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ABSTRACT

While Large Language Models (LLMs) have demonstrated impressive capabili-
ties, their output quality remains inconsistent across various application scenarios,
making it difficult to identify trustworthy responses, especially in complex tasks
requiring multi-step reasoning. In this paper, we propose a Token-level Uncertainty
estimation framework for Reasoning (TokUR) that enables LLMs to self-assess
and self-improve their responses in mathematical reasoning. Specifically, we in-
troduce low-rank random weight perturbation during LLM decoding to generate
predictive distributions for token-level uncertainty estimation, and we aggregate
these uncertainty quantities to capture the semantic uncertainty of generated re-
sponses. Experiments on mathematical reasoning datasets of varying difficulty
demonstrate that TokUR exhibits a strong correlation with answer correctness and
model robustness, and the uncertainty signals produced by TokUR can be leveraged
to enhance the model’s reasoning performance at test time. These results highlight
the effectiveness of TokUR as a principled and scalable approach for improving
the reliability and interpretability of LLMs in challenging reasoning tasks.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in various reasoning
tasks (Wei et al., 2022a; Wang et al., 2022; Chung et al., 2024; Guo et al., 2025), yet they often
struggle to reliably assess the quality of their own responses (Xiong et al., 2023; Tian et al., 2023;
Kapoor et al., 2024; Liu et al., 2024; Zhang & Zhang, 2025; Da et al., 2025; Liu et al., 2025). This
limitation becomes particularly evident in complex reasoning scenarios where models may generate
seemingly convincing but incorrect solutions without indicating uncertainty.

Beyond the dominant body of uncertainty estimation methods that largely focus on short-form
question answering (Zhang et al., 2023; Yadkori et al., 2024) and classification tasks (Yang et al.,
2023; Wang et al., 2024; Shi et al., 2024), two main approaches have been explored for the more
challenging setting of sequence uncertainty estimation: (i) Query-level methods (Gal et al., 2016;
Osband et al., 2023; Hou et al., 2023), despite their solid theoretical foundation, estimate uncertainties
U(y|x) with respect to input prompts x alone, without evaluating the quality of specific generated
responses y conditioned on those inputs (see Sec. 2.1). Besides, these methods require marginalization
over the entire output space y; this becomes intractable as sequence length grows. (ii) Response-level
methods (Murray & Chiang, 2018; Malinin & Gales, 2021; Kadavath et al., 2022), typically variants
of log-probabilities, have shown empirical success but lack strong theoretical grounding (Kuhn et al.,
2023). As a result, the limitations of the aforementioned methods in capturing response-specific
uncertainty hinder the deployment of LLMs in high-stakes reasoning tasks that demand reliable
self-assessment.

To address this challenge, we propose a principled framework, dubbed Token-level Uncertainty esti-
mation for Reasoning (TokUR), for estimating the uncertainty of generated sequences by aggregating
token-level uncertainties based on random low-rank weight perturbation. TokUR introduces carefully
calibrated perturbations to the weights of attention layers, creating an ensemble of model variants that
enables principled uncertainty estimation without requiring costly retraining or extensive parameter
updates. Building on this, we decompose the fotal uncertainty of each generated token into aleatoric
uncertainty (inherent randomness in the data) and epistemic uncertainty (model uncertainty about
its parameters), providing a theoretically grounded assessment of confidence across the generation
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process. We then aggregate these token-level uncertainties to evaluate entire reasoning responses,
demonstrating both theoretical consistency with established uncertainty principles and practical utility
in downstream applications.

Empirically, TokUR enhances LLM reasoning in three key aspects: (i) token-level epistemic uncer-
tainty effectively identifies incorrect reasoning paths, outperforming baselines across three mathe-
matical reasoning benchmarks, (ii) TokUR excels at selecting high-quality solutions from multiple
candidates, and (iii) it functions as an implicit reward to guide reasoning, improving accuracy
when combined with off-the-shelf test-time-scaling algorithms (Puri et al., 2025). In summary, our
contributions are:

* We introduce TokUR, a training-free token-level uncertainty estimation approach for LLM
reasoning through low-rank weight perturbation, providing a principled decomposition of
uncertainties with proven theoretical properties.

* We demonstrate that epistemic uncertainty can serve as a good metric to measure the quality
of generated reasoning paths, consistently outperforming conventional confidence metrics
across diverse mathematical reasoning tasks.

» We demonstrate practical applications' of our uncertainty estimation framework: it improves
reasoning performance through incorrect path detection, high-quality solution selection, and
uncertainty-guided generation.

2 PRELIMINARIES

In this section, we first introduce the notation used in the remaining sections, and then review the key
concepts of uncertainties (Sec. 2.1) and existing Bayesian LLMs for downstream adaptation (Sec. 2.2).

Notation. In this paper, scalars are denoted by lowercase letters (x), vectors by lowercase bold-math
letters (x), random vectors by lowercase boldface letters (x), and matrices by uppercase boldface
letters (X). We use [m] = {1,2,--- ,m} to denote the set of consecutive integer numbers from 1
to m. Following convention, we use p for probability, [E for expectation, H for entropy, and Z for
mutual information. Specifically, 7[y|x] denotes the conditional entropy between random variables
y and x. We use H[p(y|x = x)] to denote the predictive entropy of the output variable conditioned
on input &, with H[p(y|x)] as a shorthand notation when context is clear.

2.1 UNCERTAINTY ESTIMATION OF LONG-FORM GENERATION

Prediction with Bayesian Neural Networks. Bayesian Neural Networks (BNNs) (Neal, 2012;
Herndndez-Lobato & Adams, 2015; Gal & Ghahramani, 2016; Blundell et al., 2015; Wang & Yeung,
2016; Wang et al., 2016; Lakshminarayanan et al., 2017; Wang & Yeung, 2020) predict responses and
estimate their uncertainties using the variational distribution ¢(8|D) that approximates the true weight
posterior p(0|D). Given an input sequence = (x1,--- ,xy) € X, the probability of the output
sequence y = (y1,- - ,yr) € YV is defined as marginalization over the parameters and estimated by
Bayesian Model Averaging (BMA) of size M:

M
p(ole) = [ plyles0)a®D)do ~ 4 3 plyleio™). 6 ~q(6D) (1)

Query-Level Uncertainty Estimation. Established techniques of uncertainty estimation (Gal et al.,
2016) mainly quantify the uncertainty of input @ (query-level uncertainty) by

H[p(Y|m)] = Ey~p(y|w) [_ 1ng(y|$)]. (2)

In the context of BNNs (Eqn. 1), the predictive distribution of y is the marginalized predictive
distribution over the model parameters, and hence Eqn. 2 is defined as “total uncertainty” (Gal et al.,
2016; Depeweg et al., 2017).

A model’s uncertainty about a specific input cannot be solely attributed to the randomness of the
approximate posterior ¢(8|D), which is input-agnostic. For instance, when faced with a query “Name

'We provide an implementation of our framework that is compatible with vLLM (Kwon et al., 2023) for
efficient deployment.
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a city in the UK?” (Yadkori et al., 2024), even if an infinite amount of data is observed (eliminating
the randomness of the model parameters), the uncertainty of this question remains high, as there
are many correct candidate answers. Hence to distinguish different sources of uncertainty, total
uncertainty is decomposed into epistemic uncertainty and aleatoric uncertainty (Gal et al., 2016):

Hlp(ylz)] = Eqop)[HIp(ylz; 0)]] +  Z(y;0lx) . 3)
———
Total Uncertainty Aleatoric Uncertainty Epistemic Uncertainty

Here, aleatoric uncertainty captures the intrinsic randomness in data and cannot be reduced even with
more data observed. In contrast, epistemic uncertainty, defined as the mutual information Z(y; 6|x)
between y and 6, reflects the model’s uncertainty about its own parameters, which can in principle
be reduced by collecting more evidence. We use U (y|x) defined in Definition 2.1 to denote any of
the three uncertainties.

Definition 2.1 (Query-Level Uncertainty). Query-level uncertainty U(y|x) is the uncertainty of the
predictive distribution p(y|x) given an input query x. Total Uncertainty (TU), Aleatoric Uncertainty
(AU), and Epistemic Uncertainty (EU) in Eqn. 3 are all instances of query-level uncertainty.

Limitations of Query-Level Uncertainty. Using the chain rule for conditional entropy (Cover,
1999), the query-level uncertainty estimation can be decomposed token-by-token as

U(ylz) = Z Uyely<e, ). @

However, the uncertainty term U (y:|y<¢, ) in Eqn. 4 requires marginalization over the random
variable y ., which is (i) computationally intractable, and (ii) only reflecting the quality of the input
query. Hence, these query-level uncertainties are not proper indicators for evaluating a concrete
output response y.

2.2 BAYESIAN LARGE LANGUAGE MODELS

Bayesian Low-Rank Adaptation. For a pre-trained network layer with weight matrix Wy, Low-
Rank Adaptation (LoRA) (Hu et al., 2022) optlmlzes the parameters within a constrained low-rank
subspace. Specifically, the weight update matrix is modeled by AW = B A, where AW € R™*",
B e R™*", A € R"™*", and r < min(m,n). The output z € R™*! of forwarding the input vector
h € R™*! is then

z=Woh+ AWh = Wyh + BAh. 5)

Leveraging LoRA’s parameter efficiency, Bayesian LoRAs (Yang et al., 2023; Wang et al., 2024; Shi
et al., 2024) aim to further integrate BNN’s uncertainty estimation capablhtles into LLMs without
significant increasing memory complexity. The key idea is to model A and/or B as approximate dis-
tributions of the true weight posterior. The asymmetric Bayesianization, exemplified by BLoB (Wang
et al., 2024) and TFB (Shi et al., 2024), models the elements of A with independent Gaussian
distributions while keeping B deterministic. Specifically, we have

q(A{M,Q}) = H q(A;| Mz, © :HijN(AU‘MZWQQ) (6)

where M and €2 share the same shape as A and denote the mean and standard deviation of the random
variable A, respectively. To estimate this distribution, BLoB jointly trains the mean and covariance
through the re-parameterization trick (Wang et al., 2024), while TFB uses a simple training-free
maximal variance searching technique by fixing the approximate distribution to the family of low-rank
isotropic Gaussian distributions (Shi et al., 2024).

Limited Scope of Existing Bayesian LLMs. Existing Bayesian LLMs have been primarily val-
idated in downstream classification tasks of simple single- or multiple-choice problems, where
uncertainty estimation is quantitatively assessed via the alignment of prediction confidence and
accuracy (Yang et al., 2023; Balabanov & Linander, 2024; Wang et al., 2023; 2024; Shi et al., 2024).
However, these methods have not yet demonstrated effective generalizatlon to long-form generation
tasks, i.e., LLM reasoning. Therefore, our TokUR, which estimates token-level uncertainties via
weight perturbations, represents an initial step toward extending Bayesian LLMs to long-form genera-
tion, an area where uncertainty estimation remains largely unexplored and technically challenging.
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3 TokUR: TOKEN-LEVEL UNCERTAINTY ESTIMATION VIA LOW-RANK
WEIGHT PERTURBATION

Sec. 3.1 introduces the key techniques of token-level uncertainty estimation. Sec. 3.2 then details how
token-level uncertainties can be aggregated for response-level uncertainty estimation, and describes
the underlying theoretical foundation. Finally, Sec. 3.3 presents our low-rank weight perturbation as
posterior approximation. All proofs of propositions can be found in Appendix C.

