,
2023; Wang et al., 2024; Shi et al., 2024), two main approaches have been explored for the more
challenging setting of sequence uncertainty estimation: (i) Query-level methods (Gal et al., 2016;
Osband et al., 2023; Hou et al., 2023), despite their solid theoretical foundation, estimate uncertainties
U(y|x) with respect to input prompts x alone, without evaluating the quality of specific generated
responses y conditioned on those inputs (see Sec. 2.1). Besides, these methods require marginalization
over the entire output space y; this becomes intractable as sequence length grows. (ii) Response-level
methods (Murray & Chiang, 2018; Malinin & Gales, 2021; Kadavath et al., 2022), typically variants
of log-probabilities, have shown empirical success but lack strong theoretical grounding (Kuhn et al.,
2023). As a result, the limitations of the aforementioned methods in capturing response-specific
uncertainty hinder the deployment of LLMs in high-stakes reasoning tasks that demand reliable
self-assessment.

To address this challenge, we propose a principled framework, dubbed Token-level Uncertainty esti-
mation for Reasoning (TokUR), for estimating the uncertainty of generated sequences by aggregating
token-level uncertainties based on random low-rank weight perturbation. TokUR introduces carefully
calibrated perturbations to the weights of attention layers, creating an ensemble of model variants that
enables principled uncertainty estimation without requiring costly retraining or extensive parameter
updates. Building on this, we decompose the total uncertainty of each generated token into aleatoric
uncertainty (inherent randomness in the data) and epistemic uncertainty (model uncertainty about
its parameters), providing a theoretically grounded assessment of confidence across the generation
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process. We then aggregate these token-level uncertainties to evaluate entire reasoning responses,
demonstrating both theoretical consistency with established uncertainty principles and practical utility
in downstream applications.

Empirically, TokUR enhances LLM reasoning in three key aspects: (i) token-level epistemic uncer-
tainty effectively identifies incorrect reasoning paths, outperforming baselines across three mathe-
matical reasoning benchmarks, (ii) TokUR excels at selecting high-quality solutions from multiple
candidates, and (iii) it functions as an implicit reward to guide reasoning, improving accuracy
when combined with off-the-shelf test-time-scaling algorithms (Puri et al., 2025). In summary, our
contributions are:

• We introduce TokUR, a training-free token-level uncertainty estimation approach for LLM
reasoning through low-rank weight perturbation, providing a principled decomposition of
uncertainties with proven theoretical properties.

• We demonstrate that epistemic uncertainty can serve as a good metric to measure the quality
of generated reasoning paths, consistently outperforming conventional confidence metrics
across diverse mathematical reasoning tasks.

• We demonstrate practical applications1 of our uncertainty estimation framework: it improves
reasoning performance through incorrect path detection, high-quality solution selection, and
uncertainty-guided generation.

2 PRELIMINARIES

In this section, we first introduce the notation used in the remaining sections, and then review the key
concepts of uncertainties (Sec. 2.1) and existing Bayesian LLMs for downstream adaptation (Sec. 2.2).

Notation. In this paper, scalars are denoted by lowercase letters (x), vectors by lowercase bold-math
letters (x), random vectors by lowercase boldface letters (x), and matrices by uppercase boldface
letters (X). We use [m] = {1, 2, · · · ,m} to denote the set of consecutive integer numbers from 1
to m. Following convention, we use p for probability, E for expectation, H for entropy, and I for
mutual information. Specifically,H[y|x] denotes the conditional entropy between random variables
y and x. We useH[p(y|x = x)] to denote the predictive entropy of the output variable conditioned
on input x, withH[p(y|x)] as a shorthand notation when context is clear.

2.1 UNCERTAINTY ESTIMATION OF LONG-FORM GENERATION

Prediction with Bayesian Neural Networks. Bayesian Neural Networks (BNNs) (Neal, 2012;
Hernández-Lobato & Adams, 2015; Gal & Ghahramani, 2016; Blundell et al., 2015; Wang & Yeung,
2016; Wang et al., 2016; Lakshminarayanan et al., 2017; Wang & Yeung, 2020) predict responses and
estimate their uncertainties using the variational distribution q(θ|D) that approximates the true weight
posterior p(θ|D). Given an input sequence x = (x1, · · · , xL) ∈ X , the probability of the output
sequence y = (y1, · · · , yT ) ∈ Y is defined as marginalization over the parameters and estimated by
Bayesian Model Averaging (BMA) of size M :

p(y|x) =
∫

p(y|x;θ) q(θ|D) dθ ≈ 1
M

∑M

m=1
p(y|x;θ(m)), θ(m) ∼ q(θ|D). (1)

Query-Level Uncertainty Estimation. Established techniques of uncertainty estimation (Gal et al.,
2016) mainly quantify the uncertainty of input x (query-level uncertainty) by

H[p(y|x)] = Ey∼p(y|x)[− log p(y|x)]. (2)

In the context of BNNs (Eqn. 1), the predictive distribution of y is the marginalized predictive
distribution over the model parameters, and hence Eqn. 2 is defined as “total uncertainty” (Gal et al.,
2016; Depeweg et al., 2017).

A model’s uncertainty about a specific input cannot be solely attributed to the randomness of the
approximate posterior q(θ|D), which is input-agnostic. For instance, when faced with a query “Name

1We provide an implementation of our framework that is compatible with vLLM (Kwon et al., 2023) for
efficient deployment.
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a city in the UK?” (Yadkori et al., 2024), even if an infinite amount of data is observed (eliminating
the randomness of the model parameters), the uncertainty of this question remains high, as there
are many correct candidate answers. Hence to distinguish different sources of uncertainty, total
uncertainty is decomposed into epistemic uncertainty and aleatoric uncertainty (Gal et al., 2016):

H[p(y|x)]︸ ︷︷ ︸
Total Uncertainty

= Eq(θ|D)[H[p(y|x;θ)]]︸ ︷︷ ︸
Aleatoric Uncertainty

+ I(y;θ|x)︸ ︷︷ ︸
Epistemic Uncertainty

. (3)

Here, aleatoric uncertainty captures the intrinsic randomness in data and cannot be reduced even with
more data observed. In contrast, epistemic uncertainty, defined as the mutual information I(y;θ|x)
between y and θ, reflects the model’s uncertainty about its own parameters, which can in principle
be reduced by collecting more evidence. We use U(y|x) defined in Definition 2.1 to denote any of
the three uncertainties.

Definition 2.1 (Query-Level Uncertainty). Query-level uncertainty U(y|x) is the uncertainty of the
predictive distribution p(y|x) given an input query x. Total Uncertainty (TU), Aleatoric Uncertainty
(AU), and Epistemic Uncertainty (EU) in Eqn. 3 are all instances of query-level uncertainty.

Limitations of Query-Level Uncertainty. Using the chain rule for conditional entropy (Cover,
1999), the query-level uncertainty estimation can be decomposed token-by-token as

U(y|x) =
∑T

t=1
U(yt|y<t,x). (4)

However, the uncertainty term U(yt|y<t,x) in Eqn. 4 requires marginalization over the random
variable y<t, which is (i) computationally intractable, and (ii) only reflecting the quality of the input
query. Hence, these query-level uncertainties are not proper indicators for evaluating a concrete
output response y.

2.2 BAYESIAN LARGE LANGUAGE MODELS

Bayesian Low-Rank Adaptation. For a pre-trained network layer with weight matrix W0, Low-
Rank Adaptation (LoRA) (Hu et al., 2022) optimizes the parameters within a constrained low-rank
subspace. Specifically, the weight update matrix is modeled by ∆W = BA, where ∆W ∈ Rm×n,
B ∈ Rm×r, A ∈ Rr×n, and r ≪ min(m,n). The output z ∈ Rm×1 of forwarding the input vector
h ∈ Rn×1 is then

z = W0h+∆Wh = W0h+BAh. (5)

Leveraging LoRA’s parameter efficiency, Bayesian LoRAs (Yang et al., 2023; Wang et al., 2024; Shi
et al., 2024) aim to further integrate BNN’s uncertainty estimation capabilities into LLMs without
significant increasing memory complexity. The key idea is to model A and/or B as approximate dis-
tributions of the true weight posterior. The asymmetric Bayesianization, exemplified by BLoB (Wang
et al., 2024) and TFB (Shi et al., 2024), models the elements of A with independent Gaussian
distributions while keeping B deterministic. Specifically, we have

q(A|{M ,Ω}) =
∏

ij
q(Aij |Mij ,Ωij) =

∏
ij
N (Aij |Mij ,Ω

2
ij), (6)

where M and Ω share the same shape as A and denote the mean and standard deviation of the random
variable A, respectively. To estimate this distribution, BLoB jointly trains the mean and covariance
through the re-parameterization trick (Wang et al., 2024), while TFB uses a simple training-free
maximal variance searching technique by fixing the approximate distribution to the family of low-rank
isotropic Gaussian distributions (Shi et al., 2024).

Limited Scope of Existing Bayesian LLMs. Existing Bayesian LLMs have been primarily val-
idated in downstream classification tasks of simple single- or multiple-choice problems, where
uncertainty estimation is quantitatively assessed via the alignment of prediction confidence and
accuracy (Yang et al., 2023; Balabanov & Linander, 2024; Wang et al., 2023; 2024; Shi et al., 2024).
However, these methods have not yet demonstrated effective generalization to long-form generation
tasks, i.e., LLM reasoning. Therefore, our TokUR, which estimates token-level uncertainties via
weight perturbations, represents an initial step toward extending Bayesian LLMs to long-form genera-
tion, an area where uncertainty estimation remains largely unexplored and technically challenging.

3
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3 TOKUR: TOKEN-LEVEL UNCERTAINTY ESTIMATION VIA LOW-RANK
WEIGHT PERTURBATION

Sec. 3.1 introduces the key techniques of token-level uncertainty estimation. Sec. 3.2 then details how
token-level uncertainties can be aggregated for response-level uncertainty estimation, and describes
the underlying theoretical foundation. Finally, Sec. 3.3 presents our low-rank weight perturbation as
posterior approximation. All proofs of propositions can be found in Appendix C.

3.1 TOKEN-LEVEL UNCERTAINTIES IN GENERAL

Given an approximate posterior q(θ|D), a fixed input query x ∈ X and a specific output response
y = (y1, y2, . . . , yT ) ∈ Y sampled from the base policy p(y|x), we denote the predictive distribution
of the next token yt produced by marginalization over weights as

p̄(yt|y<t,x) ≜ Eθ∼q(·|D)[p(yt|y<t,x;θ)]. (7)

Assumption 3.1 (Stepwise Posterior Sampling). We assume that the weights θ sampled from the
approximate posterior q(·|D) are not shared across decoding steps. Formally, the probability of a
sequence is factorized as

p̄(y|x) ≜
∏T

t=1
p̄(yt|x,y<t) =

∏T

t=1

{
Eθt∼q(·|D)[p(yt|x,y<t,θt)]

}
, (8)

instead of adopting the joint formulation

p̄(y|x) ≜ Eθ∼q(·|D)[p(y|x,θ)]. (9)

While both are valid probabilistic models, the joint formulation is incompatible with the autoregressive
decoding mechanism of LLMs. Hence, we adopt the stepwise formulation in Assumption 3.1. To
validate this assumption, we further conduct an ablation study comparing the stepwise formulation in
Assumption 3.1 with the joint formulation, and report the results in Appendix E.4.4.

Given an input x and a partial output y<t, for the time step t, we have the following three uncertainties:

• Total Uncertainty (TU) is the entropy of random variable yt conditioned on x and y<t:

TU(yt|y<t,x) ≜ H[p̄(yt|y<t,x)] = −
∑

yt∈V
p̄(yt|y<t,x) log p̄(yt|y<t,x), (10)

• Aleatoric Uncertainty (AU) is the expectation of entropy of random variable yt over the
weights θ sampled from the approximate posterior q(·|D) as in Eqn. 3:

AU(yt|y<t,x) ≜ Eθ∼q(·|D)

[
H[p(yt|y<t,x;θ)]

]
, (11)

• Epistemic Uncertainty (EU) is the difference between TU and AU:

EU(yt|y<t,x) ≜ TU(yt|y<t,x)−AU(yt|y<t,x) = I(yt;θ|y<t,x), (12)

where V is the vocabulary and all the expectations are estimated with BMA.

3.2 TOKEN-LEVEL UNCERTAINTY FOR RESPONSE-LEVEL UNCERTAINTY ESTIMATION

Definition 3.1 (Response-Level Uncertainty). Given the token-level uncertainties U(yt|y<t,x)
defined in Eqn. 10-12, we define response-level uncertainty as their cumulative sum across all tokens
in the output sequence:

Ũ(y|x) ≜
∑T

t=1
U(yt|y<t,x), (13)

where U can denote any of the considered uncertainty measures (TU, AU, or EU in Eqn. 10-12).
Proposition 3.1 (Response-Level Uncertainty as an Unbiased Estimator of Query-Level Un-
certainty). Given an input query x, let y ∼ p(y|x) be a generated sample of length T . Then the
response-level uncertainty Ũ (Definition 3.1) is an unbiased estimator of the query-level uncertainty
U (Definition 2.1), i.e.,

Ey∼p(y|x)[Ũ(y|x)] = U(y|x). (14)

4
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Proposition 3.2 (Token-Level and Response-Level Uncertainty). Given an input query x, let
y ∼ p(y|x) be a generated sample of length T . Let U(yt|y<t,x) denote the token-level uncertainty
as defined in Eqn. 10-12, with Ũ(y|x) as the corresponding response-level uncertainty (Definition 3.1).
Our token-level uncertainty is equivalent to the response-level uncertainty when T = 1:

Ũ(y1|x) = U(y1|x). (15)

The two propositions above provide key connections between Eqn. 13 and existing uncertainty
estimation theory (Malinin & Gales, 2021; Ling et al., 2024). Proposition 3.1 shows that Ũ(y|x) is
an unbiased estimator of the true query-level uncertainty U(y|x), ensuring its statistical consistency
with the ideal formulation. Proposition 3.2 confirms that when the sequence length T = 1, e.g.,
single-token prediction tasks such as multiple-choice QA (Yang et al., 2023; Wang et al., 2024), the
estimator exactly recovers the token-level uncertainty, demonstrating structural consistency. These
results support the validity and reliability of our approximation.