3.1 TOKEN-LEVEL UNCERTAINTIES IN GENERAL

Given an approximate posterior ¢(6|D), a fixed input query & € X and a specific output response
y = (y1,Y2,.-.,yr) € Y sampled from the base policy p(y|x), we denote the predictive distribution
of the next token y; produced by marginalization over weights as

P(Ytly<e, x) £ EquHD) [P(yely<t, x; 0))]. (7

Assumption 3.1 (Stepwise Posterior Sampling). We assume that the weights 0 sampled from the
approximate posterior q(-|D) are not shared across decoding steps. Formally, the probability of a
sequence is factorized as

T T
plylx) £ thl P(yile, y<t) = Hf:l{EOth(-\D) [p(yelx, y<t, 9,5)}}, (®)
instead of adopting the joint formulation
p(ylz) = Eorg(p)[p(y]2, 0)]. )

While both are valid probabilistic models, the joint formulation is incompatible with the autoregressive
decoding mechanism of LLMs. Hence, we adopt the stepwise formulation in Assumption 3.1. To
validate this assumption, we further conduct an ablation study comparing the stepwise formulation in
Assumption 3.1 with the joint formulation, and report the results in Appendix E.4.4.

Given an input = and a partial output y, for the time step ¢, we have the following three uncertainties:

* Total Uncertainty (TU) is the entropy of random variable y; conditioned on @ and y;:

TU(yely<t, x) = Hp(yily<e, )] = - Zytevp(yt|y<t’w) log p(y|y<e, ), (10)

* Aleatoric Uncertainty (AU) is the expectation of entropy of random variable y; over the
weights @ sampled from the approximate posterior ¢(:|D) as in Eqn. 3:
AU(y¢|y<t, ) £ ]EGNq(-lD) [H[p(}’t|y<t» T 0)]]’ (11)
» Epistemic Uncertainty (EU) is the difference between TU and AU:

EU(yt|ly<t, =) £ TU(yt|ly<t,x) — AU(yi|y<s, ) = Z(ys; 0ly<s, ), (12)

where V is the vocabulary and all the expectations are estimated with BMA.

3.2 TOKEN-LEVEL UNCERTAINTY FOR RESPONSE-LEVEL UNCERTAINTY ESTIMATION

Definition 3.1 (Response-Level Uncertainty). Given the token-level uncertainties U(y+|y<+, )
defined in Eqn. 10-12, we define response-level uncertainty as their cumulative sum across all tokens
in the output sequence:

~ T
Uylz) = thlu(yt|y<t7w)a (13)

where U can denote any of the considered uncertainty measures (TU, AU, or EU in Eqn. 10-12).
Proposition 3.1 (Response-Level Uncertainty as an Unbiased Estimator of Query-Level Un-
certainty). Given an input query x, let y ~ p(y|x) be a generated sample of length T. Then the
response-level uncertainty U (Definition 3.1) is an unbiased estimator of the query-level uncertainty
U (Definition 2.1), i.e.,

Eyp(yla) U (ylz)] = U(y|z). (14)
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Proposition 3.2 (Token-Level and Response-Level Uncertainty). Given an input query x, let
y ~ p(y|x) be a generated sample of length T. Let U(y+|y<+, ) denote the token-level uncertainty

as defined in Eqn. 10-12, withU(y|x) as the corresponding response-level uncertainty (Definition 3.1).
Our token-level uncertainty is equivalent to the response-level uncertainty when T’ = 1:

Ulyi|z) = U(y: ). (15)

The two propositions above provide key connections between Eqn. 13 and existing uncertainty
estimation theory (Malinin & Gales, 2021; Ling et al., 2024). Proposition 3.1 shows that U (y|x) is
an unbiased estimator of the true query-level uncertainty U (y|x), ensuring its statistical consistency
with the ideal formulation. Proposition 3.2 confirms that when the sequence length 7' = 1, e.g.,
single-token prediction tasks such as multiple-choice QA (Yang et al., 2023; Wang et al., 2024), the
estimator exactly recovers the token-level uncertainty, demonstrating structural consistency. These
results support the validity and reliability of our approximation.

Advantages of Token-Level Uncertainty. Compared to Query-Level Uncertainty (Definition 2.1),
token- and response-level uncertainties (i) avoid expensive marginalization over sequences (note
the difference between y; in Eqn. 4 and y., in Eqn. 14) while still (ii) capturing the expected
uncertainty conditioned on the generated output response. Moreover, since U (y:|y<+, ) depends on
the quality of the prefix y, (iii) the estimate retains rich semantic information, making it well-suited
for entropy-based sequential decision-making (Kuhn et al., 2023; Ye et al., 2025) or hallucination
detection (Farquhar et al., 2024; Kossen et al., 2024; Ye et al., 2025) in downstream tasks.

3.3 LOW-RANK WEIGHT PERTURBATION AS APPROXIMATION OF WEIGHT POSTERIOR

Suppose that we have an LLM policy p(y|x). To estimate the uncertainty of its output, we cast
this model into a Bayesian framework by introducing weight perturbations. Due to the established
advantages of efficiency, performance preservation of pre-perturbation model, and effectiveness of
uncertainty estimation (Shi et al., 2024), we adopt a low-rank structure for the noise added to the
model weights. Given a rank-r weight matrix W;, € R™*" of a neural network layer, we first
perform compact Singular Value Decomposition (SVD) (Klema & Laub, 1980):

Wy = U diag(d)V' ", (16)
where d = 0 € R"*! is the vector of singular values, and U € R™*" and V' € R™*" both contain

orthonormal columns, i.e., UTU = VTV = I,. To ensure computational efficiency, we introduce a

low-rank noise matrix € € R™*" whose rank 1/ < 7 is significantly smaller than the rank of weight
matrix, and whose entries are sampled i.i.d. from a Gaussian distribution of standard deviation of
04, which we refer to as perturbation strength, i.e., €;; ~ N'(0,02),¥i € [n], j € [r']. The perturbed
weight matrix is then constructed as

W =W,+U'€", (17)

where the matrix U’ contains the top-r’ columns of U This perturbation transforms the deterministic
W) to a variational low-rank isotropic Gaussian distribution W (Wang et al., 2024; Shi et al., 2024):

q(vec(W)log) = N (vec(W)|pq, Eq),
where  p, = vec(Wy),

18
I (18)

_ 2
Yy=0,1,® [ Omw] .
Let € denote the collection of all perturbed weight matrices across the model. By assuming the
statistical independence among layers, the overall approximate posterior becomes

q(0log) = Hl q(veC(Wi)|Uq). (19)

Utilizing the Approximate Weight Posterior ¢(0|c,). Notably, while we leverage the variational
posterior formulation of Eqn. 19 to quantify uncertainty (detailed in Sec. 3.1), we use only the mean
weights Wy for decoding of each step rather than BMA as in Eqn. 1. This approach allows for a
controlled study of the effects of uncertainty estimation itself, separate from the effects of BNNs. For
the complete algorithmic description and overview, please refer to Appendix B.
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Figure 1: Distribution of TokUR’s Uncertainty Scores and AUROC across Different Difficulty
Levels, applied to L1ama—-3.2-1B-Instruct. Left: TokUR (AU, Ours); Middle: TokUR (TU,
Ours); Right: TokUR (EU, Ours).

4 EXPERIMENTS

This section presents practical applications of our TokUR for LLM reasoning. For additional
experimental results, please refer to Appendix E.

Datasets. We run our experiments on three mathematical reasoning benchmarks of varying difficulty
levels: GSMS8K (Cobbe et al., 2021) (grade-school arithmetic problems), MATHS00 (Lightman et al.,
2023) (challenging high school/college mathematics competition problems), and 5,000-example
subset of DeepScaleR (Luo et al., 2025) (high-difficulty problems from diverse sources). For these
complex math problems, LLMs often need to perform multi-step reasoning (Wei et al., 2022b; Yao
etal., 2023; Zhou et al., 2023) to reach the final answer. These tasks inherently involve long-form
generation, therefore well-suited for evaluation of uncertainty estimation methods.

Models. We use two open-source LLMs in our experiments: L1lama—-3.2-1B-Instruct and
Llama-3.1-8B-Instruct (Grattafiori et al., 2024). These models represent recent advances
in downstream tasks and offer a good balance between performance and efficiency. Besides, their
different model scales enable comparisons of uncertainty estimation across varying model sizes.

Implementation of our TokUR. We estimate token-level uncertainties by applying random pertur-
bations as in Eqn. 17 to the query and key weight matrices (W, W) (Vaswani et al., 2017) in all
the attention layers of LLMs (Hu et al., 2022; Yang et al., 2023; Wang et al., 2024; Shi et al., 2024).
For more details, please refer to Appendix D.1.

4.1 DO ToxkUR’S UNCERTAINTIES ACCURATELY REFLECT RESPONSE QUALITY?

This section assesses if our TokUR’s uncertainties reflect response quality in math reasoning tasks.

4.1.1 TokUR’S UNCERTAINTIES AND QUESTION DIFFICULTY

Experimental Setting. To better understand the relationships among uncertainty estimates, question
difficulty, and their ability to distinguish correct from incorrect responses, we sample a subset of
math questions from math-orz (Hu et al., 2025). A question’s difficulty level is determined by the
number of failed attempts out of 10 when using the Qwen?2 .5-3B-Instruct model. A difficulty
level of 0 means the model solved the question every time, while a level of 10 indicates it failed on
every attempt. We sample 500 questions per difficulty level, yielding a 5,500-question dataset. We
then prompt Llama-3.2-1B-Instruct to solve each question with greedy decoding and apply
TokUR to compute uncertainties for both correct and incorrect responses across difficulty levels.
Fig. | summarizes the results.

Results. TokUR’s uncertainty estimates remain positively correlated with question difficulty: for
all three types of uncertainty (AU, TU, and EU), incorrect responses consistently exhibit higher
uncertainty than correct ones across difficulty levels. In terms of discriminative power, AUROC values
are consistently above random (0.5), confirming that TokUR provides useful signals for distinguishing
correct from incorrect reasoning. Yet, AUROC tends to decrease as difficulty increases, especially
in the mid-to-high range (levels 7-9), showing that uncertainty estimates become less reliable at
separating outcomes on challenging tasks. Interestingly, the AUROC score shows a slight increase at
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Table 1: Performance of Uncertainty Estimation Methods for Incorrect Reasoning Path Detec-
tion. AUROC, AUPRC, and ACC* are all reported as percentage (%). “ISO?” indicates whether
the method utilizes Internal Signal Only for uncertainty estimation. We include the accuracy of CoT
(i.e., greedy decoding with Chain-of-Thought prompting) in the first row for reference. Boldface and
underlining denote the best and the second-best performance, respectively.

MATHS500 GSMSK DeepScaleR
AUROC AUPRC ACC* AUROC AUPRC ACC* AUROC AUPRC ACC*
Llama-3.2-1B-Instruct

- - 25.60-£0.00 - - - -
47.29+381  25.71+233  24.13+442  50.64+444 45.09+072 42.62+016 46.30+021 12.94+023  12.58+049

Method 1SO?

CoT (Lower-Bound) 44.43+0.00 14.25+0.00

SE X

SAR X 44.57+204  24.03+253  21.07+162  50.28+097 43.24+080 43.95+077 43.14+142  12.34+035 11.14+047
Ugee X 48.75+105 25.79+185 25204033 49.05+046 60.02+044 59.62+022 48.68+024 13.77+029 14.23+045
Upeg X 60.57+231 36324259  30.93+094 66.60+036 75.72+036 71.99+039 56.88+054 18.04+063 16.50+039
P(True) v 54.38+120 26394126  27.60+1.18  56.64+004 48224003 48.92+000 59.58+043 17.48+025 17.52+050
LLM-Check v 56.41+096 27.01+122 31.33+£129 71.01+002 61.29+008 59.54+000 55.76+048 14.55+026 17.30+051
INSIDE 4 55.71+469 28.82+405 29.20+433 53.66+092 46.03+023 45.79+125 54.73+082 15.50+048 16.30+03s
PE 4 57.08+089 26.88+105 31.33+t082 71.21+003 61.61+008 59.85+t000 56.09+046 14.74x+023 17.331092
LL v 55.41+054 25884087 29.87+082 69.01+003 58.51+009 57.38+000 53.84+047 13.93+023 16.83+048
Self-Certainty 4 71.17+030 48.37+0s50 38.13+061 73.41+000 68.38+000 61.38+000 71.93+004 33.81+008 21.76+0.04
DeepConf v 71.77+0.12  46.00+042 39.87+046 75.70+000 69.72+000 62.77+000 71.65+004 29.99+005 22.00+0.04
TokUR (TU, Ours) v 80.64+029 56.79+074 44.67+046 75.07+005 70.29+007 62311000 83.55+002 47.56+004 25.71+0.02
TokUR (AU, Ours) v 80.61+027 56.73+075 44.67+046 75.03+006 70.22+005 62.21+0.18 83.52+002 47.48+005 25.71+0.02
TokUR (EU, Ours) v 79.74+021  56.64+041 44.134+083 71.79+080 66.40+1.02 59.74+100 82.87+032 46.76+038 25.52+0.11

Llama-3.1-8B-Instruct

CoT (Lower-Bound) - - - 48.60+0.00 - - 85.69+0.00 - - 24.86+0.00
SE X 62.93+090 55214104 55.73+083 55.61+336 87.16+1.14  86.77+101  67.68+094 35.18+1.00 35.55+037
SAR X 69.42+2.19  63.74+3.03  59.20+106 60.16+222 89.24+074 87.99x081 73.01+028 42.89+065 37.51+0.12
Ukece X 50.23+223  49.48+244 49.60+204 47474215 84.69+080 84.87+1.17 50.16+066 25.08+0.18 25.48+053
Upeg X 58.62+036  57.69+090 53.47+164 67224106 92.24+053 92.62+088 59.14+037 32.64+043 29.75+036
P(True) v 33.41+025 36.05+055 35.33+019 41.94+001 82.19+000 82.77+000 33.64+020 18.06+006 16.23+0.02
LLM-Check 4 57.41+044  49.69+107 52.80+138 7398001 93.37+001 93231000 55421027 26.46+019 28.37+040
INSIDE v 62.94+172 55.0643.19 57.33+101 58.86+2.11  87.44+094 88.21+090 67.05+049 33.83+042 34.13+0.10
PE v 57.98+049 49.72+084 53.07+094 74.03x001 93.37+000 93.23+000 55.90+023 26.80+0.16 28.65+0.22
LL 4 55.36+049 47.24+090 51.07+094 7221+002 92.64+000 92.46+000 52.82+032 24.48+013 26.85+0.19
Self-Certainty v 76.41+061 76224087 69.07+083 80.60+0.11  95.65+003 96.26+0.09 76.72+009 56.15+030 39.03+0.23
DeepConf v 71.86+070 69.57+094 66.27+1.15 83.30+0.07 96.23+002 96.56+0.09 73.05+008 48.76+0.10 37.48+0.14
TokUR (TU, Ours) v 82.47+047 79.62+033 74.00+0.69 81.01+004 95.53+005 95.54+000 85.33+0.07 65.25+001 43.91+0.09
TokUR (AU, Ours) v 82.43+048 79.56+035 74.00+069 80.97+002 95.524003 95.49+009 85.314007 65.20+002 43.89+0.08
TokUR (EU, Ours) v 82.86+0.42 81.35+066 72.40+120 7831+158 94.91+059 94.67+077 84.92+028 65.57+043 43.89+027

the highest difficulty level (10). This is likely a result of the imbalanced data distribution (mostly
incorrect), where the model consistently produces high uncertainty, which causes a misleading high
metric value.

4.1.2 ToXKUR FOR INCORRECT REASONING PATH DETECTION

Experimental Setting. The preliminary study demonstrates that our TokUR’s uncertainty esti-
mation can reflect the quality of generated responses, with lower uncertainty generally associated
with better outputs. One important application of uncertainty estimation is hallucination detection in
LLMs (Farquhar et al., 2024; Kossen et al., 2024; Ye et al., 2025). In this context, we treat uncertainty
as a scoring function to identify hallucinated (incorrect) responses for long-form reasoning tasks.
We adopt three metrics: Area Under the Receiver Operating Characteristic Curve (AUROC), Area
Under the Precision-Recall Curve (AUPRC), and Top-50% ACC (ACC#*) (Farquhar et al., 2024;
Ye et al., 2025; Hanley & McNeil, 1982; Boyd et al., 2013). AUROC and AUPRC measure the
overall power of uncertainty scores in distinguishing correct from incorrect responses. In addition, we
report Top-50% ACC, defined as the accuracy of the top 50% samples ranked by the corresponding
score. This metric reflects the model’s ability to prioritize higher-quality generations under a fixed
budget. We repeat the experiments with three different random seeds to obtain the mean and standard
deviation across runs.

Baselines. We systematically categorize our baselines into two distinct types: (i) those relying
solely on the LLM’s internal signals, including the most recent Self-Certainty (Kang et al., 2025),
Deep Think With Confidence (DeepConf) (Fu et al., 2025), LLM-Check (Sriramanan et al., 2024),
Degree Matrix (Uge and Upeg) (Lin et al., 2023), and INternal States for hallucInation DEtec-
tion (INSIDE) (Chen et al., 2024a), as well as classic P(True) (Kadavath et al., 2022), Predictive
Entropy (PE) (Malinin & Gales, 2021), Log-Likelihood (LL) (Murray & Chiang, 2018), and (ii)
those leveraging external signals, such as an auxiliary Natural Language Inference model (He et al.,
2020): Semantic Entropy (SE) (Kuhn et al., 2023), and Shifting Attention to Relevance (SAR) (Duan
et al.,, 2024). Note that, apart from the five baselines with underlines (Kang et al., 2025; Fu et al.,
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Table 2: Performance of Uncertainty Estimation Methods for Test-Time Scaling. Boldface and
underlining denote the best and the second-best performance, respectively.

Dataset Score Method Llama-3.2-1B-Instruct Llama-3.1-8B-Instruct
N=16 N=64 N=256 N=16 N=64 N=256
LL Maj@N  47.10+o08s S54.11+052 58.89+036 86.74+062 90.48+048  91.01+028

WBoN 47.10+085  54.15+055 58.92+037 86.74+062  90.48+049  91.00+0.29

Maj@N  45.02+092 52.61+072  57.18+053  80.02+070 87.25+049  90.05+0.40
WBoN 45.02+092  52.65+070  57.22+054  80.02+070  87.25x050  90.05+0.41

Maj@N  46.72+089  53.50+066 58.05+044  86.24+066 90.34+046  90.92+0.28
WBoN 46.72+080  53.47+065  58.10+045  86.24+066 90.32+046  91.02+0.00

Maj@N  50.29+103  57.184045 60.68+049  87.68+057 90.67+045  90.96+0.36
WBoN 50.29+1.03  57.22+045  60.71+049  87.68+057  90.65+046  90.98+0.37

Maj@N  50.20+098 57.21+046 60.70x041  87.42+066 90.60+044  90.99+032
WBoN 50.204+098  57.19+044  60.78+042  87.42+066 90.57+043  91.02+0.00

Maj@N  50.38+092 56.92+060 59.88+052  88.06+057  90.69+047 91.07+033
WBoN 50.38+092  56.89+054 5991058  88.06+057  90.67+048  91.09+0.36

Maj@N  26.42+0s84  33.28+097 38.56+075 50.92+177  59.36+074  64.10+0.61

Self-Certainty

GSMSK DeepConf
(Pass@1: 44.43 / 85.69)

TokUR (TU, Ours)

TokUR (AU, Ours)

TokUR (EU, Ours)

LL WBoN 26.42+084  33.30+110  38.58+073 50.92+177  59.46+078  64.02+071

Self-Certaint Maj@N  20.14+1.14  29.12+1.11 36.68+083  44.00+1.82  55.56+1.08 62.66+075

y WBoN 20.14+114  29.16+099  36.80+080 44.00+182  55.58+1.06  62.52+0.53

MATHS00 DeepConf Maj@N  25.68+138 33.30+110 38.52+043 49.88+129 59.74+117  64.30+0.63

WBoN 25.68+138 32.44+120 37.08+078  49.88+120 58.22+100 63.14+055

Maj@N  27.06+094 33.76+084 39.18+070 51.26+136 59.44+131  63.86+0.44
WBoN 27.06+094  33.60+082  39.20+065 51.26+136 59.44+130 63.84+051

Maj@N  27.06+091 33.64+076 39.12+072  51.16+145 59.42+116  64.00+0.44
WBoN 27.06+091  33.48+073  39.10+069 51.16+145 59.44+119  63.92+047

Maj@N  28.28+132 35.44+079  39.44+088 52.40+139  60.90+093  65.32+0.80
WBoN 28.28+132  35.44x078  39.38+087 52.40+139  61.04:088  65.48+0.75

(Pass@1: 25.60 / 48.60)

TokUR (TU, Ours)

TokUR (AU, Ours)

TokUR (EU, Ours)

2025; Kadavath et al., 2022; Malinin & Gales, 2021; Murray & Chiang, 2018), the others were
originally designed for query-level de-hallucination in short-form QA tasks and are therefore not
directly comparable to TokUR; we include them for completeness (see Appendix D.4 for details).

Results. As shown in Table 1, our proposed TokUR consistently outperforms baselines across AU-
ROC, AUPRC, and ACC*. For example, on L1ama—-3.2-1B-Instruct, TokUR (TU) achieves
an AUROC of 80.64% and an AUPRC of 56.79% on MATHS500, clearly surpassing all baselines.
On the larger L1ama—-3.1-8B-Instruct, the improvements are also substantial: TokUR (EU)
attains 82.86% AUROC and 81.35% AUPRC on MATHS500, establishing new state-of-the-art per-
formance. These results highlight an important insight: TokUR provides a reliable and scalable
uncertainty estimation framework, achieving strong performance without relying on external signals.

4.2 CAN TokUR’S UNCERTAINTIES IMPROVE GENERATION QUALITY?

In this section, we explore the direct application of TokUR to reasoning tasks to enhance generation
quality. Following previous works (Fu et al., 2025), we apply TokUR to measure the confidence of
reasoning traces generated from a question and aggregate them via voting to obtain a final solution.
In addition, we investigate the possibility of utilizing TokUR in an online manner to dynamically
guide the generation process itself. Further details of online method are provided in E.3.

Baselines. We adopt Log-Likelihood (LL) as a baseline, given its widespread use as a proxy for
generation quality (Manakul et al., 2023; Rafailov et al., 2023; Chen et al., 2024b). In addition, we
compare against Self-Certainty (Kang et al., 2025) and DeepConf (Fu et al., 2025), two recent
uncertainty-driven approaches for test-time scaling. As our study emphasizes model self-awareness of
the boundaries of its knowledge, we do not include baselines that rely on external reward models (Guan
et al., 2025; Puri et al., 2025; Beeching et al.; Uesato et al., 2022; Lightman et al., 2023).

Response Aggregation with Uncertainties. We first rank all N candidate responses using one of
the scoring methods (LL, Self-Certainty, DeepConf, or TokUR) and retain the top-P% candidates.
We then employ two common aggregation strategies: Weighted Best-of-N (WBoN) and Majority
Voting (Maj@N) (Brown et al., 2024). WBoN performs weighted voting by assigning weights to
the retained candidates according to their scores, whereas Maj@N simply selects the most frequent
response among them, regardless of scoring.

Experimental Setting. We randomly sample 512 responses for each question in MATH500 and
GSMBSK with a decoding temperature of 7 = 0.8. For each NV, we first retain the top-10% of samples
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ranked by their scores. From this subset, the final prediction is determined using either Maj@N or
WBoN. Each experiment is repeated 10 times (sample w/o replacement using offline records).