Advantages of Token-Level Uncertainty. Compared to Query-Level Uncertainty (Definition 2.1),
token- and response-level uncertainties (i) avoid expensive marginalization over sequences (note
the difference between y<t in Eqn. 4 and y<t in Eqn. 14) while still (ii) capturing the expected
uncertainty conditioned on the generated output response. Moreover, since U(yt|y<t,x) depends on
the quality of the prefix y<t, (iii) the estimate retains rich semantic information, making it well-suited
for entropy-based sequential decision-making (Kuhn et al., 2023; Ye et al., 2025) or hallucination
detection (Farquhar et al., 2024; Kossen et al., 2024; Ye et al., 2025) in downstream tasks.

3.3 LOW-RANK WEIGHT PERTURBATION AS APPROXIMATION OF WEIGHT POSTERIOR

Suppose that we have an LLM policy p(y|x). To estimate the uncertainty of its output, we cast
this model into a Bayesian framework by introducing weight perturbations. Due to the established
advantages of efficiency, performance preservation of pre-perturbation model, and effectiveness of
uncertainty estimation (Shi et al., 2024), we adopt a low-rank structure for the noise added to the
model weights. Given a rank-r weight matrix W0 ∈ Rm×n of a neural network layer, we first
perform compact Singular Value Decomposition (SVD) (Klema & Laub, 1980):

W0 = U diag(d)V ⊤, (16)

where d ≻ 0 ∈ Rr×1 is the vector of singular values, and U ∈ Rm×r and V ∈ Rn×r both contain
orthonormal columns, i.e., U⊤U = V ⊤V = Ir. To ensure computational efficiency, we introduce a
low-rank noise matrix ϵ ∈ Rn×r′ whose rank r′ ≪ r is significantly smaller than the rank of weight
matrix, and whose entries are sampled i.i.d. from a Gaussian distribution of standard deviation of
σq , which we refer to as perturbation strength, i.e., ϵij ∼ N (0, σ2

q ),∀i ∈ [n], j ∈ [r′]. The perturbed
weight matrix is then constructed as

W = W0 +U ′ϵ⊤, (17)

where the matrix U ′ contains the top-r′ columns of U . This perturbation transforms the deterministic
W0 to a variational low-rank isotropic Gaussian distribution W (Wang et al., 2024; Shi et al., 2024):

q(vec(W )|σq) = N (vec(W )|µq,Σq),

where µq = vec(W0),

Σq = σ2
qIn ⊗

[
Ir′

0m−r′

]
.

(18)

Let θ denote the collection of all perturbed weight matrices across the model. By assuming the
statistical independence among layers, the overall approximate posterior becomes

q(θ|σq) =
∏

i
q(vec(W i)|σq). (19)

Utilizing the Approximate Weight Posterior q(θ|σq). Notably, while we leverage the variational
posterior formulation of Eqn. 19 to quantify uncertainty (detailed in Sec. 3.1), we use only the mean
weights W0 for decoding of each step rather than BMA as in Eqn. 1. This approach allows for a
controlled study of the effects of uncertainty estimation itself, separate from the effects of BNNs. For
the complete algorithmic description and overview, please refer to Appendix B.
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Figure 1: Distribution of TokUR’s Uncertainty Scores and AUROC across Different Difficulty
Levels, applied to Llama-3.2-1B-Instruct. Left: TokUR (AU, Ours); Middle: TokUR (TU,
Ours); Right: TokUR (EU, Ours).

4 EXPERIMENTS

This section presents practical applications of our TokUR for LLM reasoning. For additional
experimental results, please refer to Appendix E.

Datasets. We run our experiments on three mathematical reasoning benchmarks of varying difficulty
levels: GSM8K (Cobbe et al., 2021) (grade-school arithmetic problems), MATH500 (Lightman et al.,
2023) (challenging high school/college mathematics competition problems), and 5,000-example
subset of DeepScaleR (Luo et al., 2025) (high-difficulty problems from diverse sources). For these
complex math problems, LLMs often need to perform multi-step reasoning (Wei et al., 2022b; Yao
et al., 2023; Zhou et al., 2023) to reach the final answer. These tasks inherently involve long-form
generation, therefore well-suited for evaluation of uncertainty estimation methods.

Models. We use two open-source LLMs in our experiments: Llama-3.2-1B-Instruct and
Llama-3.1-8B-Instruct (Grattafiori et al., 2024). These models represent recent advances
in downstream tasks and offer a good balance between performance and efficiency. Besides, their
different model scales enable comparisons of uncertainty estimation across varying model sizes.

Implementation of our TokUR. We estimate token-level uncertainties by applying random pertur-
bations as in Eqn. 17 to the query and key weight matrices (WQ,WK) (Vaswani et al., 2017) in all
the attention layers of LLMs (Hu et al., 2022; Yang et al., 2023; Wang et al., 2024; Shi et al., 2024).
For more details, please refer to Appendix D.1.

4.1 DO TOKUR’S UNCERTAINTIES ACCURATELY REFLECT RESPONSE QUALITY?

This section assesses if our TokUR’s uncertainties reflect response quality in math reasoning tasks.

4.1.1 TOKUR’S UNCERTAINTIES AND QUESTION DIFFICULTY

Experimental Setting. To better understand the relationships among uncertainty estimates, question
difficulty, and their ability to distinguish correct from incorrect responses, we sample a subset of
math questions from math-orz (Hu et al., 2025). A question’s difficulty level is determined by the
number of failed attempts out of 10 when using the Qwen2.5-3B-Instruct model. A difficulty
level of 0 means the model solved the question every time, while a level of 10 indicates it failed on
every attempt. We sample 500 questions per difficulty level, yielding a 5,500-question dataset. We
then prompt Llama-3.2-1B-Instruct to solve each question with greedy decoding and apply
TokUR to compute uncertainties for both correct and incorrect responses across difficulty levels.
Fig. 1 summarizes the results.

Results. TokUR’s uncertainty estimates remain positively correlated with question difficulty: for
all three types of uncertainty (AU, TU, and EU), incorrect responses consistently exhibit higher
uncertainty than correct ones across difficulty levels. In terms of discriminative power, AUROC values
are consistently above random (0.5), confirming that TokUR provides useful signals for distinguishing
correct from incorrect reasoning. Yet, AUROC tends to decrease as difficulty increases, especially
in the mid-to-high range (levels 7–9), showing that uncertainty estimates become less reliable at
separating outcomes on challenging tasks. Interestingly, the AUROC score shows a slight increase at

6
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Table 1: Performance of Uncertainty Estimation Methods for Incorrect Reasoning Path Detec-
tion. AUROC, AUPRC, and ACC∗ are all reported as percentage (%). “ISO?” indicates whether
the method utilizes Internal Signal Only for uncertainty estimation. We include the accuracy of CoT
(i.e., greedy decoding with Chain-of-Thought prompting) in the first row for reference. Boldface and
underlining denote the best and the second-best performance, respectively.

Method ISO? MATH500 GSM8K DeepScaleR
AUROC AUPRC ACC∗ AUROC AUPRC ACC∗ AUROC AUPRC ACC∗

Llama-3.2-1B-Instruct

CoT (Lower-Bound) - - - 25.60±0.00 - - 44.43±0.00 - - 14.25±0.00

SE ✗ 47.29±3.81 25.71±2.33 24.13±4.42 50.64±4.44 45.09±0.72 42.62±0.16 46.30±0.21 12.94±0.23 12.58±0.49

SAR ✗ 44.57±2.04 24.03±2.53 21.07±1.62 50.28±0.97 43.24±0.89 43.95±0.77 43.14±1.42 12.34±0.35 11.14±0.47

UEcc ✗ 48.75±1.05 25.79±1.83 25.20±0.33 49.05±0.46 60.02±0.44 59.62±0.22 48.68±0.24 13.77±0.29 14.23±0.45

UDeg ✗ 60.57±2.31 36.32±2.59 30.93±0.94 66.60±0.36 75.72±0.36 71.99±0.39 56.88±0.54 18.04±0.63 16.50±0.39

P(True) ✓ 54.38±1.20 26.39±1.26 27.60±1.18 56.64±0.04 48.22±0.03 48.92±0.00 59.58±0.43 17.48±0.25 17.52±0.50

LLM-Check ✓ 56.41±0.96 27.01±1.22 31.33±1.29 71.01±0.02 61.29±0.08 59.54±0.00 55.76±0.48 14.55±0.26 17.30±0.51

INSIDE ✓ 55.71±4.69 28.82±4.05 29.20±4.33 53.66±0.92 46.03±0.23 45.79±1.25 54.73±0.82 15.50±0.48 16.30±0.35

PE ✓ 57.08±0.89 26.88±1.05 31.33±0.82 71.21±0.03 61.61±0.08 59.85±0.00 56.09±0.46 14.74±0.23 17.33±0.92

LL ✓ 55.41±0.54 25.88±0.87 29.87±0.82 69.01±0.03 58.51±0.09 57.38±0.00 53.84±0.47 13.93±0.23 16.83±0.48

Self-Certainty ✓ 71.17±0.30 48.37±0.50 38.13±0.61 73.41±0.00 68.38±0.00 61.38±0.00 71.93±0.04 33.81±0.08 21.76±0.04

DeepConf ✓ 71.77±0.12 46.00±0.42 39.87±0.46 75.70±0.00 69.72±0.00 62.77±0.00 71.65±0.04 29.99±0.05 22.00±0.04

TokUR (TU, Ours) ✓ 80.64±0.29 56.79±0.74 44.67±0.46 75.07±0.05 70.29±0.07 62.31±0.00 83.55±0.02 47.56±0.04 25.71±0.02
TokUR (AU, Ours) ✓ 80.61±0.27 56.73±0.75 44.67±0.46 75.03±0.06 70.22±0.05 62.21±0.18 83.52±0.02 47.48±0.05 25.71±0.02
TokUR (EU, Ours) ✓ 79.74±0.21 56.64±0.41 44.13±0.83 71.79±0.80 66.40±1.02 59.74±1.00 82.87±0.32 46.76±0.38 25.52±0.11

Llama-3.1-8B-Instruct

CoT (Lower-Bound) - - - 48.60±0.00 - - 85.69±0.00 - - 24.86±0.00

SE ✗ 62.93±0.90 55.21±1.04 55.73±0.83 55.61±3.36 87.16±1.14 86.77±1.01 67.68±0.94 35.18±1.00 35.55±0.37

SAR ✗ 69.42±2.19 63.74±3.03 59.20±1.06 60.16±2.22 89.24±0.74 87.99±0.81 73.01±0.28 42.89±0.65 37.51±0.12

UEcc ✗ 50.23±2.23 49.48±2.44 49.60±2.04 47.47±2.15 84.69±0.89 84.87±1.17 50.16±0.66 25.08±0.18 25.48±0.53

UDeg ✗ 58.62±0.36 57.69±0.90 53.47±1.64 67.22±1.06 92.24±0.53 92.62±0.88 59.14±0.37 32.64±0.43 29.75±0.36

P(True) ✓ 33.41±0.25 36.05±0.55 35.33±0.19 41.94±0.01 82.19±0.00 82.77±0.00 33.64±0.20 18.06±0.06 16.23±0.02

LLM-Check ✓ 57.41±0.44 49.69±1.07 52.80±1.38 73.98±0.01 93.37±0.01 93.23±0.00 55.42±0.27 26.46±0.19 28.37±0.40

INSIDE ✓ 62.94±1.72 55.06±3.19 57.33±1.01 58.86±2.11 87.44±0.94 88.21±0.90 67.05±0.49 33.83±0.42 34.13±0.10

PE ✓ 57.98±0.49 49.72±0.84 53.07±0.94 74.03±0.01 93.37±0.00 93.23±0.00 55.90±0.23 26.80±0.16 28.65±0.22

LL ✓ 55.36±0.49 47.24±0.90 51.07±0.94 72.21±0.02 92.64±0.00 92.46±0.00 52.82±0.32 24.48±0.13 26.85±0.19

Self-Certainty ✓ 76.41±0.61 76.22±0.87 69.07±0.83 80.60±0.11 95.65±0.03 96.26±0.09 76.72±0.09 56.15±0.30 39.03±0.23

DeepConf ✓ 71.86±0.70 69.57±0.94 66.27±1.15 83.30±0.07 96.23±0.02 96.56±0.09 73.05±0.08 48.76±0.10 37.48±0.14

TokUR (TU, Ours) ✓ 82.47±0.47 79.62±0.33 74.00±0.69 81.01±0.04 95.53±0.05 95.54±0.00 85.33±0.07 65.25±0.01 43.91±0.09
TokUR (AU, Ours) ✓ 82.43±0.48 79.56±0.35 74.00±0.69 80.97±0.02 95.52±0.03 95.49±0.09 85.31±0.07 65.20±0.02 43.89±0.08

TokUR (EU, Ours) ✓ 82.86±0.42 81.35±0.66 72.40±1.20 78.31±1.58 94.91±0.59 94.67±0.77 84.92±0.28 65.57±0.43 43.89±0.27

the highest difficulty level (10). This is likely a result of the imbalanced data distribution (mostly
incorrect), where the model consistently produces high uncertainty, which causes a misleading high
metric value.