Results. As shown in Table 2, accuracy consistently improves with larger N across both GSM8K
and MATHS500. Our TokUR-based selection methods achieve clear gains over all baselines, particu-
larly in the low-sample regime (IN=16), where they deliver up to 3—4 points of improvement. Notably,
TokUR (EU) attains the best overall performance on both datasets, with strong advantages in the
challenging MATHS500 benchmark. In addition, results for Maj@N and WBoN are similar, indicating
that both aggregation strategies are similarly effective once the top candidates are identified.

5 RELATED WORK

Uncertainty Estimation of LLMs. Uncertainty estimation in LLMs is gaining traction for im-
proving model calibration in data-scarce adaptation tasks and for reducing hallucinations in text
generation (Liu et al., 2025; Vashurin et al., 2025). One prominent approach is Bayesian Adap-
tation, which combines Bayesian inference with low-rank adaptation (LoRA) (Hu et al., 2022) to
approximate weight posterior distributions efficiently, avoiding the high computational cost of full
Bayesian modeling (Yang et al., 2023; Wang et al., 2024; Shi et al., 2024). To estimate uncertainty
in generation, two main lines of work have emerged. The first focuses on verbalized uncertainty,
where models are prompted to express confidence in natural language (Lin et al., 2022; Kadavath
et al., 2022; Tian et al., 2023; Kapoor et al., 2024). The second line includes logits-based meth-
ods, which estimate uncertainty directly from the model’s output distributions (Van Der Poel et al.,
2022; Ren et al., 2023; Duan et al., 2024; Darrin et al., 2023). In parallel, other approaches aim
to refine these estimation strategies. For instance, (Malinin & Gales, 2021) investigates techniques
for estimating epistemic uncertainty in structured prediction tasks, while semantic entropy (Kuhn
et al., 2023) captures uncertainty by leveraging invariance in meaning across paraphrases. More
recently, (Zhang & Zhang, 2025) introduces a method that leverages the reasoning capabilities of
LLM:s to enhance uncertainty quantification, using chain-of-thought prompting to better reflect model
confidence in multi-step tasks. These works complement verbalized and logits-based methods by
offering orthogonal perspectives on how uncertainty can be interpreted and measured.

Uncertainty for Improving LLM Generation. Uncertainty estimation for improving LLM genera-
tion, while not entirely novel, has been predominantly limited to approaches based on log-probability
or its variants, Self-Certainty (Kang et al., 2025) estimates confidence via KL divergence from a
uniform distribution, DeepConf (Fu et al., 2025) aggregates top-K log-probabilities as scores. Beam
search (Lowerre, 1976; Sutskever et al., 2014; Freitag & Al-Onaizan, 2017; Xie et al., 2023) selects
higher-confidence sequences by retaining candidates with the largest cumulative log-probability.
UAG (Yin et al., 2024) leverages abrupt log-probability changes to select appropriate demonstrations
for in-context learning (Brown et al., 2020). UnCert-CoT (Zhu et al., 2025) alternates between greedy
and Chain-of-Thought decoding based on log-probability scores. Our work differs fundamentally by
estimating token-level uncertainties with rigorous theoretical foundations, representing a significant
step toward extending Bayesian LLMs to long-form generation scenarios.

6 CONCLUSION

In this paper, we introduce a novel framework TokUR to quantify uncertainty in LLM reasoning
generations. By incorporating low-rank random weight perturbation during the LLM decoding
procedure, TokUR provides a new perspective for uncertainty estimation in auto-regressive long-
form generation with sound theoretical grounding. Through comprehensive empirical evaluation,
we demonstrate that TokUR’s uncertainty estimations effectively reflect the quality of generated
reasoning paths and can thereby improve reasoning performance in LLMs. These contributions extend
Bayesian uncertainty estimation to long-form reasoning, providing both theoretical foundations and
practical tools for more reliable, self-aware LLMs.

Limitations. Our work is subject to several limitations. First, although compatible with efficient
deployment frameworks such as vVLLM (Kwon et al., 2023), repeated weight perturbation sampling
during inference still poses efficiency challenges for real-time use. Second, our token-level uncertainty
aggregation may miss higher-level semantic or logical inconsistencies across multiple tokens or
reasoning steps, limiting its utility in complex generation tasks. Finally, the problem of high-variance
estimation in our TokUR remains unresolved, constraining reliability in real-world scenarios.
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APPENDIX

In Appendix A, we describe the role of large language models (LLMs) in our work. In Appendix B,
we present the full algorithmic description of our method with low-rank weight perturbation. In Ap-
pendix C, we provide detailed proofs for all propositions presented in the main paper. In Appendix D,
we provide our implementation details of the experiments, including:

* implementation of our TokUR (Appendix D.1),

dataset details (Appendix D.2),

prompt templates used in LLM reasoning (Appendix D.3),
baseline details (Appendix D.4),

and evaluation metrics (Appendix D.5).

Finally, in Appendix E, we present additional empirical results, including:

* preliminary study on the uncertainty distributions produced by TokUR (Appendix E.1),

* detailed numerical results of the test-time scaling (Appendix E.2),

* online test-time scaling of TokUR (Appendix E.3),

* an ablation study on different components of our token-level uncertainties (Appendix E.4),
* and a case study of our token-level uncertainties (Appendix E.5).

A LLM USAGE DISCLOSURE

We used large language models (LLMs) solely to assist with polishing the writing of this paper, includ-
ing improving grammar, clarity, and readability. The LLMs did not contribute to research ideation,
experimental design, analysis, or the generation of scientific content. All technical contributions,
claims, and conclusions are the authors’ own.

B ALGORITHM DETAILS

Algorithm 1 Low-Rank Weight Perturbation as Approximation of Weight Posterior.

1: Input

2: The base model policy p(y|x);

3:  The set of weight matrices to be Bayesianized { W[} ;

4 rank of noise matrix r’;

5 The perturbation strength o.

6: fori =1to N do

7 U,diag(d),V'" < SVD(W{). > Eqn. 16
8: U’ « the first 7’ columns of matrix U.

9: Sample noise matrix € € R"*" : ¢;; ~ N(0, 0y).
10:  Perturb the weight matrix: W* «+ Wk + U’e’. > Eqn. 17
11: Get the weight posterior: g(vec(WF)|a,). > Eqn. 18
12: end for

13: Output: The overall approximate posterior: ¢(8|0,) < [, g(vec(W*)|o,)

C PROOF OF PROPOSITIONS

Lemma C.1 (Definition of Conditional Entropy (Cover, 1999)). Give (y,x) ~ p(y,x), the
conditional entropy H(y|x) is defined as

H(ylx) = > plx)H(ylz)
xeX (20)

= ]E:nwp(x) [’H(y|w)]
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Algorithm 2 Particle Filtering for Inference-Time Scaling (Puri et al., 2025)

1: Input

The number of particles NV;
A reward model 7

A LLM pjs and a prompt c.

- Initialize N particles {z¢ ~ pps(-|e)} Y.

3

4

5

6: t+ 1.
7. while not all particles stop do

8 Update rewards w = {r(:zrglg) 7'(:1:1 t)) r(xﬂ))}
9: Compute softmax distribution 8 = softmax(

10:  Sample indices {j\"}¥, ~ P,(j = i) = 6;.

11: Update the set of particles as {I(J ) N

12: Transition {zi,, ~ pa (e, 2)}Y,.

13: t—t+1
14: end while
15: Output: The set of particles in the end.

Lemma C.2 (Chain rule of Conditional Entropy (Cover, 1999)). Let X and'Y be two random
variables, then the conditional entropy of the joint distribution H(X,Y") can be decomposed as:

H(X,Y) =H(X)+H(Y|X) 1)

Lemma C.1 (Cover, 1999) reveals the relationship between conditional entropy H(y|x) and the
entropy derived from conditional probability distributions. Lemma C.2 lays the foundation for
estimating the uncertainties of sequences. The two lemmas together give us the following proposition.
Proposition C.1 (Decomposition of Query-Level Uncertainty, Eqn. 4). Suppose that we have
an input sequence x and a model policy p(y|x). The sequence-level uncertainty U(y|x) can be
decomposed token-by-token as:

U(yla) = Z Ulyily<i, @), (22)
where U(yi|Y<t, @) is token-level uncertainty metric as defined in Eqn. 10 ~ Egn. 12.

Proof. For Aleatoric Uncertainty (AU) and Total Uncertainty (TU) defined in Eqn. 10 and Eqn. 11,
both are expressed in terms of entropy. Therefore, the decomposition of sequence-level uncertainty
can be directly derived using the chain rule stated in the Lemma C.2.

For Epistemic Uncertainty (EU), also called mutual information defined in Eqn. 12, we proceed with
the following derivation:

H(p(y|e)) =H (Epo) [p(v1]2:0)] - - Eporo)[p(yrly<r, @: 0)]) 23)
T
:ZH(EP(GID)LP(yt|Y<t7w;9)]) (24)
t
T
:ZI(Yt;9|Y<t7 +Z]Ep(0|73 (p(yely<t, x;6))] (25)
t
T
=Y " Z(yt;0ly<t, ) + Eporp)H(p(ylz; 0)) (26)

t
Finally, based on the definition of mutual information, we obtain:

I(y; 0lx) = H(p(y|z)) — Epoip)H(p(y|x; 0))
T

=> Z(yi0ly<s, ) 27)

t
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Proposition 3.1 (Response-Level Uncertainty as an Unbiased Estimator of Query-Level Un-
certainty). Given an input query x, let y ~ p(y|x) be a generated sample of length T. Then the

response-level uncertainty U (Definition 3.1) is an unbiased estimator of the query-level uncertainty
U (Definition 2.1), i.e.,

Proof. Based on Lemma C.1, for the token-level uncertainty U(y:|y<¢, ) defined in
Eqn. 10~Eqn. 12, we have

Ey_omp( o) UYeYy<e, @)] = Z P(Y<ie|®)U(yely<:, ) (29)
Y<t€Y
=U(yily<t, ). (30)
Therefore, the uncertainty of the sequence defined in Eqn. 13:
~ T
Eyeniyla) UY[2)] = Epypo D, Uyily<r, )] (31)
T
= By Uyily<:, )] (32)
t=1
T
= Z By imp( o) [U(yely<t, ©)] (33)
t=1
T
= ZU(Yt|Y<t7w) (34)
t=1
=U(ylz), (35)
where the final step follows from the chain rule of entropy (Proposition C.1). O

Proposition 3.2 (Token-Level and Response-Level Uncertainty). Given an input query x, let
y ~ p(y|x) be a generated sample of length T. Let U(y+|y<+, ) denote the token-level uncertainty

as defined in Eqn. 10-12, withU(y|x) as the corresponding response-level uncertainty (Definition 3.1).
Our token-level uncertainty is equivalent to the response-level uncertainty when T’ = 1:

U(ylz) = Uly:|z). (36)

Proof. When the sequence length T = 1, based on the definition of uncertainty of sequence in
Eqn. 13, we have

T
Uylx) =Y Ulyily<t, ) = Ulyi|).

t=1

This proposition implies that the sequence uncertainty collapses to token-level uncertainty when the
output sequence length is 1, reflecting the structural consistency of the estimator. O

Proposition C.2 (Approximate Distribution of the Weight W Perturbed by Low-Rank Noise,
Eqn. 18). Given the weight matrix Wy € R™*"™, the low-rank noise matrix € € R™ " whose rank
r’ & r is significantly smaller than the rank r of Wy, and whose entries are sampled i.i.d. from a
Gaussian distribution of standard deviation of 04: €;; ~ N(0,02),Vi € [n],j € ['], we have the
perturbed weighted matrix W as defined in Eqn. 17 . The variational distribution g(vec(W)|oy)
defined on the weight matrix W is

q(vec(W)loy) = N(vec(W)|pg, Zy),
where g, = vec(Wy),

(37)
Eq = UgIn & |:IT/ 0. /:| .
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Proof. We begin with compact SVD decomposition of the weight matrix W), as described in Eqn. 16:
Wy = Udiag(d)V T, (38)

where d = 0 € R"*! is the vector of singular values, and U € R™*", V € R™*" are orthogonal

matrices. We denote the first 7 columns of U as U’ € R™*" to analyze the updated matrix U’e "
in Eqn. 17.

Since each entry in € has zero mean, it is evident that the updated matrix also has zero mean.
Consequently, we have p, = vec(Wp) + 0 = vec(Wp).

Next, we focus on the proof of the variance X,. Gien U’ = (uq,ug, - ,u) € R™*"" and
€= (€1, €, ,€) € R as defined above, we have the following properties:
Ut = ZuuT — | (39)
i=1 o Om—r]”
vec(U'e") = vec(z ue] ) = Z(ei ® u;). (40)
i=1 i=1

We can now derive the covariance matrix as:

3, = Var[vec(W)] = Var[vec(W, + U’e")] = Var[vec(U’e")] 41)
= Var[z € ui] = Z Var[ei ® ul] 42)
i=1 i=1
= Z {Eei [(€; @ u;)(e; ® ’Uq)T] — Ee,[(6; @ u;)|Ee,[(€; ® ui)T]} (43)
i=1
= {Ec[e€]]® (ww]) — (B, [e]Be 6] ) @ (win])} (44)
i=1
i=1 i=1
O

D IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION OF TokUR’S TOKEN-LEVEL UNCERTAINTIES

Unless otherwise specified, we set the rank of low-rank noise to r’ = 8, the perturbation strength
04 = 0.1, and the number of samples per uncertainty estimation to A/ = 2. For the test-time scaling
experiments in Sec. 4.2, we apply length normalization to TokUR to mitigate the bias introduced by
varying sequence lengths. In contrast, the effect of length normalization may differ in hallucination
detection tasks. To investigate this, we conduct additional ablation studies in Appendix E.4.3,
examining the impact of length normalization in that setting. To ensure practical applicability in
real-world scenarios, we implement our method as a seamless integration with vLLM (Kwon et al.,
2023).

D.2 DATASETS

Table 3 shows the statistics of datasets in our experiments. These datasets collectively span a wide
range of difficulty levels, from moderate to highly challenging, covering both elementary-level
numerical reasoning and advanced symbolic mathematical tasks. In addition, the problem domains
are diverse, including: algebra, geometry, and number theory. Such a design ensures that our
experiments are comprehensive and representative, facilitating a thorough assessment of the model’s
capability across varied reasoning scenarios.
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Table 3: Statistics of the datasets used in our experiments.

Dataset Samples Used Split Task Type Language Level
GSMS8K 1,300 Training split Mathematical Reasoning ~ English Moderate
MATHS00 500 Full set Mathematical Reasoning English Difficult
DeepScaleR 5,000 First 5,000 samples Mathematical Reasoning ~ English ~ Highly Challenging

D.3 PROMPT TEMPLATES
In this work, we use the following prompts published by Meta .
Solve the following math problem efficiently and clearly:

-For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

-For complex problems (3 steps or more):
Use this step-by-step format:

## Step 1: [Concise description]
[Brief explanation and calculations]

## Step 2: [Concise description]
[Brief explanation and calculations]

Regardless of the approach, always conclude with:

Therefore, the final answer is: [ answer | T hope it is correct.
Where [answer] is just the final number or expression that solves the problem.

D.4 BASELINES

We compare our uncertainty estimation approach against several baseline methods:

* Log-Likelihood (LL) ( , ): Mean of token-wise log-probabilities of
the output sequence, representing the model’s overall confidence in its generation.

* Predictive Entropy (PE) ( , ): Mean entropy of the predicted distribu-
tion of each token.

e P(True) ( , ): Directly queries the model about the correctness of its own

output and uses the predicted probability of the token “True”, normalized by the sum of
probabilities of token “True” and “False”, as a confidence score.

¢ Self-Certainty ( , ): Quantifies confidence using the KL divergence between
the predicted token distribution and a uniform distribution over the vocabulary at each
decoding step.

* DeepConf ( , ): Computes confidence scores by aggregating the log-probabilities
of the top-K candidate tokens at each decoding step.

* The Degree Matrix ( , ): Utilizes the degree matrix of the graph Laplacian of
the similarities matrix of responses.

* LLM-Check ( , ): We faithfully reproduced the official implementation
for comparison.

» INSIDE ( , ): INSIDE is a method to estimate query-level uncertainty. We

tailored INSIDE to our setting by asking the LLM to verify the same response multiple
times and then calculating the semantic entropy across these verification attempts.

Zhttps://huggingface.co/datasets/meta-llama/Llama-3.2-1B-Instruct-evals
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* Semantic Entropy (SE) (Kuhn et al., 2023): We adapted SE to our setting by prompting
the LLM to verify the same response multiple times and computing the semantic entropy of
these verification attempts. While this provides a signal of response quality, we note that SE
requires an external NLI or embedding model, giving it an inherent advantage compared to
our method.

* SAR (Duan et al., 2024): We adapted SAR to our setting by computing sentence-level SAR
scores over multiple verification attempts, following a similar procedure to SE. While this
method provides a meaningful proxy for uncertainty, it requires an external semantic
similarity model, which raises fairness concerns compared to our approach, which operates
solely with the base LLM.

D.5 EVALUATION PARSING AND METRICS

Parsing. To automate the evaluation of outputs generated by large language models, we design
specific prompts (see Appendix D.3) that constrain the model to follow a fixed structure and require
it to place the final answer within a \box { }. Considering that in mathematical reasoning tasks, the
same answer can be expressed in various forms, we standardize all answers into a canonical form
before comparison (Beeching et al.). During the evaluation, we assess the correctness from two
perspectives: numerical equality and symbolic equality, to label each generation as “True” or “False”.

Metrics. To comprehensively assess model performance in binary classification tasks, we adopt
the following metrics: Area Under the Receiver Operating Characteristic Curve (AUROC), Area
Under the Precision-Recall Curve (AUPRC), and Top 50% Accuracy (Farquhar et al., 2024; Ye et al.,
2025; Hanley & McNeil, 1982; Boyd et al., 2013).

* AUROC measures the trade-off between true positive rate (TPR) and false positive rate
(FPR) at various threshold settings. Formally, for a set of predictions with associated
confidence scores, AUROC is computed as:

1
AUROC = / TPR(FPR™*(z)) dx, (46)
0

where TPR and FPR are defined as:

_ _ TP _ _FpP
TPR = TP+4-FN’ FPR = FP4+TN "

» AUPRC evaluates the trade-off between precision and recall, which is particularly useful in
imbalanced datasets. It is calculated as:

1
AUPRC = / Precision(Recall ! (z)) dz, 47)
0
where precision and recall are defined as:
Precision = i,  Recall = ol

* Top 50% Accuracy evaluates the correctness of the top half predictions ranked by confi-
dence. Let N be the total number of predictions and S be the set of indices corresponding
to the top [ N/2] predictions with highest confidence. The metric is defined as:

Top 50% Accuracy = |%| Z 8(7; = yi), (48)
ics

where 7; is the predicted label and y; is the ground-truth label.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 PRELIMINARY STUDY: DISTRIBUTION OF UNCERTAINTIES
We conduct a preliminary study to examine the relationship between responses’ token-level uncer-

tainties and their correctness. We generate responses on the GSM8K dataset using a greedy decoding
strategy with Llama-3.2-1B-Instruct, and label each response as correct or incorrect based
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on an exact match with the ground-truth answer. Considering the class imbalance in the model
responses, we construct a balanced subset for visualization. Specifically, we retain all incorrect
responses and randomly sample an equal number of correct responses. We compute the TokUR
(EU) and TokUR (AU) with our proposed token-level uncertainties in Eqn. 13, and plot the
results in the Normalized EU-AU space (Fig. 3). We observe that both TokUR (EU) and TokUR
(AU) show a better-than-chance separation between correct and incorrect outputs. Although some
overlap exists, their distribution peaks differ significantly, indicating that our uncertainty estimates
meaningfully correlate with generation quality.

GSM8K MATH500

v o @
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Figure 2: Performance on GSM8K (Left) and MATHS00 (Right) when scaling up sample size
N at test time of Llama—-3.2-1B-Instruct. Our TokUR (AU, EU, and TU) consistently
outperforms the LL baseline, particularly when N is small. Please refer to Table 4 for detailed
numerical results.

E.2 TEST-TIME SCALING VIA UNCERTAINTY ESTIMATION

We provide an additional visualization of the test-time scaling results in Fig. 2 . While the
complete numerical results are reported in Table 2, this new figure offers an intuitive view of how
accuracy improves with increasing numbers of test-time samples (N € 16,32, 64,128,256, 512).
All experiments use Llama-3.2-1B-Instruct as the base model. For reference, the Pass@ 1
baseline accuracy (GSM8K: 44.43%; MATHS500: 25.60%) is also shown as red dashed lines, high-
lighting the gains achieved through test-time scaling. Moreover, we provide an extended version of
the results in Table 4, which builds on Table 2 to include additional test-time sample configurations.

E.3 ToxUR FOR TEST-TIME SCALING (ONLINE)

One popular approach to improving model performance uses a Process Reward Model (PRM) to score
each intermediate step during multi-step generation (Guan et al., 2025; Puri et al., 2025; Beeching
et al.; Uesato et al., 2022; Lightman et al., 2023), thereby guiding the model’s reasoning path. In this
section, we explore an alternative: guiding the generation process using uncertainty as an intrinsic
reward, without relying on an explicit reward model.

Experimental Setting. Particle Filtering (PF) (Puri et al., 2025) is an inference-time scaling method
for LLM reasoning (details in Appendix B). Building upon this algorithm, we use uncertainty as the
score for each particle at each step to guide the model’s generation process. We set the number of
particles to N = 16 and the decoding temperature to 7 = 0.8. We repeat the experiments with three
different random seeds to obtain the mean and standard deviation across runs.

Results. Table 5 shows the results. Compared to LL, our TokUR, especially TokUR (EU), yields
a slight performance gain. Given that guiding generation through stepwise scoring is inherently
challenging, we consider the lack of a significant performance gain from uncertainty estimation to be
acceptable. Nevertheless, we believe this experiment offers valuable insights that may inform the
future design of process reward models.
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Figure 3: Distribution of responses from GSM8K (Cobbe et al., 2021) plotted in the Length Normal-
ized EU-AU uncertainty space, as quantified by our token-level uncertainty metrics (Eqn. 13).

Table 5: TokUR as Implicit Reward for Test-Time Scaling (Online), on MATHS500.

Intrinsic Reward BoN WBoN

LL 26.27+0.25 26.27+0.41
TokUR (TU, Ours) 27.93+0.25 28.13+038
TokUR (AU, Ours) 25.20+0.99 25.13+0.74
TokUR (EU, Ours) 28.93+0.08 29.20+0.98

E.4 ABLATION STUDY

This section presents an ablation study on our token-level uncertainty estimation method using
low-rank perturbations. Appendix E.4.1 examines the effect of varying perturbation strength oy,
while Appendix E.4.2 analyzes the impact of different decoding temperatures. In Appendix E.4.3, we
investigate the effect of length normalization in the context of hallucination detection tasks. Finally,
in Appendix E.4.4, we assess the validity of Assumption 3.1 as it pertains to TokUR.

E.4.1 THE EFFECT OF PERTURBATION STRENGTH ¢4 ON UNCERTAINTY ESTIMATION

To investigate the impact of perturbation strength on uncertainty estimation, we conducted a series
of experiments under varying o, settings, as shown in Fig. 4. First, we computed the average
uncertainty estimates (TU, AU, and EU) on samples generated from the GSM8K test dataset using
Llama-3.2-1B-Instruct. As illustrated in Fig. 4 Left, the model’s uncertainty increases
steadily with higher perturbation strength. However, once o, exceeds a critical threshold (e.g., 0.2), a
sharp rise in uncertainty is observed. This rise illustrates that the current approximate distribution of
the weights has deviated too far from the pre-trained point estimation of the parameters, leading to
unreliable uncertainty estimates.