4.1.2 TOKUR FOR INCORRECT REASONING PATH DETECTION

Experimental Setting. The preliminary study demonstrates that our TokUR’s uncertainty esti-
mation can reflect the quality of generated responses, with lower uncertainty generally associated
with better outputs. One important application of uncertainty estimation is hallucination detection in
LLMs (Farquhar et al., 2024; Kossen et al., 2024; Ye et al., 2025). In this context, we treat uncertainty
as a scoring function to identify hallucinated (incorrect) responses for long-form reasoning tasks.
We adopt three metrics: Area Under the Receiver Operating Characteristic Curve (AUROC), Area
Under the Precision-Recall Curve (AUPRC), and Top-50% ACC (ACC*) (Farquhar et al., 2024;
Ye et al., 2025; Hanley & McNeil, 1982; Boyd et al., 2013). AUROC and AUPRC measure the
overall power of uncertainty scores in distinguishing correct from incorrect responses. In addition, we
report Top-50% ACC, defined as the accuracy of the top 50% samples ranked by the corresponding
score. This metric reflects the model’s ability to prioritize higher-quality generations under a fixed
budget. We repeat the experiments with three different random seeds to obtain the mean and standard
deviation across runs.

Baselines. We systematically categorize our baselines into two distinct types: (i) those relying
solely on the LLM’s internal signals, including the most recent Self-Certainty (Kang et al., 2025),
Deep Think With Confidence (DeepConf) (Fu et al., 2025), LLM-Check (Sriramanan et al., 2024),
Degree Matrix (UEcc and UDeg) (Lin et al., 2023), and INternal States for hallucInation DEtec-
tion (INSIDE) (Chen et al., 2024a), as well as classic P(True) (Kadavath et al., 2022), Predictive
Entropy (PE) (Malinin & Gales, 2021), Log-Likelihood (LL) (Murray & Chiang, 2018), and (ii)
those leveraging external signals, such as an auxiliary Natural Language Inference model (He et al.,
2020): Semantic Entropy (SE) (Kuhn et al., 2023), and Shifting Attention to Relevance (SAR) (Duan
et al., 2024). Note that, apart from the five baselines with underlines (Kang et al., 2025; Fu et al.,
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Table 2: Performance of Uncertainty Estimation Methods for Test-Time Scaling. Boldface and
underlining denote the best and the second-best performance, respectively.

Dataset Score Method Llama-3.2-1B-Instruct Llama-3.1-8B-Instruct

N=16 N=64 N=256 N=16 N=64 N=256

GSM8K
(Pass@1: 44.43 / 85.69)

LL Maj@N 47.10±0.85 54.11±0.52 58.89±0.36 86.74±0.62 90.48±0.48 91.01±0.28

WBoN 47.10±0.85 54.15±0.55 58.92±0.37 86.74±0.62 90.48±0.49 91.00±0.29

Self-Certainty Maj@N 45.02±0.92 52.61±0.72 57.18±0.53 80.02±0.70 87.25±0.49 90.05±0.40

WBoN 45.02±0.92 52.65±0.70 57.22±0.54 80.02±0.70 87.25±0.50 90.05±0.41

DeepConf Maj@N 46.72±0.89 53.50±0.66 58.05±0.44 86.24±0.66 90.34±0.46 90.92±0.28

WBoN 46.72±0.89 53.47±0.65 58.10±0.45 86.24±0.66 90.32±0.46 91.02±0.00

TokUR (TU, Ours) Maj@N 50.29±1.03 57.18±0.45 60.68±0.49 87.68±0.57 90.67±0.45 90.96±0.36

WBoN 50.29±1.03 57.22±0.45 60.71±0.49 87.68±0.57 90.65±0.46 90.98±0.37

TokUR (AU, Ours) Maj@N 50.20±0.98 57.21±0.46 60.70±0.41 87.42±0.66 90.60±0.44 90.99±0.32

WBoN 50.20±0.98 57.19±0.44 60.78±0.42 87.42±0.66 90.57±0.43 91.02±0.00

TokUR (EU, Ours) Maj@N 50.38±0.92 56.92±0.60 59.88±0.52 88.06±0.57 90.69±0.47 91.07±0.33

WBoN 50.38±0.92 56.89±0.54 59.91±0.58 88.06±0.57 90.67±0.48 91.09±0.36

MATH500
(Pass@1: 25.60 / 48.60)

LL Maj@N 26.42±0.84 33.28±0.97 38.56±0.75 50.92±1.77 59.36±0.74 64.10±0.61

WBoN 26.42±0.84 33.30±1.10 38.58±0.73 50.92±1.77 59.46±0.78 64.02±0.71

Self-Certainty Maj@N 20.14±1.14 29.12±1.11 36.68±0.83 44.00±1.82 55.56±1.08 62.66±0.75

WBoN 20.14±1.14 29.16±0.99 36.80±0.80 44.00±1.82 55.58±1.06 62.52±0.53

DeepConf Maj@N 25.68±1.38 33.30±1.10 38.52±0.43 49.88±1.29 59.74±1.17 64.30±0.63

WBoN 25.68±1.38 32.44±1.20 37.08±0.78 49.88±1.29 58.22±1.00 63.14±0.55

TokUR (TU, Ours) Maj@N 27.06±0.94 33.76±0.84 39.18±0.70 51.26±1.36 59.44±1.31 63.86±0.44

WBoN 27.06±0.94 33.60±0.82 39.20±0.65 51.26±1.36 59.44±1.30 63.84±0.51

TokUR (AU, Ours) Maj@N 27.06±0.91 33.64±0.76 39.12±0.72 51.16±1.45 59.42±1.16 64.00±0.44

WBoN 27.06±0.91 33.48±0.73 39.10±0.69 51.16±1.45 59.44±1.19 63.92±0.47

TokUR (EU, Ours) Maj@N 28.28±1.32 35.44±0.79 39.44±0.88 52.40±1.39 60.90±0.93 65.32±0.80

WBoN 28.28±1.32 35.44±0.78 39.38±0.87 52.40±1.39 61.04±0.88 65.48±0.75

2025; Kadavath et al., 2022; Malinin & Gales, 2021; Murray & Chiang, 2018), the others were
originally designed for query-level de-hallucination in short-form QA tasks and are therefore not
directly comparable to TokUR; we include them for completeness (see Appendix D.4 for details).

Results. As shown in Table 1, our proposed TokUR consistently outperforms baselines across AU-
ROC, AUPRC, and ACC*. For example, on Llama-3.2-1B-Instruct, TokUR (TU) achieves
an AUROC of 80.64% and an AUPRC of 56.79% on MATH500, clearly surpassing all baselines.
On the larger Llama-3.1-8B-Instruct, the improvements are also substantial: TokUR (EU)
attains 82.86% AUROC and 81.35% AUPRC on MATH500, establishing new state-of-the-art per-
formance. These results highlight an important insight: TokUR provides a reliable and scalable
uncertainty estimation framework, achieving strong performance without relying on external signals.

4.2 CAN TOKUR’S UNCERTAINTIES IMPROVE GENERATION QUALITY?

In this section, we explore the direct application of TokUR to reasoning tasks to enhance generation
quality. Following previous works (Fu et al., 2025), we apply TokUR to measure the confidence of
reasoning traces generated from a question and aggregate them via voting to obtain a final solution.
In addition, we investigate the possibility of utilizing TokUR in an online manner to dynamically
guide the generation process itself. Further details of online method are provided in E.3.

Baselines. We adopt Log-Likelihood (LL) as a baseline, given its widespread use as a proxy for
generation quality (Manakul et al., 2023; Rafailov et al., 2023; Chen et al., 2024b). In addition, we
compare against Self-Certainty (Kang et al., 2025) and DeepConf (Fu et al., 2025), two recent
uncertainty-driven approaches for test-time scaling. As our study emphasizes model self-awareness of
the boundaries of its knowledge, we do not include baselines that rely on external reward models (Guan
et al., 2025; Puri et al., 2025; Beeching et al.; Uesato et al., 2022; Lightman et al., 2023).

Response Aggregation with Uncertainties. We first rank all N candidate responses using one of
the scoring methods (LL, Self-Certainty, DeepConf, or TokUR) and retain the top-P% candidates.
We then employ two common aggregation strategies: Weighted Best-of-N (WBoN) and Majority
Voting (Maj@N) (Brown et al., 2024). WBoN performs weighted voting by assigning weights to
the retained candidates according to their scores, whereas Maj@N simply selects the most frequent
response among them, regardless of scoring.

Experimental Setting. We randomly sample 512 responses for each question in MATH500 and
GSM8K with a decoding temperature of τ = 0.8. For each N , we first retain the top-10% of samples
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ranked by their scores. From this subset, the final prediction is determined using either Maj@N or
WBoN. Each experiment is repeated 10 times (sample w/o replacement using offline records).

Results. As shown in Table 2, accuracy consistently improves with larger N across both GSM8K
and MATH500. Our TokUR-based selection methods achieve clear gains over all baselines, particu-
larly in the low-sample regime (N=16), where they deliver up to 3–4 points of improvement. Notably,
TokUR (EU) attains the best overall performance on both datasets, with strong advantages in the
challenging MATH500 benchmark. In addition, results for Maj@N and WBoN are similar, indicating
that both aggregation strategies are similarly effective once the top candidates are identified.

5 RELATED WORK

Uncertainty Estimation of LLMs. Uncertainty estimation in LLMs is gaining traction for im-
proving model calibration in data-scarce adaptation tasks and for reducing hallucinations in text
generation (Liu et al., 2025; Vashurin et al., 2025). One prominent approach is Bayesian Adap-
tation, which combines Bayesian inference with low-rank adaptation (LoRA) (Hu et al., 2022) to
approximate weight posterior distributions efficiently, avoiding the high computational cost of full
Bayesian modeling (Yang et al., 2023; Wang et al., 2024; Shi et al., 2024). To estimate uncertainty
in generation, two main lines of work have emerged. The first focuses on verbalized uncertainty,
where models are prompted to express confidence in natural language (Lin et al., 2022; Kadavath
et al., 2022; Tian et al., 2023; Kapoor et al., 2024). The second line includes logits-based meth-
ods, which estimate uncertainty directly from the model’s output distributions (Van Der Poel et al.,
2022; Ren et al., 2023; Duan et al., 2024; Darrin et al., 2023). In parallel, other approaches aim
to refine these estimation strategies. For instance, (Malinin & Gales, 2021) investigates techniques
for estimating epistemic uncertainty in structured prediction tasks, while semantic entropy (Kuhn
et al., 2023) captures uncertainty by leveraging invariance in meaning across paraphrases. More
recently, (Zhang & Zhang, 2025) introduces a method that leverages the reasoning capabilities of
LLMs to enhance uncertainty quantification, using chain-of-thought prompting to better reflect model
confidence in multi-step tasks. These works complement verbalized and logits-based methods by
offering orthogonal perspectives on how uncertainty can be interpreted and measured.

Uncertainty for Improving LLM Generation. Uncertainty estimation for improving LLM genera-
tion, while not entirely novel, has been predominantly limited to approaches based on log-probability
or its variants, Self-Certainty (Kang et al., 2025) estimates confidence via KL divergence from a
uniform distribution, DeepConf (Fu et al., 2025) aggregates top-K log-probabilities as scores. Beam
search (Lowerre, 1976; Sutskever et al., 2014; Freitag & Al-Onaizan, 2017; Xie et al., 2023) selects
higher-confidence sequences by retaining candidates with the largest cumulative log-probability.
UAG (Yin et al., 2024) leverages abrupt log-probability changes to select appropriate demonstrations
for in-context learning (Brown et al., 2020). UnCert-CoT (Zhu et al., 2025) alternates between greedy
and Chain-of-Thought decoding based on log-probability scores. Our work differs fundamentally by
estimating token-level uncertainties with rigorous theoretical foundations, representing a significant
step toward extending Bayesian LLMs to long-form generation scenarios.

6 CONCLUSION

In this paper, we introduce a novel framework TokUR to quantify uncertainty in LLM reasoning
generations. By incorporating low-rank random weight perturbation during the LLM decoding
procedure, TokUR provides a new perspective for uncertainty estimation in auto-regressive long-
form generation with sound theoretical grounding. Through comprehensive empirical evaluation,
we demonstrate that TokUR’s uncertainty estimations effectively reflect the quality of generated
reasoning paths and can thereby improve reasoning performance in LLMs. These contributions extend
Bayesian uncertainty estimation to long-form reasoning, providing both theoretical foundations and
practical tools for more reliable, self-aware LLMs.

Limitations. Our work is subject to several limitations. First, although compatible with efficient
deployment frameworks such as vLLM (Kwon et al., 2023), repeated weight perturbation sampling
during inference still poses efficiency challenges for real-time use. Second, our token-level uncertainty
aggregation may miss higher-level semantic or logical inconsistencies across multiple tokens or
reasoning steps, limiting its utility in complex generation tasks. Finally, the problem of high-variance
estimation in our TokUR remains unresolved, constraining reliability in real-world scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Oleksandr Balabanov and Hampus Linander. Uncertainty quantification in fine-tuned llms using lora
ensembles. arXiv preprint arXiv:2402.12264, 2024.

Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
open models. URL https://huggingface.co/spaces/HuggingFaceH4/
blogpost-scaling-test-time-compute.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Kendrick Boyd, Kevin H Eng, and C David Page. Area under the precision-recall curve: point
estimates and confidence intervals. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013,
Proceedings, Part III 13, pp. 451–466. Springer, 2013.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. Inside:
Llms’ internal states retain the power of hallucination detection. arXiv preprint arXiv:2402.03744,
2024a.

Haoxian Chen, Hanyang Zhao, Henry Lam, David Yao, and Wenpin Tang. Mallowspo: Fine-tune
your llm with preference dispersions. arXiv preprint arXiv:2405.14953, 2024b.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Longchao Da, Xiaoou Liu, Jiaxin Dai, Lu Cheng, Yaqing Wang, and Hua Wei. Understanding
the uncertainty of llm explanations: A perspective based on reasoning topology. arXiv preprint
arXiv:2502.17026, 2025.

Maxime Darrin, Pablo Piantanida, and Pierre Colombo. Rainproof: An umbrella to shield text
generator from out-of-distribution data. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 5831–5857, 2023.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decompo-
sition of uncertainty for active learning and reliable reinforcement learning in stochastic systems.
stat, 1050(1):11, 2017.

Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu, Bhavya Kailkhura,
and Kaidi Xu. Shifting attention to relevance: Towards the predictive uncertainty quantification of
free-form large language models. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 5050–5063, 2024.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
language models using semantic entropy. Nature, 630(8017):625–630, 2024.

10

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. arXiv
preprint arXiv:1702.01806, 2017.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Yarin Gal et al. Uncertainty in deep learning. 2016.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning
of bayesian neural networks. In International conference on machine learning, pp. 1861–1869.
PMLR, 2015.

Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang, and Yang Zhang. Decomposing
uncertainty for large language models through input clarification ensembling. arXiv preprint
arXiv:2311.08718, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt,
Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas
Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Kaplan. Language models (mostly)
know what they know, 2022.

Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language
models via self-certainty. arXiv preprint arXiv:2502.18581, 2025.

Sanyam Kapoor, Nate Gruver, Manley Roberts, Katherine Collins, Arka Pal, Umang Bhatt, Adrian
Weller, Samuel Dooley, Micah Goldblum, and Andrew Gordon Wilson. Large language models
must be taught to know what they don’t know. arXiv preprint arXiv:2406.08391, 2024.

Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some
applications. IEEE Transactions on automatic control, 25(2):164–176, 1980.

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal.
Semantic entropy probes: Robust and cheap hallucination detection in llms. arXiv preprint
arXiv:2406.15927, 2024.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. In The Eleventh International Conference
on Learning Representations, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
words. Transactions on Machine Learning Research, 2022.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifica-
tion for black-box large language models. arXiv preprint arXiv:2305.19187, 2023.

Chen Ling, Xujiang Zhao, Xuchao Zhang, Wei Cheng, Yanchi Liu, Yiyou Sun, Mika Oishi, Takao
Osaki, Katsushi Matsuda, Jie Ji, et al. Uncertainty quantification for in-context learning of large
language models. arXiv preprint arXiv:2402.10189, 2024.

Ollie Liu, Deqing Fu, Dani Yogatama, and Willie Neiswanger. Dellma: Decision making under
uncertainty with large language models. arXiv preprint arXiv:2402.02392, 2024.

Xiaoou Liu, Tiejin Chen, Longchao Da, Chacha Chen, Zhen Lin, and Hua Wei. Uncertainty
quantification and confidence calibration in large language models: A survey. arXiv preprint
arXiv:2503.15850, 2025.

Bruce T Lowerre. The harpy speech recognition system. Carnegie Mellon University, 1976.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
model by scaling rl. Notion Blog, 2025.

Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction. In
International Conference on Learning Representations, 2021.

Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box
hallucination detection for generative large language models. arXiv preprint arXiv:2303.08896,
2023.

Kenton Murray and David Chiang. Correcting length bias in neural machine translation. arXiv
preprint arXiv:1808.10006, 2018.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. Advances in Neural Information
Processing Systems, 36:2795–2823, 2023.

Isha Puri, Shivchander Sudalairaj, Guangxuan Xu, Kai Xu, and Akash Srivastava. A probabilistic
inference approach to inference-time scaling of llms using particle-based monte carlo methods.
arXiv preprint arXiv:2502.01618, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mohammad Saleh, Balaji Lakshminarayanan, and
Peter J Liu. Out-of-distribution detection and selective generation for conditional language models.
In The Eleventh International Conference on Learning Representations, 2023.

Haizhou Shi, Yibin Wang, Ligong Han, Huan Zhang, and Hao Wang. Training-free bayesianization
for low-rank adapters of large language models. arXiv preprint arXiv:2412.05723, 2024.

Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kattakinda,
and Soheil Feizi. Llm-check: Investigating detection of hallucinations in large language models.
Advances in Neural Information Processing Systems, 37:34188–34216, 2024.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher Manning. Just ask for calibration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human feedback. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5433–5442, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.330. URL https://aclanthology.org/
2023.emnlp-main.330.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Liam Van Der Poel, Ryan Cotterell, and Clara Meister. Mutual information alleviates hallucinations
in abstractive summarization. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 5956–5965, 2022.

Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev, Lyudmila Rvanova, Daniil Vasilev, Akim
Tsvigun, Sergey Petrakov, Rui Xing, Abdelrahman Sadallah, Kirill Grishchenkov, et al. Benchmark-
ing uncertainty quantification methods for large language models with lm-polygraph. Transactions
of the Association for Computational Linguistics, 13:220–248, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Hao Wang and Dit-Yan Yeung. Towards bayesian deep learning: A framework and some existing
methods. IEEE Transactions on Knowledge and Data Engineering, 28(12):3395–3408, 2016.

Hao Wang and Dit-Yan Yeung. A survey on bayesian deep learning. ACM computing surveys (csur),
53(5):1–37, 2020.

Hao Wang, SHI Xingjian, and Dit-Yan Yeung. Natural-parameter networks: A class of probabilistic
neural networks. In NIPS, pp. 118–126, 2016.

Xi Wang, Laurence Aitchison, and Maja Rudolph. Lora ensembles for large language model fine-
tuning, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yibin Wang, Haizhou Shi, Ligong Han, Dimitris Metaxas, and Hao Wang. Blob: Bayesian low-rank
adaptation by backpropagation for large language models. arXiv preprint arXiv:2406.11675, 2024.

13

https://aclanthology.org/2023.emnlp-main.330
https://aclanthology.org/2023.emnlp-main.330


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Processing
Systems, 36:41618–41650, 2023.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
express their uncertainty? an empirical evaluation of confidence elicitation in llms. arXiv preprint
arXiv:2306.13063, 2023.

Yasin Abbasi Yadkori, Ilja Kuzborskij, András György, and Csaba Szepesvári. To believe or not to
believe your llm. arXiv preprint arXiv:2406.02543, 2024.

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
for large language models. arXiv preprint arXiv:2308.13111, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Zihuiwen Ye, Luckeciano Carvalho Melo, Younesse Kaddar, Phil Blunsom, Sam Staton, and Yarin
Gal. Uncertainty-aware step-wise verification with generative reward models. arXiv preprint
arXiv:2502.11250, 2025.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Zhiyuan Zeng, Xiaonan Li, Junqi Dai, Qinyuan Cheng,
Xuan-Jing Huang, and Xipeng Qiu. Reasoning in flux: Enhancing large language models reasoning
through uncertainty-aware adaptive guidance. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 2401–2416, 2024.

Boxuan Zhang and Ruqi Zhang. Cot-uq: Improving response-wise uncertainty quantification in llms
with chain-of-thought. arXiv preprint arXiv:2502.17214, 2025.

Tianhang Zhang, Lin Qiu, Qipeng Guo, Cheng Deng, Yue Zhang, Zheng Zhang, Chenghu Zhou,
Xinbing Wang, and Luoyi Fu. Enhancing uncertainty-based hallucination detection with stronger
focus. arXiv preprint arXiv:2311.13230, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

Yuqi Zhu, Ge Li, Xue Jiang, Jia Li, Hong Mei, Zhi Jin, and Yihong Dong. Uncertainty-guided
chain-of-thought for code generation with llms. arXiv preprint arXiv:2503.15341, 2025.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

In Appendix A, we describe the role of large language models (LLMs) in our work. In Appendix B,
we present the full algorithmic description of our method with low-rank weight perturbation. In Ap-
pendix C, we provide detailed proofs for all propositions presented in the main paper. In Appendix D,
we provide our implementation details of the experiments, including:

• implementation of our TokUR (Appendix D.1),
• dataset details (Appendix D.2),
• prompt templates used in LLM reasoning (Appendix D.3),
• baseline details (Appendix D.4),
• and evaluation metrics (Appendix D.5).

Finally, in Appendix E, we present additional empirical results, including:

• preliminary study on the uncertainty distributions produced by TokUR (Appendix E.1),
• detailed numerical results of the test-time scaling (Appendix E.2),
• online test-time scaling of TokUR (Appendix E.3),
• an ablation study on different components of our token-level uncertainties (Appendix E.4),
• and a case study of our token-level uncertainties (Appendix E.5).

A LLM USAGE DISCLOSURE

We used large language models (LLMs) solely to assist with polishing the writing of this paper, includ-
ing improving grammar, clarity, and readability. The LLMs did not contribute to research ideation,
experimental design, analysis, or the generation of scientific content. All technical contributions,
claims, and conclusions are the authors’ own.

B ALGORITHM DETAILS

Algorithm 1 Low-Rank Weight Perturbation as Approximation of Weight Posterior.

1: Input
2: The base model policy p(y|x);
3: The set of weight matrices to be Bayesianized {W k

0 }Nk=1;
4: rank of noise matrix r′;
5: The perturbation strength σq .
6: for i = 1 to N do
7: U , diag(d),V ⊤ ← SVD(W k

0 ). ▷ Eqn. 16
8: U ′ ← the first r′ columns of matrix U .
9: Sample noise matrix ϵ ∈ Rn×r′ : ϵij ∼ N(0, σq).

10: Perturb the weight matrix: W k ←W k
0 +U ′ϵ⊤. ▷ Eqn. 17

11: Get the weight posterior: q(vec(W k)|σq). ▷ Eqn. 18
12: end for
13: Output: The overall approximate posterior: q(θ|σq)←

∏
k q(vec(W

k)|σq)

C PROOF OF PROPOSITIONS

Lemma C.1 (Definition of Conditional Entropy (Cover, 1999)). Give (y,x) ∼ p(y,x), the
conditional entropyH(y|x) is defined as

H(y|x) =
∑
x∈X

p(x)H(y|x)

= Ex∼p(x)[H(y|x)].
(20)
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Algorithm 2 Particle Filtering for Inference-Time Scaling (Puri et al., 2025)

1: Input
2: The number of particles N ;
3: A reward model r̂;
4: A LLM pM and a prompt c.
5: Initialize N particles {xi

1 ∼ pM (·|c)}Ni=1.
6: t← 1.
7: while not all particles stop do
8: Update rewards w = {r̂(x(1)

1:t ), r̂(x
(2)
1:t ), . . . , r̂(x

(N)
1:t )}.

9: Compute softmax distribution θ = softmax(w).
10: Sample indices {j(i)t }Ni=1 ∼ Pt(j = i) = θi.

11: Update the set of particles as {x(j
(I)
t )

1:t }Ni=1.
12: Transition {xi

t+1 ∼ pM (·|c, x(i)
1:t)}Ni=1.

13: t← t+ 1.
14: end while
15: Output: The set of particles in the end.

Lemma C.2 (Chain rule of Conditional Entropy (Cover, 1999)). Let X and Y be two random
variables, then the conditional entropy of the joint distributionH(X,Y ) can be decomposed as:

H(X,Y ) = H(X) +H(Y |X) (21)

Lemma C.1 (Cover, 1999) reveals the relationship between conditional entropy H(y|x) and the
entropy derived from conditional probability distributions. Lemma C.2 lays the foundation for
estimating the uncertainties of sequences. The two lemmas together give us the following proposition.
Proposition C.1 (Decomposition of Query-Level Uncertainty, Eqn. 4). Suppose that we have
an input sequence x and a model policy p(y|x). The sequence-level uncertainty U(y|x) can be
decomposed token-by-token as:

U(y|x) =
∑T

t=1
U(yt|y<t,x), (22)

where U(yt|y<t,x) is token-level uncertainty metric as defined in Eqn. 10 ~ Eqn. 12.

Proof. For Aleatoric Uncertainty (AU) and Total Uncertainty (TU) defined in Eqn. 10 and Eqn. 11,
both are expressed in terms of entropy. Therefore, the decomposition of sequence-level uncertainty
can be directly derived using the chain rule stated in the Lemma C.2.