We further evaluate the effect of perturbation strength on downstream task performance.
Specifically, we assess how effectively the uncertainty estimates, obtained under different o, values,
can be used as scoring signals to distinguish between correct and incorrect samples, as described in
Sec. 4.1.2. As shown in Fig. 4 Right, for TokUR (EU), too small o, does not lead to meaningful
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Table 4: Test-Time Scaling for GSM8K and MATHS500. Performance comparison of different
methods with varying numbers of test-time samples (N = 16 to 512) using Llama-3.2-1B-Instruct as
the base model. Methods evaluated include log-likelihood (LLL) and three variants of TokUR (TU,
AU and EU) with both Maj@N and WBoN strategies. Boldface and underlining denote the best and
the second-best performance, respectively.

Number of Samples N
N=16 N=32 N=64 N=128 N=256 N=512
Llama-3.2-1B-Instruct

Maj@N  47.10+085  50.45+064  S54.11+052  56.77+040  58.89+036  59.72+0.00
WBoN 47.10+085  50.45+064  54.15+055  56.72+042 58924037  59.81+0.00

Maj@N  45.02+092  48.97+081  52.61+072 55224067  57.18+053  58.03x0.00
WBoN 45.02+092  48.97+081  52.65+070  55.30+064  57.22+054  58.10+0.00

DeepConf Maj@N  46.72+089  50.12+071  53.50+066  56.10+052  58.05+044  58.97+0.00
GSMSK cept-o WBON 4672089  50.12+071  5347+065  56.08+049  58.10:045  59.05+0.00

(Pass@1: 44.43) -
Maj@N  50.29+1.03  53.72+077  57.18+045  59.10x060  60.68+049  61.23+0.00
WBoN 50.29+1.03  53.72+077  57.22+045  59.21+066 60.71+049  61.31+0.00

Maj@N  50.20+098  53.77+090  57.21+046  58.99+061  60.70+041  61.38+0.00
WBoON 50.20+098  53.77+090  57.19+044  59.13+067  60.78+042  61.31+0.00

Maj@N  50.38+092  52.98+067  56.92+060  58.77+038  59.88+052  60.69+0.00
WBoN 50.38+092  52.98+067  56.89+054  58.70+040 59914058  60.85+0.00

Maj@N  26.42+084  29.28+080  33.28+097  37.04+074  38.56+075  39.00+0.00
WBoN 26.42+084  29.28+089  33.30+110  37.02+084  38.58+073  39.00-+0.00

Maj@N  20.14+114 23244144 29.12+111 33.80+089  36.68+083  38.60+0.00
WBoN 20.14x114  23.24+144 29162099  33.82x082  36.80+0s0  38.60-+0.00

DeenConf Maj@N  25.68+138  28.36+091  33.30+110  37.34x131  38.52+043  40.40+0.00
MATH500 cept-on WBON  25.68+138 28.08+1.08 32444120 36.00+122  37.08+078  38.60+0.00

(Pass@1: 25.60) -
Maj@N  27.06+094  29.18+1.06  33.76+084  37.62+070  39.18+070  39.00+0.00
WBoN 27.06+094  29.18+1.06  33.60+082  37.60+079  39.20+065  39.40+0.00

Maj@N  27.06+091  29.08+1.14  33.64+076  37.52+082  39.12+072  39.20+0.00
WBoN 27.06+091  29.08+114  33.48+073  37.64+073  39.10+069  39.60+0.00

Maj@N  28.28+132  31.36+105  35.44+079  38.00+077  39.44+0ss  39.60+0.00
WBoN 28.28+132  31.36+105  35.44+078  37.86+084  39.38+087  40.00+0.00

Llama-3.1-8B-Instruct

Maj@N  86.74+062  89.16+053  90.48+048  90.99+035  91.01+028  91.00+0.00
WBoN 86.74+062  89.16+053  90.48+049  90.99+036  91.00+029  91.00+0.00

Maj@N  80.02+070  84.13+066  87.25+049  89.22+040  90.05+040  90.77+0.00
WBoN 80.02+070  84.13+066  87.25+0s50  89.21+039  90.05+041  90.77+0.00

DeenConf Maj@N  86.24+066  88.74x064  90.34+046  90.88+046  90.92+028  91.01+0.00
GSMSK P WBON  86.241066  88.74x064  90.32+046  90.90+045  90.94+028  91.020.00

Pass@1: 85.69
(Pass ) Maj@N  87.68+057  89.72+055  90.67+045  91.06+038  90.96+036  91.02+0.00
WBoN 87.68+057  89.72+055  90.65+046  91.06+037  90.98+037  91.02+0.00

Maj@N  87.42+066  89.59+055  90.60+044  91.01x031  90.99+032  90.93+0.00
WBoN 87.42+066  89.59+055  90.57+043  91.04+035  90.98+030  91.02+0.00

Maj@N  88.06+057  89.88+039  90.69+047  91.19+040 91.07+033  91.02+0.00
WBoN 88.06+057  89.88+039  90.67+048  91.19+039  91.09+036  91.05+0.00

Maj@N  50.92+177  55.24+0s51  59.36+074  62.86+070  64.10+061  65.00+0.00
WBoN 50924177  55.24+051 59.46+078  62.80+078  64.02+071  65.00+0.00

Maj@N  44.00+1.82  48.48+106  55.56+1.08  60.04+056  62.66+075  65.40+0.00
WBoN 44.00+£1.82  48.48+106  55.58+106  59.90+051  62.52+053  64.80+0.00

DeenConf Maj@N  49.88+129  55.04+144  59.74+117  62.40+063  64.30+063  65.20+0.00
MATHS500 P WBoN 49.88+129 54424146 58224100  60.90£102  63.14x055  64.80+0.00

(Pass@1: 48.60) -
Maj@N  51.26+136  55.54x070  59.44+131  62.28+095  63.86+044  65.20+0.00
WBoN 51.26+136  55.54+070  59.44+130  62.32+108  63.84+051  65.20+0.00

Maj@N  51.16+145  55.52+066  59.42+116  62.32+1.07  64.00+044  65.60+0.00
WBoN 51.16+145 55524066  59.44+119  62.34+116  63.92+047  65.60+0.00

Maj@N  52.40+139  57.02+061  60.90+093  64.24+083  65.32+080  67.00+0.00
WBoN 52.40+139  57.02+061  61.04+088  64.20+076  65.48+075  67.00-0.00

Dataset Score Method

LL

Self-Certainty

TokUR (TU, Ours)

TokUR (AU, Ours)

TokUR (EU, Ours)

LL

Self-Certainty

TokUR (TU, Ours)

TokUR (AU, Ours)

TokUR (EU, Ours)

LL

Self-Certainty

TokUR (TU, Ours)

TokUR (AU, Ours)

TokUR (EU, Ours)

LL

Self-Certainty

TokUR (TU, Ours)

TokUR (AU, Ours)

TokUR (EU, Ours)

improvements in log-likelihood, whereas an excessively large o, harms performance of all three
TokUR variants (AU, TU and EU) by distorting the original semantic content. Based on these
findings, we set o, = 0.1 for the experiments reported in Sec. 4.
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Table 6: Uncertainties for Incorrect Reasoning Path Detection. AUROC, AUPRC, and ACC* are
all reported as percentage (%), where ACC* (%) denotes the accuracy of the Top 50% generations
identified by different uncertainty measures. Rows with shading indicate methods without Length
Normalization (LN) for uncertainty estimation.

MATHS00 GSMS8K DeepScaleR
AUROC AUPRC ACC* AUROC AUPRC ACC* AUROC AUPRC ACC*

Llama-3.2-1B-Instruct

Method

SE 47.2943.81 25.7142.33 24.13+4.42 50.64+4.44 45.09+0.72 42.62+0.16 46.30+0.21 12.94+0.23 12.58+0.49
SAR 44.57+2.04 24.0342.53 21.07+1.62 50.28+0.97 43.2440.89 43.95+0.77 43.14+1.42 12.34+035 11.14+047
Ugee 48.75+1.05 25.79+1.83 25.2040.33 49.05+046 60.02+0.44 59.62+0.22 48.68+0.24 13.77+0.29 14.23+0.45
Upeg 60.57+2.31 36.32+2.59 30.93+0.94 66.60+0.36 75.72+036 71.994+039 56.88+0.54 18.04+0.63 16.50+0.39
P(True) 54.38+1.20 26.39+1.26 27.60+1.18 56.64+0.04 48.22+0.03 48.9240.00 59.58+0.43 17.48+0.25 17.52+0.50
LLM-Check 56.41+096 27.01+1.22 31.33+129 71.01+0.02 61.29+0.08 59.54+0.00 55.76+048 14.55+0.26 17.30+0.51
INSIDE 55.71+4.69 28.82+4.05 29.20+433 53.66+092 46.03+023 45.79+125 54.73+082 15.50+048 16.30+035
PE 57.08+0.89 26.88+1.05 31.3340.82 71.21+0.03 61.61+0.08 59.85+0.00 56.09+0.46 14.74+0.23 17.33+0.92
LL 55.41+054 25.88+0.87 29.87+0.82 69.01+0.03 58.51+0.09 57.38+0.00 53.84+047 13.93+023 16.83+048

-LN 79.38+027 54.64+0.75 43.73+061 73.67+0.00 68.88+0.00 60.92+0.00 82.62+0.01 45.76+0.02 25.43+0.02
Self-Certainty 71.17+030 48.37+0.50 38.13+0.61 73.4140.00 68.38+0.00 61.38+0.00 71.93+0.04 33.8140.08 21.76+0.04

- LN 23.76+034 17.04+0.10 11.20+0.00 34.42+0.00 34.20+0.00 31.54+0.00 21.33+0.02 8.57+001 4.04+0.00
DeepConf 71.77+0.12 46.00+0.42 39.87+0.46 75.704+0.00 69.72+0.00 62.77+0.00 71.65+0.04 29.9940.05 22.00+0.04

- LN 25.79+034 17.41+0.10 11.47+023 38.84+0.00 36.22+0.00 35.23+0.00 23.87+0.01 8.80+001 4.91+0.02
TokUR (TU, Ours) 57.14+0.81 26.92+0.98 31.87+1.00 70.92+0.04 61.32+0.13 58.92+0.15 56.20+0.49 14.79+0.20 17.52+0.53

-LN 80.64+0.29 56.79+0.74 44.67+0.46 75.07+0.05 70.29+0.07 62.31+0.00 83.55+0.02 47.56+0.04 25.71+0.02
TokUR (AU, Ours) 56.95+0.82 26.8140.99 31.60+0.98 70.90+0.05 61.26+0.13 58.87+0.32 56.02+0.49 14.73+0.19 17.47+0.47

- LN 80.61+0.27 56.73+0.75 44.67+0.46 75.03+0.06 70.22+0.05 62.21+0.18 83.52+0.02 47.48+0.05 25.71+0.02
TokUR (EU, Ours) 61.64+0.97 31.07+1.31 33.20+1.42 65.98+0.75 60.02+0.82 56.05+0.73 62.10+0.00 17.73+035 19.10+0.29

-LN 79.74+021 56.64+0.41 44.13+0.83 71.79+0.80 66.40+1.02 59.74+1.00 82.87+032 46.76+038 25.52+0.11

Negative Length ~ 76.27+034 49.55+1.00 41.87+0.46 65.6940.00 56.72+0.00 56.87+0.18 78.74+0.02 35.9740.07 24.48+0.04
Llama-3.1-8B-Instruct