For Epistemic Uncertainty (EU), also called mutual information defined in Eqn. 12, we proceed with
the following derivation:

H(p(y|x)) =H
(
Ep(θ|D)[p(y1|x;θ)] · ··· · Ep(θ|D)[p(yT |y<T ,x;θ)]

)
(23)

=

T∑
t

H(Ep(θ|D)[p(yt|y<t,x;θ)]) (24)

=

T∑
t

I(yt;θ|y<t,x) +

T∑
t

Ep(θ|D)[H(p(yt|y<t,x;θ))] (25)

=

T∑
t

I(yt;θ|y<t,x) + Ep(θ|D)H(p(y|x;θ)) (26)

Finally, based on the definition of mutual information, we obtain:
I(y;θ|x) = H(p(y|x))− Ep(θ|D)H(p(y|x;θ))

=

T∑
t

I(yt;θ|y<t,x) (27)
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Proposition 3.1 (Response-Level Uncertainty as an Unbiased Estimator of Query-Level Un-
certainty). Given an input query x, let y ∼ p(y|x) be a generated sample of length T . Then the
response-level uncertainty Ũ (Definition 3.1) is an unbiased estimator of the query-level uncertainty
U (Definition 2.1), i.e.,

Ey∼p(y|x)[Ũ(y|x)] = U(y|x). (28)

Proof. Based on Lemma C.1, for the token-level uncertainty U(yt|y<t,x) defined in
Eqn. 10~Eqn. 12, we have

Ey<t∼p(·|x)[U(yt|y<t,x)] =
∑

y<t∈Y
p(y<t|x)U(yt|y<t,x) (29)

= U(yt|y<t,x). (30)

Therefore, the uncertainty of the sequence defined in Eqn. 13:

Ey∼p(y|x)[Ũ(y|x)] = Ep(y|x)[
∑T

t=1
U(yt|y<t,x)] (31)

=

T∑
t=1

Ep(y|x)[U(yt|y<t,x)] (32)

=

T∑
t=1

Ey<t∼p(·|x)[U(yt|y<t,x)] (33)

=

T∑
t=1

U(yt|y<t,x) (34)

= U(y|x), (35)

where the final step follows from the chain rule of entropy (Proposition C.1).

Proposition 3.2 (Token-Level and Response-Level Uncertainty). Given an input query x, let
y ∼ p(y|x) be a generated sample of length T . Let U(yt|y<t,x) denote the token-level uncertainty
as defined in Eqn. 10-12, with Ũ(y|x) as the corresponding response-level uncertainty (Definition 3.1).
Our token-level uncertainty is equivalent to the response-level uncertainty when T = 1:

Ũ(y|x) = U(y1|x). (36)

Proof. When the sequence length T = 1, based on the definition of uncertainty of sequence in
Eqn. 13, we have

Ũ(y|x) =
T∑

t=1

U(yt|y<t,x) = U(y1|x).

This proposition implies that the sequence uncertainty collapses to token-level uncertainty when the
output sequence length is 1, reflecting the structural consistency of the estimator.

Proposition C.2 (Approximate Distribution of the Weight W Perturbed by Low-Rank Noise,
Eqn. 18). Given the weight matrix W0 ∈ Rm×n, the low-rank noise matrix ϵ ∈ Rn×r′ whose rank
r′ ≪ r is significantly smaller than the rank r of W0, and whose entries are sampled i.i.d. from a
Gaussian distribution of standard deviation of σq: ϵij ∼ N (0, σ2

q ),∀i ∈ [n], j ∈ [r′], we have the
perturbed weighted matrix W as defined in Eqn. 17 . The variational distribution q(vec(W )|σq)
defined on the weight matrix W is

q(vec(W )|σq) = N (vec(W )|µq,Σq),

where µq = vec(W0),

Σq = σ2
qIn ⊗

[
Ir′

0m−r′

]
.

(37)
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Proof. We begin with compact SVD decomposition of the weight matrix W0 as described in Eqn. 16:

W0 = Udiag(d)V ⊤, (38)

where d ≻ 0 ∈ Rr×1 is the vector of singular values, and U ∈ Rm×r, V ∈ Rn×r are orthogonal
matrices. We denote the first r′ columns of U as U ′ ∈ Rm×r′ to analyze the updated matrix U ′ϵ⊤

in Eqn. 17.

Since each entry in ϵ has zero mean, it is evident that the updated matrix also has zero mean.
Consequently, we have µq = vec(W0) + 0 = vec(W0).

Next, we focus on the proof of the variance Σq. Gien U ′ = (u1,u2, · · · ,ur′) ∈ Rm×r′ , and
ϵ = (ϵ1, ϵ2, · · · , ϵr′) ∈ Rn×r′ as defined above, we have the following properties:

U ′U ′⊤ =

r′∑
i=1

uiu
⊤
i =

[
Ir′

0m−r′

]
, (39)

vec(U ′ϵ⊤) = vec(
r′∑
i=1

uiϵ
⊤
i ) =

r′∑
i=1

(ϵi ⊗ ui). (40)

We can now derive the covariance matrix as:

Σq = Var[vec(W )] = Var[vec(W0 +U ′ϵ⊤)] = Var[vec(U ′ϵ⊤)] (41)

= Var[
r′∑
i=1

ϵi ⊗ ui] =

r′∑
i=1

Var[ϵi ⊗ ui] (42)

=

r′∑
i=1

{
Eϵi [(ϵi ⊗ ui)(ϵi ⊗ ui)

⊤]− Eϵi [(ϵi ⊗ ui)]Eϵi [(ϵi ⊗ ui)
⊤]
}

(43)

=

r′∑
i=1

{
Eϵi [ϵiϵ

⊤
i ]⊗ (uiu

⊤
i )− (Eϵi [ϵi]Eϵi [ϵi]

⊤)⊗ (uiu
⊤
i )

}
(44)

=

r′∑
i=1

σ2
qIn ⊗ (uiu

⊤
i ) = σ2

qIn ⊗
r′∑
i=1

uiu
⊤
i = σ2

qIn ⊗
[
Ir′

0m−r′

]
. (45)

D IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION OF TOKUR’S TOKEN-LEVEL UNCERTAINTIES

Unless otherwise specified, we set the rank of low-rank noise to r′ = 8, the perturbation strength
σq = 0.1, and the number of samples per uncertainty estimation to M = 2. For the test-time scaling
experiments in Sec. 4.2, we apply length normalization to TokUR to mitigate the bias introduced by
varying sequence lengths. In contrast, the effect of length normalization may differ in hallucination
detection tasks. To investigate this, we conduct additional ablation studies in Appendix E.4.3,
examining the impact of length normalization in that setting. To ensure practical applicability in
real-world scenarios, we implement our method as a seamless integration with vLLM (Kwon et al.,
2023).

D.2 DATASETS

Table 3 shows the statistics of datasets in our experiments. These datasets collectively span a wide
range of difficulty levels, from moderate to highly challenging, covering both elementary-level
numerical reasoning and advanced symbolic mathematical tasks. In addition, the problem domains
are diverse, including: algebra, geometry, and number theory. Such a design ensures that our
experiments are comprehensive and representative, facilitating a thorough assessment of the model’s
capability across varied reasoning scenarios.
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Table 3: Statistics of the datasets used in our experiments.

Dataset Samples Used Split Task Type Language Level
GSM8K 1,300 Training split Mathematical Reasoning English Moderate
MATH500 500 Full set Mathematical Reasoning English Difficult
DeepScaleR 5,000 First 5,000 samples Mathematical Reasoning English Highly Challenging

D.3 PROMPT TEMPLATES

In this work, we use the following prompts published by Meta 2.

Prompt Example

Solve the following math problem efficiently and clearly:

-For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

-For complex problems (3 steps or more):
Use this step-by-step format:

## Step 1: [Concise description]
[Brief explanation and calculations]

## Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:
Therefore, the final answer is: answer . I hope it is correct.
Where [answer] is just the final number or expression that solves the problem.

D.4 BASELINES

We compare our uncertainty estimation approach against several baseline methods:

• Log-Likelihood (LL) (Murray & Chiang, 2018): Mean of token-wise log-probabilities of
the output sequence, representing the model’s overall confidence in its generation.

• Predictive Entropy (PE) (Malinin & Gales, 2021): Mean entropy of the predicted distribu-
tion of each token.

• P(True) (Kadavath et al., 2022): Directly queries the model about the correctness of its own
output and uses the predicted probability of the token “True”, normalized by the sum of
probabilities of token “True” and “False”, as a confidence score.

• Self-Certainty (Kang et al., 2025): Quantifies confidence using the KL divergence between
the predicted token distribution and a uniform distribution over the vocabulary at each
decoding step.

• DeepConf (Fu et al., 2025): Computes confidence scores by aggregating the log-probabilities
of the top-K candidate tokens at each decoding step.

• The Degree Matrix (Lin et al., 2023): Utilizes the degree matrix of the graph Laplacian of
the similarities matrix of responses.

• LLM-Check (Sriramanan et al., 2024): We faithfully reproduced the official implementation
for comparison.

• INSIDE (Chen et al., 2024a): INSIDE is a method to estimate query-level uncertainty. We
tailored INSIDE to our setting by asking the LLM to verify the same response multiple
times and then calculating the semantic entropy across these verification attempts.

2https://huggingface.co/datasets/meta-llama/Llama-3.2-1B-Instruct-evals
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• Semantic Entropy (SE) (Kuhn et al., 2023): We adapted SE to our setting by prompting
the LLM to verify the same response multiple times and computing the semantic entropy of
these verification attempts. While this provides a signal of response quality, we note that SE
requires an external NLI or embedding model, giving it an inherent advantage compared to
our method.

• SAR (Duan et al., 2024): We adapted SAR to our setting by computing sentence-level SAR
scores over multiple verification attempts, following a similar procedure to SE. While this
method provides a meaningful proxy for uncertainty, it requires an external semantic
similarity model, which raises fairness concerns compared to our approach, which operates
solely with the base LLM.

D.5 EVALUATION PARSING AND METRICS

Parsing. To automate the evaluation of outputs generated by large language models, we design
specific prompts (see Appendix D.3) that constrain the model to follow a fixed structure and require
it to place the final answer within a \box{}. Considering that in mathematical reasoning tasks, the
same answer can be expressed in various forms, we standardize all answers into a canonical form
before comparison (Beeching et al.). During the evaluation, we assess the correctness from two
perspectives: numerical equality and symbolic equality, to label each generation as “True” or “False”.

Metrics. To comprehensively assess model performance in binary classification tasks, we adopt
the following metrics: Area Under the Receiver Operating Characteristic Curve (AUROC), Area
Under the Precision-Recall Curve (AUPRC), and Top 50% Accuracy (Farquhar et al., 2024; Ye et al.,
2025; Hanley & McNeil, 1982; Boyd et al., 2013).

• AUROC measures the trade-off between true positive rate (TPR) and false positive rate
(FPR) at various threshold settings. Formally, for a set of predictions with associated
confidence scores, AUROC is computed as:

AUROC =

∫ 1

0

TPR(FPR−1(x)) dx, (46)

where TPR and FPR are defined as:

TPR = TP
TP+FN , FPR = FP

FP+TN .

• AUPRC evaluates the trade-off between precision and recall, which is particularly useful in
imbalanced datasets. It is calculated as:

AUPRC =

∫ 1

0

Precision(Recall−1(x)) dx, (47)

where precision and recall are defined as:

Precision = TP
TP+FP , Recall = TP

TP+FN .

• Top 50% Accuracy evaluates the correctness of the top half predictions ranked by confi-
dence. Let N be the total number of predictions and S be the set of indices corresponding
to the top ⌈N/2⌉ predictions with highest confidence. The metric is defined as:

Top 50% Accuracy = 1
|S|

∑
i∈S

δ(ŷi = yi), (48)

where ŷi is the predicted label and yi is the ground-truth label.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 PRELIMINARY STUDY: DISTRIBUTION OF UNCERTAINTIES

We conduct a preliminary study to examine the relationship between responses’ token-level uncer-
tainties and their correctness. We generate responses on the GSM8K dataset using a greedy decoding
strategy with Llama-3.2-1B-Instruct, and label each response as correct or incorrect based
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on an exact match with the ground-truth answer. Considering the class imbalance in the model
responses, we construct a balanced subset for visualization. Specifically, we retain all incorrect
responses and randomly sample an equal number of correct responses. We compute the TokUR
(EU) and TokUR (AU) with our proposed token-level uncertainties in Eqn. 13, and plot the
results in the Normalized EU-AU space (Fig. 3). We observe that both TokUR (EU) and TokUR
(AU) show a better-than-chance separation between correct and incorrect outputs. Although some
overlap exists, their distribution peaks differ significantly, indicating that our uncertainty estimates
meaningfully correlate with generation quality.
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Figure 2: Performance on GSM8K (Left) and MATH500 (Right) when scaling up sample size
N at test time of Llama-3.2-1B-Instruct. Our TokUR (AU, EU, and TU) consistently
outperforms the LL baseline, particularly when N is small. Please refer to Table 4 for detailed
numerical results.

E.2 TEST-TIME SCALING VIA UNCERTAINTY ESTIMATION

We provide an additional visualization of the test-time scaling results in Fig. 2 . While the
complete numerical results are reported in Table 2, this new figure offers an intuitive view of how
accuracy improves with increasing numbers of test-time samples (N ∈ 16, 32, 64, 128, 256, 512).
All experiments use Llama-3.2-1B-Instruct as the base model. For reference, the Pass@1
baseline accuracy (GSM8K: 44.43%; MATH500: 25.60%) is also shown as red dashed lines, high-
lighting the gains achieved through test-time scaling. Moreover, we provide an extended version of
the results in Table 4, which builds on Table 2 to include additional test-time sample configurations.

E.3 TOKUR FOR TEST-TIME SCALING (ONLINE)

One popular approach to improving model performance uses a Process Reward Model (PRM) to score
each intermediate step during multi-step generation (Guan et al., 2025; Puri et al., 2025; Beeching
et al.; Uesato et al., 2022; Lightman et al., 2023), thereby guiding the model’s reasoning path. In this
section, we explore an alternative: guiding the generation process using uncertainty as an intrinsic
reward, without relying on an explicit reward model.

Experimental Setting. Particle Filtering (PF) (Puri et al., 2025) is an inference-time scaling method
for LLM reasoning (details in Appendix B). Building upon this algorithm, we use uncertainty as the
score for each particle at each step to guide the model’s generation process. We set the number of
particles to N = 16 and the decoding temperature to τ = 0.8. We repeat the experiments with three
different random seeds to obtain the mean and standard deviation across runs.

Results. Table 5 shows the results. Compared to LL, our TokUR, especially TokUR (EU), yields
a slight performance gain. Given that guiding generation through stepwise scoring is inherently
challenging, we consider the lack of a significant performance gain from uncertainty estimation to be
acceptable. Nevertheless, we believe this experiment offers valuable insights that may inform the
future design of process reward models.
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Figure 3: Distribution of responses from GSM8K (Cobbe et al., 2021) plotted in the Length Normal-
ized EU-AU uncertainty space, as quantified by our token-level uncertainty metrics (Eqn. 13).

Table 5: TokUR as Implicit Reward for Test-Time Scaling (Online), on MATH500.

Intrinsic Reward BoN WBoN

LL 26.27±0.25 26.27±0.41

TokUR (TU, Ours) 27.93±0.25 28.13±0.38

TokUR (AU, Ours) 25.20±0.99 25.13±0.74

TokUR (EU, Ours) 28.93±0.08 29.20±0.98

E.4 ABLATION STUDY

This section presents an ablation study on our token-level uncertainty estimation method using
low-rank perturbations. Appendix E.4.1 examines the effect of varying perturbation strength σq,
while Appendix E.4.2 analyzes the impact of different decoding temperatures. In Appendix E.4.3, we
investigate the effect of length normalization in the context of hallucination detection tasks. Finally,
in Appendix E.4.4, we assess the validity of Assumption 3.1 as it pertains to TokUR.

E.4.1 THE EFFECT OF PERTURBATION STRENGTH σq ON UNCERTAINTY ESTIMATION

To investigate the impact of perturbation strength on uncertainty estimation, we conducted a series
of experiments under varying σq settings, as shown in Fig. 4. First, we computed the average
uncertainty estimates (TU, AU, and EU) on samples generated from the GSM8K test dataset using
Llama-3.2-1B-Instruct. As illustrated in Fig. 4 Left, the model’s uncertainty increases
steadily with higher perturbation strength. However, once σq exceeds a critical threshold (e.g., 0.2), a
sharp rise in uncertainty is observed. This rise illustrates that the current approximate distribution of
the weights has deviated too far from the pre-trained point estimation of the parameters, leading to
unreliable uncertainty estimates.

We further evaluate the effect of perturbation strength on downstream task performance.
Specifically, we assess how effectively the uncertainty estimates, obtained under different σq values,
can be used as scoring signals to distinguish between correct and incorrect samples, as described in
Sec. 4.1.2. As shown in Fig. 4 Right, for TokUR (EU), too small σq does not lead to meaningful
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Table 4: Test-Time Scaling for GSM8K and MATH500. Performance comparison of different
methods with varying numbers of test-time samples (N = 16 to 512) using Llama-3.2-1B-Instruct as
the base model. Methods evaluated include log-likelihood (LL) and three variants of TokUR (TU,
AU and EU) with both Maj@N and WBoN strategies. Boldface and underlining denote the best and
the second-best performance, respectively.

Dataset Score Method
Number of Samples N

N=16 N=32 N=64 N=128 N=256 N=512

Llama-3.2-1B-Instruct

GSM8K
(Pass@1: 44.43)

LL Maj@N 47.10±0.85 50.45±0.64 54.11±0.52 56.77±0.40 58.89±0.36 59.72±0.00

WBoN 47.10±0.85 50.45±0.64 54.15±0.55 56.72±0.42 58.92±0.37 59.81±0.00

Self-Certainty Maj@N 45.02±0.92 48.97±0.81 52.61±0.72 55.22±0.67 57.18±0.53 58.03±0.00

WBoN 45.02±0.92 48.97±0.81 52.65±0.70 55.30±0.64 57.22±0.54 58.10±0.00

DeepConf Maj@N 46.72±0.89 50.12±0.71 53.50±0.66 56.10±0.52 58.05±0.44 58.97±0.00

WBoN 46.72±0.89 50.12±0.71 53.47±0.65 56.08±0.49 58.10±0.45 59.05±0.00

TokUR (TU, Ours) Maj@N 50.29±1.03 53.72±0.77 57.18±0.45 59.10±0.60 60.68±0.49 61.23±0.00

WBoN 50.29±1.03 53.72±0.77 57.22±0.45 59.21±0.66 60.71±0.49 61.31±0.00

TokUR (AU, Ours) Maj@N 50.20±0.98 53.77±0.90 57.21±0.46 58.99±0.61 60.70±0.41 61.38±0.00
WBoN 50.20±0.98 53.77±0.90 57.19±0.44 59.13±0.67 60.78±0.42 61.31±0.00

TokUR (EU, Ours) Maj@N 50.38±0.92 52.98±0.67 56.92±0.60 58.77±0.38 59.88±0.52 60.69±0.00

WBoN 50.38±0.92 52.98±0.67 56.89±0.54 58.70±0.40 59.91±0.58 60.85±0.00

MATH500
(Pass@1: 25.60)

LL Maj@N 26.42±0.84 29.28±0.89 33.28±0.97 37.04±0.74 38.56±0.75 39.00±0.00

WBoN 26.42±0.84 29.28±0.89 33.30±1.10 37.02±0.84 38.58±0.73 39.00±0.00

Self-Certainty Maj@N 20.14±1.14 23.24±1.44 29.12±1.11 33.80±0.89 36.68±0.83 38.60±0.00

WBoN 20.14±1.14 23.24±1.44 29.16±0.99 33.82±0.82 36.80±0.80 38.60±0.00

DeepConf Maj@N 25.68±1.38 28.36±0.91 33.30±1.10 37.34±1.31 38.52±0.43 40.40±0.00
WBoN 25.68±1.38 28.08±1.08 32.44±1.20 36.00±1.22 37.08±0.78 38.60±0.00

TokUR (TU, Ours) Maj@N 27.06±0.94 29.18±1.06 33.76±0.84 37.62±0.70 39.18±0.70 39.00±0.00

WBoN 27.06±0.94 29.18±1.06 33.60±0.82 37.60±0.79 39.20±0.65 39.40±0.00

TokUR (AU, Ours) Maj@N 27.06±0.91 29.08±1.14 33.64±0.76 37.52±0.82 39.12±0.72 39.20±0.00

WBoN 27.06±0.91 29.08±1.14 33.48±0.73 37.64±0.73 39.10±0.69 39.60±0.00

TokUR (EU, Ours) Maj@N 28.28±1.32 31.36±1.05 35.44±0.79 38.00±0.77 39.44±0.88 39.60±0.00

WBoN 28.28±1.32 31.36±1.05 35.44±0.78 37.86±0.84 39.38±0.87 40.00±0.00

Llama-3.1-8B-Instruct

GSM8K
(Pass@1: 85.69)

LL Maj@N 86.74±0.62 89.16±0.53 90.48±0.48 90.99±0.35 91.01±0.28 91.00±0.00

WBoN 86.74±0.62 89.16±0.53 90.48±0.49 90.99±0.36 91.00±0.29 91.00±0.00

Self-Certainty Maj@N 80.02±0.70 84.13±0.66 87.25±0.49 89.22±0.40 90.05±0.40 90.77±0.00

WBoN 80.02±0.70 84.13±0.66 87.25±0.50 89.21±0.39 90.05±0.41 90.77±0.00

DeepConf Maj@N 86.24±0.66 88.74±0.64 90.34±0.46 90.88±0.46 90.92±0.28 91.01±0.00

WBoN 86.24±0.66 88.74±0.64 90.32±0.46 90.90±0.45 90.94±0.28 91.02±0.00

TokUR (TU, Ours) Maj@N 87.68±0.57 89.72±0.55 90.67±0.45 91.06±0.38 90.96±0.36 91.02±0.00

WBoN 87.68±0.57 89.72±0.55 90.65±0.46 91.06±0.37 90.98±0.37 91.02±0.00

TokUR (AU, Ours) Maj@N 87.42±0.66 89.59±0.55 90.60±0.44 91.01±0.31 90.99±0.32 90.93±0.00

WBoN 87.42±0.66 89.59±0.55 90.57±0.43 91.04±0.35 90.98±0.30 91.02±0.00

TokUR (EU, Ours) Maj@N 88.06±0.57 89.88±0.39 90.69±0.47 91.19±0.40 91.07±0.33 91.02±0.00

WBoN 88.06±0.57 89.88±0.39 90.67±0.48 91.19±0.39 91.09±0.36 91.05±0.00

MATH500
(Pass@1: 48.60)

LL Maj@N 50.92±1.77 55.24±0.51 59.36±0.74 62.86±0.70 64.10±0.61 65.00±0.00

WBoN 50.92±1.77 55.24±0.51 59.46±0.78 62.80±0.78 64.02±0.71 65.00±0.00

Self-Certainty Maj@N 44.00±1.82 48.48±1.06 55.56±1.08 60.04±0.56 62.66±0.75 65.40±0.00

WBoN 44.00±1.82 48.48±1.06 55.58±1.06 59.90±0.51 62.52±0.53 64.80±0.00

DeepConf Maj@N 49.88±1.29 55.04±1.44 59.74±1.17 62.40±0.63 64.30±0.63 65.20±0.00

WBoN 49.88±1.29 54.42±1.46 58.22±1.00 60.90±1.02 63.14±0.55 64.80±0.00

TokUR (TU, Ours) Maj@N 51.26±1.36 55.54±0.70 59.44±1.31 62.28±0.95 63.86±0.44 65.20±0.00

WBoN 51.26±1.36 55.54±0.70 59.44±1.30 62.32±1.08 63.84±0.51 65.20±0.00

TokUR (AU, Ours) Maj@N 51.16±1.45 55.52±0.66 59.42±1.16 62.32±1.07 64.00±0.44 65.60±0.00

WBoN 51.16±1.45 55.52±0.66 59.44±1.19 62.34±1.16 63.92±0.47 65.60±0.00

TokUR (EU, Ours) Maj@N 52.40±1.39 57.02±0.61 60.90±0.93 64.24±0.83 65.32±0.80 67.00±0.00
WBoN 52.40±1.39 57.02±0.61 61.04±0.88 64.20±0.76 65.48±0.75 67.00±0.00

improvements in log-likelihood, whereas an excessively large σq harms performance of all three
TokUR variants (AU, TU and EU) by distorting the original semantic content. Based on these
findings, we set σq = 0.1 for the experiments reported in Sec. 4.
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Table 6: Uncertainties for Incorrect Reasoning Path Detection. AUROC, AUPRC, and ACC∗ are
all reported as percentage (%), where ACC∗ (%) denotes the accuracy of the Top 50% generations
identified by different uncertainty measures. Rows with shading indicate methods without Length
Normalization (LN) for uncertainty estimation.