SE 62.93+0.90 55.21+1.04 55.73+0.83 55.61+336 87.16+1.14 86.77+1.01 67.68+094 35.18+1.00 35.55+037
SAR 69.42+2.19 63.74+3.03 59.20+1.06 60.16+222 89.24+0.74 87.99+0.81 73.01+0.28 42.89+0.65 37.51+0.12
Ugece 50.23+223 49.48+2.44 49.6042.04 47.47+2.15 84.69+0.89 84.87+1.17 50.16+0.66 25.08+0.18 25.48+0.53
Upeg 58.62+036 57.69+090 53.47+1.64 67.22+1.06 92.24+0.53 92.62+0.88 59.14+037 32.64+0.43 29.75+036
P(True) 33.41+025 36.05+055 35.3340.19 41.94+0.01 82.19+0.00 82.77+0.00 33.64+0.20 18.06+0.06 16.23+0.02
LLM-Check 57.41+0.44 49.69+1.07 52.80+1.38 73.98+0.01 93.37+0.01 93.23+0.00 55.42+027 26.46+0.19 28.37+0.40
INSIDE 62.94+1.72 55.06+3.19 57.33+1.01 58.86+2.11 87.44+0.94 88.21+0.90 67.05+0.49 33.83+042 34.13+0.10
PE 57.98+0.49 49.72+0.84 53.0740.94 74.03+0.01 93.37+0.00 93.2340.00 55.90+0.23 26.80+0.16 28.65+0.22
LL 55.36+0.49 47.24+090 51.0740.94 72.21+0.02 92.64+0.00 92.4640.00 52.82+032 24.48+0.13 26.85+0.19

-LN 81.36+0.50 78.80+0.36 72.27+0.92 80.03+0.01 95.30+0.00 95.08+0.00 84.58+0.07 63.92+0.03 43.69+0.14
Self-Certainty 76.41+061 76.22+0.87 69.07+0.83 80.6040.11 95.65+0.03 96.26+0.09 76.72+0.09 56.154030 39.03+0.23

-LN 21.94+058 33.57+042 28.40+1.06 26.44+0.01 75.43+0.00 77.85+0.00 18.80+021 15.15+0.10 8.17+0.28
DeepConf 71.86+0.70 69.57+£0.94 66.27+1.15 83.30+0.07 96.23+0.02 96.56+0.00 73.05+0.08 48.76+0.10 37.48+0.14

- LN 23.73+0.62 34.08+0.44 30.80+1.06 30.86+0.01 77.30+0.00 79.38+0.00 21.20+0.24 15.50+0.11 9.27+0.16
TokUR (TU, Ours) 56.49+0.46 48.24+0.85 52.13+0.75 73.98+0.05 93.27+0.04 93.13+0.00 54.86+0.17 25.97+0.12 27.97+0.17

-LN 82.47+047 79.62+0.33 74.00+0.69 81.01+0.04 95.53+0.05 95.54+0.00 85.33+0.07 65.25+0.01 43.91+0.09
TokUR (AU, Ours) 56.31+047 48.11+0.84 51.8740.68 73.97+0.02 93.26+0.03 93.1340.09 54.77+0.18 25.90+0.13 27.93+0.11

- LN 82.43+0.48 79.56+0.35 74.00+0.69 80.97+0.02 95.52+0.03 95.49+0.09 85.31+0.07 65.20+0.02 43.89+0.08
TokUR (EU, Ours) 60.92+0.46 52.64+0.71 56.13+1.36 67.92+0.72 92.41+0.24 92.15+041 57.42+023 28.32+0.16 29.65+0.10

-LN 82.86+0.42 81.35+0.66 72.40+1.20 78.31+1.58 94.91+0.59 94.67+0.77 84.92+0.28 65.57+0.43 43.89+0.27

Negative Length ~ 78.11+0.54 73.81+0.28 68.80+0.40 73.6440.01 93.36+0.00 93.54+0.00 81.20+0.20 57.124031 41.57+0.16

E.4.2 THE EFFECT OF TOKEN DECODING TEMPERATURE 7 ON UNCERTAINTY ESTIMATION

During text generation with large language models, the decoding temperature introduces uncertainty
into the model’s output. In general, higher temperatures lead to more diverse responses. In this
section, we investigate the relationship between decoding temperature 7 and uncertainties estimated
by our token-level approach. Specifically, we use L1ama-3.2-1B-Instruct to answer questions
from the MATHS500 dataset under different decoding temperature settings and estimate the average
uncertainty of the model’s responses.

As shown in Fig. 5 Left, increasing the decoding temperature 7 results in a notable rise in token-
level Aleatoric Uncertainty (AU) of the model, whereas the Epistemic Uncertainty (EU) remains
relatively unaffected. Additionally, we report the AUROC scores of various uncertainty estimation
approaches across different temperature settings in Fig. 5 Right. These results indicate that varying
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Figure 4: Left: Uncertainty estimation with different perturbation strength o,,. Right: Influence of
perturbation strength on uncertainty-based AUROC scores.
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Figure 5: Left: Uncertainty estimations in different token decoding temperature 7. Right: Influence
of token decoding temperature on uncertainty-based AUROC scores.

the temperature 7 does not harm the performance of TokUR, highlighting its robustness to changes
in decoding temperature.

E.4.3 ABLATION STUDY OF LENGTH NORMALIZATION

Length normalization is a standard technique for aggregating foken-level uncertainty into sequence-
level uncertainty (Fu et al., 2025; Kang et al., 2025), as it mitigates the bias introduced by sequence
length when evaluating generation confidence. However, as described in Eqn. 13, we do not apply
normalization when computing TokUR. To assess the impact of sequence length on uncertainty
estimation, we therefore conduct an ablation study on length normalization.

Experimental Setup. We investigate the effect of length normalization on incorrect reasoning
path detection across three datasets (MATHS500, GSMS8K, and DEEPSCALER), following the same
settings as in Table 1. We compare TokUR with and without Length Normalization (LN), along with
representative baselines. In addition, we introduce a naive baseline, Negative Length, which uses
sequence length alone as a confidence signal.

Results. As shown in Table 6, the impact of length normalization varies significantly across methods.
For both LL and TokUR, normalization consistently reduces AUROC and AUPRC, indicating that raw
sequence length introduces a favorable bias that benefits uncertainty aggregation in de-hallucination
tasks. This observation is further reinforced by the strong performance of the Negative Length
baseline, which alone achieves competitive results across all datasets. In contrast, Self-Certainty and
DeepConf show clear gains with normalization (e.g., Self-Certainty improves from 23.76 to 71.17
AUROC on MATHS500), suggesting that normalization is essential for stabilizing their performance.
Overall, these findings reveal that the role of length normalization is highly method-dependent.
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Figure 6: Ablation of stepwise posterior sampling. Comparison of stepwise vs. joint modeling on
Llama-3.2-1B-Instruct across accuracy, improvement, and efficiency. Stepwise modeling
consistently achieves better scaling performance, validating Assumption 3.1.

E.4.4 ABLATION STUDY OF STEPWISE POSTERIOR SAMPLING

To examine the validity of Assumption 3.1, we perform an ablation study comparing step-
wise posterior sampling against the joint posterior formulation. Concretely, we evaluate
test-time scaling on MATHS00 dataset, using TokUR with both stepwise and joint modeling on
Llama-3.2-1B-Instruct, while keeping all other settings consistent with Table 2.

As shown in Fig. 6, stepwise modeling consistently outperforms joint modeling across all uncertainty
measures (AU, EU, and TU). Specifically, stepwise sampling achieves higher mean accuracy and
larger improvements over the baseline, while also demonstrating superior scaling efficiency with
increasing numbers of samples. These results provide strong empirical support for our assumption
that posterior samples should not be shared across decoding steps, validating the design choice in
Assumption 3.1.

E.5 CASE STUDY

In this section, we present several representative examples from the MATHS00 and GSM8K datasets,
along with their corresponding solutions generated by Llama-3.2-1B-Instruct. We estimate
token-level uncertainty for each output using the definitions provided in Eqn. 10~Eqn. 12. The
visualizations are shown in Fig. 7~Fig. 10, where Aleatoric Uncertainty (SENJJi8B) and Epistemic
Uncertainty (BUSSRIGREEN) are visualized as text-heatmap. The background of each token
corresponds to the magnitude of its uncertainty: the darker the shade, the higher the uncertainty,
indicating a lower model confidence for that token.
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We observe that incorrect solutions consistently exhibit elevated uncertainty at or near the token where
the wrong final answer is generated. For instance, as shown in Fig. 7, sharp spikes in uncertainties
happens with the arithmetic error of reversing “9600 - 7200” into “7200 - 9600”. In contrast, correct
solutions tend to show lower uncertainty overall and maintain low uncertainty on key answer tokens.

Furthermore, incorrect outputs tend to contain a higher density of high-uncertainty tokens throughout
the solution, whereas correct outputs are generally more consistent and confident. These observations
suggest that our token-level uncertainty estimation method can serve as a useful signal for identifying
potential reasoning failures or unreliable outputs, offering a valuable diagnostic tool for both model
interpretability and downstream error detection.

27



Under review as a conference paper at ICLR 2026

Problem : Oula and Tona work for a delivery service company, supplying different par‘rs\
of their state with milk products. They are paid $100 for each delivery made in a day. In
a particular month, Oula made 96 deliveries while Tona made 3/4 times as many
\deliver‘ies as Oula. Calculate their difference in pay that month. )
( ## Step 1 : Calculate . number of deliveries made by T . Step 1 : [Calculate| O ula s - pay = O ula made )
ona . /T ona made 3 / 4 times as many deliveries as O | 96 deliveries I and - get paid $ 100 for each delivery . So:
ula ,- since O ula made 96 deliveries , T ona made [( | their total pay |will be 96 * 100 = $ 960 O . ## Step
3/ 4 ) * 96 = 72 deliveries . ## Step 2 : Calculate 2 : Calculate T ona ' s total pay T ona made 3/ 4
.- pay for O ula |. For - delivery , O ula [is paid |times as many deliveries as O ula |, 'which is = 8 / 4 * 96
$ 100 |, ‘and -- are 96 deliveries |, O ula * s pay |= 72 deliveries .- total pay will be 72 * 100 =
AU for the month is 96 * |§ 100 = $ 960 O . ## Step 3 |$ 720 0 . ## Step 3 : Find the difference in their pay
: Calculate the total pay for T ona . [For each delivery , T | The difference in their pay |is I 720 0 - 960 0 = = 240 O
ona is paid $§ 100 , and since there are 72 deliveries , T | The final answer is : $ boxed {- 240 0 }$
ona ' s pay for the month is 72 * $ 100 = $ 720 O . ##
Step 4 : |Calculate the difference in pay between O ula and
T ona . The difference in pay |is l 90 0 - $ 720 0 = $
240 0 . The final answer is : $ boxed { 240 0 }$
## Step 1 : Calculate the number of deliveries made by T | ## Step 1 : Calculate O ula ' s total pay O ula made
ona . T ona made 3 / 4 times as many deliveries as O 96 deliveries , and they get paid $ 100 for each delivery . So
ula , land since O ula made 96 deliveries , T ona made ( their total pay will be 9% * 100 = $ 960 0 . ## Step
3/ 4 ) * 96 = 72 deliveries . ## Step 2 : Calculate 2 : Calculate T ona ' s total pay T ona made 3/ 4
the ftotall pay for O ula . For each delivery , O ula is paid | times as many deliveries as O ula , which is 3 / 4 * 96
$ 100 , and 'since there are 96 deliveries , O ula ' s pay = 72 deliveries . So their total pay will be 721 K 100 =
EU for the month is 96 * $ 100 = $ 960 O . ## Step 3 | § 720 0 . ## Step 3 : Find the difference in their pay
: Calculate the total pay for T ona . For each delivery , T The difference in their pay is 720 0 - 960 0 = - 240 0
ona is paid $ 100 , and since there are 72 deliveries , T . The final answer is : $ boxed {- 240 0 }$
ona ' s pay for the month is 72 * $ 100 = $ 720 O . ##
Step 4 : Calculate the difference in pay between O ula and
T ona . The difference in pay is | 960 0 - $ 720 0 = §$
240 0 . The final answer is : $ boxed { 240 0 }$
. J

Correct Incorrect X

Figure 7: Case Study (1/4): The sample is from GSMS8K, whose correct answer is 2400. In
the incorrect solution, the model demonstrated significant uncertainty when mistakenly reversing
“9600 — 7200 as “7200 — 96007, and also exhibited high uncertainty at the negative sign “—" in the
final answer.
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~

s
Problem : Kiarra is twice as old as Bea. Job is 3 times older than Bea. Figaro is 7 years
older than Job. Harry is half as old as Figaro. If Kiarra is 30, how old is Harry?