Method MATH500 GSM8K DeepScaleR
AUROC AUPRC ACC∗ AUROC AUPRC ACC∗ AUROC AUPRC ACC∗

Llama-3.2-1B-Instruct

SE 47.29±3.81 25.71±2.33 24.13±4.42 50.64±4.44 45.09±0.72 42.62±0.16 46.30±0.21 12.94±0.23 12.58±0.49

SAR 44.57±2.04 24.03±2.53 21.07±1.62 50.28±0.97 43.24±0.89 43.95±0.77 43.14±1.42 12.34±0.35 11.14±0.47

UEcc 48.75±1.05 25.79±1.83 25.20±0.33 49.05±0.46 60.02±0.44 59.62±0.22 48.68±0.24 13.77±0.29 14.23±0.45

UDeg 60.57±2.31 36.32±2.59 30.93±0.94 66.60±0.36 75.72±0.36 71.99±0.39 56.88±0.54 18.04±0.63 16.50±0.39

P(True) 54.38±1.20 26.39±1.26 27.60±1.18 56.64±0.04 48.22±0.03 48.92±0.00 59.58±0.43 17.48±0.25 17.52±0.50

LLM-Check 56.41±0.96 27.01±1.22 31.33±1.29 71.01±0.02 61.29±0.08 59.54±0.00 55.76±0.48 14.55±0.26 17.30±0.51

INSIDE 55.71±4.69 28.82±4.05 29.20±4.33 53.66±0.92 46.03±0.23 45.79±1.25 54.73±0.82 15.50±0.48 16.30±0.35

PE 57.08±0.89 26.88±1.05 31.33±0.82 71.21±0.03 61.61±0.08 59.85±0.00 56.09±0.46 14.74±0.23 17.33±0.92

LL 55.41±0.54 25.88±0.87 29.87±0.82 69.01±0.03 58.51±0.09 57.38±0.00 53.84±0.47 13.93±0.23 16.83±0.48

- LN 79.38±0.27 54.64±0.75 43.73±0.61 73.67±0.00 68.88±0.00 60.92±0.00 82.62±0.01 45.76±0.02 25.43±0.02

Self-Certainty 71.17±0.30 48.37±0.50 38.13±0.61 73.41±0.00 68.38±0.00 61.38±0.00 71.93±0.04 33.81±0.08 21.76±0.04

- LN 23.76±0.34 17.04±0.10 11.20±0.00 34.42±0.00 34.20±0.00 31.54±0.00 21.33±0.02 8.57±0.01 4.04±0.00

DeepConf 71.77±0.12 46.00±0.42 39.87±0.46 75.70±0.00 69.72±0.00 62.77±0.00 71.65±0.04 29.99±0.05 22.00±0.04

- LN 25.79±0.34 17.41±0.10 11.47±0.23 38.84±0.00 36.22±0.00 35.23±0.00 23.87±0.01 8.80±0.01 4.91±0.02

TokUR (TU, Ours) 57.14±0.81 26.92±0.98 31.87±1.00 70.92±0.04 61.32±0.13 58.92±0.15 56.20±0.49 14.79±0.20 17.52±0.53

- LN 80.64±0.29 56.79±0.74 44.67±0.46 75.07±0.05 70.29±0.07 62.31±0.00 83.55±0.02 47.56±0.04 25.71±0.02

TokUR (AU, Ours) 56.95±0.82 26.81±0.99 31.60±0.98 70.90±0.05 61.26±0.13 58.87±0.32 56.02±0.49 14.73±0.19 17.47±0.47

- LN 80.61±0.27 56.73±0.75 44.67±0.46 75.03±0.06 70.22±0.05 62.21±0.18 83.52±0.02 47.48±0.05 25.71±0.02

TokUR (EU, Ours) 61.64±0.97 31.07±1.31 33.20±1.42 65.98±0.75 60.02±0.82 56.05±0.73 62.10±0.09 17.73±0.35 19.10±0.29

- LN 79.74±0.21 56.64±0.41 44.13±0.83 71.79±0.80 66.40±1.02 59.74±1.00 82.87±0.32 46.76±0.38 25.52±0.11

Negative Length 76.27±0.34 49.55±1.00 41.87±0.46 65.69±0.00 56.72±0.00 56.87±0.18 78.74±0.02 35.97±0.07 24.48±0.04

Llama-3.1-8B-Instruct

SE 62.93±0.90 55.21±1.04 55.73±0.83 55.61±3.36 87.16±1.14 86.77±1.01 67.68±0.94 35.18±1.00 35.55±0.37

SAR 69.42±2.19 63.74±3.03 59.20±1.06 60.16±2.22 89.24±0.74 87.99±0.81 73.01±0.28 42.89±0.65 37.51±0.12

UEcc 50.23±2.23 49.48±2.44 49.60±2.04 47.47±2.15 84.69±0.89 84.87±1.17 50.16±0.66 25.08±0.18 25.48±0.53

UDeg 58.62±0.36 57.69±0.90 53.47±1.64 67.22±1.06 92.24±0.53 92.62±0.88 59.14±0.37 32.64±0.43 29.75±0.36

P(True) 33.41±0.25 36.05±0.55 35.33±0.19 41.94±0.01 82.19±0.00 82.77±0.00 33.64±0.20 18.06±0.06 16.23±0.02

LLM-Check 57.41±0.44 49.69±1.07 52.80±1.38 73.98±0.01 93.37±0.01 93.23±0.00 55.42±0.27 26.46±0.19 28.37±0.40

INSIDE 62.94±1.72 55.06±3.19 57.33±1.01 58.86±2.11 87.44±0.94 88.21±0.90 67.05±0.49 33.83±0.42 34.13±0.10

PE 57.98±0.49 49.72±0.84 53.07±0.94 74.03±0.01 93.37±0.00 93.23±0.00 55.90±0.23 26.80±0.16 28.65±0.22

LL 55.36±0.49 47.24±0.90 51.07±0.94 72.21±0.02 92.64±0.00 92.46±0.00 52.82±0.32 24.48±0.13 26.85±0.19

- LN 81.36±0.50 78.80±0.36 72.27±0.92 80.03±0.01 95.30±0.00 95.08±0.00 84.58±0.07 63.92±0.03 43.69±0.14

Self-Certainty 76.41±0.61 76.22±0.87 69.07±0.83 80.60±0.11 95.65±0.03 96.26±0.09 76.72±0.09 56.15±0.30 39.03±0.23

- LN 21.94±0.58 33.57±0.42 28.40±1.06 26.44±0.01 75.43±0.00 77.85±0.00 18.80±0.21 15.15±0.10 8.17±0.28

DeepConf 71.86±0.70 69.57±0.94 66.27±1.15 83.30±0.07 96.23±0.02 96.56±0.09 73.05±0.08 48.76±0.10 37.48±0.14

- LN 23.73±0.62 34.08±0.44 30.80±1.06 30.86±0.01 77.30±0.00 79.38±0.00 21.20±0.24 15.50±0.11 9.27±0.16

TokUR (TU, Ours) 56.49±0.46 48.24±0.85 52.13±0.75 73.98±0.05 93.27±0.04 93.13±0.09 54.86±0.17 25.97±0.12 27.97±0.17

- LN 82.47±0.47 79.62±0.33 74.00±0.69 81.01±0.04 95.53±0.05 95.54±0.00 85.33±0.07 65.25±0.01 43.91±0.09

TokUR (AU, Ours) 56.31±0.47 48.11±0.84 51.87±0.68 73.97±0.02 93.26±0.03 93.13±0.09 54.77±0.18 25.90±0.13 27.93±0.11

- LN 82.43±0.48 79.56±0.35 74.00±0.69 80.97±0.02 95.52±0.03 95.49±0.09 85.31±0.07 65.20±0.02 43.89±0.08

TokUR (EU, Ours) 60.92±0.46 52.64±0.71 56.13±1.36 67.92±0.72 92.41±0.24 92.15±0.41 57.42±0.23 28.32±0.16 29.65±0.10

- LN 82.86±0.42 81.35±0.66 72.40±1.20 78.31±1.58 94.91±0.59 94.67±0.77 84.92±0.28 65.57±0.43 43.89±0.27

Negative Length 78.11±0.54 73.81±0.28 68.80±0.40 73.64±0.01 93.36±0.00 93.54±0.00 81.20±0.20 57.12±0.31 41.57±0.16

E.4.2 THE EFFECT OF TOKEN DECODING TEMPERATURE τ ON UNCERTAINTY ESTIMATION

During text generation with large language models, the decoding temperature introduces uncertainty
into the model’s output. In general, higher temperatures lead to more diverse responses. In this
section, we investigate the relationship between decoding temperature τ and uncertainties estimated
by our token-level approach. Specifically, we use Llama-3.2-1B-Instruct to answer questions
from the MATH500 dataset under different decoding temperature settings and estimate the average
uncertainty of the model’s responses.

As shown in Fig. 5 Left, increasing the decoding temperature τ results in a notable rise in token-
level Aleatoric Uncertainty (AU) of the model, whereas the Epistemic Uncertainty (EU) remains
relatively unaffected. Additionally, we report the AUROC scores of various uncertainty estimation
approaches across different temperature settings in Fig. 5 Right. These results indicate that varying
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Figure 4: Left: Uncertainty estimation with different perturbation strength σq. Right: Influence of
perturbation strength on uncertainty-based AUROC scores.
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Figure 5: Left: Uncertainty estimations in different token decoding temperature τ . Right: Influence
of token decoding temperature on uncertainty-based AUROC scores.

the temperature τ does not harm the performance of TokUR, highlighting its robustness to changes
in decoding temperature.

E.4.3 ABLATION STUDY OF LENGTH NORMALIZATION

Length normalization is a standard technique for aggregating token-level uncertainty into sequence-
level uncertainty (Fu et al., 2025; Kang et al., 2025), as it mitigates the bias introduced by sequence
length when evaluating generation confidence. However, as described in Eqn. 13, we do not apply
normalization when computing TokUR. To assess the impact of sequence length on uncertainty
estimation, we therefore conduct an ablation study on length normalization.

Experimental Setup. We investigate the effect of length normalization on incorrect reasoning
path detection across three datasets (MATH500, GSM8K, and DEEPSCALER), following the same
settings as in Table 1. We compare TokUR with and without Length Normalization (LN), along with
representative baselines. In addition, we introduce a naive baseline, Negative Length, which uses
sequence length alone as a confidence signal.

Results. As shown in Table 6, the impact of length normalization varies significantly across methods.
For both LL and TokUR, normalization consistently reduces AUROC and AUPRC, indicating that raw
sequence length introduces a favorable bias that benefits uncertainty aggregation in de-hallucination
tasks. This observation is further reinforced by the strong performance of the Negative Length
baseline, which alone achieves competitive results across all datasets. In contrast, Self-Certainty and
DeepConf show clear gains with normalization (e.g., Self-Certainty improves from 23.76 to 71.17
AUROC on MATH500), suggesting that normalization is essential for stabilizing their performance.
Overall, these findings reveal that the role of length normalization is highly method-dependent.
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Figure 6: Ablation of stepwise posterior sampling. Comparison of stepwise vs. joint modeling on
Llama-3.2-1B-Instruct across accuracy, improvement, and efficiency. Stepwise modeling
consistently achieves better scaling performance, validating Assumption 3.1.

E.4.4 ABLATION STUDY OF STEPWISE POSTERIOR SAMPLING

To examine the validity of Assumption 3.1, we perform an ablation study comparing step-
wise posterior sampling against the joint posterior formulation. Concretely, we evaluate
test-time scaling on MATH500 dataset, using TokUR with both stepwise and joint modeling on
Llama-3.2-1B-Instruct, while keeping all other settings consistent with Table 2.

As shown in Fig. 6, stepwise modeling consistently outperforms joint modeling across all uncertainty
measures (AU, EU, and TU). Specifically, stepwise sampling achieves higher mean accuracy and
larger improvements over the baseline, while also demonstrating superior scaling efficiency with
increasing numbers of samples. These results provide strong empirical support for our assumption
that posterior samples should not be shared across decoding steps, validating the design choice in
Assumption 3.1.

E.5 CASE STUDY

In this section, we present several representative examples from the MATH500 and GSM8K datasets,
along with their corresponding solutions generated by Llama-3.2-1B-Instruct. We estimate
token-level uncertainty for each output using the definitions provided in Eqn. 10~Eqn. 12. The
visualizations are shown in Fig. 7~Fig. 10, where Aleatoric Uncertainty (AU, in RED) and Epistemic
Uncertainty (EU, in GREEN) are visualized as text-heatmap. The background shading of each token
corresponds to the magnitude of its uncertainty: the darker the shade, the higher the uncertainty,
indicating a lower model confidence for that token.
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We observe that incorrect solutions consistently exhibit elevated uncertainty at or near the token where
the wrong final answer is generated. For instance, as shown in Fig. 7, sharp spikes in uncertainties
happens with the arithmetic error of reversing “9600 - 7200” into “7200 - 9600”. In contrast, correct
solutions tend to show lower uncertainty overall and maintain low uncertainty on key answer tokens.

Furthermore, incorrect outputs tend to contain a higher density of high-uncertainty tokens throughout
the solution, whereas correct outputs are generally more consistent and confident. These observations
suggest that our token-level uncertainty estimation method can serve as a useful signal for identifying
potential reasoning failures or unreliable outputs, offering a valuable diagnostic tool for both model
interpretability and downstream error detection.
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## Step 1 : Calculate the number of deliveries made by T

ona . T ona made 3 / 4 times as many deliveries as O

ula , and since O ula made 96 deliveries , T ona made (

3 / 4 ) * 96 = 72 deliveries . ## Step 2 : Calculate

the total pay for O ula . For each delivery , O ula is paid

$ 100 , and since there are 96 deliveries , O ula ’s pay

for the month is 96 * $ 100 = $ 960 0 . ## Step 3

: Calculate the total pay for T ona . For each delivery , T

ona is paid $ 100 , and since there are 72 deliveries , T

ona ’s pay for the month is 72 * $ 100 = $ 720 0 . ##

Step 4 : Calculate the difference in pay between O ula and

T ona . The difference in pay is $ 960 0 - $ 720 0 = $

240 0 . The final answer is : $ boxed { 240 0 }$

## Step 1 : Calculate the number of deliveries made by T

ona . T ona made 3 / 4 times as many deliveries as O

ula , and since O ula made 96 deliveries , T ona made (

3 / 4 ) * 96 = 72 deliveries . ## Step 2 : Calculate

the total pay for O ula . For each delivery , O ula is paid

$ 100 , and since there are 96 deliveries , O ula ’s pay

for the month is 96 * $ 100 = $ 960 0 . ## Step 3

: Calculate the total pay for T ona . For each delivery , T

ona is paid $ 100 , and since there are 72 deliveries , T

ona ’s pay for the month is 72 * $ 100 = $ 720 0 . ##

Step 4 : Calculate the difference in pay between O ula and

T ona . The difference in pay is $ 960 0 - $ 720 0 = $

240 0 . The final answer is : $ boxed { 240 0 }$

AU

EU

Correct✅ Incorrect ❌

Problem： Oula and Tona work for a delivery service company, supplying different parts 
of their state with milk products. They are paid $100 for each delivery made in a day. In 
a particular month, Oula made 96 deliveries while Tona made 3/4 times as many 
deliveries as Oula. Calculate their difference in pay that month.

## Step 1 : Calculate O ula ’s total pay O ula made

96 deliveries , and they get paid $ 100 for each delivery . So

their total pay will be 96 * 100 = $ 960 0 . ## Step

2 : Calculate T ona ’s total pay T ona made 3 / 4

times as many deliveries as O ula , which is 3 / 4 * 96

= 72 deliveries . So their total pay will be 72 * 100 =

$ 720 0 . ## Step 3 : Find the difference in their pay

The difference in their pay is 720 0 - 960 0 = - 240 0

. The final answer is : $ boxed {- 240 0 }$

## Step 1 : Calculate O ula ’s total pay O ula made

96 deliveries , and they get paid $ 100 for each delivery . So

their total pay will be 96 * 100 = $ 960 0 . ## Step

2 : Calculate T ona ’s total pay T ona made 3 / 4

times as many deliveries as O ula , which is 3 / 4 * 96

= 72 deliveries . So their total pay will be 72 * 100 =

$ 720 0 . ## Step 3 : Find the difference in their pay

The difference in their pay is 720 0 - 960 0 = - 240 0

. The final answer is : $ boxed {- 240 0 }$

Figure 7: Case Study (1/4): The sample is from GSM8K, whose correct answer is 2400. In
the incorrect solution, the model demonstrated significant uncertainty when mistakenly reversing
“9600− 7200” as “7200− 9600”, and also exhibited high uncertainty at the negative sign “−” in the
final answer.
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Problem： Kiarra is twice as old as Bea. Job is 3 times older than Bea. Figaro is 7 years 
older than Job. Harry is half as old as Figaro. If Kiarra is 30, how old is Harry?

AU

EU

Correct✅ Incorrect ❌

## Step 1 : Determine Bea ’s age based on K iar ra ’s

age . Since K iar ra is 30 and she is twice as old as

Bea , Bea ’s age can be calculated as 30 / 2 = 15

. ## Step 2 : Calculate Job ’s age based on Bea ’s

age . Job is 3 times older than Bea . Therefore , Job ’s

age can be calculated as 3 * 15 = 45 . ## Step 3

: Determine Harry ’s age based on Fig aro ’s age . Harry

is half as old as Fig aro . Therefore , Harry ’s age can be

calculated as 45 / 2 = 22 . 5 . The final answer is :

$ boxed { 22 . 5 }$

## Step 1 : Determine Bea ’s age Since K iar ra is

twice as old as Bea , and K iar ra is 30 years old , Bea

’s age can be found by dividing K iar ra ’s age by 2 .

Be a ’s age = K iar ra ’s age / 2 = 30 / 2 =

15 . ## Step 2 : Calculate Fig aro ’s age Since Fig aro

is 7 years older than Job , and Job is 3 times older than

Bea , Fig aro ’s age can be calculated as follows : Job ’s

age = Bea ’s age * 3 = 15 * 3 = 45 . Then ,

Fig aro ’s age = Job ’s age + 7 = 45 + 7 = 52

. ## Step 3 : Calculate Harry ’s age Since Harry is half

as old as Fig aro , Harry ’s age can be found by dividing

Fig aro ’s age by 2 . Harry ’s age = Fig aro ’s age

/ 2 = 52 / 2 = 26 . The final answer is $ boxed {
26 } $.

## Step 1 : Determine Bea ’s age based on K iar ra ’s

age . Since K iar ra is 30 and she is twice as old as

Bea , Bea ’s age can be calculated as 30 / 2 = 15

. ## Step 2 : Calculate Job ’s age based on Bea ’s

age . Job is 3 times older than Bea . Therefore , Job ’s

age can be calculated as 3 * 15 = 45 . ## Step 3

: Determine Harry ’s age based on Fig aro ’s age . Harry

is half as old as Fig aro . Therefore , Harry ’s age can be

calculated as 45 / 2 = 22 . 5 . The final answer is :

$ boxed { 22 . 5 }$

## Step 1 : Determine Bea ’s age Since K iar ra is

twice as old as Bea , and K iar ra is 30 years old , Bea

’s age can be found by dividing K iar ra ’s age by 2 .

Be a ’s age = K iar ra ’s age / 2 = 30 / 2 =

15 . ## Step 2 : Calculate Fig aro ’s age Since Fig aro

is 7 years older than Job , and Job is 3 times older than

Bea , Fig aro ’s age can be calculated as follows : Job ’s

age = Bea ’s age * 3 = 15 * 3 = 45 . Then ,

Fig aro ’s age = Job ’s age + 7 = 45 + 7 = 52

. ## Step 3 : Calculate Harry ’s age Since Harry is half

as old as Fig aro , Harry ’s age can be found by dividing

Fig aro ’s age by 2 . Harry ’s age = Fig aro ’s age

/ 2 = 52 / 2 = 26 . The final answer is $ boxed {
26 } $.

Figure 8: Case Study (2/4): The sample is from GSM8K. In this example, the incorrect solution
ignores the critical condition that “Figaro is 7 years older than Job,” leading to the use of 45 instead of
52 in the final calculation. Notably, the model exhibits high uncertainty at the token “45” indicating a
lack of confidence in its own response at that point.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Problem：Simplify the following expression in $x$: $$19x + 1 - 4x - 81.$$

AU

EU

Correct✅ Incorrect ❌

## Step 1 : Combine like terms To simplify the given

expression , we need to combine the like terms with the

variable $ x $ and the constant terms . ## Step 2 :

Combine constants : $ - 81 $ We will combine the constant

terms $ - 4 x $ and $ - 81 $ . ## Step 3 : Sub tract

$ - 4 x $ from $ - 81 $ : $ 19 x - 81 $ ## Step

4 : Combine like terms : $ 19 x - 4 x $ This leaves

us with $ 15 x $ ## Step 5 : Therefore , the simplified

expression is $ boxed { 15 x }$

## Step 1 : Combine like terms Combine the $ x $

terms . ## Step 2 : Simpl ify S implify the expression by

performing the additions and sub tr actions from left to right .

19 x + 1 - 4 x - 81 = ( 19 - 4 )x + 1 - 81

= 15 x - 80 The final answer is : $ boxed { 15 x -

80 }$

## Step 1 : Combine like terms To simplify the given

expression , we need to combine the like terms with the

variable $ x $ and the constant terms . ## Step 2 :

Combine constants : $ - 81 $ We will combine the constant

terms $ - 4 x $ and $ - 81 $ . ## Step 3 : Sub tract

$ - 4 x $ from $ - 81 $ : $ 19 x - 81 $ ## Step

4 : Combine like terms : $ 19 x - 4 x $ This leaves

us with $ 15 x $ ## Step 5 : Therefore , the simplified

expression is $ boxed { 15 x }$

## Step 1 : Combine like terms Combine the $ x $

terms . ## Step 2 : Simpl ify S implify the expression by

performing the additions and sub tr actions from left to right .

19 x + 1 - 4 x - 81 = ( 19 - 4 )x + 1 - 81

= 15 x - 80 The final answer is : $ boxed { 15 x -

80 }$

Figure 9: Case Study (3/4): The sample is from MATH500. In this example, the incorrect solution
gives its final answer “15x” in step 4. The model exhibits high uncertainty at the token next to “15x”
because it overlooks the constant term. Furthermore, it can be observed that tokens associated with
high uncertainty occur more frequently in the incorrect solution.
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Problem： In regular pentagon $FGHIJ$, extending the sides of the pentagon, as shown, 
forms a star. What is the measure of angle $A$ in the figure?\n\n [IMAGE]

AU

Correct✅ Incorrect ❌

## Step 1 : We are given a regular pent agon $ FG HI J

$ with additional lines extending its sides , forming a star shape

$ AB CG H J $, where $ AC $ is the radius of the circle

centered at $ G $ . ## Step 2 : First , let ’s utilize the

fact that the sum of the interior angles of any polygon can be

calculated by ($ n - 2 )* 180 $ degrees , where n is the

number of sides of the polygon . ## Step 3 : Since the

regular pent agon has 5 sides , we can find the sum of its

interior angles by substit uting n = 5 into the formula $( n

- 2 )* 180 $ degrees . ## Step 4 : Calcul ating $( 5 -

2 )* 180 $ degrees gives us 540 degrees . ## Step 5

: The figure given shows that the angle $ angle B CG =

108 $ degrees , and $ angle F GH = 108 $ degrees . ##

Step 6 : These angles form a linear pair and add up to

180 degrees , allowing us to determine that $ angle A FG =

180 - ( 108 + 108 )$ . ## Step 7 : By subtract ing

216 degrees from 180 , we get the measure of angle A in

the figure as 60 degrees . The final answer is : $ boxed {
60 }$

## Step 1 : We are given a regular pent agon $ FG HI

J $ and extending the sides of the pent agon forms a star

. The pent agon has 5 equal sides , which means all the

interior angles are also equal . ## Step 2 : To find angle

$ A $, we need to find the measure of the interior angle of

the regular pent agon . A regular pent agon has interior angles

that add up to $ frac { 540 ˆ circ }{ 5 } = 108 ˆ circ

$. Therefore , we have $ 180 ˆ circ + 108 ˆ circ + 108

ˆ circ + 108 ˆ circ + 108 ˆ circ + 108 ˆ circ = 540

ˆ circ $, which is true . ## Step 3 : Now we need to

add up the angles at the vertices of the star . Since each

interior angle of the pent agon is $ 108 ˆ circ $, we can find

the measure of angle $ A $ by subtract ing the sum of the

interior angles of the pent agon from the total sum of angles

in a quadr ilateral . ## Step 4 : The sum of angles in a

quadr ilateral is $ 360 ˆ circ $, and we have four angles of

$ 108 ˆ circ $ from the pent agon . Therefore , the measure

of angle $ A $ can be found by $ 360 ˆ circ - 108 ˆ circ

- 108 ˆ circ - 108 ˆ circ - 108 ˆ circ $ . ## Step

5 : Find the value of angle A by performing the subtraction

. $ 360 ˆ circ - 324 ˆ circ = 36 ˆ circ $ . The final

answer is : $ boxed { 36 }$

## Step 1 : We are given a regular pent agon $ FG HI

J $ and extending the sides of the pent agon forms a star

. The pent agon has 5 equal sides , which means all the

interior angles are also equal . ## Step 2 : To find angle

$ A $, we need to find the measure of the interior angle of

the regular pent agon . A regular pent agon has interior angles

that add up to $ frac { 540 ˆ circ }{ 5 } = 108 ˆ circ

$. Therefore , we have $ 180 ˆ circ + 108 ˆ circ + 108

ˆ circ + 108 ˆ circ + 108 ˆ circ + 108 ˆ circ = 540

ˆ circ $, which is true . ## Step 3 : Now we need to

add up the angles at the vertices of the star . Since each

interior angle of the pent agon is $ 108 ˆ circ $, we can find

the measure of angle $ A $ by subtract ing the sum of the

interior angles of the pent agon from the total sum of angles

in a quadr ilateral . ## Step 4 : The sum of angles in a

quadr ilateral is $ 360 ˆ circ $, and we have four angles of

$ 108 ˆ circ $ from the pent agon . Therefore , the measure

of angle $ A $ can be found by $ 360 ˆ circ - 108 ˆ circ

- 108 ˆ circ - 108 ˆ circ - 108 ˆ circ $ . ## Step

5 : Find the value of angle A by performing the subtraction

. $ 360 ˆ circ - 324 ˆ circ = 36 ˆ circ $ . The final

answer is : $ boxed { 36 }$

## Step 1 : We are given a regular pent agon $ FG HI J

$ with additional lines extending its sides , forming a star shape

$ AB CG H J $, where $ AC $ is the radius of the circle

centered at $ G $ . ## Step 2 : First , let ’s utilize the

fact that the sum of the interior angles of any polygon can be

calculated by ($ n - 2 )* 180 $ degrees , where n is the

number of sides of the polygon . ## Step 3 : Since the

regular pent agon has 5 sides , we can find the sum of its

interior angles by substit uting n = 5 into the formula $( n

- 2 )* 180 $ degrees . ## Step 4 : Calcul ating $( 5 -

2 )* 180 $ degrees gives us 540 degrees . ## Step 5

: The figure given shows that the angle $ angle B CG =

108 $ degrees , and $ angle F GH = 108 $ degrees . ##

Step 6 : These angles form a linear pair and add up to

180 degrees , allowing us to determine that $ angle A FG =

180 - ( 108 + 108 )$ . ## Step 7 : By subtract ing

216 degrees from 180 , we get the measure of angle A in

the figure as 60 degrees . The final answer is : $ boxed {
60 }$

EU

Figure 10: Case Study (4/4): The sample is from MATH500. In this example, the model demonstrated
notably high uncertainty at the incorrect answer token “60”. In the correct solution on the left, the
model had low uncertainty for the correct answer “36”.
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