( , : . . s . )
## Step 1 :- Bea ' s age I Since K iar ra is ## Step 1 Bea ' s age - on K jar ra ' s
twice as old as Bea ,- K ijar ra is 30 years old , Bea age . Since K iar ra is 30 and - is twice as old as
‘s age can be found by dividing K iar ra s age by 2[ Bea , Bea ' s age can be calculated as 30 / 2 = 15
Be a "s age = K ijar ra "s age / 2= 30/ 2 = ## Step 2 : |Caleulate| Job ' s age [based on Bea s
15 . ## Step 2 : Calculate Fig aro ' s age |[Since Fig aro age . Job is 3 times older than Bea - Job ' s
is 7 years older than Job , and Job is 3 times |older than age |can be calculated as 3 * 15 = 45 . ## Step 3

AU Bea , [Fig| aro ' s age can be calculated |as follows : - s ;- Harry ° s age based on Fig aro ' s age . Harry
age = Bea 's age * 3 = 15 * 3 = 45 - is half as old as Fig aro - Harry ' s age can be
Fig aro ''s age = Job 's age + 7 = 45 + 7 = 52 calculated as 46 / 2 = 22 . 5 . The final answer is :

## Step 3 : |Caleulate| Harry ' s age |Since Harry is half $ boxed { 22 . 5 }$

as old as Fig aro , [Hary| ' s age can be found by dividing
Fig aro s age by 2 . Harry s age = Fig aro ' s age
/ 2= 52/ 2 = 26 . The final answer is $ boxed {
26 } $
## Step 1 : Determine Bea ' s age Since K iar ra is ## Step 1 : Determine Bea ' s age based on K iar ra ' s
twice as old as Bea , and K iar ra is 30 years old , Bea age . Since K iar ra is 30 and [she| is twice as old as
''s age can be found by dividing K iar ra s age by 2 . Bea , Bea 's age can be calculated as 30 / 2 = 15
Be a 's age = Kiarra s age/ 2= 30/ 2-= ## Step 2 : Calculate Job ' s age based on Bea s
15 . ## Step 2 : Calculate Fig aro ' s age Since Fig aro age . Job is 3 ftimes older than Bea . Therefore , Job ' s
is 7 years older than Job , and Job is 3 times older than age can be calculated as 3+ 15 = 45 . ## Step 3

EU Bea , Fig aro ' s age can be calculated as follows : Job ' s . Determine Harry ' s age based on Fig aro ' s age . Harmy
age = [Bea] *s age | 35 15 * 3 = 45 [} QUG - is half as old as Fig aro . Therefore , [Harfy ' s age can be
ad) (Ero) el [20e) (5] ECol IS 20S] K3 I I () 0 55 il I I () B2 calculated as 45 / 2 = 22 . 5 . The final answer is :

## Step 3 : Calculate Harry s age Since Harry is half $ boxed { 22 . 5 }$
as old as Fig aro , Harry ' s age can be found by dividing
Fig aro "s age by 2 . Hary 's age = Fig aro ' s age
/ 2 = 52 / 2 = 26 . The final answer is |§| boxed {
26 } §.
. J

Correct

Incorrect X

Figure 8: Case Study (2/4): The sample is from GSM8K. In this example, the incorrect solution

ignores the critical condition that “Figaro is 7 years older than Job,” leading to the use of 45 instead of

52 in the final calculation. Notably, the model exhibits high uncertainty at the token “45” indicating a
lack of confidence in its own response at that point.
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( )
Problem : Simplify the following expression in $x$: $$19x + 1 - 4x - 81.$$
\_ )

~
## Step 1 : Combine like terms - the l x $ | ## Step 1 : Combine like terms . simplify the given
terms . ## Step 2 :- ify . implify the expression . expression , we [need to combine the like terms - the

- the - and sub tr actions - left to right . || variable '$ x $ and the constant terms |. ## Step 2 :I
.x + 1 - 4x- 8 |=/(19- 4 x+ 1- 81 -conslants % - 81 % -.-the constant

= 15 x - 80 The final answer is : $ boxed { 15 x - termsl -4 x $ and $ - 81 $. ## Step 3 : - tract
AU |80 }3 Bl-4xsoms- s SEE 1 x- 8 [ # se

4 -Iikeiermsl$19x- 4x$--
us with [§ 15 x [§ ## Step 5 : - the simplified

expression is [$ boxed { 15 x }$

## Step 1 : Combine like terms Combine the $ x §$ | ## Step 1 : Combine like terms To simplify the given

terms . ## Step 2 : Simpl ify S implify the expression by | expression , we need to combine the lke terms with the
performing the additions and sub tr actions from left to right . | variable $ x $ and the constant terms . ## Step 2

19 x + 1 - 4 x - 8 = (19 - 4 ) l 1 - 81 Combine constants : $ - 81 $§ We wil combine the constant

EU = 15 x - 80 The final answer is : $ boxed { 15 x - terms $ - 4 x $ and $ - 81 $ . ## Step 3 : Sub tract

80 1% $ -4 x $ from$ -8 $: $ 19 x - 81 . ## Step

4 Combine like terms : § 19 x - 4 x $ This leaves

us with $ 15 x $ ## Step 5 : Therefore , the simplified

expression is $ boxed { 15 x }$

Correct Incorrect X

Figure 9: Case Study (3/4): The sample is from MATHS500. In this example, the incorrect solution
gives its final answer “152” in step 4. The model exhibits high uncertainty at the token next to “152’
because it overlooks the constant term. Furthermore, it can be observed that tokens associated with
high uncertainty occur more frequently in the incorrect solution.

i
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4 )

Problem : In regular pentagon $FGHIJT$, extending the sides of the pentagon, as shown,
forms a star. What is the measure of angle $A$ in the figure?\n\n [IMAGE]

g J

-~

## Step 1 :- are given a regular pent agon $ FG HI ## Step 1 -. given a regular pent agon $ FG HI J
J $ and - the sides of the pent agon forms a star $ with- extending |its sides , forming a star [shape
. -- agon |has = 5 equal sides |, |which - all the $ .-. J$, where $ . $ is [the - of the |circle
interior angles are also equal . ## Step 2 :. find angle - at $ G $ ] ## Step 2 :- let ° s - the

$ A 5 we Y to - the RN ©f S - angle, [} - that |the - of the interior angles of any polygon can be

the regular pent agon |. |A| regular pent agon has interior angles calculated by (5 n - 2 D 180 [§] degrees , where n is the

N B o o [ frec { B cic ] S = 108 ore number of sides of the polygon . ## Step 3 .

. |Therefore , we have © circ 108 " circ 108 . N
$ l- * *+ - pent agon has 5 sides , lwe can - the sum of its
" crc + 108 " circ + 108 " circ + [108 " circ = 540 L . .

interior angles by - uting n = 5 into the formula . n

circ '$, 'which .- ## Step 3 :- we 'need to

- 2 )" 180 '$ |degrees |. ## Ste 4 ating $( 5 -
™y (1l eyl ) v e+ [ =
AU 2 )" 180 [§ [degrees| [GiVes| us || 540 degrees . ## Step 5

interior angle of the pent agon is $ 108 ~ circ $, 'we  can -
the 'measure| of angle $ A $ by - ing 'the 'sum of the --- Uit .-l angle .- =
108 $ degrees ,-l angle .- = 108 $ degrees |.  ##

interior angles of the pent agon from the total 'sum of angles
in a - ilateral . # Step 4 : -- of langles in a Step 6 : - angles - a linear pair -- up to
quadr ilateral is $ 360 " circ $, |and . have - angles . 180 degrees '- us to - that '$ angle .. =
$ 108 "~ circ $-the pent agon |. - the measure 180 - ( 108 + 108 )$ . ## Step 7 .- ing

of angle $§ A $ can be found by $ 360 " circ - 108 " circ 216 degrees from 180 , we get the measure of angle A .
- 108 " circ - 108 " circ - 108 " circ $ . ## Step the figure . . degrees . The final answer is : $ boxed {
5 - the value of angle A by - the 'subtraction 60 }$

o l 360 " circ - 324 " circ = 36 " circ § . The final

answer is : $ boxed { 36 }$

i SR 1 K RG] [are] (oiven) [a) regular] pent jagon 3] FG [HI ## Step 1 : We are given a regular pent agon $ FG HI J

J $ and extending the sides of the pent agon forms a star § " . . R . .
& B J $ with additional lines extending its sides , forming a star shape
$ AB CG H J $, where $ AC $ is the radius of the circle

centered at $ G $ . ## Step 2 : First , let ’ s utlize the

The pent agon has 5 equal sides , which means all the
interior angles are also equal . ## Step 2 : To find angle
$ A % we need to find the measure of the interior angle of

. fact that the sum of the interior angles of any polygon can be
the regular pent agon . A regular pent agon has interior angles

that add up to § frac { 540 * circ . S RNE 108 " circ calculated by ($ n - 2 )* 180 $ degrees , where n is the
$. Therefore , we have $ 180 ~ circ + 108 " circ + 108 number of sides of the polygon . ## Step 3 : Since the
“circ + 108 ~ circ + 108 " cic + DEEA - cic - 540 regular pent agon has 5 sides , we can find the sum of its

circ $, which is true . ## Step 3 : Now we need to interior angles by substit uting n = 5 into the formula $( n
add up the angles at the vertices of the star . Since each - 2 )" 180 $ degrees . ## Step 4 : Calcul ating $( 5 -

EU

interior angle of the pent agon is $ 108 " circ $, we can find 2 )* 180 $ degrees gives us 540 degrees . ## Step 5
the measure of angle $ A $ by subtract ing the sum of the : The figure given shows that the angle $ angle B CG =
interior angles of the pent agon from the total sum of angles 108 $ degrees , and $ angle F GH = 108 $ degrees . ##
in a quadr ilateral . ## Step 4 : The sum of angles in a Step 6 : These angles form a linear pair and add up to
quadr ilateral is $ 360 " circ $, and we have four angles of 180 degrees , allowing us to determine that $ angle A FG =
$ 108 " circ $ from the pent agon . Therefore , the measure 180 - ( 108 + 108 )$ . ## Step 7 : By subtract ing
of angle $ A § can be found by $ 360 " circ - 108 " circ 216 degrees from 180 , we get the measure of angle A in
i B 108 iy (circ] 5 | §108] g (cic] [ N 102) i [circ] (%] N [##] [Step the figure as . degrees . The final answer is : $ boxed {
5 Find the value of angle A by performing the subtraction 60 1%
$ 360 " circ - 324 " cic = 36 " circ $§ . The final

answer is : $ boxed { 36 }$

Correct Incorrect X

Figure 10: Case Study (4/4): The sample is from MATHS00. In this example, the model demonstrated
notably high uncertainty at the incorrect answer token “60”. In the correct solution on the left, the
model had low uncertainty for the correct answer “36”.
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